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ABSTRACT

Matculevich, Svetlana
Fully reliable a posteriori error control for evolutionary problems
Jyväskylä: University of Jyväskylä, 2015, 75 p. (+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 219)
ISBN 978-951-39-6290-6 (nid.)
ISBN 978-951-39-6291-3 (PDF)
Finnish summary

This work is devoted to fully reliable a posteriori error analysis for a class of
evolutionary problems and some questions emerging in relation to it. The first
articles in this collection are concerned with theoretical and numerical analysis,
efficient and robust implementation of the functional type a posteriori error es-
timates and indicators for the nonlinear Cauchy problem, and time-dependent
reaction-diffusion initial-boundary value problems of parabolic type. The last
part of the study is dedicated to computable and sharp upper bounds of con-
stants in Poincaré-type inequalities for functions with zero mean on the bound-
ary (or a measurable part of it) on non-degenerate triangles and tetrahedrons.
These sharp upper bounds are crucial for quantitative analysis of problems gen-
erated by differential equations, where numerical approximations are typically
constructed with the help of simplicial meshes and become particularly useful in
implementation of the functional error majorants applied for the problems with
a decomposed domain.

The error estimates presented in this thesis are explicitly computable and
guaranteed. The two-sided functional type error bounds hold for all conforming
approximations, do not depend on any mesh discretization parameters, and only
contain global and local constants in Poincaré inequalities. Extensive numeri-
cal experiments, performed alongside with theoretical findings, provide results,
which confirm the efficiency and reliability of the error estimates and robustness
of the indicators they comprise. For numerical implementation we use MATLAB
and The FEniCS Project (with Python).

Keywords: Cauchy problem, Picard–Lindelöf method, Ostrowski estimates, evo-
lutionary problem of parabolic type, reaction-diffusion equation, func-
tional type a posteriori error estimates, error indicators,
Poincaré-type estimates
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NOTATION

:= equals by definition
↪→ compact embedding
≡ logical equivalence
∀ for all
a · b scalar product of vectors
N space of natural numbers
R space of real numbers
R

d space of real d-vectors
Ω open bounded connected domain in R

d with Lipschitz
continuous boundary

Ω closure of Ω

∂Ω Lipschitz continuous boundary of Ω

Γ part of ∂Ω such that measd−1Γ > 0
QT space-time cylinder QT := Ω × (0, T), where T is given time
ST lateral surface of QT, i.e., ST := ∂Ω × [0, T]
diamΩ diameter of the set Ω

measΩ Lebesgue measure of the set Ω

Dαv derivative of order |α|
Ck(Ω) space of k-times differentiable scalar-valued functions
Ck

0(Ω) subspace of Ck(Ω) that contains functions with compact
support in Ω

C∞
0 (Ω) space of smooth functions with compact support in Ω

Lp(Ω) space of scalar-valued functions in Ω summable with power p
Lp(Ω,Rd) space of vector-valued functions with components summable

with power p in Ω

X Banach space
V Hilbert space
V∗ space dual to V
Wl,p(Ω) Sobolev space of functions w summable with power p and

possessing derivatives Dαw ∈ Lp(Ω), |α| ≤ l
Hl(Ω) Sobolev space Wl,p with p = 2
Hl

0(Ω) subspace of Hl(Ω) formed by functions vanishing on Γ

H−1(Ω) space dual to H1
0(Ω)

H(Ω, div) subspace of L2(Ω,Rd) that contains vector-valued functions
with square-summable divergence

‖ · ‖X norm in space X
‖ · ‖ norm in L2(Ω)

||| · ||| energy norm

‖w‖A a weighed norm in L2(Ω), i.e.,
( ∫

Ω

Aw · w dx
)1/2



‖w‖A−1
( ∫

Ω

A−1w · w dx
)1/2

wt partial derivative with respect to time coordinate
w,i partial derivative with respect to space ith coordinate
∇ gradient of a scalar-valued function ∇w = (w,1, . . . , w,d)

Δ Laplace operator Δw := div∇w

div divergence of a vector-valued function div w =
d
∑

i=1
wi,i

{w}Ω mean value of w on Ω, i.e., {u}Ω := 1
|Ω|
∫
Ω

w dx

π projection operator
e error
M majorant functional
M minorant functional

Ieff efficiency index Ieff := M
|||e|||

M marker
MAVR marker defined by the level of the average error
Mθ marker with bulk parameter θ

Pk Lagrangian finite element space of order k
RTk Raviart-Tomas finite element space of order k

ACRONYMS

APL adaptive Picard–Lindelöf
BVP boundary value problem
BC boundary condition
DD domain decomposition
DOF degrees of freedom
EL elements
ND nodes
FDM finite difference method
FE finite element
FEM finite element method
I-BVP initial-boundary value problem
LHS left-hand side
PDE partial differential equation
RHS right-hand side
REF refinement iteration
SLE system of linear equations
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1 INTRODUCTION

Nowadays, mathematical models are widely used to describe processes in different
branches of natural sciences, medicine, engineering, and economics. Evolution-
ary problems, in particular, are fundamental components in simulations of real-
life processes such as heat conduction and thermal radiation models in thermo-
dynamics, global climate prediction, forecasting and understanding the weather,
and estimation of forest growth, among others. Later examples basically testify
the fact that questions arising in mathematical modeling originate from and are
highly motivated by the phenomena surrounding us.

Most of the models mentioned above are governed by time-dependent par-
tial differential equations (PDEs) or systems of PDEs, which in combination with
initial (IC) and boundary conditions (BCs) produce so-called initial-boundary value
problems (I-BVPs). The current study is focused on evolutionary problems of
parabolic type, the systematic mathematical analysis of which is presented in mono-
graphs [79, 80, 148, 151, 152]. The numerical analysis and study of the practical
application are exposed in works [138, 81] and partially in classical books on fi-
nite element method (FEM) on PDEs and saddle problems (see, e.g., [21, 58, 69, 56,
57]). The multiharmonic analysis of a distributed parabolic and optimal control
problem in a time-periodic BVPs setting has been studied in [73, 84].

Let QT := Ω×]0, T[ denote the space-time cylinder, where Ω ⊂ R
d,

d ∈ {1, 2, 3}, is an bounded domain with Lipschitz boundary ∂Ω, and ]0, T[ is
a given time interval, 0 < T < +∞. The cylindrical surface is denoted by ST,
i.e., ST := ∂Ω × [0, T]. A general form of a linear parabolic I-BVP problem reads as
follows:

∂tu + Lu = f in QT, (1.1)
u = uD on ST, (1.2)

u(x, 0) = u0 on Ω. (1.3)

Here, depending on the application, u might describe the temperature alteration
in heat conduction or the concentration of certain substance in chemical diffusion.
The given data includes the source term f , Dirichlet BC uD (Neumann or Robin
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can be considered instead), and IC u0. The elliptic operator L has the general
form

Lu := −div(A(x, t)∇u(x, t)) + b(x) · ∇u(x, t) + c(x) u(x, t), (x, t) ∈ QT,

where A is the material characteristics matrix, and b and c stand for convection
and reaction, respectively. If any of the latter forms depend on u (or ∇u), we
arrive at a nonlinear problem.

For b ≡ 0, c ≡ 0, and A = νI, we obtain a heat equation which governs
diffusion processes. For instance, in heat conduction applications the parame-
ter ν = k

cp� stands for thermal diffusivity [50, 24, 147, 23], in electromagnetics

it illustrates resistivity ν = 1
σ . Moreover, the heat equation is used in propa-

gation of action potential in nerve cells, phenomena arising in finance, e.g., the
Black–Scholes [20] or Ornstein-Uhlenbeck processes, probability, and description
of random walks [109]. The nonlinear analogs of the heat equation have also been
used in image processing and modeling of porous media [141].

The subject of our interest, i.e., evolutionary systems of PDEs, in majority
of cases can only be solved in the generalized sense by one of two discretization
techniques described below. In the first, the so-called incremental time-stepping
method, the time is discretized by ordinary differentiation (OD) and the obtained
reduced problem (in space coordinates) is approximated by FEM ([35, 66, 157,
32, 69]) or the finite difference method (FDM [87, 127, 98, 58, 37]) on successive
time sub-intervals (the detailed study of such an approach can be found in the
monographs [138, 21, 69]). In the second method the time is considered as an ad-
ditional spatial variable [60, 149, 140, 63]. It is usually referred to as the space-time
discretization technique. Regardless of the method used, the obtained approxi-
mation contains an error. Therefore, it is of high importance to construct a proper
numerical tool to analyze the obtained results and to provide reliable information
on the approximation error encompassed in it in order to avoid the risk of drawing
the wrong conclusion form obtained numerical information.

There exist two approaches for evaluating the approximation error. The a
priori approach is used for the qualitative verification of theoretical properties of
the numerical method, e.g., rate of convergence and asymptotic behavior of the
approximation with respect to mesh size parameters (see, e.g., [22, 32, 133] and
references cited therein). However, the high regularity requirements, which must
be satisfied in order to apply estimates from the latter group, are quite unrealistic.

In the second, the so-called a posteriori approach, the error is measured
after computation of the approximation. Unlike in a priori error analysis, the
alternative estimates exploit only the given data, e.g., domain characteristics,
source function together with IC and BC, and the approximation itself. The up-
per bound of the gap between the approximate and exact solution measured
in terms of relevant energy norm is called an error estimate or majorant. The
quantity replicating the distribution of the true error over the domain is called
an error indicator. There are three principal ways classifying existing error in-
dicators. The first, the so-called residual method, is based on the estimation of
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the residual functional introduced in [11, 8] and various modifications of them
covered in a wealth of publications [47, 70, 3, 4, 142, 44, 25, 30, 5, 26, 10, 12]).
The second approach is based on the approximation of latter functional or so-
called post-processing, e.g., gradient averaging [155, 156] and expanded in vari-
ous works [3, 9, 142, 154, 145, 10, 15, 146, 62, 153]). Its mathematical justifica-
tion relies on the superconvergence phenomenon [104, 158] and actively studied in
[75, 76, 77, 77, 144]. Other techniques from the second group are based on par-
tial equilibration [78, 5, 21], global averaging [26, 15, 62], and solution of local
sub-problems [2, 5, 6]. Finally, the third method is dependent on the solution of
the auxiliary problem, e.g., hierarchically based error indicators [38, 1, 45, 43] and
goal-oriented error [16, 131, 110, 65, 116, 103, 132, 96, 117, 19]. The concept of a pos-
teriori error estimation jointly with mesh-adaptive methods, which are focused
on the optimization of computing resources, have become a well-established ap-
proach in the numerical analysis of PDEs.

The guaranteed error bounds for evolutionary models considered in this
thesis are based on two different mathematical approaches. One of these follows
from the theory of contraction mappings and the Banach fixed point theorem.
The other approach pursues the theory of functional a posteriori estimates.

