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Abstract

In this paper, we discuss numerical approximation of the eigenvalues of
the one-dimensional radial Schrodinger equation posed on a semi-infinite
interval. The original problem is first transformed to one defined on a
finite domain by applying suitable change of the independent variable.
The eigenvalue problem for the resulting differential operator is then ap-
proximated by a generalized algebraic eigenvalue problem arising after
discretization of the analytical problem by the matrix method based on
high order finite difference schemes. Numerical experiments illustrate the
performance of the approach.
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1 Introduction

The aim of this paper is to investigate certain aspects arising in the numerical
treatment of the following eigenvalue problem (EVP):

—u"(r) + <w + V(r)) u(r) = Au(r), r € (0,00), (1)

r2
subject to boundary conditions
u(0) = u(o0) =0, (2)

where ¢ € N, the function V(r) satisfies li)m V(r) =0, A is an eigenvalue, and

u(r) is the associated eigenfunction.
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Equation () is known in the literature as radial Schrodinger equation with
underlying potential V (r). An important example of this type of problems is the
hydrogen atom equation corresponding to V (r) = —Z/r with Z > 0.

Many currently available numerical techniques to handle this problem are
based on the so-called regularization which, in our context, may mean replacing

@) by
u(e) = u(R) = 0, 3)

where ¢ is strictly positive and small and R is large. Clearly, equation () subject
to @) is a regular Sturm-Liouville problem on [e, R] and classical methods can
be used to approximate its eigenvalues. The accuracy of these approximations,
however, strongly depends on the choice of the cutoff points ¢ and R as dis-
cussed, for example, in [I6]. Concerning the choice of R, a generalization of the
so-called WKB-approximation introduced in [I2] for nonharmonic oscillators,
was proposed in [I4]. In case of a problem whose potential has a Coulomb-like
tail, the authors proposed to impose suitably adapted boundary conditions at
the right endpoint R which allowed a noticeable reduction of the size of R. On
the other hand, an ad-hoc procedure, treating V(r) as a perturbation of the
reference potential £(¢+ 1)/r? in a neighborhood of the origin, was investigated
in [I3] [14]. The aim of this procedure was to find an approximation for u(e)
and u/(g). All these estimates were then used in a two-sided shooting procedure.

The approach proposed here is different. We first apply suitable change
of variable, ¢(r), in order to transform the problem posed on r € (0,00) to a
problem posed on a finite domain ¢ € (0,1). After the transformation the EVP
assumes the following general form:

— A () V' (t) + AL () V() + Ao () v(t) = Av(t), te(0,1), (4)

where A;(t), ¢ = 0,1,2, are singular at ¢ = 0 and/or t = 1. The EVP () is
then augmented by suitable boundary conditions. We use results provided in
[9, 10, 18] to show that the above singular EVP is well-posed and to describe
the smoothness of its solution.

Numerical approximations of the eigenvalues are obtained by applying the
so-called matrix methods which transform the EVP for the differential operator
into a generalized algebraic EVP. More precisely, the equation () is discretized
in its original second order formulation by using the finite difference schemes
introduced in [4]. We stress that the application of these methods is possible
in spite of the singularities at t = 0, 1, since the corresponding discrete problem
does not involve the values of the coefficients functions in @) at the interval
endpoints.

It is worth mentioning that the idea of reducing the continuous problem to a
finite domain was already used in the development of the codes SLEIGN2 [6] and
SLFO02F [15]. Nevertheless, the numerical schemes used in the implementation
of the shooting procedure make use of the coefficient functions at the endpoints.



This means that, in our case, where such functions become unbounded, cutting
off the interval ends becomes inevitable.

We have organized the paper as follows. In Section[2] we propose two ways of
changing the independent variable for the transformation of the original problem
to a finite domain and discuss the properties of the resulting singular BVPs and
EVPs. In Section Bl we describe in some detail the numerical procedure based
on the matrix method. Finally, Section [] contains the results of the numerical
simulation for the hydrogen atom equation and models studied in [I7]. Here, we
also show numerical results related to a third change of independent variable,
which is analyzed in detail in [2].

