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Barcelona, Catalonia, Spain.

Abstract

In this paper we give a complete description of the families of central con-
figurations of the planar 4–body problem with two pairs of equals masses
and two equal masses sufficiently small. In particular, we give an analytical
proof that this particular 4–body problem has exactly 34 different classes
of central configurations. Moreover for this problem we prove the following
two conjectures: There is a unique convex planar central configuration of the
4–body problem for each ordering of the masses in the boundary of its convex
hull, which appears in [3]. We also prove the conjecture: There is a unique
convex planar central configuration having two pairs of equal masses located
at the adjacent vertices of the configuration and it is an isosceles trapezoid.
Finally, the families of central configurations of this 4–body problem are
numerically continued to the 4–body problem with four equal masses.
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1. Introduction and statement of the main results

We consider the planar N–body problem

mk q̈k = −
N∑

j = 1
j 6= k

Gmk mj
qk − qj

|qk − qj|3
,

k = 1, . . . , N , where qk ∈ R2 is the position vector of the punctual mass mk

in an inertial coordinate system and G is the gravitational constant which
can be taken equal to one by choosing conveniently the unit of time. The
configuration space of the planar N–body problem is

E = {(q1, . . . ,qN ) ∈ R2N : qk 6= qj , for k 6= j}.

Given m1, . . . ,mN a configuration (q1, . . . ,qN ) ∈ E is central if the
acceleration vector for each body is a common scalar multiple of its position
vector (with respect to the center of mass). That is, if there exists a positive
constant λ such that

q̈k = −λ (qk − cm) ,

for k = 1, . . . , N , where cm is the position vector of the center of mass of
the system, which is given by

cm =

∑N
k=1mkqk∑N
k=1mk

.

The configuration (q1, . . . ,qN ) ∈ E of the N–body problem with positive
masses m1, . . . ,mN is central if the exists λ such that (λ,q1, . . . ,qN ) is a
solution of the system

λ (qk − cm) =

N∑

j = 1
j 6= k

mj
qk − qj

|qk − qj |3
, (1)

for k = 1, . . . , N .
We say that two planar central configurations belong to the same class

if there exists a rotation of SO(2) and a homothecy of R2 with respect to
the center of mass which transform one into the other.

The set of planar central configurations of the N–body problem is com-
pletely known only for N = 2, 3. For N = 2 there is a unique class of central
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configurations. For N = 3 there are exactly five classes of central configura-
tions for each choice of three positive masses, the three classes of collinear
central configurations found in 1767 by Euler [11] and the two classes of
equilateral triangle central configurations found in 1772 by Lagrange [14].

The are some partial results on the problem of finding the exact number
of classes of central configurations of the N–body problem when N > 3. In
1910 Moulton [19] showed that there exists exactly n!/2 classes of collinear
central configurations for a given set of positive masses, one for each possible
ordering of the masses. Palmore in [20] obtained a lower bound of the num-
ber of planar non–collinear central configurations. Pedersen [21] numerically
and Gannaway [12] and Arenstorf [7] numerically and analytically obtained
the number of central configurations of the 4–body problem when one of
the masses is sufficiently small. Later on Barros and Leandro in [8] and [9]
completed the study of the central configurations of the 4–body problem
when one of the masses is sufficiently small showing that in the triangle of
masses there is a simple closed bifurcation curve such that outside it there
is 8 classes of central configurations, on the bifurcation curve 9 and in the
region limited by this curve 10. Xia in [24] studied the number of central
configurations for all N when some of the masses are sufficiently small.

Simó in [23] gave a numerical study for the number of central configu-
rations for N = 4 and arbitrary masses. Hampton and Moeckel [13], by a
computer assisted proof, proved the finiteness of the number of central con-
figurations for N = 4 and any choice of the masses. Albouy and Kaloshin
[5] proved analytically the finiteness of the number of classes of central con-
figurations for N = 4 for any choice of the masses and for N = 5 for almost
all choice of the masses. The question about the finiteness of the number of
classes of central configurations remains open for N > 4.

Although the set of all planar central configurations of the 4–body prob-
lem is not completely known, we can find in the literature several papers
that provide the existence and classification of central configurations of the
4–body problem in some particular cases.

Definition 1. Assume that q = (q1,q2,q3,q4) is a central configuration of
the planar 4–body problem.

(i) q is convex if none of the bodies is located in the interior of the triangle
formed by the others,

(ii) q is concave if one of the bodies is in the interior of the triangle formed
by the others,
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(iii) q is a kite central configuration if it has an axis of symmetry passing
through two non–adjacent bodies,

(iv) q is a rhombus if it is convex and the four exterior edges are equal to
each other.

Under the assumption that every central configuration of the 4–body
problem has an axis of symmetry when the four masses are equal, Llibre in
[16] characterized the planar central configurations of the 4–body problem
with equal masses by studying the intersection points of two planar curves.
Later on Albouy in [1, 2] provided a complete analytic proof of the central
configurations of the 4–body problem with equal masses.

Bernat et al. in [10] characterized the kite planar non–collinear classes
of central configurations having some symmetry for the 4–body problem
with three equal masses, see also Leandro [15]. The characterization of the
convex central configurations with an axis of symmetry and the concave
central configurations of the 4–body problem when the masses satisfy that
m1 = m2 6= m3 = m4 is done in Álvarez and Llibre [6].

MacMillan and Bartky in [18] proved that for any four positive masses
and any assigned order, there is a convex planar central configuration of the
4–body problem with that order (see Xia [25] for a simpler proof). Albouy
and Fu in [3] (see also [18, 22]) stated the following conjecture, well known
in the central configuration community.

Conjecture 1. There is a unique convex planar central configuration of the
4–body problem for each ordering of the masses in the boundary of its convex
hull.

MacMillan and Bartky also proved that there is a unique isosceles trape-
zoid central configuration of the 4–body when two pairs of equal masses are
located at adjacent vertices. This result has been reproved recently by Xie
in [26].

The following subconjecture of Conjecture 1 is well known between peo-
ple working on central configurations.

Conjecture 2. There is a unique convex planar central configuration hav-
ing two pairs of equal masses located at the adjacent vertices of the configu-
ration and it is an isosceles trapezoid.

Long and Sun in [17] proved that any convex non–collinear central con-
figurations with two equal masses m1 = m2 < m3 = m4 located at the
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opposite vertices of a quadrilateral and such that the diagonal correspond-
ing to the mass m1 is not shorter than the one corresponding to the mass
m3, must posses a symmetry and therefore must be a rhombus. Pérez–
Chavela and Santoprete in [22] extended this result to the case where two of
the masses are equal and at most, only one of the remaining mass is larger
than the equal masses. In particular, they proved that there exist exactly
one convex non–collinear central configuration when the opposite masses are
equal and it is a rhombus. Albouy et. al. in [4] proved that in the planar
4–body problem a convex central configuration is symmetric with respect
to one diagonal if and only if the masses of the two particles on the other
diagonal are equal. If these two masses are unequal, then the less massive
one is closer to the former diagonal.

In this paper we give a complete description of the central configurations
of the 4–body problem when m1 = m2 > m3 = m4 = m > 0 and m is
sufficiently small. In particular, we prove Conjectures 1 and 2 under these
assumptions on the masses.

The existence of the central configurations of the 4–body problem when
m1 = m2 > m3 = m4 = m > 0 and m sufficiently small is established
analytically by Xia in [24]. More precisely, Xia shows that the five relative
equilibria of the restricted 3–body problem (i.e. the two equilateral triangle
solutions and the three collinear solutions), can be continued to 5×4 classes
of central configurations of the 4–body problem with two small masses which
are away from each other and to 2 × 4 + 3 × 2 = 14 classes of central
configurations with two small masses close to each other. We note that in
Xia results the two small masses do not need to be equal. Xia results agree
with the ones obtained numerically by Simó in [23].

The work of Xia does not provide the geometrical shape of the central
configurations, which is our main objective.

Theorem 2. Let m1 = m2 = 1, m3 = m4 = m, q1 = (−1, 0), q2 = (1, 0),
q3 = (x3, y3) and q4 = (x4, y4) be the positions of the masses m1, m2,
m3 and m4 respectively. Let s = (x3, y3, x4, y4). Without loss of generality
we assume that x3, y3 > 0, and that two planar central configurations are
equivalent if one can be obtained from the other by doing either a rotation
in dimension three or by interchanging the names of the masses m3 and m4.
Then the following statements hold.

(a) For m = 0 we have the following classes of non–equivalent planar
central configurations.

(a.1) Five different non–equivalent classes of non–collision central con-
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figurations given by the positions s1 = (0,
√
3, 0, 0), s2 = (0,

√
3, 0,

−
√
3), s3 = (α, 0, 0, 0), s4 = (α, 0,−α, 0), and s5 = (0,

√
3, α, 0)

where α = 2.39681 . . . is the unique real root of the equation
x5 − 2x3 − 8x2 + x − 8 = 0. See Figure 1. We note that the
central configurations given by s3 and s4 are collinear.

(a.2) Three different classes of non–equivalent collision central config-
urations given by the positions sc1 = (0, 0, 0, 0), sc2 = (0,

√
3, 0,√

3), and sc3 = (α, 0, α, 0). See Figure 2.

(b) The central configuration for m = 0 given by s1 = (0,
√
3, 0, 0) can be

continued to a unique family (x3(m), y3(m), x4(m), y4(m)) of concave
kite central configurations for m > 0 small where

x3(m) = x4(m) = 0,

y3(m) =
√
3 +

16
(
1− 3

√
3
)

27
m+O(m2),

y4(m) =
8− 3

√
3

42
m+O(m2).

(c) The central configuration for m = 0 given by s2 = (0,
√
3, 0,−

√
3) can

be continued to a unique family (x3(m), y3(m), x4(m), y4(m)) of convex
kite central configurations for m > 0 small where

x3(m) = x4(m) = 0,

y3(m) =
√
3 +

4

27

(
1− 3

√
3
)
m+O(m2),

y4(m) = −y3(m).

(d) The central configuration for m = 0 given by s3 = (α, 0, 0, 0) can be
continued to a unique family (x3(m), y3(m), x4(m), y4(m)) of collinear
central configurations for m > 0 small where

x3(m) = α− 4(α2 − 1)
(
α7 − 2α5 − 4α4 + α3 + α2 − 1

)

α2 (α6 − 3α4 + 16α3 + 3α2 + 48α− 1)
m+O(m2)

= 2.39681 · · · − 1.36514 . . . m+O(m2),

x4(m) =
4
(
3α2 − 1

)

17α2 (α2 − 1)2
m+O(m2) = 0.0295360 . . . m+O(m2),

y3(m) = y4(m) = 0.
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(e) The central configuration for m = 0 given by s4 = (α, 0,−α, 0) can be
continued to a unique family (x3(m), y3(m), x4(m), y4(m)) of collinear
central configurations for m > 0 small where

x3(m) = α+
(α2 − 1)

(
17α4 − 2α2 + 1

)

α2 (α6 − 3α4 + 16α3 + 3α2 + 48α − 1)
m+O(m2)

= 2.39681 · · · + 1.02836 . . . m+O(m2),

x4(m) = −x3(m),

y3(m) = y4(m) = 0.

