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Abstract. We classify the centers of the polynomial differential
systems in R2 of degree d ≥ 5 odd that in complex notation writes
as

ż = iz + (zz̄)
d−5
2 (Az5 + Bz4z̄ + Cz3z̄2 + Dz2z̄3 + Ezz̄4 + F z̄5),

where A,B, C, D, E, F ∈ C and either A = Re(D) = 0, or A =
Im(D) = 0, or Re(A) = D = 0, or Im(A) = D = 0.

1. Introduction and statement of the main results

In the qualitative theory of real planar polynomial differential sys-
tems one of the main problems is the center–focus problem, i.e. the
problem of distinguishing between a center and a focus. For singular
points whose linear part has a pair of pure imaginary eigenvalues this
problem is equivalent to the existence of an analytic first integral de-
fined in a neighborhood of the singular point, see for more details the
articles [24, 25] and [2, 13, 14].

A singular point is a center if there exists a neighborhood of it such
that all the orbits in this neighborhood are periodic except the singular
point, and a singular point is a focus if there is a neighborhood of it
such that all the orbits in this neighborhood spiral either in forward or
in backward time to the singular point.

We study the center–focus problem for a class of polynomial differen-
tial systems which generalize the class of linear polynomial differential
systems with homogeneous polynomial nonlinearities of degree 5. The
characterization of the centers of the polynomial differential systems
started with the classes of all the quadratic polynomial differential sys-
tems and the linear polynomial systems with homogeneous polynomial
nonlinearities of degree 3, see for instance [1, 27, 28, 29, 30]. Unfortu-
nately in the present we are very far from having the classification of
all the centers of the cubic polynomial differential systems. But some
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subclasses of cubic polynomial differential systems with centers are
studied, see for instance the papers [31, 32] and references quoted there.
The centers of linear polynomial differential systems with homogeneous
polynomial nonlinearities of degree k > 3 are not classified, but there
are many partial results for k = 4, 5, 6, 7, 9 see [3, 4, 12, 20, 21, 22, 23].
In general the huge amount of computations which are necessary for
obtaining the complete classification becomes the center problem in-
tractable computationally, see for instance [16] and references quoted
there.

In this paper we work with the real planar polynomial differential
systems that has a singular point at the origin with eigenvalues ±i and
that in complex can be written as

(1) ż = iz + (zz̄)
d−5
2 (Az5 +Bz4z̄ + Cz3z̄2 +Dz2z̄3 + Ezz̄4 + F z̄5),

where z = x+iy, d ≥ 5 is an arbitrary odd integer andA,B,C,D,E, F ∈
C satisfying one of the following four conditions:

(c.1) A = Re(D) = 0,
(c.2) A = Im(D) = 0,
(c.3) Re(A) = D = 0,
(c.4) Im(A) = D = 0.

These systems contens as a particular case the results of the paper
[21], where the authors characterize the centers of the system (1) with
A = D = 0.

The polynomial differential systems (1) when d = 5 coincide with the
class of quintic polynomial differential systems of the form a linear cen-
ter plus homogeneous polynomial nonlinearities of degree 5. Therefore
the polynomial differential systems (1) of odd degree d > 5 generalizes
the class of linear polynomial differential systems with quintic homo-
geneous polynomial nonlinearities.

The main result of this paper is the characterization of the cen-
ters for the polynomial differential systems (1) under the assumptions
(c.1)–(c.4). We present the classification of these centers in a different
theorem for each of the four classes.

Theorem 1. The polynomial differential systems (1) satisfying condi-
tions (c.1) have a center at the origin if one of the following conditions
hold.

(a) Re(C) = Im(D) = Re(B̄EF̄ ) = Re(B2E) = Im(BE2F̄ ) =
Im(B2EF̄ ) = Im(B3F ) = Re(E3F̄ 2) = 0,

(b) Re(B) = Re(C) = F = 3B + D̄ = 0,
(c) Re(B) = Re(C) = Re(E) = Re(F ) = 0,
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(d) Re(C) = E = 2B + D̄ = 0.

The proof of Theorem 1 is given in section 3.

Theorem 2. The polynomial differential systems (1) satisfying condi-
tions (c.2) have a center at the origin if one of the following conditions
hold.

(a) Re(C) = Im(D) = Re(B̄EF̄ ) = Re(B2E) = Im(BE2F̄ ) =
Im(B2EF̄ ) = Im(B3F ) = Re(E3F̄ 2) = 0,

(b) Re(B) = Re(C) = F = 3B + D̄ = 0,
(c) Im(B) = Re(C) = Re(E) = Im(F ) = 0,
(d) Re(C) = E = 2B + D̄ = 0.

We note that the change of variables (8) with ξ = ((a8/a7)e
−iπ/4)1/4

transforms condition (c.2) into condition (c.1). Therefore Theorem 2
will not be proved.

Theorem 3. The polynomial differential systems (1) satisfying condi-
tions (c.3) have a center at the origin if one of the following conditions
hold.

(a) Re(C) = Im(D) = Re(B̄EF̄ ) = Re(B2E) = Im(BE2F̄ ) =
Im(B2EF̄ ) = Im(B3F ) = Re(E3F̄ 2) = 0,

(b) Re(C) = B = 5Ā+ E = 0,
(c) Re(C) = A− 3Ē = F = 0,
(d) C = F = Re(E) = Re(B) − Im(B) = 7A + E = 49 Im(B)2 −

8 Im(E)2 = 0 and d = 5,
(e) C = F = Re(E) = Re(B) + Im(B) = 7A + E = 49 Im(B)2 −

8 Im(E)2 = 0 and d = 5,
(f) C = F = Re(E) = 3A+ E = 9|B|2 − 16|E|2 = 0 and d = 5,
(g) B = C = 3A − 5Ē = 16|E|2 − 9|F |2 = 0, F = |F |eiψ with

ψ = π/4 + kπ, k ∈ Z and d = 5,
(h) Re(B) = Re(C) = Re(E) = Re(F ) = 0,
(i) Re(C) = A− C = E = B + F̄ = |C|2 − |F |2 = 0 and d = 5,
(j) Re(C) = A+ C = E = B − F̄ = |C|2 − |F |2 = 0 and d = 5,
(k) Re(C) = Re(E), conditions (36) and d = 5,
(l) C = B + F̄ = Re(E) = A+ E = 4|E|2 − |F |2 = 0 and d = 5,

(m) C = B − F̄ = Re(E) = A+ E = 4|E|2 − |F |2 = 0 and d = 5,
(n) Im(B) = Re(C) = Im(E) = Im(F ) = 0.