2 Reformulation of the problem on a finite do-
main
The first question we would like to address is how to transform problem ({I)-(2])

posed on the semi-infinite interval to a finite domain. In general, if ¢(r) is given
and u(r) =: z(t(r)), then we can rewrite () as

2 2 2
_ %z(t) (%t(r)) —%z(t)%t(r%t (W; 2 +V(T)) 2(t)=Az(t).  (5)

2.1 Transformation doubling the size of the ODE system:
TDS

The transformation TDS is based on the following change of the independent
variable:

Hr) = % re[l,00). (6)

We use (@) to reformulate (@) as follows:

_z”(t) — 22’(15) + <é(£+ 1) + %V (%)) z(t) = )\%, t € (0,1],

t 12

and therefore ([II) posed on the interval (0,00) can be transformed to the finite
interval,

—u(8) + (W; DN V(t)> w(t) = Muft), te (0.1,
() — %z'(t) + (W; D, %V (%)) A(t) = /\%, te(0,1].

In matrix notation, this system of equations can be written as

—v"(t)+ AL () V() + Ag(t) v(t) = AB(t)v(t), te (0,1], (7)



with v(t) = (u(t), z(t))T and

Al = (8 —2t1>’
B <M+1t— +V(t) 0 >

00+ 12 44V (1Y) )

s = (5 %)

Note that B(t) is nonsingular for ¢ € (0, 1), and hence, () can be written in
the general form ().

In the sequel, we investigate if the above singular EVP is well-posed. This
is done by first examining the boundary conditions. To this aim, we follow the
arguments from [§, 10]. Although, we will numerically simulate the EVPs in
form (), for the analysis, we have to rewrite the problem into its first order
form. It turns out that here ¢ = 0 is a singular point and therefore, we have to
investigate the local behavior of the ODE in the vicinity of this point.

If we transform () to a first order system of ODEs for the new vector

y(t) = (1(t) y2(8), y3(8), ya ()" = (v(1),tv' ()" € RY, (8)
then we obtain
thy'(t) - M(t)y(t) = AG(t)y(t), t€(0,1], (9)
where the matrices M (¢) and G(¢) include the data from (), namely

0 0 0
0 0 0 ¢
M{(t) = 30+ 1) + 2V (1) 0 30 ’
0 B+ +tv () o0 —?
0 0 00
0 0 00
GO=1 _5 o 00
0 —t 0 0

For the investigation of the local behavior of ([@) around ¢t = 0, note that
lim V (¢7') = lim V(r) = 0. Moreover, we assume that lim 5V (t) = 0, and
t—0

t—0t+ r—>00
the higher derivatives of t°V (¢) exist and are continuous on [0, 1]. This means
that in @), M(t) = M + A(t) and G(t) = N + C(t), where M = M(0) and
N = G(0) are zero matrices. Consequently, (@) has the form

thy'(t) = A@)y(t) = AC(B) y(t), te(0,1]. (10)

The associated boundary conditions read:

y1(0) =y2(0) =0, y1(1) =y2(1), ws(1) = —ya(1), (11)



which is equivalent to

100 0 0 00 0
0100 0 00 0

BoyO) + Biy() =0.Bo=1 o o g o |"Br=| 1 _1 ¢ o | (1
0000 0 0 1 1

First note that the form of the EVP ([I0)-(I]) corresponds exactly to the one of
the EVP (1.2) studied in [I0]. To discuss the boundary conditions, we have to
look at the associated BVP

ty'(t) — M(t)y(t) = t*y'(t) — (M + A(t)y(t) = g(t), te(0,1],  (13)

subject to ([I2)), cf. [I0, problem (3.9)]. Since the matrix M = M (0) is a zero
matrix, its eigenvalues are 1 = s = s = p4 := 4 = 0 and the corresponding
eigenspace is R*. Consequently, the orthogonal projection R onto the eigenspace
of M associated with p = 0is R = I and the condition (I — R)A(0) = O is sat-
isfied, see [10, requirement (3.10)]. Moreover, due to [10, Theorem 3.2], for any
g, A € C[0,1] there exists a unique solution y € C1[0,1] of the BVP ([[2)-(L3)
since rank[By, B1] := k = 4, and the linear differential operator t*y’(t)— A(t)y(t)
is Fredholm with index equal to rank[R]—k = 0. This result immediately carries
over to the EVP problem (0)-()). Here, (I — R)C(0) = O holds, cf. [I0, (7.1)]
and A, C are smooth functions. Therefore, according to [10, Theorem 7.2] the
EVP is well-posed and has a solution in C*°[0, 1].