(f) The central configuration for m = 0 given by s5 = (0,
√
3, α, 0) can

be continued to a unique family (x3(m), y3(m), x4(m), y4(m)) of non–
symmetric central configurations for m > 0 small where

x3(m) =
16

3

(
α2 + 1

(α2 − 1)2
− α

(α2 + 3)3/2

)
m+O(m2)

= 1.10354 . . . m+O(m2),

x4(m) = α+

α

(α2+3)3/2
− α

8 + 3α2+1
(α2−1)2

4α(α2+3)

(α2−1)3
+ 1

4

m+O(m2)

= 2.39681 · · · + 0.582716 . . . m+O(m2),

y3(m) =
√
3 +

16

3
√
3

(
2α

(α2 − 1)2
+

1

(α2 + 3)3/2

)
m+O(m2)

= 1.73205 · · · + 0.774741 . . . m+O(m2),

y4(m) = −

√
3
(
1
8 − 1

(α2+3)3/2

)

2α(α2+3)

(α2−1)3
− 1

4

m+O(m2)

= −1.04970 . . . m+O(m2).

(g) The central configuration for m = 0 given by sc1 = (0, 0, 0, 0) can be
continued to a unique family (x3(m), y3(m), x4(m), y4(m)) of collinear
central configurations for m > 0 small where

x3(m) =
1

171/3
m1/3 − 32

867
m+O(m4/3),

x4(m) = −x3(m),

y3(m) = y4(m) = 0.
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(h) The central configuration for m = 0 given by sc2 = (0,
√
3, 0,

√
3) can

be continued to

(h.1) a unique family (x3(m), y3(m), x4(m), y4(m)) of concave kite cen-
tral configurations for m > 0 small where

x3(m) = x4(m) = 0,

y3(m) =
√
3 +

22/3

32/3
m1/3 +

1

125/6
m2/3 +

1

81
m+O(m4/3),

y4(m) =
√
3− 22/3

32/3
m1/3 +

1

125/6
m2/3 − 1

81
m+O(m4/3).

(h.2) a unique family (x3(m), y3(m), x4(m), y4(m)) of isosceles trape-
zoid central configurations for m > 0 small where

x3(m) =
22/3

31/3
m1/3 +

5

27
m+O(m4/3),

x4(m) = −x3(m),

y3(m) =
√
3 +

1

25/3 37/6
m2/3 +O(m4/3),

y4(m) = y3(m).

(i) The central configuration for m = 0 given by sc3 = (α, 0, α, 0) can be
continued to a unique family (x3(m), y3(m), x4(m), y4(m)) of collinear
central configurations for m > 0 small where

x3(m) = α+ x31 m
1/3 + x32 m

2/3 + x33 m+O(m4/3)

= 2.39681 · · · + 0.622799 . . . m1/3 + 0.303818 . . . m2/3 +

1.60489 . . . m+O(m4/3),

x4(m) = α− x31 m
1/3 + x32 m

2/3 + x43 m+O(m4/3)

= 2.39681 · · · − 0.622799 . . . m1/3 + 0.303818 . . . m2/3 +

1.52572 . . . m+O(m4/3),

y3(m) = y4(m) = 0,
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m1m1
m1 m1 m1m2m2m2 m2 m2m3m3

m3 m3 m3

m4m4

m4
m4

m4

s1 = (0,
√

3, 0, 0) s2 = (0,
√

3, 0,−
√

3) s3 = (α, 0, 0, 0) s4 = (α, 0,−α, 0) s5 = (0,
√
3, α, 0)

Figure 1: The classes of non–equivalent non–collision planar central configurations for
m = 0.

m1 m1
m1

m2 m2
m2

m3

m3

m3m4

m4

m4

sc1 = (0, 0, 0, 0) sc2 = (0,
√

3, 0,
√

3) sc3 = (α, 0, α, 0)

Figure 2: The classes of non–equivalent collision planar central configurations for m = 0.

and

x31 =
α2 − 1

3
√
α6 − 3α4 + 16α3 + 3α2 + 48α− 1

,

x32 =
24
(
α6 + 5α4 − 5α2 − 1

)

(α6 − 3α4 + 16α3 + 3α2 + 48α − 1)5/3
,

x33 =
8

3

(
9α16 − 60α14 + 284α13 + 168α12 − 216α11 + 2132α10−

1708α9 + 13314α8 + 3312α7 + 13004α6 − 1788α5−
20896α4 − 152α3 − 7524α2 + 268α − 147

)
/
(
α6 − 3α4+

16α3 + 3α2 + 48α − 1
)3

,

x43 = −x33 +
16
(
3α4 − 2α2 − 1

)

α6 − 3α4 + 16α3 + 3α2 + 48α − 1
.

(j) The central configurations described in statements (b)–(i) are all the
families of non–equivalent central configurations defined for m > 0
sufficiently small.

Note that Theorem 2 provides all classes of equivalent central configura-
tions of the 4–body problem with two pairs of equal masses and two equal
masses sufficiently small. Recall that two planar central configurations are
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equivalent if one can be obtained from the other by doing either a rotation
in dimension three or by interchanging the names of the masses m3 and m4.
If we do not take into account this equivalence relation, then Theorem 2
provides that the 34 classes of central configurations predicted in [24] and
[23] are the unique central configuration classes for the 4–body problem here
studied. In particular, Theorem 2 describes the geometrical shape of these
34 classes of central configurations. See for more details Figure 3.

From Theorem 2 we get the following result.

Corollary 3. The following statements hold for the 4–body problem with
two pairs of equal masses and two equal masses sufficiently small.

(a) It has exactly 34 classes of central configurations.

(b) It has exactly one convex central configuration for each ordering of the
masses in the boundary of its convex hull (i.e. Conjecture 1 holds).

(c) It has exactly one convex central configuration having two pairs of equal
masses located at the adjacent vertices of the configuration and it is an
isosceles trapezoid (i.e. Conjecture 2 holds).

2. Equations for the central configurations

The center of mass of the central configurations studied in Theorem 2 is

cm =

(
m(x3 + x4)

2(m+ 1)
,
m(y3 + y4)

2(m+ 1)

)
,

and equations (1) become

ei = 0, for i = 1, . . . , 8, (2)
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m2 m2
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m2

m2

m2

m2

m2

m2

m2

m2

m2

m2

m2

m2

m2

m2

m2

m2

m2 m2m2

m2

m2

m2

m2

m2

m2

m2

m2

m2

m2

m2

m3

m3

m3 m3

m3m3

m3

m3

m3

m3

m3

m3

m3

m3

m3

m3

m3

m3

m3

m3

m3

m3

m3

m3

m3

m3

m3m3

m3

m3

m3

m3

m3

m3

m3

m3

m3

m3

m3

m4

m4 m4

m4m4

m4

m4

m4

m4
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m4
m4
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m4

m4

m4

m4

m4

m4

m4

m4

m4

m4

m4

m4

m4

m4

m4

m4

m4

m4

m4

m4

m4

Figure 3: The classes of planar central configurations that emanate from the five central
configurations of the restricted 3–body problem to the four body problem with m1 = m2

and m3 = m4 small. The direction of the arrows indicates how the position of the masses
m3 and m4 changes when m3 = m4 > 0 and small.
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where

e1 = −1

4
− m(x3 + 1)

r313
− m(x4 + 1)

r314
+

(
1 +

m(x3 + x4)

2(m+ 1)

)
λ,

e2 =
1

4
− m(x3 − 1)

r323
− m(x4 − 1)

r324
−
(
1− m(x3 + x4)

2(m+ 1)

)
λ,

e3 =
x3 + 1

r313
+

x3 − 1

r323
+

m(x3 − x4)

r334
−
(
x3 −

m(x3 + x4)

2(m+ 1)

)
λ,

e4 =
x4 + 1

r314
+

x4 − 1

r324
+

m(x4 − x3)

r334
−
(
x4 −

m(x3 + x4)

2(m+ 1)

)
λ,

e5 = m

(
− y3
r313

− y4
r314

+
λ(y3 + y4)

2(m+ 1)

)
,

e6 = m

(
− y3
r323

− y4
r324

+
λ(y3 + y4)

2(m+ 1)

)
,

e7 =
y3
r313

+
y3
r323

+
m(y3 − y4)

r334
−
(
y3 −

m(y3 + y4)

2(m+ 1)

)
λ,

e8 =
y4
r314

+
y4
r324

+
m(y4 − y3)

r334
−
(
y4 −

m(y3 + y4)

2(m+ 1)

)
λ,

and

r13 =
√

(x3 + 1)2 + y23, r14 =
√

(x4 + 1)2 + y24 ,

r23 =
√

(x3 − 1)2 + y23, r24 =
√

(x4 − 1)2 + y24
r34 =

√
(x3 − x4)2 + (y3 − y4)2.

Notice that equations (2) are not defined at the binary colúlisions between
the masses. That is, when either r13 = 0, r14 = 0, r23 = 0, r24 = 0 or
r34 = 0.

Clearly the eight equations (2) are not all independent. It is not difficult
to prove that

e1 + e2 +me3 +me4 = 0,
e5 + e6 +me7 +me8 = 0.

(3)

12



By defining

E1 = e1 − e2, E2 = e3 − e2, E3 = e4 − e2,
E4 = e5 − e6, E5 = e7 − e6, E6 = e8 − e6,

system (2) taking into account (3) is equivalent to system

Ei = 0, for i = 1, . . . , 6. (4)

By isolating λ from equation E1 = 0 and substituting it into the other
equations of (4) we get system

Fi = 0, for i = 1, . . . , 5, (5)

where

F1 =
x3 − 1

r323
− x3

4
+

x3 + 1

r313
+m

(
−x23 − 1

2r313
+

x23 − 1

2r323
+

x3 − x4
r334

+

(x3 + 1)(x4 − 1)

2r324
− (x3 − 1)(x4 + 1)

2r314

)
,

F2 =
x4 − 1

r324
− x4

4
+

x4 + 1

r314
+m

(
−(x3 + 1)(x4 − 1)

2r313
+

(x3 − 1)(x4 + 1)

2r323
+

x4 − x3
r334

− x24 − 1

2r314
+

x24 − 1

2r324

)
,

F3 = m

(
− y3
r313

+
y3
r323

+
y4
r324

− y4
r314

)
,

F4 =
y3
r313

+
y3
r323

− y3
4

+m

(
−(x3 + 1)y3

2r313
+

(x3 + 1)y3
2r323

− (x4 + 1)y3
2r314

+

y3 − y4
r334

+
(x4 − 1)y3 + 2y4

2r324

)
,

F5 =
y4
r314

+
y4
r324

− y4
4

+m

(
−(x3 + 1)y4

2r313
− (x4 + 1)y4

2r314
+

(x4 + 1)y4
2r324

+

y4 − y3
r334

+
2y3 + (x3 − 1)y4

2r323

)
.
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3. Central configurations with m = 0

When m = 0 system (5) is equivalent to system

G(x3, y3) = 0, G(x4, y4) = 0,

H(x3, y3) = 0, H(x4, y4) = 0,
(6)

where

G(x, y) =
x− 1

((x− 1)2 + y2)3/2
+

x+ 1

((x+ 1)2 + y2)3/2
− x

4
,

H(x, y) =
y

((x− 1)2 + y2)3/2
+

y

((x+ 1)2 + y2)3/2
− y

4
.

Clearly (x3, y3, x4, y4) is a solution of (6) if and only if (x3, y3) (respec-
tively, (x4, y4)) is a solution of

G(x, y) = 0, H(x, y) = 0. (7)

Solving system (7) we find the following solutions

(x, y) = (0, 0), (x, y) = (0,
√
3), (x, y) = (0,−

√
3),

(x, y) = (−α, 0), (x, y) = (α, 0),

where α = 2.39681 . . . is the unique real root of the equation x5 − 2x3 −
8x2 + x− 8 = 0.

We note that the five solutions of (7) that we have found correspond
to the five relative equilibria of the restricted 3–body problem; the two
equilateral triangle solutions and the three collinear solutions.