The proof of Theorem 3 is given in section 4. Note that the statement
(a) of Theorem 3 coincides with the statement (a) of Theorem 1, and
consequently it will not be proved.
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Theorem 4. The polynomial differential systems (1) satisfying condi-
tions (c.4) have a center at the origin if one of the following conditions
hold.

(a) Re(C) = Im(D) = Re(B̄EF̄ ) = Re(B2E) = Im(BE2F̄ ) =
Im(B2EF̄ ) = Im(B3F ) = Re(E3F̄ 2) = 0,

(b) Re(C) = B = 5Ā+ E = 0,
(c) Re(C) = A− 3Ē = F = 0,
(d) C = F = Im(B) = Im(E) = 7B+4E = 7A−E = 0 and d = 5,
(e) C = F = Im(B) = Im(E) = 7B−4E = 7A−E = 0 and d = 5,
(f) C = F = Im(E) = 3A+E = 9|B|2 − 16 Re(E)2 = 0 and d = 5,
(g) B = C = 3A − 5Ē = 16|E|2 − 9|F |2 = 0 F = |F |eiψ with

ψ = kπ/2, k ∈ Z and d = 5,
(h) E = Re(C) = Re(A) − Im(C) = B + iF̄ = |C|2 − |F |2 = 0 and

d = 5,
(i) E = Re(C) = Re(A) + Im(C) = |C|2 − |F |2 = B − iF̄ = 0 and

d = 5,
(j) Re(C) = Im(E) = Im(C)2 −|F |2 = |B|2 −4 Re(E)2 = a1 +a9 =

a3a11 − a4a12 = 2a6a9 − a4a11 − a3a12 = a4a6 − 2a9a11 = a3a6 −
2a9a12 = a2

4a11 − 4a2
9a11 + a3a4a12 = 0 and d = 5,

(k) C = Im(E) = B + iF̄ = A− E = 4|E|2 − |F |2 = 0 and d = 5,
(l) C = Im(E) = B − iF̄ = A− E = 4|E|2 − |F |2 = 0 and d = 5,

(m) Re(C) = Im(E) = Re(F ) − Im(F ) = Re(B) − Im(B) = 0,
(n) Re(C) = Im(E) = Re(F ) + Im(F ) = Re(B) + Im(B) = 0.

We note that the change of variables (8) with ξ = ((a2/a1)e
iπ/2)1/4

transforms condition (c.4) into condition (c.3). Hence Theorem 4 will
not be proved.

2. Preliminary definitions and results

There are very few results about the centers for classes of polynomial
differential systems of arbitrary degree. The resolution of this problem
implies the effective computation of the Poincaré-Liapunov constants.
Indeed, setting

A = a1 + ia2, B = a3 + ia4, C = a5 + ia6,

D = a7 + ia8, E = a9 + ia10, F = a11 + ia12,

and writing (1) in polar coordinates, i.e., doing the change of variables
r2 = zz̄ and θ = arctan(Im z/Re z), system (1) becomes

(2) ṙ = F (θ) rd, θ̇ = 1 +G(θ) rd−1,
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where F (θ) and G(θ) are the homogeneous trigonometric polynomials

F (θ) = a5 + (a3 + a7) cos(2θ) + (a8 − a4) sin(2θ) + (a1 + a9) cos(4θ)

+(a10 − a2) sin(4θ) + a11 cos(6θ) + a12 sin(6θ),

G(θ) = a6 + (a4 + a8) cos(2θ) + (a3 − a7) sin(2θ) + (a10 + a2) cos(4θ)

+(a1 − a9) sin(4θ) + a12 cos(6θ) − a11 sin(6θ).

In order to determine the necessary conditions to have a center we
propose the Poincaré series

(3) H(r, θ) =
∞∑

n=2

Hn(θ)r
n,

where H2(θ) = 1/2 and Hn(θ) are homogeneous trigonometric poly-
nomials respect to θ of degree n. Imposing that this power series is a
formal first integral of system (2) we obtain

Ḣ(r, θ) =
∞∑

k=2

V2kr
2k.

where V2k are the Poincaré-Lyapunov constants that depend on the
parameters of system (1). Indeed it is easy to see by the recursive
equations that generate the V2k that these V2k are polynomials in the
parameters of system (1), see [9]. As system (1) is polynomial, due
to the Hilbert Basis theorem, the ideal J =< V2, V4, ... > generated
by the Poincaré-Liapunov constants is finitely generated, i.e. there
exist W1,W2, ...,Wk in J such that J =< W1,W2, ...,Wk >. Such a
set of generators is called a basis of J and the conditions Wj = 0
for j = 1, . . . , k provide a finite set of necessary conditions to have a
center. The set of coefficients for which all the Poincaré-Liapunov con-
stants V2k vanish is called the center variety of the family of polynomial
differential systems and also it is an algebraic set.