For the numerical treatment, we use system (), where the second equation
is premultiplied by t*, together with boundary conditions, see (8] and (),

v(0)=0, (1,-1)v(1)=0, (1,1)v/(1)=0. (14)

2.2 Transformation compressing the infinite interval: TCII

We now consider an alternative change of independent variable described by

t(r) >0, rel0,00). (15)

o
=5
Using ([[3) in (&) yields the following new form of (I)):

" 2 ((t+1) & &t _ ¢
=2"(t) + % (t) + <t2(1 i + a —t)4V <1 —t)) z(t) = a _t)4z(t),
(16)
subject to boundary conditions
2(0) = z(1) = 0. (17)

First of all we note that there are two critical points ¢t = 0 and ¢t = 1 in the
differential operator in ([I6). Our aim is to show that boundary conditions (7))



are posed in such a way that the associated BVP is well-posed. To this aim,
we have to investigate the ODE in the vicinity of t = 0 and ¢t = 1. Let us first
consider ¢t = 0. Setting

2t , £(é+1)+ t2¢2 V( &t >

_ _ €2
“1=y oW =gTmtaos T

b(t) = T

al (t)

we rewrite (6] to obtain the form
t t
2(t) — “17()2'@ - a3_2)2<t> = Ab(H)2(1),

and transform it to the following first order system for the vector y(t) =
(y1(8), y2(1) = (2(1), t2' (1)) "

ty'(t) = M(t)y(t) = AG(t)y(t), (18)
subject to
Boy(0) + Biy(1) =0, By= ( b ) B, = ( - ) (19)
where

M(t) = ( ao(zt) 1 +il(t) ) GO = ( tQZ?(t) 8 ) ' (20)

Also here, if we assume that lim rV(r) is finite we have M (t) = M + A(t) and

r—0+

G(t) = N + C(t), where N is a zero matrix and

M = M(0) = ( GO(()O) 1+i1(0) ) - < W:)Ll) 1 >

In contrast to (@), where due to t* in the leading term the ODE admits
a singularity of the second kind, in ([I8) a singularity of the first kind arises.
Therefore, we can apply results from [8] to analyze the boundary conditions of
the problem. We first calculate the eigenvalues of the matrix M (0) and obtain
w1 = —¢ < 0and pue = 1+¢ > 0. Let us focus on two cases used in the numerical
simulations.

Case 1: £ =0 For ¢ = 0, the eigenvalues of the matrix M are u; = 0 and s = 1. First,
we have to calculate the related eigenvectors wy; and wo and construct
two projection matrices R and S, R+ S = I, projecting onto eigenspaces
of M associated with p; and ps, respectively. This yields

w ()= (1) = (5 ) s=(0 1)

According to [8 Theorem 3.2], the linear operator ty’(t) — M(t)y(
Fredholm with index equal to rank(R + S) — rank[BoR, B1] = 2 — 2

since

t) is
=0

1 1 0 0
rank[BoR, B1] = rank {( 0 01 0 )} =



Case 2: /=3

Again, this means that for any g, A € C[0, 1] the BVP,

where the problem data has been specified in (I9)-(20), is well-posed and
has as solution y € C[0,1]NC*(0,1]. We have an analogous result for the
EVP [8)-@3) with A,G € C[0,1]. Since the positive eigenvalue of M is
relatively small, we would need further investigations to show that also
higher derivatives of y are smooth, cf. [8, Theorem 10.2].

Here, the eigenvalues of the matrix M are pu; = —3 and puo = 4. Again,
we first calculate the related eigenvectors wy and wg and construct two
projection matrices @ and S, @ + S = I, projecting onto eigenspaces of
M associated with p1 and pg, respectively. This yields

1 1 1/ 4 -1 1/ 3
()= (0) (e ) s5

First of all, Sy € C*[0,1] and Sy(0) = Sy’(0) = 0, see [8, Lemma 3.5].
Moreover, condition Qy(0) = 0 is necessary and sufficient for y to be in
C'[0,1]. To see that this condition is satisfied, we have to take into account
that the ODE in (ZI)) arises from

z(t) = g(t), t<(0,1],

and thus g(t) = t2(0,g(t))?. Using the special structure of g and [I8]
Lemma 3.1], we see that from z(0) = y1(0) =0, y1 € C*[0, 1] follows and
therefore

1 1 ,

(1,0)Qy(0) = %yl(o) — —12(0) = = lim ty/(t) =0

holds.