The first part of the study, in particular, is dedicated to the investigation
of numerical treatment of the Cauchy problem with non-linearity (see, e.g., [33,
61, 136]), which can be obtained from (1.1)–(1.3) by assuming that Ω coincides
with R

d. The so-called Picard–Lindelöf method suggests one possible way to
treat nonlinear ordinary differentiation equations (ODEs). It belongs to a class
of iteration method and can be found in [89, 108, 17, 88, 111]. A similar idea is
used for PDEs in [111] and analyzed thoroughly in [112, Vol.II]. The combination
of the Picard–Lindelöf method with Ostrowski a posteriori estimates provides a
fully guaranteed Adaptive Picard–Lindelöf (APL) algorithm for solving ODEs.
Moreover, the algorithm takes into account information about discretization er-
rors related to the numerical integration and interpolation. The results obtained
during the investigation of the APL method confirmed that it can be applied for
the treatment of nonlinear evolutionary models, which belong to my main re-
search topics for the future. Nonlinear PDEs exhibit multiple properties which
do not appear in linear theory but are often related to important features of the
real world phenomena. In this work, we concentrate only on the linear mod-
els. The application of Ostrowski estimates is also extended to classical iteration
schemes, the obtained results are exposed in [93, Section 6.7].

Generally, the Picard–Lindelöf method can be used not only for ODEs but
also for time-dependent algebraic and functional equations (see, e.g., [101, 102],
where it is shown that the speed of convergence is independent of the step sizes).
Numerical methods based on Picard–Lindelöf iterations for dynamical processes
(the so-called waveform relaxation in the context of electrical networks) are dis-
cussed in [46]. A posteriori estimates and nodal superconvergence for time step-
ping methods are studied in [7, 92] for linear and nonlinear problems.

The second and main part of this work is devoted to the functional type a pos-
teriori error estimates and indicators initially introduced by Repin in [119, 118,
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123, 120] and thoroughly studied for various classes of problems (see, e.g., [100,
121, 93] and references therein). Unlike the above-listed error indicators, func-
tional type error estimates are guaranteed, they do not contain mesh-dependent
local interpolation constants (contrary to residual estimates), and they are valid
for any function from the class of conforming approximations (not restricted by
the Galerkin orthogonality assumption). The detailed comparison of the above-
described approaches can be found in monograph by Mali, Neittaanmäki, and
Repin [93].

Our main goal is to develop a fully reliable tool to quantitatively control the
error in approximate solutions of evolutionary problems. The numerical treat-
ment of this class of I-BVPs produces approximations, which alongside with the
progress of simulations accumulate the error. This error may eventually ‘blow
up’ if it is not controlled. Therefore, the appropriate error estimates are crucial
for monitoring its possible dramatic growth. Once the error in the approximation
has been controlled reliably, it is possible to detect areas with excessively high
local errors and calculate an essentially more accurate approximation.

In the framework of the a posteriori error estimates studied in this work,
we highlight the paper [124], where a method of deriving functional error es-
timates for parabolic I-BVPs is suggested. The first attempt on their numerical
analysis is presented in [54]. In [125], the authors study the extension of error
estimates for evolutionary convection-diffusion problems with possible discon-
tinuity of approximations in time. A posteriori error analysis of parabolic time-
periodic BVPs in connection with their multiharmonic FE discretization is pre-
sented in [83]. The residual estimates are also extended to evolutionary PDEs
in [143, 14, 128, 95, 19, 126] and the reference cited therein. Lastly, hp-Galerkin
time-stepping for the same class of problems is addressed in [68, 129, 130] and
references cited therein.

In order to make functional estimates applicable to a wider class of problems
with Ω of complicated geometry, the domain decomposition (DD) technique in
combination with local Poincaré inequalities is discussed in [121, Section 3.5.3] for
elliptic PDEs. The current work extends the latter estimates to time-dependent
PDEs and suggests a method to omit both Friedrichs’ and trace global constants,
which are included into the basic form of the majorant.

Suggested in [PIII] and [PIV] method applies Poincaré-type inequalities that
in addition to quantitative analysis of PDEs is also used in various problems of
numerical analysis, e.g., discontinuous Galerkin, mortar and DD methods. The
exact values of respective constants (or sharp and guaranteed bounds of them)
are interesting from both analytical and computational points of view. Results
related to constants in extension and projection type estimates related to FE ap-
proximations can be found in, e.g., [97, 32]. Constants in the trace inequalities
associated with polygonal domains are discussed in [29]; in FETI, FETI-DP DD
methods the application of constants is highlighted in [72, 39] and [139]. Func-
tional inequalities and respective constants play an important role in analysis of
problems described in terms of vector-valued functions (see, e.g., [53, 105]). In
[71, 90], the analysis of error constants for piecewise constant and linear interpo-
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lations over triangular finite elements can be found. And finally, [27] introduces
fully computable two-sided bounds on the eigenvalues of the Laplace operator
based on the approximation of the corresponding eigenfunction in the noncon-
forming Crouzeix-Raviart FE space.

The last part of this study is dedicated to sharp bounds of the constants in
classical Poincaré and Poincaré-type inequalities for arbitrary non-degenerate tri-
angles and tetrahedrons, which are typical objects in various discretization meth-
ods. These computable estimates are based on the mapping of the reference sim-
plices to arbitrary one using the exact values of the respective constants derived in
[113, 64, 71] for some triangles and [99] for parallelepipeds, rectangles, and right
triangles. Knowledge about the sharp upper bounds for the above-mentioned
constants is particularly useful for quantitative analysis of problems generated
by differential equations and implementation of the functional error majorants
applied for the problems with decomposed domain.

Below, we sketch the structure of the thesis. Chapter 2 is dedicated to the
overview of the mathematical framework, including definitions and theorems in
the field of functional analysis as well as results on solvability parabolic I-BVPs,
which provide fundamental results required in the subsequent chapters. Chapter
3 is focused on the main results achieved in this study, i.e., a fully guaranteed
APL method for ODEs, functional a posteriori error estimates for the distance
to the exact solution of parabolic I-BVPs, and sharp bounds of the constants in
classical Poincaré and Poincaré-type inequalities for functions with zero mean
traces on the faces of arbitrary simplexes in R

2 and R
3. In Chapter 4, we draw

some conclusions and give an outlook on future work in connection to efficient
and fully guaranteed solvers for nonlinear evolutionary problems. The results
presented in the included papers, or in other publications, will be highlighted
accordingly. The connections between the topics are presented in Figure 1.

Author’s contribution to the included articles

[PI]: The estimates studied in this paper were discussed originally in monograph
of Neittaanmäki and Repin [100, Section 3.1]. The goal of this work is to im-
plement the adaptive iterative Picard–Lindelöf method and combine it with Os-
trowski estimates. The computations of the numerical part are carried out in
MATLAB [94] by the author. Application of Ostrowski estimates to classical iter-
ation schemes is also presented in [93, Section 6.7.6] together with a guaranteed
APL method.

[PII]: This article studies functional type a posteriori error estimates for evolu-
tionary reaction-diffusion I-BVP with a reaction function, which drastically
changes its values on different parts of the domain. The method suggested for
derivation of the majorant combines ideas presented in original work of Repin
[124] on bounds of the distance to the exact solution of heat equation and join
paper of Repin and Sauter [122], which is concerned with state reaction-diffusion
BVP. The minorant of the error in the approximate solution for the evolution-
ary class of problems derived in the paper is the original result. Its efficiency is
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confirmed by numerical tests. All experiments presented in the paper are imple-
mented by the author in MATLAB.

[PIII]: The focus of this paper is on error estimates for an approximate solution
of the evolutionary reaction-diffusion problem in case of decomposed domains.
The method suggested in the paper is based on the idea originally introduced for
the elliptic problems in [121] and [122]. The main goal of the work is to overcome
the complications arising with the calculation of Friedrichs’ constant included in
the majorant presented in [PII] once it is applied to problems with a domain of a
complicated shape. By exploiting the idea of DD and classical Poincaré inequal-
ities [114, 115], we exclude global constants from the majorant. The proofs and
technicalities in the paper are the work of the author.

[PIV]: This work is another generalization of the error estimates presented in
[PII] to the problems formulated on complicated domains with nontrivial mixed
Dirichlet–Robin BC. Again, by using the method of domain decomposition and
application of local Poincaré-type inequalities for functions with zero mean trace,
we omit global trace and Friedrichs’ constants included into the basic majorant.
Besides that, we demonstrate the equivalence of errors measured in primal and
combined norms to advanced and basic forms of majorants, respectively.

[PV]: The technique suggested in [PIV] and [PIII] is based on local Poincaré
and Poincaré-type inequalities for functions with zero mean trace on the whole
boundary or measurable part of it. We suggest explicit relations (based on exact
constants from [113, 64, 71, 99]) that serve as sharp and easily computable (in-
dependent of any discretization parameters) bounds of the respective constants.
Moreover, we compare obtained bounds of the constants in the classical Poincaré
inequalities with known analytical estimates and investigate, numerically, the be-
havior of minimizers of Rayleigh quotients, corresponding the constants. The
numerical experiments in the paper are carried out by the author, using both
MATLAB and The FEniCS Project [137, 91].
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2 MATHEMATICAL BACKGROUND

In this chapter, we concisely introduce the notation, mathematical framework,
and fundamental results that form the basis for the further investigations and
findings presented in this thesis. For detailed expositions, we refer the reader to
monographs [100, 121, 93].

2.1 Function spaces and inequalities

The sections below present the definitions and main results for Sobolev spaces,
which are used for the treatment of elliptic BVPs and parabolic I-BVPs. Although,
some results are quite well-known, we discuss them to keep the work as self-
content as possible. In addition, for more detailed and fundamental presentations
of the results highlighted below, we refer the reader to [48, 151, 152, 148].

2.1.1 Spaces of integrable functions

Let Ω ⊂ R
d , d = {1, 2, 3}, be a bounded domain with Lipschitz boundary ∂Ω,

where Ω is the closure of Ω, and Γ be a part of ∂Ω such that measd−1Γ > 0
(or in particular case may coincide with it). We note that throughout the the-
sis discussions will be restricted to real spaces. Let {X, ‖ · ‖X} denote a Banach
space, i.e., a vector space X equipped with a norm ‖ · ‖X, such that X is com-
plete with respect to it. Let {V, ‖ · ‖V} denote a Hilbert space, where the norm is

induced by the inner product (·, ·)V : V × V → R, i.e., ‖ · ‖V := (·, ·)1/2
V . The

space V∗ denotes the dual to V, consists of linear continuous functionals on V,
and is equipped with norm ‖ f ‖V∗ := sup

v∈V, v �=0

f (v)
‖v‖V

. The so-called duality product

〈·, ·〉V∗×V : V∗ × V → R is defined as

〈 f , v〉V∗×V := f (v), ∀v ∈ V. (2.1)
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The totality of all measurable in the Lebesgue sense functions u with finite norm

‖u‖Lp :=
( ∫

Ω

|u(x)|p dx
)1/p

.

forms a separable Banach space and is denoted by Lp(Ω), p ∈ [1,+∞[. For
spaces of essentially bounded functions with p = ∞, the norm is defined as

‖u‖L∞ := ess sup
x∈Ω

|u(x)|.