Since we have assumed that x3, y3 > 0, the solutions of (6) satisfying

14



these conditions are

C1 : (x3, y3) = (0, 0), (x4, y4) = (0, 0),

C2 : (x3, y3) = (0, 0), (x4, y4) = (0,
√
3),

C3 : (x3, y3) = (0, 0), (x4, y4) = (0,−
√
3),

C4 : (x3, y3) = (0, 0), (x4, y4) = (−α, 0),
C5 : (x3, y3) = (0, 0), (x4, y4) = (α, 0),

C6 : (x3, y3) = (0,
√
3), (x4, y4) = (0, 0),

C7 : (x3, y3) = (0,
√
3), (x4, y4) = (0,

√
3),

C8 : (x3, y3) = (0,
√
3), (x4, y4) = (0,−

√
3),

C9 : (x3, y3) = (0,
√
3), (x4, y4) = (−α, 0),

C10 : (x3, y3) = (0,
√
3), (x4, y4) = (α, 0),

C11 : (x3, y3) = (α, 0), (x4, y4) = (0, 0),

C12 : (x3, y3) = (α, 0), (x4, y4) = (0,
√
3),

C13 : (x3, y3) = (α, 0), (x4, y4) = (0,−
√
3),

C14 : (x3, y3) = (α, 0), (x4, y4) = (−α, 0),
C15 : (x3, y3) = (α, 0), (x4, y4) = (α, 0).

Notice that the solutions C1, C7, and C15 correspond to central config-
urations where m3 and m4 are colliding.

The central configuration given by C3 can be obtained from the one
given by C2 after doing a rotation of 180 degrees around the x–axis. The
central configuration given by C4 (respectively C9) can be obtained from
the one given by C5 (respectively C10) after doing a rotation of 180 degrees
around the y–axis. The central configurations given by C2, C5 and C12

can be obtained from the ones given by C6, C11 and C10, respectively, after
interchanging the names of the massesm3 andm4. The central configuration
given by C13 can be obtained from the one given by C10 after doing a rotation
of 180 degrees around the x–axis and interchanging the names of the masses
m3 and m4.

Assuming that two different central configurations are equivalent if one
can be obtained from the other one by doing either a rotation in dimension
three or by interchanging the names of the masses m3 and m4, we have
that for m = 0 there are five non–equivalent classes of non–collision central
configurations C6, C8, C10, C11 and C14, and three non–equivalent classes of
collision central configurations C1, C7 and C15. This proves statement (a)
of Theorem 2.
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4. Central configurations with x3 = 0 and x4 = 0 for m > 0 small

In this section we consider the kite central configurations; i.e, central
configurations such that x3 = 0 and x4 = 0. More precisely, we will find the
analytic expression of the kite central configurations of the 4–body problem
when m1 = m2 = 1 and m3 = m4 = m > 0 small that emanate from the
central configurations with m = 0 and x3 = x4 = 0.

Without loss of generality we can assume that y3 > 0 and y3 > y4. Under
these conditions the first three equations of (5) are always satisfied and the
last two equations become

F̃4 = m

(
y4 − y3(
y24 + 1

)3/2 +
1

(y3 − y4)2

)
+

2y3(
y23 + 1

)3/2 − y3
4

= 0,

F̃5 = m

(
y3 − y4(
y23 + 1

)3/2 − 1

(y3 − y4)2

)
+

2y4(
y24 + 1

)3/2 − y4
4

= 0.

(8)

Let t = (y3, y4). The solutions of (8) that provide non–equivalent non–
collision kite central configurations with m = 0 are t1 = (

√
3, 0) and t2 =

(
√
3,−

√
3). They correspond to the components y3 and y4 of the solutions s1

and s2 given in Theorem 2(a.1). The solutions that provide non–equivalent
collision kite central configurations with m = 0 are tc1 = (0, 0) and tc2 =
(
√
3,
√
3). They correspond to the components y3 and y4 of the solutions

sc1 and sc2 given in Theorem 2(a.2).
In our analysis the central configurations with x3 = x4 = 0 and y4 = −y3

will play an important role. So first we analyze them.

4.1. Central configurations with x3 = x4 = 0 and y4 = −y3

When y4 = −y3 system (8) is equivalent to equation

2y3(
y23 + 1

)3/2 − y3
4

+m

(
1

4y23
− 2y3(

y23 + 1
)3/2

)
= 0.

By solving this equation with respect to m we get

m = f(y3) = −
2y3

(y23+1)
3/2 − y3

4

1
4y23

− 2y3

(y23+1)
3/2

.

It is not difficult to see that the numerator of m equals zero when y3 = 0
and y3 = ±

√
3, and the denominator of m equals zero when y3 = 1/

√
3.
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Figure 4: The graph of the function f(y) for y > 0.

Then analyzing the sign of m for y3 > 0 we have that m > 0 for y3 ∈
(1/

√
3,
√
3), m = 0 for y3 = 0 and y3 =

√
3, and m < 0 for y3 ∈ (0, 1/

√
3) ∪

(
√
3,+∞). Furthermore we can prove easily that f(y3) is decreasing for all

y3 ∈ (1/
√
3,
√
3), f(

√
3) = 0 and limy3→(1/

√
3)+ = +∞ (see Figure 4). This

proves the following lemma.

Lemma 4. There exists a unique family of kite central configurations with
y4 = −y3 and y3 > 0 defined for all m > 0. This family is given by
y3 = y3(m) = f−1(m), and it satisfies that y3 ∈ (1/

√
3,
√
3], and that

y3 →
√
3 when m → 0, and y3 → 1/

√
3 when m → +∞.

4.2. Central configurations with m > 0 small emanating from the solutions
t1 and t2

Notice that system (8) is analytic with respect to all its variables ex-
cept at the points corresponding to binary collisions between the masses.
Therefore it is analytic in a neighborhood of the solutions t1 and t2.

Let

D =

∣∣∣∣∣∣∣∣∣

∂F̃4

∂y3

∂F̃4

∂y4

∂F̃5

∂y3

∂F̃5

∂y4

∣∣∣∣∣∣∣∣∣
.

It is easy to check that

D|m=0,t=t1
= −63

64
6= 0, D|m=0,t=t2

=
81

256
6= 0.
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Therefore from the Implicit Function Theorem we can find unique analytic
functions yi3(m) and yi4(m) satisfying system (8) and (yi3(0), y

i
4(0)) = ti for

i = 1, 2 which are defined in a sufficiently small neighborhood U of m = 0.
Next we analyze the functions yi3(m) and yi4(m). Let ti(m) = (yi3(m),

yi4(m)) with

yi3(m) =

∞∑

k=0

yi3k m
k, yi4(m) =

∞∑

k=0

yi4k m
k,

and (yi30, y
i
40) = ti; and let

F̃4

∣∣∣
t=ti(m)

=

∞∑

k=0

di4k m
k, F̃5

∣∣∣
t=ti(m)

=

∞∑

k=0

di5k m
k, (9)

be the expansion in power series of m of the functions F̃4 and F̃5 evaluated
at t = ti(m). Clearly ti(m) is a solution of system (8) if and only if di4k = 0
and di5k = 0 for all k ∈ N ∪ {0}. Moreover since (yi30, y

i
40) is a solution of

system (8) for m = 0, the terms of order 0 of the power series expansions
(9) are zero; that is, di40 = 0 and di50 = 0.

Case i = 1. By computing the terms of order 1 of the power series
expansions (9) we get

d141 =
1

48

(
−27 y31 − 48

√
3 + 16

)
, d151 =

1

24

(
42 y41 + 3

√
3− 8

)
.

We equate these terms to zero and we obtain

y31 =
16
(
1− 3

√
3
)

27
, y41 =

8− 3
√
3

42
.

We substitute the values of y31 and y41 into the expression of t1(m), and
then we compute the terms of order 2 of the power series expansions (9)
obtaining

d142 =
−15309y32 + 62824

√
3 + 7920

27216
, d152 =

47628y42 + 10235
√
3− 34128

27216
.

By equating these terms to zero we get

y32 =
8
(
990 + 7853

√
3
)

15309
, y42 =

34128 − 10235
√
3

47628
.
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In short,

y13(m) =
√
3 +

16
(
1− 3

√
3
)

27
m+

8
(
990 + 7853

√
3
)

15309
m2 +O(m3),

y14(m) =
8− 3

√
3

42
m+

34128 − 10235
√
3

47628
m2 +O(m3).

(10)

Case i = 2. Proceeding as in the case i = 1 we get

y23(m) =
√
3 +

4

27

(
1− 3

√
3
)
m+

4
(
90− 101

√
3
)

2187
m2 +O(m3),

y24(m) = −
√
3− 4

27

(
1− 3

√
3
)
m− 4

(
90− 101

√
3
)

2187
m2 +O(m3).

(11)
By observing the first terms of the expansion of y23(m) and y24(m) in power
series of m we claim that the solution t2(m) satisfies that y24(m) = −y23(m).
The proof of the claim is an immediate consequence of the uniqueness of the
solution t2(m) = (y23(m), y24(m)) together with Lemma 4, which assures the
existence of a solution of system (8) with y4 = −y3 satisfying that y3 →

√
3

when m → 0. In short we have proved the following result.

Proposition 5. The following statements hold.

(a) There exists a unique family t1(m) = (y13(m), y14(m)), with y13(m) and
y14(m) given by (10), of kite central configurations emanating from the
central configuration with m = 0, x3 = x4 = 0 and (y3, y4) = (

√
3, 0).

(b) There exists a unique family t2(m) = (y23(m), y24(m)), with y24(m) =
−y23(m) and y23(m) given by (11),of kite central configurations ema-
nating from the central configuration with m = 0, x3 = x4 = 0 and
(y3, y4) = (

√
3,−

√
3).

4.3. Central configurations with m > 0 small emanating from the solutions
tc1 and tc2

Next we analyze the existence of families of central configurations with
x3 = 0 and x4 = 0 emanating from the collision solutions tc1 and tc2.

We define two new equations in the following way

F = F̃4 + F̃5 = m

(
y3 − y4(
y23 + 1

)3/2 − y3 − y4(
y24 + 1

)3/2

)
+

2y3(
y23 + 1

)3/2

−y3
4

+
2y4(

y24 + 1
)3/2 − y4

4
= 0, (12)

G = (y3 − y4)
2 F̃4 = 0.
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Obviously, a solution of system (8) is also a solution of (12). Furthermore
the functions F and G are analytic with respect to all its variables. So we
shall work with system (12) instead of (8).

Let now

D =

∣∣∣∣∣∣∣∣∣

∂F

∂m

∂F

∂y4

∂G

∂m

∂G

∂y4

∣∣∣∣∣∣∣∣∣
.

It is easy to check that

D|m=0,t=tc1
= −7

4
6= 0, D|m=0,t=tc2

=
9

16
6= 0.

Therefore, from the Implicit Function Theorem, we can find unique analytic
functionsmi(y3) and yi4(y3) satisfying system (12) andm1(0) = 0, m2(

√
3) =

0, y14(0) = 0 and y24(
√
3) =

√
3 which are defined in a sufficiently small

neighborhood V of y3 = yi30 = y3|t=tci
for i = 1, 2.

Next we analyze the functions mi(y3) and yi4(y3) by proceeding in a simi-
lar way than in Subsection 4.2. Let Y3 = y3−yi30, τ

i(Y3) = (mi(Y3), y
i
4(Y3)),

let

mi(Y3) =

∞∑

k=0

mi
k Y

k
3 , yi4(Y3) =

∞∑

k=0

yi4k Y
k
3 ,

where m0 = 0, yi40 = y4|t=tci
; and let

F
∣∣
(m,y4)=τ i(Y3)

=

∞∑

k=0

f
i
k Y

k
3 , G

∣∣
(m,y4)=τ i(Y3)

=

∞∑

k=0

gik Y
k
3 , (13)

be the expansion in power series of Y3 of the functions F and G evaluated
at m = mi(Y3), y4 = yi4(Y3).