Now, according to [8, Theorem 3.2], the linear operator ty’(t) — M (t)y(t)
is Fredholm with index equal to rank(S) — rank[BoR,B1] = 1—1 =10
since the orthogonal projection R onto the eigenspace of M associated
with p = 0 is zero and

rank[Bo R, By] = rank[B;| = rank [( (1) 8 ﬂ =1.
Thus, for any g, A € C3[0,1] the BVP @I)) with the problem data given
in ([@)-@0) is well-posed and has as solution y € C3[0,1] N C*(0,1]. We
have an analogous result for the EVP ([I8)-[3J) for A,G € C3[0,1]. Since
the positive eigenvalue of M is slightly larger than in Case 1, we can show
more smoothness in y, cf. [8 Theorem 10.2].

—_



Similar investigations for ¢t = 1 show that this point is not a critical point and
the solution is analytic at t = 1, see [2, [].

For the numerical experiments, we use (I6]) premultiplied by (1 — #)%/&2
together with boundary conditions (7).

3 Finite difference schemes

The numerical methods that we have used discretize equation () in its original
second order formulation. In particular, given the uniform mesh

t;=ih, i=0,1,...,N+1, h=1/(N+1),

for the interval [0, 1], the first and second order derivatives of the solution at
the inner grid points are approximated by applying suitable (2k)-step finite
difference schemes introduced in [4]. More precisely, for each i = k, k+1,..., N+
1—k,

k k
v/ (t:) ~ % D Birwvir, V() =~ % D VikVitss (22)
j=—k j=—k

where v; ~ v(t;), for each i. The coefficients {3;}3%, and {v;}?%, are uniquely
determined by imposing the formulas to be of consistency order 2k. The resulting
methods turn out to be symmetric, i.e., 3; = —f2r—; and 7; = y2x—;, for each
7 =0,1,... k. In particular, the 2-step schemes coincide with the ones used
in [IT, Section 5.3]. Using the terminology of Boundary Value Methods the
formulas in [22)) are called main methods [7]. When k > 1, these formulas
are augmented by suitable initial and final additional methods which provide
approximations of the first and second order derivatives at the meshpoints close

to the interval ends. In particular, for each i =1,2,...,k — 1,
12k ] 2l
v/ (t;) = m Zﬁ;z)vj, v (t;) = 75 Z yjl)vj,
j=0 7=0
while, foreachi = N+2—Fk,...,Nand r =N + 1 — 2k,
12 ] 2
v/ (t;) ~ 7 ZBJ(Z T)Vr+j, v (t;) =~ 72 Z ’yj(-l T)Vr+j_1.
j=0 j=0

The involved coefficients are determined by requiring that the additional schemes
are of the same order as the main formulas, i.e. 2k, [4]. It is worth mentioning
that such schemes have been already used for solving singular Sturm-Liouville
problems in [ [3].

Since for both transformations, TDS and TCII, v(0) = 0 holds, the following
system of equations arises after the discretization of ({l):

R = (=D (D@ L) + Dy (B & L) + Do) ¥ = Av. (23)



Here I, is the identity matrix of dimension m, with m = 2, 1 for TDS and TCII,
respectively,

Di = blockdiag (Ai(tl), Ai(tg), .. ( )) s L= 0 1 2
Do = (Do | On®1Iy), 0N=(o.. )TERN
v = (VT VEH) = (vip LoV VNH) ( vty VT(tN+1)()2.4)

Finally, f, B e RV*(N+D contain the coefficients of the difference schemes. For
example, for the method of order 4,

15 -4 14 -6 1
16 —30 16 -1
1 -1 16 -30 16 -1
12h2 . . .