Further, we are mainly interested in the Hilbert space of square-integrable func-

tions L2(Ω) eqquiped with the norm ‖ · ‖L2(Ω) := (·, ·)1/2
L2(Ω)

induced by

(u, v)L2(Ω) = (u, v) :=
∫
Ω

u v dx, ∀u, v ∈ L2(Ω).

For the purpose of shortening the notation, in the cases of discussing L2-measures
on Ω, the L2-norm is denoted ‖ · ‖Ω.

2.1.2 Differentiability classes

Let α = (α1, . . . , αd), αi ∈ N ∪ 0, i = 1, . . . , d, be a multi-index; then
Dαu := ∂|α|

∂xα u = ∂α1
∂xα1 . . . ∂αd

∂xαd u, where xα is the monomial x1
α1 . . . xd

αd with degree

|α| =
d
∑

i=1
αi. Functions in Cl(Ω) possess continuous and bounded derivatives Dα

up to order l. The space Cl(Ω) is equipped with the norm

‖u‖Cl(Ω) := max
0≤|α|≤l

sup
x∈Ω

|Dαu(x)|.

The norm for continuous functions (l = 0) is defined by ‖ · ‖C(Ω). The space
C∞(Ω) consists of infinitely differentiable (smooth) functions, and elements of
C∞

0 (Ω) ⊂ C∞(Ω) have compact support in Ω. Smooth functions vanishing on Γ

are denoted by

C∞
0,Γ(Ω) :=

{
ϕ ∈ C∞(Ω) |dist(suppϕ, Γ) > 0

}
. (2.2)

2.1.3 Sobolev spaces

The αth weak (or generalized) derivative of u ∈ L2(Ω) is denoted by
w = Dαu ∈ L2(Ω) such that∫

Ω

w v dx = (−1)|α|
∫
Ω

u Dαv dx, ∀v ∈ C∞
0 (Ω).



20

The separable space of Banach type Wl,p(Ω), p ∈ [1,+∞[ and l ∈ N, is called the

Sobolev space Wl,p(Ω) :=
{

u ∈ Lp(Ω) | Dαu ∈ Lp(Ω), |α| ≤ l
}

and equipped with
the norm

‖u‖Wl,p :=
(

∑
|α|≤l

‖Dαu‖p
Lp

)1/p
. (2.3)

If the boundary of Ω is smooth enough, latter space coincide with a clouser of

Cl(Ω) under the norm (2.3), i.e., W := Cl(Ω)
‖·‖

Wl,p
(in general, W ⊂ Wl,p).

The Hilbert spaces with p = 2 are traditionally denoted as Hl(Ω) = Wl, 2(Ω).
Later in the thesis, we use the spaces

H1(Ω) :=
{

u ∈ L2(Ω) | ∇u ∈ L2(Ω,Rd)
}

, and

H(div, Ω) :=
{

u ∈ L2(Ω,Rd) |divu ∈ L2(Ω)
}

,

with the corresponding norms ‖ · ‖H1(Ω) and ‖ · ‖H(div,Ω) induced by

(u, v)H1 := (u, v) + (∇u,∇v) and (u, v)H(div) := (u, v) + (divu, divv),

respectively. Spaces with homogenous boundary conditions on Γ ⊂ ∂Ω are de-
fined as closures of (2.2):

H1
0,Γ(Ω) := C∞

0,Γ(Ω)
H1(Ω)

and H0,Γ(div, Ω) := C∞
0,Γ(Ω)

H(div,Ω)
.

If Γ = ∂Ω, then H1
0,∂Ω

(Ω) = H1
0(Ω). Lastly, let γΓu ∈ C(Γ) denote the restriction

of u ∈ C(Ω) to Γ, i.e., γΓu(x) := u(x), ∀x ∈ Γ. The latter one is called trace
operator γΓ : Hs(Ω) → Hs−1/2(Γ), s ∈ (1

2 , 3
2).

2.1.4 Inequalities

We list several algebraic and functional inequalities frequently used in the thesis.
For a, b ∈ R and any positive β, we have general Young inequality

ab ≤ 1
p (βa)p + 1

q (
b
β )

q, 1
p +

1
q = 1. (2.4)

Next, for any functional F and its convex conjugate F∗, the Fenchel inequality
holds

〈v∗, v〉V∗×V ≤ F∗(v∗) +F (v), ∀v∗ ∈ V∗, ∀v ∈ V. (2.5)

When last two are used in combination, they are referred as Young-Fenchel in-
equality.

The Hölder inequality for integrable functions reads as∫
Ω

u v dx ≤ ‖u‖Lp‖v‖Lq , ∀u ∈ Lp(Ω), ∀v ∈ Lq(Ω), 1
p +

1
q = 1. (2.6)
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For p = q = 2, it is referred as the Cauchy-Bunyakowski-Schwarz inequality.
We recall the main inequalities from the embedding theory. First, Friedrichs’

inequality [52] has the form

‖u‖Ω ≤ CFΩ‖∇u‖Ω, ∀u ∈ H1
0(Ω).

The Poincaré inequality [114, 115] reads as

‖u‖Ω ≤ CPΩ ‖∇u‖Ω, ∀u ∈ H̃1(Ω), (2.7)

where H̃1(Ω) :=
{

u ∈ H1(Ω)
∣∣ {u}Ω = 0

}
, where {u}Ω := 1

|Ω|
∫
Ω

w dx. The

above-introduced constants 0 < CFΩ := 1√
λD

1
< +∞ and 0 < CP := 1√

λN
2
< +∞,

where λD
1 is the first eigenvalue of the Dirichlet-Laplacian and λN

2 is the second
eigenvalue of the Neumann-Laplacian. Due to inequality 0 < λN

n+1 < λD
n for all

n ∈ N (see [49]), the relation CFΩ < CPΩ holds. According to [97], for simple
bounded domain in R

d encompassed inside a rectangle with edges of length li,

i = 1, . . . , d, we have the estimate CFΩ ≤ 1
π

( d
∑

i=1
l−2
i

)−1/2
. The Poincaré constant

CPΩ can be estimated as CPΩ ≤ diamΩ
π for convex domain Ω (see [106]). For

simplexes in R
2, this estimate was improved in [86], where it was shown that

CPΩ ≤ diamΩ
j1,1

for all nondegenerated triangles, and

CPΩ ≤ C
LS
T := diamΩ ·

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

j1,1
α ∈ (0, π

3 ],

min
{

1
j1,1

, 1
j0,1

(
2(π − α) tan(α/2)

)−1/2
}

α ∈ (π
3 , π

2 ],

1
j0,1

(
2(π − α) tan(α/2)

)−1/2 α ∈ (π
2 , π]

for isosceles one. Here, j0,1 ≈ 2.4048 and j1,1 ≈ 3.8317 are the smallest positive
roots of the Bessel functions J0 and J1, respectively.

Exact value of constant in (2.7) on equilateral triangle with unit side is de-
rived in [113], i.e., Cp

Γ = 3
4π . Constants for the right isosceles triangles with

legs
√

2
2 and 1 are Cp

Γ = 1√
2π

and Cp
Γ = 1

π , respectively. The latter one can be
found from [64] and [71]. Explicit formulas of the same constants for some three-
dimensional domains can be found in papers [18] and [64].

The Poincaré-type inequalities also hold for functions
w ∈ H̃1(Ω, Γ) :=

{
u ∈ H1(Ω)

∣∣ {u}Γ = 0
}

, where {u}Γ := 1
|Γ|
∫
Γ

w ds, i.e.,

‖u‖L2(Ω) ≤ Cp
Γ‖∇u‖L2(Ω), (2.8)

‖u‖L2(Γ) ≤ CTr
Γ ‖∇u‖L2(Ω). (2.9)

The exact values of Cp
Γ and CTr

Γ on right triangles, rectangles, and parallelepipeds
can be found in [99]. We consider below mainly two reference cases in R

2: tri-
angle T := conv

{
(0, 0), (0, h), (h, 0)

}
and Γ :=

{
x2 = 0, x1 ∈ [0, h]

}
, and cor-
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responding constants Cp
Γ := h

ζ0
, and CTr

Γ :=
(

h
ζ̂0 tanh(ζ̂0)

)1/2
, where ζ0 and ζ̂0

are the unique roots of the equations z cot(z) + 1 = 0 and tan(z) + tanh(z) = 0 in
(0, π), respectively, and simplex T := conv

{
(0, 0), (0, h),

( h
2 , h

2

)}
, with

Γ :=
{

x2 = 0, x1 ∈ [0, h]
}

, which are characterized by Cp
Γ := h

2ζ0
and

CTr
Γ :=

( h
2

)1/2.

Finally, the classic trace inequality reads as follows

‖u‖L2(Γ) ≤ CTΓ‖ u ‖H1(Ω) , ∀u ∈ C1(Ω). (2.10)

2.1.5 Sobolev spaces in the space-time cylinder

Let QT := Ω×]0, T[ denote the space-time cylinder with given Ω and time inter-
val ]0, T[, 0 < T < +∞. We denote ST = ∂Ω × [0, T] as a lateral surface of QT.
Below, we introduce the Sobolev spaces of functions defined on QT as they are
presented in [79, 80]. The space L2(QT) contains square-integrable functions in

the cylinder QT and it is equipped with the norm ‖ · ‖L2(QT)
:= (·, ·)1/2

L2(QT)
. We

generalize the notation by denoting the space Hs,k(QT) as

Hs,k(QT) :=
{

u ∈ L2(QT) | Dαu ∈ L2(QT), |α| ≤ s, ∂
β
t u ∈ L2(QT), 1 ≤ β ≤ k

}
equipped with the norm

‖u‖2
Hs,k(QT)

:=
∫

QT

(
∑
|α|≤s

|Dαu(x, t)|2 + ∑
1≤β≤k

|∂β
t u(x, t)|2

)
dxdt.

The most typical examples are H1,0(QT) and H1,1(QT). In [79], the same spaces
are denoted by, e.g., W1,0

2 (QT) and W1,1
2 (QT). Furthermore, the Sobolev spaces

with Dirichlet boundary SD ⊂ ST (with assigned load uD on it) are denoted by

Hs,k
uD
(QT) :=

{
u ∈ Hs,k(QT) | u = uD on SD

}
. (2.11)

2.2 Bochner spaces

Consider the Bochner spaces as an alternative tool for the analysis of parabolic
I-BVPs. Let {H, (·, ·)H} and {V, (·, ·)V} be a Hilbert space. The Bochner spaces
Lp(a, b; V), p ∈ [1,+∞[, are the most regularly used. They consist of measurable
functions u :]a, b[→ V for which norm reads as

‖u‖Lp(a,b;V) :=
( b∫

a

‖u(·, t)‖p
V dt

)1/p
< +∞.
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For p = ∞, we obtain the Bochner space equipped with the norm

‖u‖L∞(a,b;V) := ess sup
t∈(a,b)

‖u(·, t)‖V < +∞.