In practice we determine a number of Poincaré-Liapunov constants
thinking that inside these number there is the set of generators of the
all Poincaré-Liapunov constants. From this set the much harder prob-
lem is decompose this algebraic set into its irreducible components.
For simple cases this can be done by hand, see [3, 4, 15, 18, 19, 21].
However for more difficult systems the use of a computer algebra sys-
tem is essential. The computational tool which we use is the routine
minAssGTZ [8] of the computer algebra system Singular [11] which is
based on the Gianni-Trager-Zacharias algorithm [10]. Since computa-
tions are too laborious they cannot be completed in the field of rational
numbers. Therefore, we choose the approach based on making use of
modular computations [26]. We have chosen the prime p = 32003. To
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perform the rational reconstruction we used the Mathematica code
and the algorithm presented in [26]. The last step of this algorithm
has not been verified because computations cannot be overcome. This
step ensures that all the points of the center variety have been found.
That is, we know that all the encountered points belong to the decom-
position of the center variety but we do not know whether the given
decomposition is complete. We remark that, nevertheless, it is practi-
cally sure that the given list is complete, see also [26]. Therefore, in
the following we provide sufficient conditions to have a center, which
are practically necessary.

From system (2) we can obtain the associated equation

(4)
dr

dθ
=

F (θ) rd

1 +G(θ) rd−1
,

It is clear that equation (4) is well defined in a sufficient small neigh-
borhood of the origin. Hence if system (2) has a center at the origin,

then equation (4) when θ̇ > 0 also has a center at the origin. The
transformation (r, θ) → (ρ, θ) introduced by Cherkas [5] defined by

(5) ρ =
rd−1

1 +G(θ)rd−1
, whose inverse is r =

ρ1/(d−1)

(1 − ρG(θ))1/(d−1)
,

is a diffeomorphism from the region θ̇ > 0 into its image. If we trans-
form equation (4) using the transformation (5), we obtain the following
Abel equation

(6)
dρ

dθ
= −(d− 1)G(θ)F (θ)ρ3 + [(d− 1)(F (θ) −G ′(θ)]ρ2

= A(θ)ρ3 +B(θ)ρ2 + Cρ.

The solution ρ(θ, ρ0) of (6) satisfying that ρ(0, ρ0) = ρ0 can be ex-
panded in a convergent series of ρ0 ≥ 0 sufficiently small of the form

(7) ρ(θ, ρ0) = ρ1(θ)ρ0 + ρ2(θ)ρ
2
0 + ρ3(θ)ρ

3
0 + · · ·

with ρ1(θ) = 1 and ρk(0) = 0 for k ≥ 2. Let P : [0, ρ̃0] → R be
the Poincaré return map defined by P (ρ̃0) = ρ(2π, ρ̃0) for a convenient
ρ̃0. System (1) has a center at the origin if and only if ρk(2π) = 0
for every k ≥ 0. If we assume that ρ2(2π) = · · · = ρm−1(2π) = 0 we
say that vm = ρm(2π) is the m-th Poincaré-Liapunov-Abel constant of
system (1). Of course the set of coefficients for which all the Poincaré-
Liapunov-Abel constants vm vanish is the same that the set for which all
the Poincaré-Liapunov constants V2k vanish. This set, as we mentioned,
is the center variety of system (1).
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We note that the space of systems (1) with a center at the origin
is invariant with respect to the action group C∗ of change of variables
z → ξz:

(8)
A → ξ(d−7)/2ξ̄(d−5)/2ξ5A, B → ξ(d−7)/2ξ̄(d−5)/2ξ4ξ̄B.
C → ξ(d−7)/2ξ̄(d−5)/2ξ3ξ̄2C, D → ξ(d−7)/2ξ̄(d−5)/2ξ2ξ̄3D.
E → ξ(d−7)/2ξ̄(d−5)/2ξξ̄4E, F → ξ(d−7)/2ξ̄(d−5)/2ξ̄5F,

for a proof see [18].

The next result will be used to check when system (1) is reversible
with respect to a straight line through the origin. Indeed system (1)
is invariant with respect to a straight line through the origin if it is
invariant under the change of variables w = eiγz, τ = −t for some real
γ. The next result proved in [9].

Lemma 5. System (1) is reversible with respect to a straight line if
and only if

A = −Āe−4iγ, B = −B̄e−2iγ, C = −C̄,
D = −D̄e2iγ, E = −Ēe4iγ, F = −F̄ e6iγ,

for some γ ∈ R. Furthermore, in this situation the origin of system
(1) has a center at the origin.

During the proof of Theorem 3 we will also consider equation (1)
and its complex conjugated equation given by

(9) ˙̄z = −iz̄ + (zz̄)
d−5
2 (Āz̄5 + B̄z̄4z + C̄z̄3z2 + D̄z̄2z3 + Ēz̄z4 + F̄ z5).

We will also consider the complex system defined by both equations
that after the complex change of time t → −it is given by

(10) ż = z + Pd(z, z̄), ˙̄z = −z̄ +Qd(z, z̄),

where Pd and Qd are homogeneous polynomials of degree d. Since we
think there is no confusion we will also write it as

(11) ẋ = x+ Pd(x, y), ẏ = −y +Qd(x, y).

We also present the following lemma given in [17] that we will need
later in some cases.

Lemma 6. If system (11) has a local inverse integrating factor

V = (xy)α
m∏

i=1

F βi

i

with Fi analytic in x and y, Fi(0, 0) ̸= 0 for i = 1, . . . ,m, α ̸= 0, and
α not an integer greater than 1, then it has an analytic first integral of
the form Ψ = xy + · · · .
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In fact this lemma is a particular case of Theorem 4.13 (iii) of [6].