The terms of order 0 of the power series expansions (13), F
i
0 = 0 and

G
i
0 = 0, are zero because m = mi

0 and y4 = yi40 is a solution of system
(12) for Y3 = 0. Next we analyze higher order terms of this power series
expansions.

Case i = 1. After some computations we see that the terms of order 1
of the power series expansions (13) are

f
1
1 =

7y41
4

+
7

4
, g11 = m1.
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By equating these terms to zero we get m1 = 0 and y41 = −1. We substitute
them into the expressions of mi(Y3) and yi4(Y3), and then we compute the
terms of order 2 of the power series expansions (13) obtaining

f
1
2 =

7y42
4

, g12 = m2.

We equate these terms to zero and we getm2 = 0 and y42 = 0. By computing
the terms of order 3 of the power series expansions (13) we get

f
1
3 =

7y43
4

, g13 = m3 + 7.

So m3 = −7 and y43 = 0. By computing the terms of order 4 of the power
series expansions (13) we get

f
1
4 =

7y44
4

, g14 = m4,

therefore m4 = 0 and y44 = 0. By computing the terms of order 5 of the
power series expansions (13) we get

f
1
5 =

7y45
4

, g15 = m5 − 12,

hence m5 = 12 and y45 = 0. In short,

m1(Y3) = −7Y 3
3 + 12Y 5

3 +O(Y 6
3 ), y14(Y3) = −Y3 +O(Y 6

3 ).

By observing the first terms of the power series expansions of m1(Y3) and
y14(Y3) we claim that y14(Y3) = −Y 3. Indeed, we have proved that m1(Y3)
and y14(Y3) are the unique functions satisfying (12), and consequently satis-
fying (8). Moreover in Section 4.1 we have proved that there exists a family
of solutions of (8) with y4 = −y3 which is defined in a neighborhood of
y3 = 0. Therefore we can conclude that y14(Y3) = −Y3 which proves the
claim. This solution does not provide a family of central configurations with
x3 = x4 = 0 because on this family m < 0 (see Figure 4).

Case i = 2. Proceeding as in the case i = 1 we get

m2(Y3) =
9Y 3

3

4
− 27

√
3Y 4

3

32
+

195Y 5
3

256
+O(Y 6

3 ),

y24(Y3) =
√
3− Y3 +

√
3Y 2

3

4
− 3Y 3

3

16
− (14)

7
√
3Y 4

3

768
+

3(31 − 512
√
3)Y 5

3

1024
+O(Y 6

3 ),

where Y3 = y3 −
√
3.

In short we have proved the following result.
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Figure 5: The graph of the functions y3(m) (continuous line) and y4(m) (dashed line), for
m ∈ (0, 1], on the families of central configurations given by Propositions 5 and 6.

Proposition 6. The following statements hold.

(a) There is no family of kite central configurations emanating from the
collision central configuration with m = 0, x3 = x4 = 0 and (y3, y4) =
(0, 0).

(b) There exists a unique family tc2 of kite central configurations emanat-
ing from the collision central configuration with m = 0, x3 = x4 = 0
and (y3, y4) = (

√
3,
√
3). This family is given by (14).

4.4. Numerical study of the families of central configurations with x3 = x4 =
0

With the help of Mathematica, we have followed the families of central
configurations t1, t2 and tc2 given by Propositions 5 and 6 respectively from
m = 0 to m = 1. The results that we have obtained are plotted in Figure 5.

It is well known that there are three different classes of planar non–
collinear central configurations of the four–body problem with equal masses:
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the square, an equilateral triangle with a mass at its center, and an isosceles
triangle with one mass on its axis of symmetry (see [1]).

By computing the solutions of system (8) when m = 1 we find exactly
three real solutions satisfying y3 > 0 and y3 > y4,

(i) the solution y3 =
√
3, y4 = 1/

√
3 which belongs to the family t1 and

provides an equilateral triangle with the mass m4 at its center

(ii) the solution y3 = 1, y4 = −1 which belongs to the family t2 and
provides a square

(iii) the solution y3 = 1.81723 . . . , y4 = 0.650378 . . . which belongs to the
family tc2 and provides an isosceles triangle with the masses m3 and
m4 on its axis of symmetry.

5. Central configurations with y3 = 0 and y4 = 0 for m > 0 small

In this section we consider the collinear central configurations; i.e. cen-
tral configurations such that that y3 = 0 and y4 = 0. Without loss of
generality we can assume that x3 > 0 and x3 > x4. Under these condi-
tions the last three equations of (5) are always satisfied, and the first two
equations become

F̃1 = 0, F̃2 = 0, (15)

with

F̃1 = −x3
4

+
x3 − 1

|x3 − 1|3 +
1

(x3 + 1)2
+m

(
− x3 − 1

2(x3 + 1)2
+

(x4 − 1)(x3 + 1)

2|x4 − 1|3 +
x23 − 1

2|x3 − 1|3 − (x3 − 1)(x4 + 1)

2|x4 + 1|3 +
1

(x3 − x4)2

)
,

F̃2 = −x4
4

+
x4 − 1

|x4 − 1|3 +
x4 + 1

|x4 + 1|3 +m

(
− (x4 − 1)

2(x3 + 1)2
−

x24 − 1

2|x4 + 1|3 +
(x3 − 1)(x4 + 1)

2|x3 − 1|3 +
x24 − 1

2|x4 − 1|3 − 1

(x3 − x4)2

)
.

Let r = (x3, x4). The solutions of (15) that provide non–equivalent non–
collision collinear central configurations with m = 0 are r1 = (α, 0) and
r2 = (α,−α), where α = 2.39681 . . . is the unique real root of the equation
x5 − 2x3 − 8x2 + x− 8 = 0. These solutions correspond to the components
x3 and x4 of the solutions s3 and s4 given in Theorem 2(a.1). The solutions
of (15) that provide non–equivalent collision collinear central configurations
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Figure 6: The graph of the function g(x) for x > 0.

with with m = 0 are rc1 = (0, 0) and rc2 = (α,α). They correspond to the
components x3 and x4 of the solutions sc1 and sc3 given in Theorem 2(a.2)).

We start analyzing the collinear central configurations with x4 = −x3,
which play an important role in our study.

5.1. Central configurations with y3 = y4 = 0 and x4 = −x3

When x4 = −x3 system (15) is equivalent to equation

−x3
4

+
x3 − 1

|x3 − 1|3 +
1

(x3 + 1)2
+m

(
1

4x23
+

(x3 − 1)x3
|x3 − 1|3 − x3

(x3 + 1)2

)
= 0.

By solving this equation with respect to m we get

m = g(x3) = −
−x3

4 + x3−1
|x3−1|3 + 1

(x3+1)2

1
4x2

3
+ (x3−1)x3

|x3−1|3 − x3

(x3+1)2

.

It is not difficult to prove that the numerator of m equals zero when x3 =
0 and x3 = α, and the denominator of m equals zero when x3 = β =
0.417220 . . . , where β is the unique real root of equation 8x5 − x4 + 8x3 +
2x2 − 1 = 0. Analyzing the sign of m when x3 > 0 we have that m > 0
for x3 ∈ (0, β) ∪ (α,+∞), m = 0 when x3 = 0 and x3 = α, and m < 0
when x3 ∈ (β, α). Moreover, the function g(x3) is increasing in [0, β) ∪
(β,+∞), g(0) = 0, g(α) = 0 and limx3→β− = +∞ and limx3→+∞ = +∞
(see Figure 6). This proves the following lemma.

Lemma 7. For all m > 0 there exist two families of collinear central config-
urations with x4 = −x3 and x3 > 0, one for each branch of x3(m) = g−1(m).
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(a) A family x3(m) ∈ (0, β) for m > 0 satisfying that x3(m) → 0 when
m → 0, and x3(m) → β when m → +∞.

(b) A family x3(m) ∈ (α,+∞) for m > 0 satisfying that x3(m) → α when
m → 0, and x3(m) → +∞ when m → +∞.

5.2. Central configurations with m > 0 small emanating from the solutions
r1 and r2

Notice that system (15) is analytic with respect to all its variables ex-
cept at the points corresponding to binary collisions between the masses.
Therefore it is analytic in a neighborhood of the solutions r1 and r2.

Let

D̃ =

∣∣∣∣∣∣∣∣∣

∂F̃1

∂x3

∂F̃1

∂x4

∂F̃2

∂x3

∂F̃2

∂x4

∣∣∣∣∣∣∣∣∣
.

It is easy to check that

D|m=0,r=r1
=

17
(
α6 − 3α4 + 16α3 + 3α2 + 48α − 1

)

16 (α2 − 1)3
= 4.39829 · · · 6= 0,

D|m=0,r=r2
=

(
α6 − 3α4 + 16α3 + 3α2 + 48α − 1

)2

16 (α2 − 1)6
= 1.07100 · · · 6= 0.

Therefore from the Implicit Function Theorem we can find unique analytic
functions xi3(m) and xi4(m) satisfying system (15) and (xi3(0), x

i
4(0)) = ri for

i = 1, 2 which are defined in a sufficiently small neighborhood U of m = 0.
Next we analyze the functions xi3(m) and xi4(m) by proceeding as in

Section 4.2. Let ri(m) = (xi3(m), xi4(m)) with

xi3(m) =
∞∑

k=0

xi3k m
k, xi4(m) =

∞∑

k=0

xi4k m
k,

where (xi30, x
i
40) = ri. We expand the functions F̃1 and F̃2 evaluated at

r = ri(m) in power series of m. By computing the first terms of these power
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series expansions and equating them to zero we get

x13(m) = α− 4(α2 − 1)
(
α7 − 2α5 − 4α4 + α3 + α2 − 1

)

α2 (α6 − 3α4 + 16α3 + 3α2 + 48α − 1)
m+O(m2)

= 2.39681 · · · − 1.36514 . . . m+O(m2),

x14(m) =
4
(
3α2 − 1

)

17α2 (α2 − 1)2
m+O(m2) = 0.0295360 . . . m+O(m2),

(16)
and

x23(m) = α+
(α2 − 1)

(
17α4 − 2α2 + 1

)

α2 (α6 − 3α4 + 16α3 + 3α2 + 48α − 1)
m+O(m2)

= 2.39681 · · · + 1.02836 . . . m+O(m2),

x24(m) = −α− (α2 − 1)
(
17α4 − 2α2 + 1

)

α2 (α6 − 3α4 + 16α3 + 3α2 + 48α− 1)
m+O(m2)

= −2.39681 · · · − 1.02836 . . . m+O(m2).
(17)

By observing the first terms of the expansions of x23(m) and x24(m) in power
series of m we claim that the solution r2(m) satisfies that x24(m) = −x23(m).
The proof of the claim is an immediate consequence of the uniqueness of the
solution r2(m) = (x23(m), x24(m)) together with Lemma 7, which assures the
existence of a solution of system (8) with x4 = −x3 satisfying that x3 → α
when m → 0. In short we have proved the following result.

Proposition 8. The following statements hold.

(a) There exists a unique family r1(m) =
(
x13(m), x14(m)

)
, with x13(m) and

x14(m) given by (16), of collinear central configurations emanating from
the central configuration with m = 0, y3 = y4 = 0 and (x3, x4) = (α, 0).

(b) There exists a unique family r2(m) =
(
x23(m),−x23(m)

)
, with x23(m) is

given by (17), of collinear central configurations emanating from the
central configuration with m = 0, y3 = y4 = 0 (x3, x4) = (α,−α).