Furthermore, we define C([a, b]; H) as the space of functions u : [a, b] → H con-
tinuous at every t ∈ [a, b] with the norm

‖u‖C([a,b];H) := max
t∈[a,b]

‖u(·, t)‖H.

Infinitely differentiable functions are denoted by C∞([a, b]; H) and C∞
0 ([a, b]; H)

(in case the functions have compact support on (a, b)).

For the treatment of parabolic I-BVPs, we consider L2(0, T; V) with
V = H1(Ω) (or V = H1

0(Ω)). Since V is a Hilbert space, then L2(0, T; V) is also a
Hilbert space. The generalized weak derivative of u ∈ L2(0, T; V) with respect to
time is denoted by ∂tu ∈ L2(0, T; V∗), satisfying

T∫
0

u(t)∂t ϕ(t) dt = −
T∫

0

∂tu(t)ϕ(t) dt, ∀ϕ ∈ C∞
0 ([0, T]; H).

For separable V and H, the Gelfand triple (or evolution triple)
V ↪→ H ↪→ V∗ holds. Then, V∗ is a Hilbert space. The most commonly used
triples are H1(Ω) ↪→ L2(Ω) ↪→ (H1(Ω))∗ and H1

0(Ω) ↪→ L2(Ω) ↪→ H−1(Ω).

To study the solvability of the parabolic I-BVPs, we define the Bochner space

W(0, T) :=
{

u(t) ∈ L2(0, T; V) | ∂tu(t) ∈ L2(0, T; V∗)
}

equipped with the norm

‖u‖W(0,T) :=
( T∫

0

(
‖u(·, t)‖2

V + ‖∂tu(·, t)‖2
V∗

)
dt
)1/2

< ∞.

The Gelfand triple implies that W(0, T) is a Hilbert space. Moreover, we have
the continuous embedding W(0, T) ↪→ C(0, T; H) (see, e.g., [148] and [151]). The
formula of integration by parts reads as

T∫
0

〈∂tu(t), ϕ(t)〉V∗,V dt = −
T∫

0

〈∂t ϕ(t), u(t)〉V∗,V dt + (u(T), ϕ(T))− (u(0), ϕ(0)),

where ∂tu(t) ∈ L2(0, T; V∗), ϕ(t) ∈ L2(0, T; V), and ∂t ϕ(t) ∈ L2(0, T; V∗).

By comparing the norms of the spaces discussed above, one can see how
Bochner spaces correlate with Sobolev spaces, e.g.,

H1,0(QT) ∼= L2(0, T; H1(Ω)), H1,0
0 (QT) ∼= L2(0, T; H1

0(Ω)).
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If, in addition, we consider the space H1(0, T; L2(Ω)) with finite norm

‖u‖H1(0,T;L2(Ω)) :=
( T∫

0

(
‖u(·, t)‖2

L2(Ω) + ‖∂tu(·, t)‖2
L2(Ω)

)
dt
)1/2

,

then the combination of the norms corresponding to spaces H1,1(QT) and H1,1
0 (QT)

(in some literature denoted by H1(QT) and H1
0(QT)) provides the equivalences

H1,1(QT) ∼= L2(0, T; H1(Ω)) ∩ H1(0, T; L2(Ω)),

H1,1
0 (QT) ∼= L2(0, T; H1

0(Ω)) ∩ H1(0, T; L2(Ω)).

Bochner space W(0, T) with V = H1(Ω) (V = H1
0(Ω)) is clearly wider than

H1,1(QT) (H1,1
0 (QT)) based on evolution triple. Finally, we introduce, in general

form, Vs,k(QT) and Vs,k
0 (QT) (following the notation in [79]) such that

Vs,k(QT) := Hs,k(QT) ∩ C([0, T]; L2(Ω)),

and
Vs,k

0 (QT) := Hs,k
0 (QT) ∩ C([0, T]; L2(Ω)).

respectively, where s ≥ 0, k ≥ 0, equipped with the norm

‖u‖Vs,k(QT)
:= max

t∈[0,T]
‖u(t)‖L2(Ω) + ‖u‖Hs,k(QT)

< +∞.

2.3 Parabolic initial-boundary value problem

In the current section, we present fundamental results on solvability of linear
parabolic PDEs, which have been thoroughly studied in monographs [79, 51, 151,
148]. The nonlinear class is considered in the monographs [80, 152]. Below, we
present the variational formulation of a parabolic I-BVP and discuss the main
requirements that provide the existence and uniqueness results.

Let QT be a space-time cylinder with boundary surface ST as defined in Sec-
tion 2.1. Assume that ∂Ω consists of two measurable non-intersecting parts ΓD
and ΓR associated with mixed Dirichlet–Robin BC. Therefore,
ST := ∂Ω × [0, T] =

(
ΓD ∪ ΓR

)
× [0, T] = SD ∪ SR. The general parabolic I-BVP

reads as follows

ut − divp + a(x) · ∇u + λ2(x) u = f , (x, t) ∈ QT, (2.12)

p = A∇u, (x, t) ∈ QT, (2.13)

u(x, 0) = u0, x ∈ Ω, (2.14)

u = 0, (x, t) ∈ SD, (2.15)

σ2(x)u + p · n = 0, (x, t) ∈ SR, (2.16)
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where n denotes the vector of unit outward normal to ∂Ω,

f ∈ L2(QT), u0 ∈ L2(Ω). (2.17)

We assume that, for almost all x ∈ Ω and t ∈]0, T[, the operator A is symmetric
and satisfies condition of uniform parabolicity

νA|ξ|2 ≤ A(x, t) ξ · ξ ≤ νA|ξ|2, ξ ∈ R
d, 0 < νA ≤ νA < ∞. (2.18)

Henceforth, we use the notation

‖ τ ‖2
A :=

∫
Ω

Aτ · τ dx, ‖ τ ‖2
A−1 :=

∫
Ω

A−1τ · τ dx.

The functions a and λ, presenting the convection and reaction, respectively, as
well as σ satisfy the following conditions for a.a t ∈]0, T[

a ∈ L∞(Ω,Rd), div a ∈ L∞(Ω), |a| ≤ a,

λ ∈ L∞(Ω), |λ| ≤ λ,

σ ∈ L∞(Ω), |σ| ≤ σ. (2.19)

After multiplying (2.12) by a test function η ∈ H1,1
0 (QT), we arrive at the general-

ized formulation of (2.12)–(2.16): find u(x, t) ∈ V1,0
0 (QT) (cf. (2.11)) satisfying the

integral identity∫
QT

(
A∇u · ∇η + a · ∇uη + λ2uη − uηt

)
dxdt +

∫
SR

σ2uη dsdt

+
∫
Ω

(
(uη)(x, T)− (uη)(x, 0)

)
dx =

∫
QT

f η dxdt, ∀η ∈ H1,1
0 (QT). (2.20)

According to [79, Theorem 3.2], the generalized problem (2.20) has a solution
in V1,0

0 (QT) and it is unique in H1,0
0 (QT), provided that conditions (2.17), (2.18),

and (2.19) hold. In the problem with only Robin BC, in order to provide the
uniqueness of the solution additional conditions on coefficients

|∂ta| ≤ ã, |∂tλ| ≤ λ̃, |∂tσ| ≤ σ̃,

must be imposed. The a priori stability estimate

‖u‖V1,0
0 (QT)

≤ C
(
‖ f ‖L2(QT)

+ ‖u0‖L2(Ω)

)
(2.21)

holds with a positive constant C dependent only on characteristics of QT but in-
dependent of f and u. The estimate (2.21) provides the continuity of the mapping
M : { f , u0} �→ u, where M : L2(QT)× L2(Ω) �→ V1,0

0 (QT).

The solvability results can be formulated in Bochner spaces. We consider
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the simplest case, where A = I , a(x) = 0, λ(x) = 0, and ST = SD. According
to [148, 151], if H and V are given separable Hilbert spaces satisfying evolution
triple V ↪→ H ↪→ V∗, f ∈ L2(0, T, V∗), u0 ∈ H, then the generalized problem

T∫
0

〈ut(t), v〉V∗,V dt +
T∫

0

∇u(t) · ∇v dxdt =
T∫

0

〈 f (t), v〉V∗,V dxdt,

that holds for all v ∈ V and a.a.t ∈]0, T[, has a unique solution in W(0, T), which
depends continuously on f and u0. By increasing the regularity on u0 and f , one
can get higher regularity of the exact solution. The problems with inhomoge-
neous BCs, e.g., uD in (2.15) and g in (2.16), can be treated in the same manner,
following the spirit of [148].

2.4 Fixed point iterations

First, we present the main idea of the fixed-point iterations approach. Consider
the following general problem: find u in a Hilbert space V such that

u = Lu + b, (2.22)

where L : V → V is a bounded operator and b ∈ V. One of the ways to solve
(2.22) is to apply the iteration procedure

uk = Luk−1 + b, u0 ∈ V, k = 1, . . .

which generates an infinite sequence {uk}∞
k=1. If L is the q-contractive operator on

a closed nonempty set S ⊂ V, i.e.,

‖Lw −Lv‖V ≤ q ‖w − v‖V , q ∈ (0, 1), ∀w, v ∈ S, (2.23)

then, by using (2.23), it is easy to show that {uk}∞
k=1 converges to a fixed point u

(see, e.g., [13, 34, 74, 67, 150]).

2.4.1 The Picard–Lindelöf method

We consider a Cauchy problem

du
dt = ϕ(u(t), t), u(t0) = a0, t ∈ [t0 − ε, t0 + ε] (2.24)

with (scalar- or vector-valued) solution u(t). Assume that the function ϕ(u(t), t)
is uniformly Lipschitz continuous with respect to u (i.e., Lipschitz constant can be
selected independent of t) and continuous in t. The existence and uniqueness of
continuously differentiable u(t) on [t0 − ε, t0 + ε], ∀ε > 0, follows from the Picard–
Lindelöf theorem and the Picard’s existence theorem (or Cauchy–Lipschitz the-
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orem) (see [33, 88]). Unlike the Picard–Lindelöf theorem, the Peano existence
theorem [107] shows only existence, not uniqueness, but imposes weaker require-
ments on ϕ (only the continuity with respect to t).

The Picard–Lindelöf method represents (2.24) in the integral form

u(t) =
t∫

t0

ϕ(u(s), s) ds + a0. (2.25)

The exact solution of (2.25) is a fixed point that is approximated by the iterative
method

uj = T uj−1 + a0, T u :=
t∫

t0

ϕ(u(s), s) ds (2.26)

provided that T : V → V satisfies (2.23) on [t0 − ε, t0 + ε].