3. Proof of Theorem 1

Proof of statement (a). The conditions of this case expressed in the real
parameters are a5 = a8 = 0 (i.e., A = Re(C) = D = 0) and

p1 = a3a9a11 + a4a10a11 − a4a9a12 + a3a10a12 = 0,

p2 = a2
3a9 − a2

4a9 − 2a3a4a10 = 0,

p3 = a4a
2
9a11 − 3a4a

2
10a11 − a3a

2
9a12 + 4a4a9a10a12 − a3a

2
10a12 = 0,

p4 = a2
4a9a11 + 3a3a4a10a11 − a3a4a9a12 + a2

3a10a12 = 0,

p5 = 3a2
3a4a11 − a3

4a11 + a3
3a12 − 3a3a

2
4a12 = 0,

p6 = a3
9a

2
11 − 3a9a

2
10a

2
11 + 6a2

9a10a11a12 − 2a3
10a11a12 − a3

9a
2
12 + 3a9a

2
10a

2
12

= 0.

We now rewrite each of the conditions pj for j = 1, . . . , 6 in terms of
complex parameters of system (1). We obtain that p1 = Re(B̄EF̄ ) = 0
and p2 = Re(B2E) = 0. Using that p1 = 0 we get p3 = Im(BE2F̄ ) = 0,
and using that p1 = p2 = 0 we get p4 = Im(B2EF̄ ) = 0. Finally, we
note that p5 = Im(B3F ) = 0 and p6 = Re(E3F̄ 2) = 0. In summary, we
have the conditions of statement (1).

From these conditions of statement (1) we have A = D = 0, Re(C) =
0 that is C = −C̄ and

B

B̄
= −EF̄

ĒF
,

(B
B̄

)2

= −Ē
E
,
B

B̄
=
Ē2F

E2F̄
,

(B
B̄

)3

=
F̄

F
,

(E
Ē

)3

= −
(F
F̄

)2

.

(12)

Now let θ1, θ2, θ3 be such that

eiθ1 = −B̄
B
, eiθ2 = −Ē

E
, eiθ3 = − F̄

F
.

From conditions (12) we have that

(13) θ2 = −2θ1(mod(2π)), θ3 = −3θ1(mod(2π)).

Now taking γ = θ1/2 and using (13) we have

e2iγ = eiθ1 = −B̄
B
, e−4iγ = e−2iθ1 = eiθ2 = −Ē

E
,

e−6iγ = e−3iθ1 = eiθ3 = − F̄
F
.

Hence by Lemma 5 system (1) under the conditions of statement (1)
is reversible and consequently has a center at the origin. �
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Proof of statement (b). The conditions in the real parameters are a5 =
a11 = a12 = 3a4 − a8 = a3 = 0. System (1) can be written into the
form

ż = iz + (zz̄)(d−5)/2(Bz4z̄ − 3B̄z2z̄3 + Ezz̄4)

= iz + (zz̄)(d−3)/2(Bz3 − 3B̄z2 + Ez̄3).
(14)

If we rescale system (14) by |z|d−3 we get

ż = iz|z|3−d +Bz3 − 3B̄z2 + Ez̄3 = i
∂H

∂z̄
,

where for d = 5

H = log |z|2 − i(Bz3z̄ − B̄zz̄3) − i

4
(Ez̄4 − Ēz4),

and for d ≥ 7 odd we have

H =
2

5 − d
|z|5−d − i(Bz3z̄ − B̄zz̄3) − i

4
(Ez̄4 − Ēz4).

Note that the first integrals exp(H) for d = 5 and H for d ≥ 7 odd
are real functions well defined at the origin. Therefore the origin is a
center. �
Proof of statement (c). The conditions in the real parameters are a3 =
a5 = a9 = a11 = 0. Note that in this case we are under the assumptions
of Lemma 5 with γ = 0. Hence by Lemma 5 system (1) under the
conditions of statement (3) is reversible and consequently has a center
at the origin. �
Proof of statement (d). The conditions in the real parameters are a5 =
a9 = a10 = 2a4 − a8 = a3 = 0. In this case system (1) takes the form

(15) ż = iz + (zz̄)(d−5)/2(Bz4z̄ − 2B̄z2z̄3 + F z̄5).

Now we rescale by (zz̄)(d−5)/2 = |z|d−5 and system (15) becomes

(16) ż = iz|z|5−d +Bz4z̄ − 2B̄z2z̄3 + F z̄5 = i
∂H

∂z̄
,

where for d ≥ 5 odd with d ̸= 7 we have

H =
2

7 − d
|z|7−d − i

2
Bz4z̄2 +

i

2
B̄z2z̄4 − i

6
F z̄6 +

i

6
F̄ z6,

and for d = 7 we have

H = log |z|2 − i

2
Bz4z̄2 +

i

2
B̄z2z̄4 − i

6
F z̄6 +

i

6
F̄ z6.

Note that the first integrals exp(H) for d = 7 and H for d ≥ 5 odd
with d ̸= 7 are real functions well defined at the origin. Therefore in
this case the origin is a Hamiltonian center. �
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4. Proof of Theorem 3

Proof of statement (b). The conditions in the real parameters are a3 =
a4 = a5 = a9 = 5a2 − a10 = 0. System (1) can be written into the form

ż = iz + (zz̄)(d−5)/2(Az5 + i Im(C)z3z̄2 − 5Āzz̄4 + F z̄5).(17)

If we rescale system (17) by |z|d−5 we get

ż = iz|z|5−d + Az5 + i Im(C)z3z̄2 − 5Āzz̄4 + F z̄5 = i
∂H

∂z̄
,

where for d ≥ 5 odd with d ̸= 7 we have

H =
2

7 − d
|z|7−d − i(Az5z̄ − Āzz̄5) +

Im(C)

3
z3z̄3 − i

6
(F z̄6 − F̄ z6),

and for d = 7 we have

H = log |z|2 − i(Az5z̄ − Āzz̄5) +
Im(C)

3
z3z̄3 − i

6
(F z̄6 − F̄ z6).