5.3. Central configurations with m > 0 small emanating from the solutions
rc1 and rc2

Next we analyze the existence of families of central configurations with
y3 = 0 and y4 = 0 emanating from the collision solutions rc1 and rc2.

We define two new equations

F = F̃1 + F̃2 = 0, G = (x3 − x4)
2 F̃1 = 0. (18)
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Obviously, a solution of system (8) is also a solution of (18) and the functions
F and G are analytic with respect to all its variables except when x3 = 1 and
x4 = ±1 (remember that we have considered only solutions with x3 > 0);
i.e. at the binary collisions between m3 and m2, m4 and m1, and m4 and
m2. Therefore F and G are analytic in a neighborhood of rc1 and rc2.

We shall work with system (18) instead of (8). Let now

D =

∣∣∣∣∣∣∣∣∣

∂F

∂m

∂F

∂y4

∂G

∂m

∂G

∂y4

∣∣∣∣∣∣∣∣∣
.

It is easy to check that

D|m=0,r=rc1
=

17

4
6= 0,

D|m=0,r=rc2
=

α6 − 3α4 + 16α3 + 3α2 + 48α − 1

4 (α2 − 1)3
= 1.03489 · · · 6= 0.

Therefore from the Implicit Function Theorem we can find unique ana-
lytic functions mi(x3) and xi4(x3) satisfying system (18) and m1(0) = 0,
m2(α) = 0, x14(0) = 0 and x24(α) = α which are defined in a sufficiently
small neighborhood V of x3 = xi30 = x3|r=rci

with i = 1, 2.

Next we analyze the functions mi(x3) and xi4(x3). Let X3 = x3 − xi30,
ρi(X3) = (mi(X3), x

i
4(X3)) with

mi(X3) =

∞∑

k=0

mi
k X

k
3 , xi4(X3) =

∞∑

k=0

xi4k X
k
3 ,

and m0 = 0, xi40 = x4|r=rci
. By proceeding as in Subsection 4.3 for i = 1

we get
m1(X3) = 17X3

3 + 32X5
3 +O(X6

3 ),

x14(X3) = −X3 +O(X6
3 ),

(19)

where X3 = x3. We claim that x14(X3) = −X3. The proof of the claim
is an immediate consequence of the fact that m1(X3) and x14(X3) are the
unique functions satisfying (18), m1(0) = 0 and x14(0) = 0 together with
the fact that there exists a family of of collinear central configurations with
x4 = −x3 defined in a neighborhood of x3 = 0 (see Lemma 7(a)).
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For i = 2 we get

m2(X3) = m3X
3
3 +O(X4

3 ),

x24(X3) = α−X3 + x242 X
2
3 + x243 X

3
3 +O(X4

3 ),
(20)

where X3 = x3 − α and

m3 = −
(
α2 − 1

)−3 (
α6 − 3α4 + 16α3 + 3α2 + 48α− 1

)−1

(
47α12 − 170α10 − 752α9 + 209α8 + 704α7 + 2356α6+

736α5 + 2913α4 − 576α3 + 150α2 − 112α + 639
)
= 4.13957 . . . ,

x242 =
16
(
3α7 − 5α5 − 21α4 + α3 − 14α2 + α− 5

)

(α2 − 1) (α6 − 3α4 + 16α3 + 3α2 + 48α− 1)
= 1.56656 . . . ,

x243 = −16
(
α2 − 1

)−2 (
α6 − 3α4 + 16α3 + 3α2 + 48α− 1

)−2

(
141α14 − 463α12 − 2112α11 + 457α10 + 1984α9 + 6269α8+

1664α7 + 4375α6 − 896α5 − 1917α4 − 576α3 − 45α2 −
64α + 399) = 10.5053 . . . .

In short, we have proved the following result.

Proposition 9. The following statements hold.

(a) There exists a unique family rc1 of collinear central configurations
emanating from the collision collinear central configuration with m =
0, x3 = x4 = 0 and y3 = y4 = 0. This family satisfies that x4 = −x3
and it given by (19).

(b) There exists a unique family rc2 of collinear central configurations
emanating from the collinear collision central configuration with m =
0, x3 = x4 = α and y3 = y4 = 0. This family is given by (20).

5.4. Numerical study of the families of central configurations with y3 = y4 =
0

We have followed the families of central configurations r1, r2, rc1 and
rc2 given by Propositions 8 and 9 respectively from m = 0 to m = 1. The
results that we have obtained are plotted in Figure 7.

We have computed the solutions of system (15) when m = 1 and we
have found exactly four real solutions satisfying x3 > 0 and x3 > x4,

(i) the solution (x3, y3) = (2.03895 . . . , 0.0389514 . . . ) which belongs to
the family r1,
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Figure 7: The graphs of the functions x3(m) (continuous line) and x4(m) (dashed line), for
m ∈ (0, 1], on the families of collinear central configurations given by Propositions 8 and 9.
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(ii) the solution (x3, y3) = (3.16212 . . . ,−3.16212 . . . ) which belongs to
the family r2,

(iii) the solution (x3, y3) = (0.316243 . . . ,−0.316243 . . . ) which belongs to
the family rc1,

(iv) the solution (x3, y3) = (4.85003 . . . , 2.85003 . . . ) which belongs to the
family rc2.

6. Central configurations for m > 0 sufficiently small emanating
from non–collision central configurations for m = 0

Let s = (x3, y3, x4, y4), and let s1, s2, s3, s4, and s5 be the solutions of
(6) for m = 0 given by Theorem 2(a).

System (5) is analytic with respect to all its variables except at the
points s corresponding to binary collisions between the masses. Therefore
it is analytic in a neighborhood of the solutions s1, s2, s3, s4, and s5.

Let

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F1

∂x3

∂F1

∂y3

∂F1

∂x4

∂F1

∂y4
∂F2

∂x3

∂F2

∂y3

∂F2

∂x4

∂F2

∂y4
∂F4

∂x3

∂F4

∂y3

∂F4

∂x4

∂F4

∂y4
∂F5

∂x3

∂F5

∂y3

∂F5

∂x4

∂F5

∂y4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Let

A =
1

(α+ 1)3
+

1

(α− 1)3
.

It is not difficult to check that

D|m=0,s=s1
=

3213

4096
6= 0,

D|m=0,s=s2
= − 729

65536
6= 0,

D|m=0,s=s3
=

119

16

(
1

4
+ 2A

)(
1

4
−A

)
= −1.09641 · · · 6= 0,

D|m=0,s=s4
= −

(
1

4
−A

)2(1

4
+ 2A

)2

= −0.0217317 · · · 6= 0,

D|m=0,s=s5
= − 27

256

(
1

4
+ 2A

)(
1

4
−A

)
= 0.0155478 · · · 6= 0.
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Therefore from the Implicit Function Theorem we can find unique analytic
functions xi3(m), yi3(m), xi4(m), and yi4(m) satisfying system F1 = 0, F2 = 0,
F4 = 0 and F5 = 0 and (xi3(0), y

i
3(0), x

i
4(0), y

i
4(0)) = si for i = 1, . . . , 5 which

are defined in a sufficiently small neighborhood U of m = 0.
Xia in [24] proves that for each i = 1, . . . , 5 the central configuration

si can be continued to a family of central configurations with m > 0 small.
Therefore the solution si(m) = (xi3(m), yi3(m), xi4(m), yi4(m)) of system F1 =
0, F2 = 0, F4 = 0 and F5 = 0 provides a family of central configurations
for m > 0 small and consequently it satisfies also equation F3 = 0. Here we
shall give the analytical expression of the families of central configurations
given by the solutions si(m) = (xi3(m), yi3(m), xi4(m), yi4(m)).

By uniqueness, the family of central configurations given by the solution
si(m) = (xi3(m), yi3(m), xi4(m), yi4(m)) with i = 1 coincides with the family
given by Proposition 5(a), the one with i = 2 coincides with the one given
by Proposition 5(b), the one with i = 3 coincides with the one given by
Proposition 8(a), and the one with i = 4 coincides with the one given by
Proposition 8(b). This proves statements (b), (c), (d) and (e) of Theorem 2.

Next we analyze the family of central configurations given by the solution
s5(m) by finding the analytic expression of the functions x53(m), y53(m),
x54(m) and y54(m) as in Section 4.2. Let

x53(m) =
∞∑

k=0

x53k m
k, x54(m) =

∞∑

k=0

x54k m
k,

y53(m) =
∞∑

k=0

y53k m
k, y54(m) =

∞∑

k=0

y54k m
k,

where (x530, y
5
30, x

5
40, y

5
40) = s5. We expand the functions F1, F2, F4 and F5

evaluated at s = s5(m) in power series of m. By computing the first terms
of these power series expansions and equating them to zero we get

x53(m) =
16

3

(
α2 + 1

(α2 − 1)2
− α

(α2 + 3)3/2

)
m+O(m2)

= 1.10354 . . . m+O(m2),

31



0.5 1 1.5 2 2.5
x

-1.5

-1

-0.5

0.5

1

1.5

2

y

Figure 8: The graph of the points (x5
3(m), y5

3(m)) (continuous line) and the points
(x5

4(m), y5
4(m)) (dashed line), for m ∈ (0, 1], on the family of solutions s5(m).

y53(m) =
√
3 +

16

3
√
3

(
2α

(α2 − 1)2
+

1

(α2 + 3)3/2

)
m+O(m2)

= 1.73205 · · · + 0.774741 . . . m+O(m2),

x54(m) = α+

α

(α2+3)3/2
− α

8 + 3α2+1
(α2−1)2

4α(α2+3)

(α2−1)3
+ 1

4

m+O(m2)

= 2.39681 · · · + 0.582716 . . . m+O(m2),

y54(m) = −

√
3
(
1
8 − 1

(α2+3)3/2

)

2α(α2+3)

(α2−1)3
− 1

4

m+O(m2) = −1.04970 . . . m+O(m2).

This completes the proof of statement (f) of Theorem 2.

6.1. Numerical study of the family of central configurations s5(m)

We have followed numerically the family of non–symmetric central con-
figurations s5(m) fromm = 0 tom = 1. The solutions that we have obtained
are plotted in Figure 8.

We note that when m = 1 the configuration s5 is given by (x3, y3) =
(1.81097 . . . , 1.82819 . . . ) and (x4, y4) = (2.06662 . . . ,−1.64001 . . . ), and it
becomes an isosceles triangle with the masses m2 and m4 on its axis of
symmetry.

7. Central configurations for m > 0 sufficiently small emanating
from collision central configurations for m = 0

System (5) is not defined when (x3, y3) = (x4, y4). Inspired in the work
of Xia [24], we transform system (5) into a new system that is well defined,
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and in fact analytic, in a neighborhood of (x3, y3) = (x4, y4) in the following
way. First we consider the system of equations

G1 = F1 + F2 = 0, G2 = F4 + F5 = 0, G3 = F3,
G4 = F2 − F1 = 0, G5 = F5 − F4 = 0,

(21)

which is equivalent to system (5). It is easy to see that the first three equa-
tions of (21) are analytic with respect to all its variables in a neighborhood
of (x3, y3) = (x4, y4) and m = 0. The last two equations of (21) are not
analytic at these points because they contain the term

m

r334
=

m

((x3 − x4)2 + (y3 − y4)2)
3/2

.