3 MAIN RESULTS

This chapter is devoted to the main theoretical and numerical findings obtained
during the PhD studies. Along the exposition of the results, we refer to the pub-
lished works [PI, PII, PIII, PIV] and preprint [PV], where corresponding matters
are thoroughly discussed.

3.1 Fully reliable Adaptive Picard–Lindelöf method

In this section, we make an overview of the work dedicated to the fully reliable
APL method which was suggested in [PI] in order to reliably solve the Cauchy
problem. The details of the study can also be found in [93, Section 6.7.6].

Let Q :=
{
(u, t) | u ∈ U, t ∈ I

}
, where U is the set of possible values

of u determined during an a priori analysis of the problem and I := [t0, tK]. We
consider the problem (2.24) from Section 2.4 and assume that function ϕ(u(t), t)
is continuous with respect to both variables and satisfies the Lipschitz condition
for any (u1, t1), (u2, t2) ∈ Q in the form

‖ϕ(u2, t2)− ϕ(u1, t1)‖C([t1, t2]) ≤ L1‖u2 − u1‖C([t1, t2]) + L2|t2 − t1|,

where L1 and L2 are Lipschitz constants.

Assume that I is discretized in the following way:

I = ∪I(k)⊂FK
I(k), FK := {I(k)}K−1

k=0 , I(k) := (tk, tk+1), K ∈ N. (3.1)

If we consider (2.26), it becomes clear that condition q := L1(tk+1 − tk) < 1
provides the convergence of the algorithm by adapting the length of interval
I(k) ⊂ FK to constant L1. Thus, if I(k) is sufficiently small, the solution can be re-
constructed by an iteration scheme, which we call an Adaptive Picard–Lindelöf
(APL) method. The corresponding errors of the iterative approximations can be
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controlled by the Ostrowski estimates

Mj := 1
1+q‖uj − uj+1‖C(I(k)) ≤ ‖u − uj‖C(I(k)) ≤

q
1−q‖uj − uj−1‖C(I(k)) =: Mj.

The latter one is applicable to any iterative process with a contraction operator
that possesses the computable contractivity parameter, for example to the itera-
tion algorithm provided in work [55].

However, some technical difficulties arising in iterative integration must be
dealt with. Consider I(k) ∈ FK introduced in (3.1) and assume that the initial
guess u0 is defined as a piecewise affine function on a sub-mesh ΩSk

of I(k), i.e.,

ΩSk
= ∪Sk−1

s=0 [zs, zs+1], where Δs = zs+1 − zs, z0 = tk, and zSk
= tk+1. As the first

sub-interval, we have

u1(t) =
t∫

t0

ϕ(u0(s), s) ds + a0, t ∈ I(0) := [t0, t1]. (3.2)

If q < 1, the distance between the computed u1 and u can be found by means of

‖u1(t)− u(t)‖C(I(0)) ≤
q

1−q‖u1(t)− u0(t)‖C(I(0)). (3.3)

However, in (3.2) we obtain piecewise polynomials as a result of the integration of
piecewise affine functions. In order to perform iterations on a finite dimensional

X
Xh

uj−1

XXh

uj

Zh

uj

ûj

T

Th

FIGURE 2 Integration and interpolation errors generated by T .

space Xh, the additional errors caused by integration and mapping of a function
to this finite dimensional space must be taken into account (see Figure 2). Due to
the numerical representation of T , i.e., Th : Xh → Zh, where Zh ⊂ X, the function
x̂j = Thxj−1 contains an integration error. Since Zh ⊂ X does not coincide with
Xh, we must apply a certain projection (interpolation) operator π and evaluate the
corresponding error. Henceforth, the errors generated by numerical integration
appear in (3.3) as follows:

‖u1 − u0‖C(I(0)) ≤ ‖u0 − û1‖C(I(0)) + ‖û1 − u1‖C(I(0)). (3.4)
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Here, ‖û1 − u1‖C(I(0)) := ‖ê1‖C(I(0)) is the integration error. Then we must project

the result of numerical integration û1 ∈ Zh to Xh, i.e., u1(t) = π û1 ∈ CP1(I(0)),
where π : Zh → CP1(I(0)) is the projection operator such that πû(zs) = u(zs),
s = 0, . . . , Sk−1. Thus, the RHS of (3.4) is modified as follows

‖u1 − u0‖C(I(0)) ≤ ‖u1 − u0‖C(I(0)) + ‖û1 − u1‖C(I(0)) + ‖û1 − u1‖C(I(0)),

Here, ‖û1(t)− u1(t)‖C(I(0)) =: ‖e1‖C(I(0)) is the interpolation error.

The obtained result states that for any piecewise linear approximation
v(t) := vk(t), t ∈ I(k), and exact solution u(t) the following estimate

‖u(t)− v(t)‖C(I(k)) ≤ M
k
, t ∈ I(k), I(k) ⊂ FK,

holds. Here, the piecewise constant error bound reads as

M
k

:= q
1−q (‖vj+1 − vj‖C(I(k)) + eint

j + einterp
j ).

where

eint
j := ∑

s=0,...,Sk−1

(
Ls
2 Δ2

s − 1
2Ls

[
ϕ(vj, s+1, zs+1)− ϕ(vj, s, zs)

]2
)

, (3.5)

and

einterp
j := ∑

s=0,...,Sk−1
Δs

(
1
8

(
ϕ(vj, s+1, zs+1)− ϕ(vj, s, zs)

)
+ 2

3

[
L1, s|vj, s+1 − vj, s|+ L2, sΔs

])
(3.6)

are integration and interpolation estimates of ‖êj‖C(I(k)) and ‖ej‖C(I(k)) on the jth

iteration. Constants in (3.5) and (3.6) are Ls = L1, s ls + L2, s, where ls is the slope
of a piecewise function on every interval [zs, zs+1], s = 0, ..., Sk−1, and local Lips-
chitz constant L1, s analogous to the one in (3.1). In [PI] and [93, Section 6.7.6], we
present detailed derivation of estimates for both errors, and confirm the theoreti-
cal findings by set of numerical examples.

3.2 Guaranteed error estimates for the solution of parabolic I-BVPs

This section presents two forms of the functional error estimates, which provide a
guaranteed upper bound of the deviation e = u− v for the generalized solution u
of I-BVP (2.20) with a ≡ 0 and any function v ∈ H1,1

0 (QT) (generated for instance
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by some numerical method) measured in terms of the norm

[ e ] 2
(ν,θ,ζ,χ) :=

T∫
0

(
ν ‖∇e ‖2

A + θ ‖ λ e‖2
Ω + χ‖ σ e ‖2

ΓR

)
dt + ζ ‖ e(·, T) ‖2

Ω , (3.7)

where ν, θ, ζ, χ are positive weights and function λ satisfies (2.19). By selecting
the weights to balance the components in (3.7) with a desired proportion, we gen-
erate a collection of error measures, which can be used for judging the distance
between u and v.

The first form of the majorant is presented and numerically tested for evo-
lutionary reaction-diffusion I-BVPs of parabolic type in [PII]. The second (ad-
vanced) form of the majorant is studied in [PIII] and [PIV]. Latter one was intro-
duced originally in publication of Repin [124] in order to improve the recovery
of the error in balance equation (2.12) by using a special correction function w
(see Theorem 3.2). In [PIII], we extend both majorants for problems formulated
on domains of complicated geometry by suggesting a method of decomposition
of Ω and application of the Poincaré inequalities locally to each element from
the collection of subsets. This method does not only help to overcome the com-
plications caused by estimating the global Friedrichs constant but also improves
the efficiency of the resulting estimates which exploit the constant on the smaller
sub-domains. In [PIV], we encounter difficulties caused by the mixed BC with
a non-trivial input function and overcome them by exploiting the Poincaré-type
inequalities. The obtained estimates become fully guaranteed, due to results of
[99] and [PV], where reliable and easy computable bounds for the constants in the
Poincaré-type inequalities are presented for simpleces in R

2 and R
3 (commonly

used in FE analysis).

The initial step in the derivation of both upper estimates is the transforma-
tion of (2.20) into the integral identity

T∫
0

(
‖∇e ‖2

A + ‖ λ e‖2
Ω dt + ‖ σ e ‖2

ΓR

)
dt + 1

2 ‖ e(·, T) ‖2
Ω

=
∫

QT

((
f − vt − λ2 v

)
e − A∇v · ∇e

)
dxdt +

∫
SR

−σ2v e dsdt, (3.8)

which follows from the main energy-balance relation of problem (2.12)–(2.16). It
is worth mentioning that evolutionary I-BVPs, unlike elliptic BVPs, do not pos-
sess variational formulation, therefore the functional error estimates can only be
obtained from generalized identity (2.20). Next, we rearrange the RHS of (3.8) by
introducing a ‘free’ vector-valued function

y ∈ Ydiv(QT) :=
{

y ∈ L2(0, T; L2(Ω,Rd)) ∣∣ divy ∈ L2(0, T; L2(Ω)
)
,

y · n ∈ L2(0, T; L2(ΓR)
)}

.
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The residuals of (2.12), (2.13), and (2.16) are denoted by

r f (v, y) := f − vt − λ2 v + div y, (3.9)
rA(v, y) := y − A∇v, (3.10)
rσ(v, y) := −σ2v − y · n, (3.11)

respectively. Moreover, we define the weighted residuals

rμ
f (v, y) := μ r f and r1−μ

f (v, y) := (1 − μ) r f , (3.12)

where μ(x, t) is a real-valued function taking values in [0, 1] used in order to split
the residual with λ into two parts. This way, the resulting estimate becomes
robust to cases in which λ attains drastically different values and may be close
to zero in different parts of Ω. A detailed numerical analysis of the majorant
with the balancing parameter μ can be found in [PII, Sections 2, 5]. The forth-
coming summary demonstrates that a certain weighted combination of norms of
(3.9)–(3.12) controls the distance between u and v.