Note that the first integrals exp(H) for d = 7 and H for d ≥ 5 odd,
d ̸= 7 are real functions well defined at the origin. Therefore the origin
is a center. �

Proof of statement (c). The conditions in real parameters are a11 =
a12 = a9 = a5 = a2 + 3a10 = 0. In this case the associated complex
differential system (11) is also a Lotka-Volterra case studied in [17]. In
real coordinates system (1) under the conditions of this case becomes

ẋ = − y + (x2 + y2)(d−5)/2
(
a3x

5 + 18a10x
4y − 3a4x

4y − a6x
4y

− 2a3x
3y2 − 28a10x

2y3 − 2a4x
2y3 − 2a6x

2y3

− 3a3xy
4 + 2a10y

5 + a4y
5 − a6y

5
)
,

ẏ = x− (x2 + y2)(d−5)/2
(
2a10x

5 − a4x
5 − a6x

5 − 3a3x
4y

− 28a10x
3y2 + 2a4x

3y2 − 2a6x
3y2 − 2a3x

2y3

+ 18a10xy
4 + 3a4xy

4 − a6xy
4 + a3y

5
)
.

(18)

System (18) has the invariant curve f = x2 + y2 and the inverse in-
tegrating factor V = (x2 + y2)(d+3)/2 which, by integration, gives an
analytic first integral at the origin. �

Proof of statement (d). The conditions in real parameters are a11 =
a12 = a9 = a5 = a6 = a3 − a4 = 7a2 + a10 = 49a2

4 − 8a2
10 = 0. In this

case the associated complex differential system (11) is also a Lotka-
Volterra case studied in [17]. We take a3 = a4 and a10 = −7a2 and
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a4 = ±2
√

2a2. In this case the complex differential system (11) is given
by

(19)
ẋ = x+ a2x

5 ± (2 − 2i)
√

2a2x
4y − 7a2xy

4,

ẏ = −y + 7a2x
4y ∓ (2 + 2i)

√
2a2xy

4 − a2y
5.

System (20) has the invariant curve of degree 8 given by

f(x, y) = 1 + 2a2x
4 + a2

2x
8 ∓ (2 − 2i)

√
2a2x

3y ∓
(10

3
− 10i

3

)√
2a2

2x
7y

− 20ia2
2x

6y2 ∓ (2 + 2i)
√

2a2xy
3 ± (18 + 18i)

√
2a2

2x
5y3

+ 2a2y
4 − 130

3
a2

2x
4y4 ± (18 − 18i)

√
2a2

2x
3y5 + 20ia2

2x
2y6

∓
(10

3
+

10i

3

)√
2a2

2xy
7 + a2

2y
8.

Moreover, system (20) has the first integral H(x, y) = xaybf(x, y)c

where

a = (−1)1/4(3(−1)3/4 − (2 − 2i)
√

2)/3,

b = i(3i+ (2 + 2i)(−1)1/4
√

2)/3,

c = −i(−3i+ (4 + 4i)(−1)1/4
√

2)/6.

�

Proof of statement (e). The conditions in real parameters are a11 =
a12 = a9 = a5 = a6 = a3 + a4 = 7a2 + a10 = 49a2

4 − 8a2
10 = 0. In

this case the associated complex differential system 11 is also a Lotka-
Volterra case studied in [17]. We take a3 = a4 and a10 = −7a2 and
a4 = ±2

√
2a2. In this case the complex differential system (11) is given

by

ẋ = x+ a2x
5 ± (2 + 2i)

√
2a2x

4y − 7a2xy
4,

ẏ = −y + 7a2x
4y ∓ (2 − 2i)

√
2a2xy

4 − a2y
5.

(20)

System (20) has the invariant curve of degree 8 given by

f(x, y) = 1 + 2a2x
4 + a2

2x
8 ∓ (2 + 2i)

√
2a2x

3y ∓
(10

3
+

10i

3

)√
2a2

2x
7y

− 20ia2
2x

6y2 ∓ (2 − 2i)
√

2a2xy
3 ± (18 − 18i)

√
2a2

2x
5y3

+ 2a2y
4 − 130

3
a2

2x
4y4 ± (18 + 18i)

√
2a2

2x
3y5 + 20ia2

2x
2y6

∓
(10

3
− 10i

3

)√
2a2

2xy
7 + a2

2y
8.
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Moreover, system (20) has the first integral H(x, y) = xaybf(x, y)c

where

a = (−1)3/4(3(−1)1/4 + (2 + 2i)
√

2)/3,

b = (−3 + (2 + 2i)(−1)3/4
√

2)/3,

c = (−3 − (4 + 4i)(−1)3/4
√

2)/6.

�
Proof of statement (f). The conditions in real parameters are a11 =
a12 = a9 = a5 = a6 = a10 +3a2 = 0 and 16a2

2 −a2
3 −a2

4 = 0. In this case
the associated complex differential system (10) is a Lotka-Volterra case
studied in [17]. Doing the change ξ = (1/a2)

1/4 we can take a2 = 1.
Now taking a3 = ±4 cosψ and a4 = ±4 sinψ, in real coordinates the
system takes the form

ẋ = −y + 4x4y + 16x2y3 − 4y5 ± 4x5 cosψ ∓ 8x3y2 cosψ

∓ 12xy4 cosψ ∓ 12x4y sinψ ∓ 8x2y3 sinψ ± 4y5 sinψ,

ẏ = x+ 4x5 − 16x3y2 − 4xy4 ± 12x4y cosψ ± 8x2y3 cosψ

∓ 4y5 cosψ ± 4x5 sinψ ∓ 8x3y2 sinψ ∓ 12xy4 sinψ.

(21)

In this case the complex differential system (11) is given by

ẋ = x+ x5 + 3xy4 ∓ 4ix4y cosψ ± 4x4y sinψ,

ẏ = −y − 3x4y − y5 ∓ 4ixy4 cosψ ± 4xy4 sinψ.
(22)

System (22) is a Lotka-Volterra, consequently has the invariant curves
x = 0, y = 0. Moreover it has the invariant curve of degree 12 given
by f = 0 where f is

f = 1 + 24x4y4(1 + 4x4 + 4y4)

+ 4xy
[

± i(x− y)(x+ y)(−3 + 4x2y2(3 + 2(x2 − y2)2))cosψ

− xy(9y4 + x4(9 + 16y4)) cos 2ψ − 9ixy(x4 − y4) sin 2ψ

± (x2 + y2)(3 + 4x2y2(3 + 2(x2 + y2)2)) sinψ
]
.