This term is well defined when m → 0 if (x3, y3) − (x4, y4) = O(mβ) with
β 6 1/3. Let µ = m1/3, then by doing the the change of variables defined by
(x4, y4) = (x3, y3) + µ(X4, Y4), we obtain a new system of equations which
is analytic in a neighborhood of the point (x3, y3), µ = 0 and (X4, Y4) 6= 0
where

G1 =
2(x3 − 1)

r323
+

2(x3 + 1)

r313
− x3

2
+O(µ)

G2 =
2y3
r323

+
2y3
r313

− y3
2

+O(µ),

G3 = 2y3

(
1

r323
− 1

r313

)
µ3 +O(µ4),

G4 =

(
2X4(

X2
4 + Y 2

4

)3/2 +
X4

(
−2x23 + 4x3 + y23 − 2

)
− 3(x3 − 1)y3Y4

r523

+
X4

(
−2x23 − 4x3 + y23 − 2

)
− 3(x3 + 1)y3Y4

r513
− X4

4

)
µ+O(µ2),

G5 =

(
2Y4(

X2
4 + Y 2

4

)3/2 +
Y4

(
x23 − 2x3 − 2y23 + 1

)
− 3(x3 − 1)X4y3

r523

+
Y4

(
x23 + 2x3 − 2y23 + 1

)
− 3(x3 + 1)X4y3

r513
− Y4

4

)
µ+O(µ2).

Consider now the system of equations

G1 = G1 = 0, G2 = G2 = 0, G3 = G3/µ
3 = 0,

G4 = G4/µ = 0, G5 = G5/µ = 0,
(22)

33



which is also analytic with respect to all its variables in a neighborhood of
(x3, y3), µ = 0 and (X4, Y4) 6= 0.

First we compute the solutions of (22) with µ = 0. When µ = 0 the
third equation of (22) is always satisfied and the first two equations of (22)
become G(x3, y3) = 0 and H(x3, y3) = 0 (see (7)). Therefore the solutions of
G1 = 0, G2 = 0 and G3 = 0 with x3, y3 > 0 are (x3, y3) = (0, 0), (x3, y3) =
(0,

√
3) and (x3, y3) = (α, 0). We substitute these solutions into the last two

equations of (22), then by solving the resultant system of equations we get
that when µ = 0 system (22) has 8 different real solutions with x3, y3 > 0,
they are given by

sc11 =

(
0, 0,

2

171/3
, 0

)
, sc12 =

(
0, 0,− 2

171/3
, 0

)
,

sc21 =

(
0,
√
3,

25/3

31/3
, 0

)
, sc22 =

(
0,
√
3,−25/3

31/3
, 0

)
,

sc23 =

(
0,
√
3, 0,

25/3

32/3

)
, sc24 =

(
0,
√
3, 0,−25/3

32/3

)
,

sc31 =
(
α, 0,X, 0

)
, sc32 =

(
α, 0,−X, 0

)
,

where

X =
2(α2 − 1)

3
√
α6 − 3α4 + 16α3 + 3α2 + 48α− 1

= 1.245598 . . . .

Here the components of scij are (x3, y3,X4, Y4). We note that system (22)
has no solutions with (X4, Y4) → (0, 0) as µ → 0, because either G4 or
G5 tend to ±∞ when µ → 0 and (x3, y3) = (0, 0), (x3, y3) = (0,

√
3) or

(x3, y3) = (α, 0).
Next we continue the solutions of system (22) with µ = 0 to µ > 0 small

by applying the Implicit Function Theorem as in Section 6. Clearly system
(22) is analytic with respect to all its variables in a neighborhood of the
points sc1j , sc2j , sc2k and sc3j with j = 1, 2, and k = 3, 4.

Let

D =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂G1

∂x3

∂G1

∂y3

∂G1

∂X4

∂G1

∂Y4

∂G2

∂x3

∂G2

∂y3

∂G2

∂X4

∂G2

∂Y4

∂G4

∂x3

∂G4

∂y3

∂G4

∂X4

∂G4

∂Y4

∂G5

∂x3

∂G5

∂y3

∂G5

∂X4

∂G5

∂Y4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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and let s = (x3, y3,X4, Y4). It is not difficult to check that

D
∣∣
µ=0,s=sc1j

=
18207

8
6= 0,

D
∣∣
µ=0,s=sc2j

=
729

8192
6= 0,

D
∣∣
µ=0,s=sc2k

= −2187

8192
6= 0,

D
∣∣
µ=0,s=sc3j

= −9α
(
α2 + 3

)

8 (α2 − 1)12
(
α6 − 3α4 − 8α3 + 3α2 − 24α − 1

)

(
α6 − 3α4 + 16α3 + 3α2 + 48α − 1

)2
= 2.15539 · · · 6= 0,

for all j = 1, 2 and k = 3, 4. Therefore from the Implicit Function Theorem
we can find unique analytic functions xi3(µ), y

i
3(µ), X

i
4(µ), and Y i

4 (µ), defined
in a sufficiently small neighborhood U of µ = 0, satisfying system G1 = 0,
G2 = 0, G4 = 0 and G5 = 0 and such that (xi3(0), y

i
3(0),X

i
4(0), Y

i
4 (0)) = scij

for all j = 1, 2 when i = 1, 3; and j = 1, . . . , 4 when i = 2. Next we will give
the analytical expression of these functions.

Let s = s(µ) = (x3(µ), y3(µ),X4(µ), Y4(µ)) be the solutions of system
G1 = 0, G2 = 0, G4 = 0 and G5 = 0 with

x3(µ) =
∞∑

k=0

x3k µ
k, X4(µ) =

∞∑

k=0

X4k µ
k,

y3(µ) =
∞∑

k=0

y3k µ
k, Y4(µ) =

∞∑

k=0

y4k µ
k.

We expand the functions G1, G2, G4 and G5 evaluated at s = s(µ) with
(x30, y30,X40, Y40) = scij for j = 1, 2 when i = 1, 3; and j = 1, . . . , 4 when
i = 2. By computing the first terms of these power series expansions and
equating them to zero we get the following.

If (x30, y30,X40, Y40) = sc11, then

x3(µ) = − µ
3
√
17

+
32µ3

867
+O(µ4), y3(µ) = 0 +O(µ4),

X4(µ) =
2

3
√
17

− 64µ2

867
− 16µ3

51 3
√
17

+O(µ4), Y4(µ) = 0 +O(µ4).

This solution does not provide solutions of (5) with x3, y3 > 0.
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If (x30, y30,X40, Y40) = sc12, then

x3(µ) =
µ

3
√
17

− 32µ3

867
+O(µ4), y3(µ) = 0 +O(µ4),

X4(µ) = − 2
3
√
17

+
64µ2

867
+

16µ3

51 3
√
17

+O(µ4), Y4(µ) = 0 +O(µ4).

We undo the change of variables (x4, y4) = (x3, y3)+µ(X4, Y4) and we have

x3(µ) =
1

171/3
µ− 32

867
µ3 +O(µ4), y3(µ) = 0 +O(µ4),

x4(µ) = − 1

171/3
µ+

32

867
µ3 +O(µ4), y4(µ) = 0 +O(µ4).

By observing the first terms of these power series expansions we see that this
solution must provide the family of collinear central configurations given by
Proposition 9(a). This proves statement (g) of Theorem 2.

If (x30, y30,X40, Y40) = sc21, then

x3(µ) = −22/3µ

31/3
− 5µ3

27
+O

(
µ4
)
, y3(µ) =

√
3 +

µ2

25/337/6
+O

(
µ4
)
,

X4(µ) =
25/3

31/3
+

10µ2

27
− 211/3µ3

37/3
+O

(
µ4
)
, Y4(µ) = 0 +O(µ4).

This solution does not provide solutions of (5) with x3, y3 > 0.
If (x30, y30,X40, Y40) = sc22, then

x3(µ) =
22/3µ

31/3
+

5µ3

27
+O

(
µ4
)
, y3(µ) =

√
3 +

µ2

25/337/6
+O

(
µ4
)
,

X4(µ) = −25/3

31/3
− 10µ2

27
+

211/3µ3

37/3
+O

(
µ4
)
, Y4(µ) = 0 +O(µ4).

By undoing the change of variables (x4, y4) = (x3, y3) + µ(X4, Y4) we have

x3(µ) =
22/3

31/3
µ+

5

27
µ3 +O(µ4), y3(µ) =

√
3 +

1

25/3 37/6
µ2 +O(µ4),

x4(µ) = −22/3

31/3
µ− 5

27
µ3 +O(µ4), y4(µ) =

√
3 +

1

25/3 37/6
µ2 +O(µ4).

From the first terms of these power series expansions it seems that the
solution s(µ) satisfies that x4 = −x3 and y4 = y3, so it could be an isosceles
trapezoid. From [26] we know the existence of a unique family of isosceles
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trapezoid central configurations defined for all m > 0 that tends to the
equilateral triangle central configuration sc2 when m → 0. Therefore the
family of solutions s(µ) must provide the family of isosceles trapezoid central
configurations. This proves statement (h.2) of Theorem 2.

By proceeding in a similar way we see that the family of solutions of
G1 = 0, G2 = 0, G4 = 0 and G5 = 0 with (x30, y30,X40, Y40) = sc23
provides a family of solutions of (5) with

x3(µ) = 0 +O(µ4), y3(µ) =
√
3 +

22/3

32/3
µ+

1

125/6
µ2 +

1

81
µ3 +O(µ4),

x4(µ) = 0 +O(µ4), y4(µ) =
√
3− 22/3

32/3
µ+

1

125/6
µ2 − 1

81
µ3 +O(µ4).

This family must be the family of kite central configurations given by Propo-
sition 6(b). This proves statement (h.1) of Theorem 2.

Since without loss of generality we can assume that y3 > y4, we can check
that the family of solutions of G1 = 0, G2 = 0, G4 = 0 and G5 = 0 with
(x30, y30,X40, Y40) = sc24 does not provide solutions of (5) with x3, y3 > 0
and y3 > y4.

Without loss of generality we also can assume that x3 > x4. Then we
can see that the family of solutions of G1 = 0, G2 = 0, G4 = 0 and G5 = 0
with (x30, y30,X40, Y40) = sc31 does not provide a family of solutions of (5)
with x3, x4 > 0 and x3 > x4.

The family of solutions of G1 = 0, G2 = 0, G4 = 0 and G5 = 0 with
(x30, y30,X40, Y40) = sc32 provides the family of solutions of (5) given by

x3(µ) = α+ x31 µ+ x32 µ
2 + x33 µ

3 +O(µ4), y3(µ) = O(µ4),

x4(µ) = α− x31 µ+ x32 µ
2 + x43 µ

3 +O(µ4), y4(µ) = O(µ4),

where x31 = X/2 = 0.622799 . . . , (see the definition of sc32) and

x32 =
24
(
α6 + 5α4 − 5α2 − 1

)

(α6 − 3α4 + 16α3 + 3α2 + 48α− 1)5/3
= 0.303818 . . . ,

x33 =
8

3

(
9α16 − 60α14 + 284α13 + 168α12 − 216α11 + 2132α10−

1708α9 + 13314α8 + 3312α7 + 13004α6 − 1788α5−
20896α4 − 152α3 − 7524α2 + 268α − 147

)
/
(
α6 − 3α4 + 16α3+

3α2 + 48α− 1
)3

= 1.60489 . . .

and

x43 = −x33 +
16
(
3α4 − 2α2 − 1

)

α6 − 3α4 + 16α3 + 3α2 + 48α− 1
= 1.52572 . . . .
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Figure 9: The graph of the points (x3(m), y3(m)) for m ∈ (0, 1] on the family of solutions
of (5) with x4 = −x3 and y4 = y3 6= 0.

We note that these solutions must provide the family of collinear central
configurations given by Proposition 9(b). This proves statement (i) of The-
orem 2.