Theorem 3.1. For any v ∈ V1,1
0 (QT), y ∈ Ydiv (QT), δ ∈ (0, 2], and real-valued

function γ(t) ∈
[ 1

2 ,+∞
[
, we have the estimate

[ e ] 2
(ν, θ, 1, 2) ≤ M

2
I (v, y; δ, γ, μ) := ‖e(·, 0)‖2

Ω +

T∫
0

(
γ(t)

∥∥∥ 1
λ rμ

f

∥∥∥2

Ω

+ α1‖ rA ‖2
A−1

+ α2
C2

FΩ

νA

∥∥∥ r1−μ
f

∥∥∥2

Ω
+ α3

C̃2
TΓR
νA

‖ rσ ‖2
ΓR

)
dt, (3.13)

where
C̃TΓR = CTΓR (1 + CFΩ) (3.14)

with Friedrichs’ and trace constants in (2.1) and (2.10), respectively, positive parameters

ν = 2 − δ, θ(x, t) = λ(x)
(

2 − 1
γ(t)

)1/2
, μ(x, t) ∈ [0, 1], and α1(t), α2(t), α3(t) are

arbitrary positive real-valued functions satisfying the relation

1
α1(t)

+ 1
α2(t)

+ 1
α3(t)

= δ. (3.15)

Proof. We present below only sketch of the proof. First, the RHS of (3.8) is trans-
formed by means of function y ∈ Ydiv(QT), divergence theorem, and integration
by parts, resulting into

T∫
0

(
‖∇e ‖2

A + ‖ λ e‖2
Ω + ‖ σ e ‖2

ΓR

)
dt+ 1

2 ‖ e(·, T) ‖2
Ω= I f +IA +Iσ +

1
2‖ e(·, 0)‖2

Ω,
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where

I f :=
∫

QT

r f e dxdt, IA :=
∫

QT

rA · ∇e dxdt, Iσ :=
∫
SR

rσ e dsdt.

Next, we estimate I f , IA, and Iσ, by using Hölder inequality, as follows

IA
(2.6) ≤

T∫
0

‖ rA ‖A−1 ‖∇e‖A dt (3.16)

Iσ
(2.6), (2.10) ≤

T∫
0

‖ rσ ‖ΓR

CΓR√
λA

‖∇e ‖A dt, and (3.17)

I f
(2.6), (2.1) ≤

T∫
0

(∥∥∥ 1
� rμ

f

∥∥∥
Ω
‖ � e ‖Ω + CFΩ√

λA

∥∥∥ r1−μ
f

∥∥∥
Ω
‖∇e‖A

)
dt, (3.18)

respectively. Finally, we bound estimates (3.16), (3.18), and (3.17) using the Young–
Fenchel inequality

T∫
0

∥∥∥ 1
� rμ

f

∥∥∥
Ω
‖ � e ‖Ω dt (2.5) ≤ 1

2

T∫
0

(
γ
∥∥∥ 1

� rμ
f

∥∥∥2

Ω
+ 1

γ ‖ � e ‖2
Ω

)
dt, (3.19)

T∫
0

CFΩ√
λA

∥∥∥ r1−μ
f

∥∥∥
Ω
‖∇e‖A dt (2.5) ≤ 1

2

T∫
0

(
α1

C2
FΩ

λA

∥∥∥ r1−μ
f

∥∥∥2

Ω
+ 1

α1
‖∇e ‖2

A

)
dt, (3.20)

T∫
0

‖ rA ‖A−1 ‖∇e‖A dt (2.5) ≤ 1
2

T∫
0

(
α2 ‖ rA ‖2

A−1 + 1
α2
‖∇e ‖2

A

)
dt, (3.21)

T∫
0

‖ rσ ‖ΓR

C̃TΓR√
λA

‖∇e‖A dt (2.5) ≤ 1
2

T∫
0

(
α3

C̃TΓR
λA

‖ rσ ‖2
ΓR

+ 1
α3
‖∇e ‖2

A

)
dt, (3.22)

respectively. Here, γ(t), α1(t), α2(t), and α3(t) are defined in the theorem’s for-
mulation. Then, the estimate (3.13) follows from a combination of (3.19)–(3.22).
�

Next, we consider an advanced form of the error majorant of more compli-
cated structure caused by the introduction of the correction function w ∈ V1,1

0 (QT),
which yields sharper error bounds. Moreover, in [PIII, PIV] we show that the ad-
vanced majorant is equivalent to the error measured in terms of the primal energy
norm. In this case, the residuals of (2.13), (2.12), and (2.16) read as

r f (v, y, w) := f − (v + w)t − λ2 (v − w) + divy,

rA(v, y, w) := y − A∇(v − w),

rσ(v, y, w) := −σ2(v − w)− y · n,
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and rμ
f and r1−μ

f are defined analogously to (3.12).

Theorem 3.2. For any v, w ∈ V1,1
0 (QT), y ∈ Ydiv(QT), δ ∈ (0, 2], real-valued func-

tions ε(t) ∈ [1,+∞[, and γ(t) ∈
[1

2 ,+∞
[
, the following estimate holds:

[e]2(ν, θ, ζ, 2) ≤ M
2
II(v, y, w; δ, ε, γ, μ) := ε‖w(·, T)‖2

Ω + 2L + l
T∫

0

(
γ
∥∥∥ 1

λ rμ
f

∥∥∥2

Ω
+ α1

C2
FΩ

νA
‖ r1−μ

f ‖2
Ω + α2‖rA‖2

A−1 + α3
C̃2

TΓR
νA

∥∥rσ

∥∥2
ΓR

)
dt, (3.23)

where

L(v, w) :=
∫

QT

(
f w + vt w − A∇v · ∇w − λ2v w

)
dxdt −

∫
SR

σ2 w dsdt,

l(v, w) :=
∫
Ω

|v(x, 0)− ϕ(x)|2 − 2w(x, 0)
(

ϕ(x)− v(0, x)
)

dx,

C̃TΓR is defined in (3.14), and parameters ν = 2 − δ, θ(x, t) = λ(x)
(

2 − 1
γ(t)

)1/2
,

ζ = 1 − 1
ε . Here, μ(x, t) is a real-valued function taking values in [0, 1], and α1(t),

α2(t), and α3(t) are positive real-valued functions satisfying the relation (3.15).

Proof. The proof is analogous to the steps of the proof of Theorem 3.1 and can be
found in [124, 54, 121] and [PIII, Theorem 3.1 (i)]. �

Theorem 3.3. For any δ ∈ (0, 2], real-valued functions γ(t) ∈
[1

2 ,+∞[,
ε(t) ∈ [1,+∞[, and μ(x, t) ∈ [0, 1], the lower bound of the variation problems

inf
v ∈ V1,1

0 (QT)
y ∈ Ydiv(QT)

M
2
I (v, y) and inf

v, w ∈ V1,1
0 (QT)

y ∈ Ydiv(QT)

M
2
II(v, y, w)

is zero, and it is attained if and only if v = u, y = A∇u, and w = 0.

Proof. See, e.g., [PIII, Theorem 2.1 (ii), Theorem 3.1 (ii)]. �

Computable lower bounds of the error in the exact solutions of PDEs pro-
vide useful information, which allows us to judge the quality of error majorants.
In [PII], the lower bounds of the error in the solution of a I-BVP are presented and
numerically studied for the first time.

Theorem 3.4. Let v, η ∈ V1,1
0 (QT), then the following estimate holds:

M2(η, v; k) := sup
η ∈V1,1

0 (QT)

{
5

∑
i=1

Gv,i(η) + Gf u0(η)

}
≤ [ e ] 2

(ν, θ, ζ, χ),
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where

Gv,1 =
∫

QT

(
−∇η · A∇v − 1

2κ1
|∇η|2

)
dxdt,

Gv,2 =
∫

QT

(
ηtv − 1

2κ2
|ηt|2

)
dxdt,

Gv,3 =
∫

QT

�2
(
− vη − 1

2κ3
|η|2
)

dxdt,

Gv,4 =

∫
Ω

(
− v(x, T)η(x, T)− 1

2κ4
|η(x, T)|2

)
dx,

Gv,5 =
∫
SR

σ2
(
− vη − 1

2κ5
|η|2
)

dsdt,

and

Gf u0 =
∫

QT

f η dxdt +
∫
Ω

u0η(·, 0) dx,

with constant parameters ν = κ1
2 , θ =

(
1
2

(
κ2 + κ3λ2))1/2

, ζ = κ4
2 , χ = κ5

2 , and

k = (κ1, κ2, κ3, κ4, κ5) is a vector with positive coordinates.

Proof. See, e.g., [PII, Section 3 ] and [PIII, Section 4]. �

3.3 Global minimization of the majorant

In this section, we discuss the algorithm of global majorant minimization, which
implies a tool for a posteriori control of the error in the approximate solution of
a parabolic I-BVPs. In [138], a priori error estimates are presented for both the
semi-discrete problem resulting in a spatial one and for the most commonly used
fully discrete schemes obtained by space-time discretization. First, we present a
majorant adapted to the time-stepping class of methods and confirm its efficiency
(both as an error estimate and an indicator) in Examples 1–3. Since the majorant is
defined as the integral over total time-interval [0, T], it is also applied to approx-
imations obtained by space-time discretization techniques on the whole cylinder
QT (see Examples 4 and 5).

For the reader’s convenience, we assume that λ = 0, which implies μ = 0,
matrix A = A(x) is symmetric, v(·, 0) = u0, and ST = SD in (2.20). Thus, the
error is simplified down to a sum

[ e ] 2 := (2 − δ) e 2
d + ‖e(·, T)‖Ω with e 2

d =

T∫
0

‖∇e‖2
Ω dt, ∀δ ∈ (0, 2],
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where the first term is equivalent to the energy norm and the second one illus-
trates the error at t = T. The majorant, respectively, reads as

M
2
I (v, y; α1, α2) := α1

T∫
0

‖y − A∇v ‖2
A−1 dt + α2

C2
FΩ

νA

T∫
0

‖ f + divy − vt ‖2
Ω dt. (3.24)

Here, m2
f :=

T∫
0
‖ f + divy − vt ‖2

Ω dt assures the reliability of the majorant and

measures the violation of the equilibrium equation (2.12), whereas the first term
mimics the residual in (2.13) and has confirmed to work as a robust and efficient

indicator. Further, the latter one is denoted by m2
d :=

T∫
0
‖y − A∇v ‖2

A−1 dt. To

measure the reliability and presentation accuracy of M
2
I , we use the efficiency

index Ieff := MI
[e] .

In order to adapt the majorant (15) to the methods based on time-stepping
reconstruction of the approximate solution, we define the following discretization
of the time-interval [0, T]:

TK = ∪K−1
k=0 I(k), where I(k) = (tk, tk+1). (3.25)

Then the time-cylinder can be represented in the form

QT = ∪K−1
k=0 Q(k), where Q(k) := I(k) × Ω. (3.26)

Let TN1×..×Nd be a mesh selected on Ω. Then, ΘK×N1×...×Nd = TK × TN1×...×Nd

denotes the mesh on QT. Generally, domain Ωt of variables x can change its shape
in time, i.e., QT := {(x, t) : x ∈ Ωt, t ∈ (0, T)}, which is more natural to hangle
with space-time FEM schemes. For time-incremental methods, we consider only
problems on ‘right cylinder’.