Moreover an inverse integrating factor of system (22) is given by V =
x−1y−1f 5/6. This inverse integrating factor is not well-defined at the
origin. However applying Lemma 6 system (22) has an analytic first
integral at the origin and consequently also system (21). �
Proof of statement (g). The four conditions of statement (g) in real
parameters are a9 = a5 = a6 = a3 = a4 = 3a2 + 5a10 = 16a2

10 −
9(a2

11 + a2
12) = 0. Doing the change of variables ξ = (1/a10)

1/4 and
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the last condition is |F | = 4|a10|/3 we get that F = 4/3|a10|eiψ with
ψ ∈ (0, 2π]. Then we get

(23) ż = iz − i
5

3
z5 + izz̄4 ± 4

3
eiψz̄5.

In real coordinates system (23) becomes

ẋ = −y +
34

3
x4y − 44

3
x2y3 +

2

3
y5 ± 4

3
x5 cosψ ∓ 40

3
x3y2 cosψ

± 20

3
xy4 cosψ ± 20

3
x4y sinψ ∓ 40

3
x2y3 sinψ ± 4

3
y5 sinψ,

ẏ = x− 2

3
x5 +

44

3
x3y2 − 34

3
xy4 ∓ 20

3
x4y cosψ ± 40

3
x2y3 cosψ

∓ 4

3
y5 cosψ ± 4

3
x5 sinψ ∓ 40

3
x3y2 sinψ ± 20

3
xy4 sinψ.

(24)

In this case the complex differential system (11) is given by

ẋ = x− 5

3
x5 + xy4 ∓ 4

3
iy5 cosψ ± 4

3
y5 sinψ,

ẏ = −y − x4y +
5

3
y5 ∓ 4

3
ix5 cosψ ∓ 4

3
x5 sinψ.

(25)

In fact if we compute some Poincaré-Liapunov constants for system (25)
we obtain that the twelve first are zero but the next is not zero and
its value is V13 = π sin 4ψ. Therefore we have that this constant only
vanishes for ψ = kπ/4 with k ∈ Z. Hence ψ = 0 + kπ, ψ = π/2 + kπ,
ψ = π/4+ kπ and ψ = 3π/4+ kπ with k ∈ Z \ {0}. The first two cases
give time-reversible systems. For the third and fourth ones, system
(25) takes the form

ẋ = x− 5

3
x5 + xy4 ± 2

√
2

3
(1 − i)y5,

ẏ = −y − x4y +
5

3
y5 ∓ 2

√
2

3
(1 + i)x5.

(26)

System (26) has not invariant algebraic curves of degree ≤ 16 except
the curve of fourth degree f1 = 1−x4±(1−i)

√
2 x3y±(1+i)

√
2xy3−y4.

From now on we only work with the system (26) with upper signs to
simplify the computations. For the other determination we can obtain
similar results. We can write f1 as f1 = 1−((−1−i)x+

√
2y)3((1+i)x+√

2y)/4. This factorization suggests the following change of coordinates
X = (1+ i)x+

√
2y and Y = (−1− i)x+

√
2y, whose inverse change is

x =
1

4
(1 − i)(X − Y ), Y =

1

2
√

2
(X + Y ).
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In these new coordinates system (26) with the upper signs becomes

Ẋ = − Y +
X5

16
+
X3Y 2

2
+

3XY 4

16
,

Ẏ = −X − X4Y

48
+
X2Y 3

12
+
Y 5

48
,

(27)

and the invariant curve has the form f̃1 = 1− (XY 3)/4. Now we made
the transformation

U =
1 −G/12

(1 −G/4)1/3
− 1, V = − 3G2 + Y 8

144(1 −G/4)2/3
,

where G = XY 3 and system (27) takes the form

U̇ = V, V̇ = −7(U + 1)V − 4(3U + 3U2 + U3).(28)

Finally we made the rotation U = u+ v, V = −4u− 3v and we obtain
the system

u̇ = − 4u− 16u2 + 4u3 − 25uv + 12u2v − 9v2 + 12uv2 + 4v3,

v̇ = − 3v + 16u2 − 4u3 + 25uv − 12u2v + 9v2 − 12uv2 − 4v3.
(29)

System (29) has a node at the origin whose eigenvalues are 3 and 4 and
consequently is a linearizable node, see [7]. Moreover it is easy to check
that going back through all the change of coordinates pulls back the
meromorphic first integral (or the linearizing change of coordinates) to
a first integral of the original system (26). So for this case we have a
center. �

Proof of statement (h). The conditions in real parameters are a3 =
a5 = a9 = a11 = 0. Note that in this case we are under the as-
sumptions of Lemma 5 with γ = 0. Hence by Lemma 5 system (1)
under the conditions of statement (8) is reversible and consequently
has a center at the origin. �

Proof of statement (i). The conditions in real parameters are a5 = a9 =
a10 = a4−a12 = a3+a11 = a2−a6 = a2

6−(a2
11+a

2
12). Making the change

of variables ξ = (1/a6)
1/4 and since the last condition is |F | = |C| we

get that F = |a6|eiψ with ψ ∈ (0, 2π]. Moreover we have B = −F̄ that
is, B = −|a6|e−iψ. Then we get

(30) ż = iz + iz5 ∓ e−iψz4z̄ + iz3z̄2 ± eiψz̄5.
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In real coordinates system (30) becomes

ẋ = −y − 6x4y + 8x2y3 − 2y5 ∓ 8x3y2 cosψ

± 8xy4 cosψ ± 2x4y sinψ ∓ 12x2y3 sinψ + 2y5 sinψ,

ẏ = x+ 2x5 − 8x3y2 + 6xy4 ∓ x4y cosψ ± 8x2y3 cosψ

± 2x5 sinψ ∓ 12x3y2 sinψ ± 2xy4 sinψ.