=
|

-1 16 —30 16 -1
1 —6 14 —4 —15 10
—~10 18 —6 1
-8 0 8 -1
. 1 1 -8 0 8 -1
12h A R
1 -8 0 8 -1
-1 6 —18 10 3

Let us now describe the discretization of the boundary conditions at t = 1. We
have to distinguish between TDS and TCII. For TDS, the last two conditions
in (I4)) are approximated as follows:

2k
(1, _1)VN+1 =0, (17 1) Vl(l) ~ (17 1) ZBJ@k)VN—?k-H =0, (25)
§=0
where BJ(-%) are the coefficients of the classical (2k)-step BDF method. Equation
[23) augmented with (25]) form the following generalized algebraic EVP,

e _( I~
R1v=ASV, S—( 02>,

where R4 is obtained by adding to R two rows whose entries are all zeros except
for

(Ri)on+128+1 = —(Ri)ant1,2842 = 1,
2k
(R1)2N+2,2(N75)+1 = (R1)2N+2,2(N75)+2 = ékjsu s=0,1,..., 2k.
Concerning TCII, the treatment of the boundary condition in () is simpler:
it is sufficient to remove the last entry of the vector v thus obtaining the vector



v (see ([24))) and the last column of the matrices I, B, Dy. More precisely, by
setting

I'=[|yv41), B=[B|Bnt1], Re=—Dol + D1B+ Dy,

the algebraic EVP reads:
Raov = Av.

4 Numerical experiments

For the numerical simulations we considered the following potentials:

2 2 —Qr 270”"
Vitr) = -2, Va(r) = - 22 a>0, vg(r):_er La >0,

r Cl—ear’

hydrogen atom, Hulthén potential, and Yukawa potential, respectively. When
r is close to zero, these three potentials behave similarly, i.e. Vj(r) ~ Vi(r)
for j = 2,3. On the other hand, |Va(r)| and |V3(r)| decrease faster than |V;(r)]
when r — oo.

For the hydrogen atom problem, the exact eigenvalues are known to be A\, =
—n~2, n > (+1, where n and ¢ represent the radial and the angular momentum
quantum numbers, respectively, and the corresponding eigenfunction w,,(r) has
exactly v = n — £ — 1 zeros in (0,00). In the terminology of Sturm-Liouville
problems, A, has therefore index v. We solved this problem with various values
of £ by applying the (2k)-step scheme of order p = 2k described in the previous
section with different values of k£ and different numbers of interior meshpoints
N. The resulting generalized eigenvalue problems have been solved by using
the eig routine of MATLAB. When dealing with TCII, numerical experiments
indicate that a good heuristic law for the choice of the parameter ¢ is given by

€= (1.35)P (£ +1). (26)

There are various alternative possibilities to compress the semi-infinite interval
to a finite domain. Any transformation of the type (ATCII),

tr)=1-(1+r" B>0, rel0oc0),

reduces [0,00) to [0,1). To see how this transformation performs in the context
of EVPs, we used ATCII with 8 = % For the respective analysis, we refer the
reader to [2].

In Figure [Tl we plotted the relative errors in the eigenvalues A\¢ and A1g of
the hydrogen atom problem with ¢ = 3 versus N. In particular, the plots at
the top of the picture refer to TDS, those in the center to TCII and (28]), and
the bottom ones to ATCII. We can see that when the radial quantum number
n increases, the results obtained with TDS are not satisfactory, even for higher
order methods. For TCII, we obtain good results using already a second or-
der method. They can be further improved when we increase the order of the

10
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Figure 1: Hydrogen atom equation, ¢/ = 3: relative errors in the eigenvalues
calculated using TDS, TCII with (26), and ATCII.

scheme. By virtue of these results and taking into account that for a fixed N
the size of the generalized eigenvalue problem corresponding to TDS is approxi-
mately twice as large as the one corresponding to TCII, we do not include TDS
in the sequel. Also, the accuracy obtained using TCII is considerably better
than the accuracy of ATCII.