From now on, we limit our discussion to the time-slice Q(k), such that
y ∈ Ydiv(Q(k)), v ∈ V1,1

0 (Q(k)). We set α1 = 1
δ (1 + 1

β ) and α2 = 1
δ (1 + β), where

β(t) is a positive bounded function for a.e. t ∈ I(k). For simplicity, we assume

β = const. On each Q(k), the increment of the majorant (15) is denoted by M
2,(k)
I ,

i.e.,
M

2,(k)
I (v, y; β) := 1

δ

(
(1 + β)m2,(k)

f +
(
1 + 1

β

)C2
FΩ

νA
m2,(k)

d

)
. (3.27)

We intend to define optimal y by minimization of the increment of the majorant,
i.e.,

min
β>0

min
y∈Ydiv(Q(k))

M
2,(k)
I (v, y; β).

The corresponding increment of the error is denoted by [ e ] 2,(k). The minimum of

M
2,(k)
I (y; β) with respect to β is attained at βmin :=

(
C2

FΩ
m2,(k)

f

νAm2,(k)
d

)1/2

. After β is fixed,
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the necessary condition for the minimizer y reads as

dM 2,(k)
I (v, y+ζw; β)

dζ

∣∣∣
ζ=0

= 0, (3.28)

where w ∈ Ydiv(Q(k)). Condition (3.28) yields∫
Q(k)

(
C2

FΩ

β νA
divy divw+ A−1y ·w

)
dxdt =

∫
Q(k)

(
− C2

FΩ

β νA
( f − vt)divw+∇v ·w

)
dxdt.

We reduce the integration with respect to the time by the following linear exten-
sion of v and y on increment Q(k)

v = vk tk+1−t
τk + vk+1 t−tk

τk , y = yk tk+1−t
τk + yk+1 t−tk

τk , τk = tk+1 − tk, (3.29)

such that vk, vk+1 ∈ H1
0(Ω), yk, yk+1 ∈ H(div, Ω), and w(x, t) = η(x) · T(t) with

T = t−tk

τk and η ∈ H(div, Ω).

As the results, one obtains

C2
FΩ

β νA

∫
Ω

(1
2divyk+1 + divyk)divη dx +

∫
Ω

A−1(1
2 yk+1 + yk) · η dx

= − C2
FΩ

β νA

∫
Ω

(
3

(τk)2 F(t−tk)(x)− 3(vk+1−vk)
2τk

)
divη dx +

∫
Ω

(1
2∇vk+1 +∇vk) · η dx,

where yk+1 is the unknown function we are interested to reconstruct and

F(t−tk)(x) =
tk+1∫
tk

f (t − tk) dt is approximated by Gauss quadratures of high order

[135, 134].

Assume now that yk, yk+1, and η ∈ span
{

φ1, . . . , φN
}
=: YN ⊂ H(div, Ω),

i.e., yk =
N
∑

i=1
Yk

i φi and η = φj, j = 1, . . . , N. The condition (3.28) leads to a SLE

(
C2

FΩ

β νA
S + K

)
Yk+1 = − 1

2

(
C2

FΩ

νA
S + K

)
Yk − C2

FΩ

β νA

3
(τk)2 z + g, (3.30)

where Yk+1 ∈ R
N is the vector of unknowns, and components of matrices S, K
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and vectors z, g are defined as follows:

{Sij}N
i,j=1 =

∫
Ω

divφi divφj dx, (3.31)

{zj}N
j=1 =

∫
Ω

(
F(t−tk) +

(vk−vk+1)τk

2

)
divφj dx, (3.32)

{Kij}N
i,j=1 =

∫
Ω

A−1φi · φj dx, (3.33)

{gj}N
j=1 =

∫
Ω

(
1
2∇vk+1 +∇vk

)
· φj dx. (3.34)

The observations above motivate Algorithm 1 (p. 39), which summarizes the

steps the optimization M
2,(k)
I (v, y; β), such that on each time-step the increment

of the majorant is reconstructed by means of the iteration procedure. Sequence
of fluxes, obtained in the iteration procedure, helps to generate sequence of up-
per bounds as close to the value of the error as desired. On each Q(k), we obtain
optimal yk+1, which is used as initial data on Q(k+1). The second form of the
majorant and minorant can be presented in an analogous way. Generally, Algo-
rithm 1 can be extended to work with approximations that have jumps in time
(see, e.g., [125]). Moreover, the upper bound can be used as a refinement criteria
for schemes adaptive in time. In space-time FE implementation, where time is
considered as an extra dimension, we disctretize the majorant (15) by following
the steps of Algorithm 3.2 in book of Mali, Neittaanmäki, and Repin [93, Section
3.3.1].

3.4 Numerical experiments

The detailed study of numerical application of M
2
I (v, y; δ, γ, μ) for Ω ∈ R

d,
d = {1, 2} is presented in [PII]. In the same paper, we test M2(η, v; k) and com-
pare it to the majorant in (3.13). Besides that, we test the behavior of M

2
I (v, y; δ, γ, μ̂)

with optimal auxiliary function μ̂ with respect to different λ, and show that the
majorant stays robust even with a drastic change in the reaction over Ω. In [PII,
Examples 3–5], we consider the numerical behavior of the indicators m2,(k)

d , verify
its efficiency by several criteria, i.e., different marking procedures denoted by M,
quantitative histograms, and other means.

To overcome the drawback in the initial implementation of the functional
error estimates in MATLAB related to a large number of loops evaluating the local
distribution of the majorant, a more advanced set of numerical tests has been
performed with the help of The FEniCS Project library [137, 91]. We start
with test-examples, where the I-BVP is discretized by the incremental method
and the majorant is reconstructed and optimized, using the global optimization
technique presented in Section 3.3. From here on, parameter δ in (3.27) is set to 1.
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Algorithm 1 Global minimization of M
2,(k)
I

Input: Q(k): vk, vk+1, yk(Yk) {approximate solutions at fixed cuts of time and
flux coefficients on tk × Ω}

φi, i = 1, . . . , N {basis functions}
Miter

max {number of iterations}

Assemble matrices S, K and vectors z, g by using

{Sij}N
i,j=1 =

∫
Ω

divφi divφj dx, {zj}N
j=1 =

∫
Ω

(
F(t−tk) +

(vk−vk+1)τ
2

)
divφj dx,

{Kij}N
i,j=1 =

∫
Ω

A−1φi · φj dx, {gj}N
j=1 =

∫
Ω

(
1
2∇vk+1 +∇vk

)
· φj dx.

Approximate flux yk =
N
∑

i=1
Yk

i φi.

Let β = 1.

for m = 1 to Miter
max do

Solve the SLE
(

C2
FΩ

β νA
S + K

)
Yk+1

i = − 1
2

(
C2

FΩ

νA
S + K

)
Yk − C2

FΩ

β νA

3
(τk)2 z + g.

Approximate flux yk+1 =
N
∑

i=1
Yk+1

i φi.

Reconstruct v and y on Q(k) by

v = vk tk+1−t
τk + vk+1 t−tk

τk , y = yk tk+1−t
τk + yk+1 t−tk

τk , τk = tk+1 − tk.

Compute the components of the majorant by

m2,(k)
f :=

tk+1∫
tk

‖ f + divy − vt ‖2
Ω dt and m2,(k)

d :=

tk+1∫
tk

‖y − A∇v ‖2
A−1 dt.

Compute optimal β by β :=
(

C2
FΩm2,(k)

f

νAm2,(k)
d

)1/2

.

end for

Compute result increment of the majorant by

M
2
I (v, y; α1, α2) := α1

T∫
0

‖y − A∇v ‖2
A−1 dt + α2

C2
FΩ

νA

T∫
0

‖ f + divy − vt ‖2
Ω dt.

Output: M
2,(k)
I (v, y; β) {incremental majorant on Q(k)}

yk+1(Yk+1) {reconstruction of the flux on tk+1 × Ω}
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Example 1. First, we consider a benchmark problem on unit square
Ω = (0, 1)2 ⊂ R

2 and T = 1 with homogeneous Dirichlet BC,
initial function u0 = x (1 − x) y (1 − y), and u = x (1 − x) y (1 − y) (t2 + t + 1)
as the exact solution (the source function f is calculated respectively). The ap-
proximation v is reconstructed by the P1 Lagrangian FE space (see Figure 3), and
the flux y by the linear (RT1) Raviart-Thomas FE space.

x

0.00
0.33

0.67

y

0.00

0.33

0.67

u

-0.01

0.02

0.04

FIGURE 3 Example 1. The approximate solution on the mesh (1089 ND) at t = 0.1.

The optimal convergence test for fixed time-step and decreasing mesh size h
is illustrated in Figure 4. Here, Figure 4a depicts the total error [ e ] 2 and majorant
M

2
I , whereas Figure 4b illustrates the part of the true error e 2

d (the energy norm)

and the indicator m2
d decrease with respect to h. We see that both m2

d and M
2
I have

the expected quadratic convergence, and the values of the indicator (see Figure
4b) practically coincide with e 2

d.
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FIGURE 4 Example 1. Optimal convergence tests.
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FIGURE 5 Example 1. The distribution of the energy part of the error and the indicator
over Q(10).

Next, we consider solving the problem with a fixed mesh on each time-step
and confirm that m2,(k)

d does represent the local distribution of e 2,(k)
d efficiently on

each Q(k). We fix meshes Θ10×9×9 (Figures 5a–5b) and Θ10×17×17 (Figures 5c–5d)
such that the time discretization parameter K = 10 and compare the distributions
of e 2,(10)

d with m2,(10)
d on Q(10) for both meshes. Here, Figures 5a and 5c present the

distributions of e 2,(10)
d and m2,(10)

d element-wise, where elements (EL) are enumer-
ated according to the algorithm used in the FE implementation. Whereas, Figs.
5b and 5d illustrate the same distributions, but here the cells are sorted with re-
spect to the decreasing values of the local true errors e 2,(10)

d . The array containing

m2,(10)
d is depicted in the order defined by the indeces obtained after error sorting.

Both ways of presenting the results must convince the reader on the quantitative
efficiency of the tested error indicator. The evaluation of the error and indicator
distributions by such histograms was introduced in [93, Section 3.4, Example 3.4].
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FIGURE 6 Example 1. The true error and indicator distribution on different time slices
Q(k), k = 1, 3, 5, 7, with refinement using bulk marking M0.3.