(31)

In this case the complex differential system (11) is given by

ẋ = x+ x5 + x3y2 ± i(xy4 − y5) cosψ ± (x4y + y5) sinψ,

ẏ = −y − x2y3 − y5 ∓ i(x5 − xy4) cosψ ∓ (x5 + xy4) sinψ.
(32)

System (32) has the invariant curve f1 = 1+(x2+y2)2 and the invariant
curve of degree 8

f2 =
1

4

(
4 + 2(x2 + y2)2(2 + 3x2y2)

+ 4ix(x− y)y(x+ y)(2 + (x2 + y2)2) cosψ

− (x2 + y2)2(x4 + y4) cos 2ψ + 4xy(x2 + y2)(2 + (x2 + y2)2) sinψ

+ i(x− y)(x+ y)(x2 + y2)3 sin(2ψ)
)
.

Moreover system (32) has an inverse integrating factor of the form

V = f
1/4
1 f2 well-defined at the origin. �

Proof of statement (j). The conditions in real parameters are a5 = a9 =
a10 = a4+a12 = a3−a11 = a2+a6 = a2

6−(a2
11+a

2
12). Making the change

of variables ξ = (1/a6)
1/4 and since the last condition is |F | = |C| we

get that F = |a6|eiψ with ψ ∈ (0, 2π]. Moreover we have B = F̄ that
is, B = |a6|e−iψ. Then we get

(33) ż = iz − iz5 ± e−iψz4z̄ + iz3z̄2 ± eiψz̄5.

In real coordinates system (33) becomes

ẋ = −y + 4x4y − 12x2y3 ± 2x5 cosψ ∓ 12x3y2 cosψ

± 2xy4 cosψ ± 8x4y sinψ ∓ 8x2y3 sinψ,

ẏ = x+ 12x3y2 − 4xy4 ∓ 2x4y cosψ ± 12x2y3 cosψ

∓ 2y5 cosψ ∓ 8x3y2 sinψ ± 8xy4 sinψ.

(34)

In this case the complex differential system (11) is given by

ẋ = x− x5 + x3y2 ∓ i(xy4 + y5) cosψ ∓ (x4y − y5) sinψ,

ẏ = −y − x2y3 + y5 ∓ i(x5 + xy4) cosψ ∓ (x5 − xy4) sinψ.
(35)
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System (35) has the invariant curve f = 1−(x2+y2)2 and the invariant
curve of degree 8

f2 =
1

4

(
4 − 2(x2 − y2)2(2 + 3x2y2)

+ 4ix(x− y)y(x+ y)(−2 + (x2 − y2)2) cosψ

+ (x2 − y2)2(x4 + y4) cos 2ψ − i(x2 − y2)3 sin 2ψ

+ (x2 + y2)(4xy(−2 + (x2 − y2)2) sinψ
)
.

Moreover system (35) has an inverse integrating factor of the form

V = f
1/4
1 f2 well-defined at the origin. �

Proof of statement (k). The conditions in real parameters are a5 =
a9 = 0 and

p1 = a2 − a10 = 0

p2 = a4a11 + a3a12 = 0,

p3 = 2a6a10 + a3a11 − a4a12 = 0,

p4 = a2
6 − a2

11 − a2
12 = 0,

p5 = a4a6 − 2a10a12 = 0,

p6 = a3a6 + 2a10a11 = 0,

p7 = a2
3 + a2

4 − 4a2
10 = 0

(36)

We can take a6 = 1 by making the change ξ = (1/a6)
1/4. From p1 = 0

we get a2 = a10. Furthermore, condition p4 = 0 implies |F | = |a6|
and thus F = |a6|eiψ = ±eiψ, i.e., a11 = ± sinψ, a12 = ± cosψ. From
p5 = 0 we get a4 = 2a10a12 and from p6 = 0 we get a3 = −2a10a11.
With these parameters we obtain that pj = 0 for j = 1, . . . , 7.

In real coordinates we get

ẋ = −y − x4y − 2a10x
4y − 2x2y3 + 12a10x

2y3 − y5 − 2a10y
5

± 5x4y cosψ ∓ 6a10x
4y cosψ ∓ 10x2y3 cosψ ∓ 4a10x

2y3 cosψ

± y5 cosψ ± 2a10y
5 cosψ ± x5 sinψ ∓ 2a10x

5 sinψ

∓ 10x3y2 sinψ ± 4a10x
2y3 sinψ ± 5xy4 sinψ ± 6a10xy

4 sinψ,

ẏ = x+ x5 + 2a10x
5 + 2x3y2 − 12a10x

3y2 + xy4 + 2a10xy
4

± x5 cosψ ± 2a10x
5 cosψ ∓ 10x3y2 cosψ ∓ 4a10x

3y2 cosψ

± 5xy4 cosψ ∓ 6a10xy
4 cosψ ∓ 5x4y sinψ ∓ 6a10x

4y sinψ

± 10x2y3 sinψ ∓ 4a10x
2y3 sinψ ∓ y5 sinψ ± 2a10y

5 sinψ.
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We can write this system into the complex saddle form (11) as

ẋ = x+ a10x
5 + x3y2 + a10xy

4 ∓ iy5(i cosψ + sinψ)

∓ ia10x
4y(2i cosψ − 2 sinψ),

ẏ = −y − a10x
4y − x2y3 − a10y

5 ± x5(− cosψ − i sinψ)

± 2a10xy
4(− cosψ + i sinψ).