Let us now consider the Hulthén and the Yukawa potentials. The parameter
« occurring in their definition is called screening parameter and it is known that
the number of eigenvalues in the point spectrum of the corresponding problems
varies with « [I7]. Concerning the exact eigenvalues, these are known in closed
form only for the Hulthén problem with ¢ = 0. In all other cases, in order to
evaluate the performance of our schemes, we calculated the reference eigenval-
ues using the method of order 8 with N = 1500. As an example, in Figure 2]
the relative errors in the Hulthén eigenvalue approximations for £ = 0,3 and
a = 0.02 are shown. Observe that both plots on the left refer to the eigenvalues
of index v =n — ¢ — 1 = 2 while the plots on the right to those of index v = 4.
The related data for ATCII can be found in Figure

11
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Figure 2: Hulthén potential, ¢ = 0,3, o = 0.02: relative errors in the eigenvalues
calculated using TCII with (26]).

In Table [ the eigenvalue approximations computed with TCII and (20])
using the method of order p = 8 for the Yukawa potential have been listed and
compared to those provided by [17].

5 Conclusions

In this paper we studied the numerical solution of the eigenvalue problems for
singular Schrédinger equation posed on a semi-infinite interval

L0+1)
—u"(r) + (T +V(r) ) ulr) =du(r), u(0)=u(c0)=0.
Our aim was to propose a transformation reducing the infinite domain to the
finite interval (0, 1] and then discretize the resulting ODE using finite difference
schemes. Finally, the generalized algebraic eigenvalue problem was solved using
the eigenvalue MATLAB routine. Three transformations have been used:

TDS: Here, the interval (0, 00) is split into two parts, (0, 00) = (0, 1JU[1, c0), and
the second interval is transformed to (0, 1] using ¢(r) := 1/r. This transfor-
mation has two disadvantages: the number of equations is doubled which
is not so critical since the original problem is scalar, but also a singularity
of the fist kind in the original problem changes to an essential singularity

12



Table 1: Yukawa potential: eigenvalues calculated using the method of order

p = 8 as compared the those listed in Table 5 in [I7].

n=9

V4 « A/2, N =200 A/2, N =1500 [17]

0 | 0.010 | -0.0005858266584 | -0.0005858247613 | -0.0005858247612
1 | 0.010 | -0.0005665076452 | -0.0005665076262 | -0.0005665076261
2 | 0.010 | -0.0005276644219 | -0.0005276644203 | -0.0005276644203
3 | 0.010 | -0.0004688490639 | -0.0004688490636 | -0.0004688490636
4 | 0.010 | -0.0003893108560 | -0.0003893108559 | -0.0003893108558
5 | 0.010 | -0.0002878564558 | -0.0002878564558 | -0.0002878564558
6 | 0.005 | -0.0022606077423 | -0.0022606077423 | -0.0022606077422
7 | 0.005 | -0.0021997976659 | -0.0021997976659 | -0.0021997976659
8 | 0.005 | -0.0021291265596 | -0.0021291265596 | -0.0021291265596

n =10

V4 « A/2, N =200 A/2, N = 1500 [17]

0 | 0.005 | -0.0015083751962 | -0.0015083559308 | -0.0015083559307
1 | 0.005 | -0.0015009237055 | -0.0015009235029 | -0.0015009235029
2 | 0.005 | -0.0014860116411 | -0.0014860116241 | -0.0014860116240
3 | 0.005 | -0.0014635239308 | -0.0014635239276 | -0.0014635239275
4 | 0.005 | -0.0014333097815 | -0.0014333097805 | -0.0014333097805
5 | 0.005 | -0.0013951561297 | -0.0013951561294 | -0.0013951561294
6 | 0.005 | -0.0013487749861 | -0.0013487749860 | -0.0013487719860
7 | 0.005 | -0.0012937846260 | -0.0012937846260 | -0.0012937846259
8 | 0.005 | -0.0012296811836 | -0.0012296811836 | -0.0012296811835
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Figure 3: Hulthén potential, ¢ = 0,3, o = 0.02: relative errors in the eigenvalues
calculated using ATCII.

TCII:

ATCII:

in the transformed equations. The latter singularity is considerably more
difficult to handle numerically.

With the transformation t(r) := r/(r + &) and a suitably chosen &, the
semi-infinite interval is compressed to (0, 1); the dimension of the problem
and the type of the singularity do not change.

Analogous compression is also done using t(r) :=1—1/y/1+r.

We could show that the transformed problems are well-posed and discussed the
smoothness of their solutions. Moreover, it turns out that the approach based
on TCII outperforms the other two, and therefore, it could be recommended to
be used in similar situations.
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