7.1. Numerical study of the family of isosceles trapezoid central configura-
tions

We have followed numerically the family of isosceles trapezoid central
configurations from m = 0 to m = 1, the solutions that we have obtained
are plotted in Figure 9. We note that if m → 0, then (x3, y3) → (0,

√
3), and

if m = 1 then the configurations tends to the square with (x3, y3) → (1, 2).

8. Central configurations for m > 0 sufficiently small that do not
emanate from central configurations with m = 0

The families of solutions of system (5) for m > 0 small can come either
from the solutions for m = 0, from the singularities of the equations (5)
(which correspond to collision between the masses), or from infinity.

Up to here we have found all the families of non–equivalent central con-
figurations of the planar four–body problem emanating from central config-
urations with m = 0. In this section we prove that there are no families
of central configurations for m > 0 sufficiently small with one of the small
masses near collision with either m1 and m2, and that there are no families
of central configurations with one of the masses coming from infinity. This
proves statement (j) of Theorem 2.

8.1. Central configurations for m > 0 sufficiently small with one small mass
near collision with either m1 and m2

Without loss of generality we can assume that m3 tends to collision with
m2 when m → 0. Since each central configurations is a solution of system
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lim
(x, y) → (0, 0)
(x, y) ∈ γθ0

h1(x, y) lim
(x, y) → (0, 0)
(x, y) ∈ γθ0

h2(x, y)

θ0 6= k π/2, k = 0, 1, 2, 3 ∞ ∞
θ = 0 or θ = π ∞ 0

θ = π/2 or θ = −π/2 0 ∞
θ

r→0−→ θ0 with θ0 =
k π/2, k = 0, 1, 2, 3, and
θ 6= θ0

an arbitrary a ∈ R an arbitrary b ∈ R

Table 1: The values of lim(x,y)→(0,0) h1(x, y) and lim(x,y)→(0,0) h2(x, y) along the paths γθ0
depending on the values of θ0. In this work ∞ would mean the unsigned infinity, it could
refer to either +∞ or −∞ depending on the context.

(5), a necessary condition in order to have a family of central configurations
with m3 → m2 as m → 0 is that F1 → 0, F2 → 0, F3 → 0, F4 → 0 and
F5 → 0 when (x3, y3) → (1, 0) and m → 0. We will see that not all the
functions Fi tend to 0 as (x3, y3) → (1, 0) and m → 0, which implies that
there are no solutions of (5) with m3 → m2 as m → 0.

In order to analyze the limits of Fi when (x3, y3) → (1, 0) we need the
following lemma.

Lemma 10. Let

h1(x, y) =
x

(x2 + y2)3/2
, h2(x, y) =

y

(x2 + y2)3/2
.

We introduce polar coordinates x = r cos θ and y = r sin θ. If γθ0 denotes
an arbitrary path that approaches the origin along the direction of the ray
θ = θ0; i.e. θ → θ0 when r → 0 along the path, then the following statements
hold.

(a) The values of lim(x,y)→(0,0) h1(x, y) and lim(x,y)→(0,0) h2(x, y) along the
path γθ0 depend on the values of θ0 and they are summarized in Table 1.

(b) If θ0 6= ±π/2, then lim(x,y)→(0,0), (x,y)∈γθ0 h1(x, y) is infinity of order

1/r2 when r → 0; i.e. limr→0+ r2 h1(r cos θ0, r sin θ0) = ℓ with ℓ 6= 0
and ℓ 6= ∞.

(c) If θ0 6= 0, π, then lim(x,y)→(0,0), (x,y)∈γθ0 h2(x, y) is infinity of order

1/r2 when r → 0; i.e. limr→0+ r2 h2(r cos θ0, r sin θ0) = ℓ with ℓ 6= 0
and ℓ 6= ∞.
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Proof. The proof is an immediate consequence of the fact that the expres-
sions of h1 and h2 in polar coordinates are

h1(r cos θ, r sin θ) =
cos θ

r2
, h2(r cos θ, r sin θ) =

sin θ

r2
.

Indeed, if cos θ 6= 0, then limr→0+ h1(r cos θ, r sin θ) = ∞. If θ = ±π/2 is
constant along the path, then limr→0+ h1(r cos θ, r sin θ) = 0. And finally if
θ → ±π/2 as r → 0 but θ 6= ±π/2 along the path, then the limit will depend
on the path that we choose in order to approach the origin on the direction
of the rays θ = ±π/2. For instance, if we approach the origin along paths
of the form x = a y3 with a ∈ R arbitrary then

lim
y→0

h1(a y
3, y) = lim

y→0

a y3

(a2 y6 + y2)3/2
= a.

The limit lim(x,y)→(0,0) h2(x, y) along the paths γθ0 depending on the values
of θ0 can be analyzed in a similar way.

In what follows we use the notation lim
(x,y)

γθ0−→(0,0)
h(x, y) to denote the

limit lim(x,y)→(0,0) h(x, y) along the path γθ0 .
By applying the properties of limits and after some computations we get

lim
(x3,y3)→(1,0)

F1 = (1 +m) · lim
(x3,y3)→(1,0)

x3 − 1

r323
+m · lim

(x3,y3)→(1,0)

x3 − x4
r334

+

m · x4 − 1

r324
−m · x4 + 1

r314
· lim
x3→1

x3 − 1

2
. (23)

The limit lim(x3,y3)→(1,0)(x3 − 1)/r323 depends on the path that we choose
to approach the point (1, 0), see Lemma 10. We consider polar coordinates
x3 = 1+r cos θ and y3 = r sin θ and we denote by γθ0 an arbitrary path that
approaches the point (x3, y3) = (1, 0) along the direction of the ray θ = θ0,
then

L1 = lim
(x3,y3)

γθ0−→ (1,0)

x3 − 1

((x3 − 1)2 + y23)
3/2

=





∞ if θ0 6= ±π/2,
0 if θ = ±π/2,

a ∈ R if θ
r→0−→ ±π/2.

(24)

Since we only are interested in solutions with x3, y3 > 0, we assume that
θ ∈ [0, π/2].

We note that the second, the third and the fourth summands in (23)
could tend to infinity when m4 → m2 or m4 → m1 as m → 0. So the limit
of F1 when (x3, y3) → (1, 0) and m → 0 depends on wether m4 → m2 as
m → 0, m4 → m1 as m → 0, or m4 is far from collision with m1 and m2 as
m → 0.
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8.1.1. Case m4 far from collision with either m1 or m2 when m → 0.

From (23) and (24), if m4 is far from collision with either m1 or m2 when
m → 0 then

lim
(x3,y3)

γθ0−→ (1,0)

F1 = (1 +m)L1.

Since we need that F1 → 0 as (x3, y3) → (1, 0) and m → 0, θ0 = π/2. On
the other hand, if m4 is far from collision with m1 and m2 when m → 0,
then it is easy to check that

lim
(x3,y3)→(1,0)

F4 = (1 +m) lim
(x3,y3)→(1,0)

y3

((x3 − 1)2 + y23)
3/2

.

By Lemma 10 this limit becomes ∞ when we approach the point (x3, y3) =
(1, 0) along an arbitrary path γθ0 with θ0 = π/2. Therefore there are no
solutions of (5) in this case.

8.1.2. Case m4 tending to collision with m1 when m → 0.

We define L1 as in (24). We introduce polar coordinates x4 = −1 +
R cosϕ and y4 = R sinϕ and we denote by γϕ0 an arbitrary path that
approaches the point (x4, y4) = (−1, 0) along the direction of the ray ϕ = ϕ0.
Then we define

L2 = lim
(x4,y4)

γϕ0−→ (−1,0)

x4 + 1

((x4 + 1)2 + y24)
3/2

=





∞ if ϕ0 6= ±π/2,
0 if ϕ = ±π/2,

b ∈ R if ϕ
r→0−→ ±π/2,

(25)
see Lemma 10. From (23), (24), and (25) we get

lim
(x3, y3)

γθ0−→ (1, 0)

(x4, y4)
γϕ0−→ (−1, 0)

F1 = (1 +m) · L1 −m · L2 · lim
x3→1

x3 − 1

2
. (26)

Next we analyze the values of (26) and the possible solutions of (5)
depending on the values of L1 and L2.

Case L1 = ∞ and L2 = ∞. From Lemma 10, if θ0 6= π/2 and ϕ0 6=
±π/2, then L1 is infinity of order 1/r2 as r → 0 and L2 is infinity of order
1/R2 as R → 0. Moreover (x3 − 1) is an infinitesimal of order r as r → 0.
Therefore if F1 → 0, then the mass m has order R2/r3 as r,R → 0 (see
(26)).
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On the other hand, it is easy to see that

lim
(x3, y3)

γθ0−→ (1, 0)

(x4, y4)
γϕ0−→ (−1, 0)

F2 = (1 +m) · L2 −m · L1 · lim
x4→−1

x4 + 1

2
. (27)

In order that F2 → 0 the mass m must have order r2/R3 as r,R → 0.
Therefore R2/r3 and r2/R3 must have the same order as r,R → 0. This
implies that R and r have the same order which is not possible because
m → 0 as r,R → 0. So there are no solutions of (5) in this case.

If either θ0 = π/2 or ϕ0 = ±π/2, then L1 is infinity of order 1/rα as
r → 0 and L2 is infinity of order 1/rβ as r → 0 for some α, β > 0. Moreover
(x4 + 1) is an infinitesimal of order rγ as r → 0 for some γ > 0. Therefore
if F1 → 0, then the mass m has order rβ−α−1 as r → 0 (see (26)). On the
other hand, in order that F2 → 0 the mass m must have order rα−β−γ as
r → 0 (see (27)). Therefore β −α− 1 = α− β − γ. This implies that m has
order r−(γ+1)/2 as r → 0 which is impossible because γ > 0 and m → 0 as
r → 0. There are no solutions of (5) in this case.

Case L1 = a 6= ∞ and L2 = ∞. There are no solutions of (5) when
L1 = a 6= ∞ and L2 = ∞ because F2 tends to ∞ (see (27)).

Case L1 = ∞ and L2 = b 6= ∞. In this case F1 tends to ∞, so system
(5) is not satisfied.

Case L1 = a 6= ±∞ and L2 = b 6= ±∞. Under these assumptions F1

tends to a, so a must be zero (see (26)). This means that θ0 = π/2. It is
easy to check that

lim
(x3, y3)

γθ0−→ (1, 0)

(x4, y4)
γϕ0−→ (−1, 0)

F4 = (1 +m) · L3 −m · L2 · lim
y3→0

y3
2
,

where

L3 = lim
(x3,y3)

γθ0−→ (1,0)

y3

((x3 − 1)2 + y23)
3/2

=





∞ if θ0 6= 0, π,
0 if θ = 0, π,

c ∈ R if θ
r→0−→ 0, π,

(28)

see Lemma 10. Since θ0 = π/2 and L2 = b 6= ±∞, F4 tends to ∞. Therefore
there are no solutions of (5) in this case.
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8.1.3. Case m4 tends to collision with m2 when m → 0.