(37)

System (37) is Darboux integrable because it has 3 invariant algebraic
curves of fourth degree of the form fi(0, 0) ̸= 0 and with these 3 curves
it is possible to construct an integrating factor of system (37) of the
form V = f1f2f3 and consequently it has a complex center at the
origin. �
Proof of statement (l). The conditions in real parameters are a5 = a9 =
a6 = a4 − a12 = a3 + a11 = a2 + a10 = 4a2

10 − (a2
11 + a2

12) = 0.
Making the change of variables ξ = (1/a10)

1/4, and since the last
condition is |F | = 2|E| we get that F = 2|a10|eiψ with ψ ∈ (0, 2π].
Moreover we have B = −F̄ that is, B = −2|a10|e−iψ. Then we get

(38) ż = iz − iz5 ± 2e−iψz4z̄ + izz̄4 ± 2eiψz̄5.

In real coordinates system (38) becomes

ẋ = −y + 8x4y − 8x2y3 ∓ 16x3y2 cosψ ± 16xy4 cosψ

± 4x4y sinψ ∓ 24x2y3 sinψ ± 4y5 sinψ,

ẏ = x+ 8x3y2 − 8xy4 ∓ 16x4y cosψ ± 16x2y3 cosψ

± 4x5 sinψ ∓ 24x3y2 sinψ ± 4xy4 sinψ.

(39)

We can write this system into the complex saddle form (11) as

ẋ = x− x5 + xy4 ± 2i(x4y − y5) cosψ ± 2(x4y + y5) sinψ,

ẏ = −y − x4y + y5 ∓ 2i(x5 − xy4) cosψ ∓ 2(x5 + xy4) sinψ.
(40)

System (40) is Darboux integrable because it has three invariant al-
gebraic curve of degree 4 given by f1 = 1 − (x2 + y2)2 and two more
curves that we do not write here due to their extension. In order to
prove their existence we take polar coordinates x = r cos θ, y = r sin θ
in the real system (39) and following [12] we impose the existence of
an invariant algebraic curve of degree a that in polar coordinates takes
the form f = 1 + U1(θ)r

4, i.e., f must satisfies the equation

(41)
∂f

∂r
ṙ +

∂f

∂ψ
ψ̇ − (U ′(ψ)r4)f ≡ 0

Now substituting U1(θ) by an arbitrary homogeneous polynomial of de-
gree 4, i.e., taking U1(θ) = B1 cos 4θ+B2 sin 4θ+B3 cos 2θ+B4 sin 2θ+
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B5, it is easy to proof that equation (41) has three solutions f1, f2 and

f3 where f1 has been given previously. Moreover V = f
−1/2
1 f2f3 is an

inverse integrating factor of system (40). �

Proof of statement (m). The conditions in real parameters are a5 =
a9 = a6 = a4+a12 = a3−a11 = a2+a10 = 4a2

10−(a2
11+a

2
12) = 0. Making

the change of variables ξ = (1/a6)
1/4 and since the last condition is

|F | = 2|E| we get that F = 2|a10|eiψ with ψ ∈ (0, 2π]. Moreover we
have B = F̄ that is, B = 2|a10|e−iψ. Then we get

(42) ż = iz − iz5 ∓ 2e−iψz4z̄ + izz̄4 ± 2eiψz̄5.

In real coordinates system (42) becomes

ẋ = −y + 8x4y − 8x2y3 ± 4x5 cosψ ∓ 24x3y2 cosψ

± 4xy4 cosψ ± 16x4y sinψ ∓ 16x2y3 sinψ,

ẏ = x+ 8x3y2 − 8xy4 ∓ 4x4y cosψ ± 24x2y3 cosψ

∓ 4y5 cosψ ∓ 16x3y2 sinψ ± 16xy4 sinψ.

(43)

We can write this system into the complex saddle form (11) as

ẋ = x− x5 + xy4 ∓ 2i(x4y + y5) cosψ ∓ 2(x4y − y5) sinψ,

ẏ = −y − x4y + y5 ∓ 2i(x5 + xy4) cosψ ∓ 2(x5 − xy4) sinψ.
(44)

System (44) is Darboux integrable because it has three invariant al-
gebraic curve of degree 4 given by f1 = 1 − (x2 − y2)2 and two more
curves that we do not write here due to their extension. However as
the previous case we can proof their existence. Moreover this case also

has an inverse integrating factor of the form V = f
−1/2
1 f2f3. �

Proof of statement (n). The conditions in real parameters are a4 =
a5 = a9 = a12 = 0. Note that in this case we are under the as-
sumptions of Lemma 5 with γ = π/2. Hence by Lemma 5 system (1)
under the conditions of statement (14) is reversible and consequently
has a center at the origin. �
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[26] V.G. Romanovski, M. Prešern, An approach to solving systems of polyno-
mials via modular arithmetics with applications, J. Comput. Appl. Math. 236
(2011), no. 2, 196–208.

[27] D. Schlomiuk, Algebraic and geometric aspects of the theory of polynomial
vector fields, in: Bifurcations and Periodic Orbits of Vector Fields, Montreal,
PQ, 1992, in: NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 408, Kluwer
Acad. Publ., Dordrecht, 1993, pp. 429–467.

[28] D. Schlomiuk, Algebraic particular integrals, integrability and the problem of
the center, Trans. Amer. Math. Soc. 338 (1993) 799–841.

[29] K.S. Sibirskii, On the number of limit cycles in the neighborhood of a sin-
gular point (Russian) Differencial’nye Uravnenija 1 (1965) 53–66; Differential
Equations 1 (1965) 36–47.

[30] N.I. Vulpe, K.S. Sibirskii, Centro-affine invariant conditions for the exis-
tence of a center of a differential system with cubic nonlinearities (Russian)
Dokl. Akad. Nauk SSSR 301 (1988), no. 6, 1297–1301; translation in Soviet
Math. Dokl. 38 (1989), no. 1, 198–201.
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