We define L1 and L3 as in (24) and (28) respectively. We introduce polar
coordinates x4 = 1 + R cosϕ and y4 = R sinϕ and we denote by γϕ0 an
arbitrary path that approaches the point (x4, y4) = (1, 0) along the direction
of the ray ϕ = ϕ0. Then we define

L2 = lim
(x4,y4)

γθ0−→ (1,0)

x4 − 1

((x4 − 1)2 + y24)
3/2

=





∞ if ϕ0 6= ±π/2,
0 if ϕ = ±π/2,

b ∈ R if ϕ
r→0−→ ±π/2,

L4 = lim
(x4,y4)

γϕ0−→ (1,0)

y4

((x4 − 1)2 + y24)
3/2

=





∞ if ϕ0 6= 0, π,
0 if ϕ = 0, π,

d ∈ R if ϕ
r→0−→ 0, π,

see Lemma 10. And we define

H1 = lim
(x3, y3)

γθ0−→ (1, 0)

(x4, y4)
γϕ0−→ (1, 0)

H1, H2 = lim
(x3, y3)

γθ0−→ (1, 0)

(x4, y4)
γϕ0−→ (1, 0)

H2,

where

H1 =
x3 − x4

((x3 − x4)2 + (y3 − y4)2)3/2
=

r cos θ −R cosϕ

(r2 +R2 − 2 r R cos(θ − ϕ))3/2
,

H2 =
y3 − y4

((x3 − x4)2 + (y3 − y4)2)3/2
=

r sin θ −R sinϕ

(r2 +R2 − 2 r R cos(θ − ϕ))3/2
.

By applying the properties of limits and after some computations we get

lim
(x3, y3)

γθ0−→ (1, 0)

(x4, y4)
γϕ0−→ (1, 0)

F1 = (1 +m) · L1 +m · L2 +m ·H1,

lim
(x3, y3)

γθ0−→ (1, 0)

(x4, y4)
γϕ0−→ (1, 0)

F2 = (1 +m) · L2 +m · L1 −m ·H1,

lim
(x3, y3)

γθ0−→ (1, 0)

(x4, y4)
γϕ0−→ (1, 0)

F4 = (1 +m) · L3 +m · L2 · lim
y3→0

y3
2

+m · L4 +m ·H2,

lim
(x3, y3)

γθ0−→ (1, 0)

(x4, y4)
γϕ0−→ (1, 0)

F5 = (1 +m) · L4 +m · L1 · lim
y4→0

y4
2

+m · L3 −m ·H2.
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We consider also the limits

lim
(x3, y3)

γθ0−→ (1, 0)

(x4, y4)
γϕ0−→ (1, 0)

(F1 + F2) = (1 + 2m) · (L1 + L2),

(29)
lim

(x3, y3)
γθ0−→ (1, 0)

(x4, y4)
γϕ0−→ (1, 0)

(F4 + F5) = (1 + 2m) · (L3 + L4) +

m · L1 · lim
y4→0

y4
2

+m · L2 · lim
y3→0

y3
2
.

Clearly the solutions of (5) are also solutions of F1+F2 = 0 and F4+F5 = 0.
Next we analyze the possible solutions of (5) depending on the values of L1

and L2.

Case L1 = ∞, L2 = ∞. If L1 and L2 are infinity of different order,
then F1 + F2 tends to infinity (see (29)). Assume now that L1 and L2 are
infinity of the same order. It is easy to see that if equation F1 + F2 = 0 is
satisfied then cos θ0 = − cosϕ0; that is, ϕ0 = π ± θ0. If θ0 6= π/2, then L1

and L2 are infinity of order 1/r2 as r → 0, see Lemma 10. Moreover

H1 =
cos θ0 − cosϕ0

r2(2− 2 cos(θ0 − ϕ0)3/2
=





cos θ0

4r2(cos2 θ0)3/2
if ϕ0 = π − θ0,

cos θ0
4r2

if ϕ0 = π + θ0.

Thus H1 is infinity of order 1/r2 as r → 0. In short, if θ0 6= π/2, then F1

tends to infinity and system (5) cannot be satisfied.
If θ0 = π/2 and consequently ϕ0 = ±π/2, then that L3 is infinity of order

1/r2 as r → 0 and L4 is infinity of order 1/R2 as R → 0, see Lemma 10.
Thus, if r and R have different orders then F4 + F5 tends to infinity and
there are no solutions of (5). If r and R have the same order, then it is easy
to see that if equation F4 + F5 = 0 is satisfied, then sin θ0 = − sinϕ0. Thus
θ0 = π/2 and ϕ0 = −π/2 and

H2 =
r sin(π/2) − r sin(−π/2)

(r2 + r2 − 2 r2 cos(π))3/2
=

1

4 r2
.

So H2 is infinity of order 1/r2 as r → 0. Therefore F4 is infinity of order
1/r2 as r → 0 which implies that there are no solutions of (5) in this case.

Cases L1 = ∞, L2 = b 6= ∞ and L1 = a 6= ∞, L2 = ∞. These cases
cannot provide solutions of (5) because F1 + F2 becomes infinity.
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Case L1 = a 6= ∞, L2 = b 6= ∞. From (29), in order to have a solution
of F1 + F2 = 0, we need that a = −b. Since L1 = a 6= ∞, L2 = b 6= ∞,
from Lemma 10, we have that θ0 = π/2 and ϕ0 = ±π/2. Proceeding as
in the case L1 = ∞ and L2 = ∞ with θ0 = π/2 we prove that the case
L1 = a 6= ∞, L2 = b 6= ∞ cannot provide solutions of system (5).

8.2. Central configurations for m > 0 sufficiently small with one small mass
coming from infinity

Without loss of generality we can assume that the small mass coming
from infinity ism3. We introduce polar coordinates (x3, y3) = (r cos θ, r sin θ).
So the mass m3 comes from infinity when r → +∞ by following the direc-
tion of the ray θ = θ0 with θ0 ∈ [0, π/2] (remember that we have assumed
that x3, y3 > 0. Next we will prove that there are no solutions of (5) such
that r → +∞ as m → 0.

8.2.1. Case m4 comes from infinity when m → 0

After some computations we can see easily that

lim
r→+∞

x3 + 1

r313
= 0, lim

r→+∞
x3 − 1

r323
= 0, lim

r→+∞
x23 − 1

r313
= 0,

lim
r→+∞

x23 − 1

r323
= 0, lim

r→+∞
y3
r313

= 0, lim
r→+∞

y3
r323

= 0,

lim
r→+∞

(x3 + 1) y3
r313

= 0, lim
r→+∞

(x3 + 1) y3
r323

= 0.

(30)
We introduce polar coordinates (x4, y4) = (R cosϕ,R sinϕ). So the mass
m4 comes from infinity when R → +∞ by following the direction of the ray
ϕ = ϕ0. In a similar way than in (30) we get

lim
R→+∞

x4 + 1

r314
= 0, lim

R→+∞
x4 − 1

r324
= 0, lim

R→+∞
x24 − 1

r314
= 0,

lim
R→+∞

x24 − 1

r324
= 0, lim

R→+∞
y4
r314

= 0, lim
R→+∞

y4
r324

= 0,

lim
R→+∞

(x4 + 1) y4
r314

= 0, lim
R→+∞

(x4 + 1) y4
r324

= 0.

(31)
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Moreover

ℓ1 =
x3 − x4
r334

=
r cos θ −R cosϕ

(r2 +R2 − 2rR cos(θ − ϕ))3/2
,

ℓ2 =
(x3 + 1)(x4 − 1)

r324
=

−1− r cos θ +R cosϕ+ rR cos θ cosϕ

(R2 − 2R cosϕ+ 1)3/2
,

ℓ3 =
(x3 − 1)(x4 + 1)

r314
=

−1 + r cos θ −R cosϕ+ rR cos θ cosϕ

(R2 + 2R cosϕ+ 1)3/2
, (32)

ℓ4 =
(x3 + 1)(x4 − 1)

r313
=

−1− r cos θ +R cosϕ+ rR cos θ cosϕ

(r2 + 2r cosϕ+ 1)3/2
,

ℓ5 =
(x3 − 1)(x4 + 1)

r323
=

−1 + r cos θ −R cosϕ+ rR cos θ cosϕ

(r2 − 2r cosϕ+ 1)3/2
,

and

ℓ6 =
y3 − y4
r334

=
r sin θ −R sinϕ

(r2 +R2 − 2rR cos(θ − ϕ))3/2
,

ℓ7 =
y3(x4 − 1)

r324
=

−r sin θ + rR sin θ cosϕ

(R2 − 2R cosϕ+ 1)3/2
,

ℓ8 =
y3(x4 + 1)

r314
=

r sin θ + rR sin θ cosϕ

(R2 + 2R cosϕ+ 1)3/2
, (33)

ℓ9 =
(x3 + 1)y4

r313
=

R sinϕ+ rR cos θ sinϕ

(r2 + 2r cosϕ+ 1)3/2
,

ℓ10 =
(x3 − 1)y4

r323
=

−R sinϕ+ rR cos θ sinϕ

(r2 − 2r cosϕ+ 1)3/2
.

From (30), (31), (32) and (33) the limit of F1 as r,R → +∞ can be reduced
to the limit of

m(ℓ1 + ℓ2 − ℓ3)−
x3
4
. (34)

Next we analyze this limit depending on the orders of r and R.

Case R and r are infinities of different orders. We assume that
R = rβ with β > 0 and β 6= 1 and that ℓ2 − ℓ3 has order rγ for some γ ∈ R
as r → +∞. It is easy to see that ℓ1 → 0 as r,R → +∞. Moreover it is
easy to see that the order of ℓ2 − ℓ3 is smaller than the order of r1−2β; that
is, γ < 1− 2β. In order to have solutions of equation F1 = 0 the order of m
must be equal to the order of r/rγ = r1−γ . Since γ < 1 − 2β, 1 − γ > 2β.
Thus the order of m is bigger than the order of r2β which is impossible
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because β > 0 and m → 0 as r,R → +∞. Therefore there are no solutions
of (5) in this case.

Case R and r are infinities of the same orders. It is easy to see
that if R and r have the same order, then ℓ2, ℓ3, ℓ4 and ℓ5 tend to 0 as
r → +∞. Moreover the limit of F1 + F2 when r → +∞ is equivalent to
the limit of −x3/4 − x4/4 when r → +∞. In order to have a solution of
F1 + F2 = 0 we need that cos θ = − cosϕ. On the other hand, ℓ7, ℓ8, ℓ9
and ℓ10 tend to 0 as r → +∞ and the limit of F4 + F5 when r → +∞
is equivalent to −y3/4 − y4/4 when r → +∞. In order to have a solution
of F4 + F5 = 0 we need that sin θ = − sinϕ. Therefore we only can have
solutions of F1 + F2 = 0 and F4 + F5 = 0 when either θ = 0 and ϕ = π or
θ = π/2 and ϕ = 3π/2. If θ = 0 and ϕ = π, then ℓ1 → 0 as r → +∞, so F1

tends to ∞ as r → +∞, see (34). If θ = π/2 and ϕ = 3π/2, then ℓ6 → 0 as
r → +∞, so by proceeding in a similar way wee see F4 tends ∞ as r → +∞.
In short there are no solutions of (5) in this case.

8.2.2. Case m4 tends to m1 when m → 0

We introduce polar coordinates (x4, y4) = (−1 +R cosϕ,R sinϕ). This
means that if R → 0, then the mass m4 tends to m1 following the direction
of the ray ϕ = ϕ0. We can see easily that

x3 − x4
r334

→ 0 as r → +∞ and R → 0.

We define L2 as in (25). If L2 = b 6= ±∞, then it is easy to see from (30)
that F1 tends to ∞ as r → +∞ and R → 0. Otherwise L2 is infinity of
order 1/Rα as R → 0 for some α > 0 and consequently F2 is an infinity of
order 1/Rα as R → 0. Therefore there are no solutions of (5) in this case.

8.2.3. Case m4 tends to m2 when m → 0

By proceeding as in the previous case we can prove that there are no
solutions of (5) with m3 coming from infinity and m4 tending to m2 as
m → 0.

8.2.4. None of the above cases

If m4 is far from either infinity, or m1 and m2 when m → 0, then F1 is
infinity of order r as r → +∞. Therefore there are no solutions of (5) in
this case.
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