Next, we consider the adaptive refinement strategy with bulk marking cri-
teria Mθ, where parameter θ = 0.3 (see [42]). The initial mesh is T11×11 (200 EL,
121 ND). Figure 6 illustrates the distributions of e 2,(k)

d and RHSm2,(k)
d on differ-

ent slices Q(k), k = 1, 3, 5, 7, which demonstrates the quantitative efficiency of the
indicator provided by the majorant. Under each sub-plot of Figure 6, we also
place information on the total values of e 2,(k)

d and m2,(k)
d . Moreover, we can ana-

lyze meshes obtained during the refinement based either on e 2,(k)
d or m2,(k)

d (see
Figure 7). In Figures 7a, 7c, and 7e, we present meshes obtained after the refine-
ment process based on the local error distribution, and Figures 7b, 7d, and 7f
contain meshes constructed when the refinement is based on the local indicator.
It is easy to observe that the meshes on the RHS of Figure 7 resemble the meshes
on the LHS. Moreover, the number of EL in the meshes from both sides is close
(see Table 1, which illustrates the difference in numbers of EL on slices Q(k)). The
efficiency of the total majorant is Ieff = 1.23.
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FIGURE 7 Example 1. Evolution of meshes on time-slices Q(k), k = 1, 3, 5. The refine-
ment is based on the error (a), (c), (e) and indicator (b), (d), (f) using bulk
marker M0.3.
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FIGURE 8 Example 1. Evolution of meshes on time-slices Q(k), k = 1, 3, 5. The refine-
ment is based on the error (a), (c), (e) and indicator (b), (d), (f) using marker
MAVR.
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TABLE 1 Example 1. The difference in numbers of EL in meshes generated during re-
finement using M0.3 based on the true error and the indicator.

k # EL in TN1×N2 (ref. e 2,(k)
d ) # EL in TN1×N2 (ref. m2,(k)

d ) difference in # EL, %

1 200 200 0%
2 420 200 0%
3 1036 1024 1.16%
4 2310 2266 1.9%
5 5198 5194 0.07%
6 11888 11932 0.37%
7 27372 27388 0.06%
8 64334 64264 0.11%
9 154300 152716 1.03%

10 375150 366964 2.18%

TABLE 2 Example 1. The difference in numbers of EL in meshes generated during re-
finement using MAVR based on the true error and the indicator.

k # EL in TN1×N2 (ref. e 2,(k)
d ) # EL in TN1×N2 (ref. m2,(k)

d ) difference in # EL, %

1 200 200 0%
2 420 420 0%
3 1144 1144 0%
4 3116 3068 1.54%
5 7748 7660 1.14%
6 21112 21180 0.32%
7 55592 55744 0.27%
8 155284 155724 0.28%
9 422300 418304 0.95%

The bulk marking strategy can be compared to the marking determined by
the level of the average error MAVR [93, Algorithm 2.1]. Figure 8 demonstrates
the sequence of the meshes obtained as a result of the refinement based on e 2,(k)

d

(LHS) and m2,(k)
d (RHS) on Q(k), k = 1, 3, 5 (to compare the difference in numbers

of EL on different time-slices see Table 2). In this case, we obtain Ieff = 1.4. The
efficiency index is not as accurate as it is expected, due to the fact that, unlike in
the elliptic BVP, there is always a gap between M

2
I and [ e ] 2 related to the time-

derivative vt in m2
f .

It is important to note that the majorant can be used as a tool to predict
‘blow-ups’ in time-dependent explicit schemes, which are much less
time-consuming than the implicit one but are unstable. Furthermore, for one-
dimensional (in space) schemes, the stability condition is written explicitly,
whereas there are no such criteria (CFL number) for two- and three-dimensional
problems (see [36]). As an example, we consider the mesh Θ1280×121×121
(28800 EL, 14641 ND) and illustrate the majorant reaction on instability of the
scheme (see Table 3). Here, the column DOF(v) reflects the degrees of freedom
of v. The LHS of the table contains the total error and the majorant, obtained by
using the stable implicit scheme, whereas the RHS illustrates how the majorant
drastically increases even when the ’blow-up’ is not yet obvious.
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TABLE 3 Example 1. Total error, majorant, and efficiency index for approximations gen-
erated by implicit and explicit schemes.

Implicit scheme Explicit scheme

k DOF(v) [ e ] 2 M Ieff DOF(v) [ e ] 2 M Ieff

1 14641 2.29e-09 3.78e-09 1.29 14641 1.26e-06 7.89e-05 7.93
2 23627 4.01e-09 6.84e-09 1.31 27175 2.06e-03 4.56e-03 1.49
3 39795 5.05e-09 9.14e-09 1.35 45489 9.19e+03 1.46e+04 1.26
4 67719 5.66e-09 1.06e-08 1.37 82344 1.15e+12 1.63e+12 1.19

Example 2. The same properties can be tested in the example with unit cube
Ω = (0, 1)3 ⊂ R

3, T = 1, initial condition u0 = x (1 − x) y (1 − y) z (1 − z), ho-
mogeneous Dirichlet BC, and u = x (1 − x) y (1 − y) z (1 − z)(t2 + t + 1) (again,
f is defined accordingly). Analogously, we consider v ∈ P1. However, in the
current example, we compare the performance of the majorant for two different
approximations of flux, i.e., y ∈ RT0 and y ∈ RT1. Figure 9a demonstrates the
uniform convergence of [ e ] 2 and M

2
I (y) with y ∈ RT0, whereas Figure 9b illus-

trates the same characteristics for y ∈ RT1. They both confirm the quadratic order
of convergence of the majorant constructed with y ∈ RT0 and y ∈ RT1.
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FIGURE 9 Example 2. Optimal convergence of [e]2 and M, (a) y ∈ RT0 and (b) y ∈ RT1.

Next, we compare indicators the reconstruction of which is based on fluxes
of different regularity. It is easy to see that m2,(10)

d on Q(10) (see Figure 10a) is
less efficient than the one reconstructed from y ∈ RT1 in Figure 10b . Latter
illustrations reaffirm the fact that one must use a flux of higher regularity in order
to efficiently predict the local error distribution.

Finally, we consider a refinement strategy with the bulk marking M0.2. We
take a coarse initial mesh T3×3, K = 5, and illustrate the obtained error and ma-
jorant distribution after the refinement on time-slices Q(4) (Figure 11a) and Q(5)

(Figure 11b). The number of obtained EL and the total values of e 2,(k)
d and m2,(k)

d ,
k = 4, 5, are shown below the figures.
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FIGURE 10 Example 2. Energy parts of true error and indicator distributions based on
(a) y ∈ RT0 and (b) y ∈ RT1.
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FIGURE 11 Example 2. The error and indicator distributions for time-slices Q(4) and
Q(5) (y ∈ RT1).

Example 3. Next, we consider an example with a singularity in the solution. The
classical benchmark problem is defined on L-shaped domain
Ω := (−1, 1) × (−1, 1)\[0, 1) × [0, −1) with T = 1, Dirichlet BC with load
uD = r1/3 sin θ, r = (x2 + y2), θ = 2

3 atan2(y, x) on SD, input source function
f = r1/3 sin θ (2 t + 1), and the initial condition u0 = r1/3 sin θ. The correspond-
ing exact solution is u = r1/3 sin θ

(
t2 + t + 1

)
with singularity in the point (0, 0)

(see Figure 12).
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FIGURE 12 Example 3. Approximate solution on the mesh (113 ND) at t = 0.1.
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(d) Q(5): 686 EL, 366 DOF
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(e) Q(7): 2790 EL, 1445 DOF
e 2,(7)

d = 4.6663e-04, m2,(7)
d = 4.7780e-04
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(f) Q(7): 2500 EL, 1296 DOF
e 2,(7)

d = 5.0477e-04, m2,(7)
d = 5.1600e-04

FIGURE 15 Example 3. Evolution of meshes on Q(k), k = 3, 5, 7, after refinements based
on error (a), (c), (e) and on indicator (b), (d), (f), using marking MAVR.
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(c) Q(5): 1569 EL, 823 ND
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d = 9.6882e-04

−1.0 −0.5 0.0 0.5 1.0

x1

−1.0

−0.5

0.0

0.5

1.0

x
2

(d) Q(5): 1504 EL, 788 ND
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(e) Q(7): 8762 EL, 4465 ND
e 2,(7)

d = 2.7680e-04, m2,(7)
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(f) Q(7): 9529 EL, 4855 ND
e 2,(7)

d = 2.8075e-04, m2,(7)
d = 2.8923e-04

FIGURE 16 Example 3. Evolution of meshes on Q(k), k = 3, 5, 7, after refinement based
on error (a), (c), (e) and on indicator (b), (d), (f), using bulk marking M0.3.
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The optimal convergence test of indicator m2
d is provided in Figure 13a (tak-

ing into account that v ∈ P1 and y ∈ RT1). Analogously, we fix the time-step
(K = 10) and refine the mesh discretizing Ω. As expected, the speed of conver-
gence of both the error and the majorant lies between linear and quadratic. In
Figure 13b, the total error and majorant convergence are provided. The differ-
ence in decay of m2

d and M
2
I can be explained by the presence of the term −vt in

the equilibrium part of the majorant m2
f and possible accumulation of the error in

the flux y (in addition to the accumulation of the error in v).
The distribution of the local errors on Q(10) is indicated quite efficiently by

m2,(10)
d (see Figure 14). Figure 14a provides information about the error and majo-

rant distribution on Q(10), where Ω is discretized by the mesh with 192 EL. Figure
14b illustrates analogous characteristics for the mesh with 786 EL. Both figures
confirm that m2,(k)

d manages to locate errors associated with corner singularities.
Moreover, it is easy to note that the error indicator performs better on the refined
mesh with 192 EL.

Finally, we consider the adaptive refinement with two marking procedures
and analyze the obtained meshes. Figure 15 shows meshes, obtained by us-
ing marker MAVR, and Figure 16 compares derived meshes after bulk marking
M0.3. Analogously to Example 1, we compare the meshes generated during the
refinement based on the local true error distribution (LHS) and the local indicator
(RHS).

Due to the main drawback of the incremental method (i.e., being time con-
suming), the space-time FEM, which can be easily parallelized, has been devel-
oped. Monograph [60] introduces a scheme that executes a multigrid method
for the elliptic problem on each time-step, such that the time is treated as an
axis in the space-time grid. Later, more space-time discretization methods were
suggested, i.e., the so-called parallel time-stepping method [149], the multigrid
waveform relaxation method (space parallelism) [140], and the full space-time
multigrid method [63].

Due to the fact that the majorant is formulated on the whole given time-
interval, we can apply it to the solution obtained on a discretized space-time
cylinder. Therefore, for minimization of M

2
I , we follow Algorithm 3.2 in [93,

Section 3.3.1]. The examples below discuss the obtained numerical results for
‘1d + t’- and ‘2d + t’-dimensional problems.

Example 4. First, we study the numerical properties of M
2
I and the indicator on

the unit interval Ω = (0, 1) ⊂ R and T = 1 with homogeneous Dirichlet BC. The
exact solution is u = x (1 − x) (t2 + t + 1) with the IC is u0 = x (1 − x). The ap-
proximation v is reconstructed by P1-FEs (see Figure 17), and the flux y by P2-FEs.
In the current implementation, the time is treated as an extra dimension. There-
fore, after several refinement iterations, we can study the optimal convergence
of the majorant (see Figure 18a). The plot confirms the quadratic speed of con-
vergence. In Figure 18b, we compare the decay of M

2
I on the uniformly refined



52

mesh and on the adaptively refined one (using bulk marker M0.2). It becomes
clear that for such a problem of non-complicated domain, it is more efficient to
do geometric refinement and apply methods based on tensor representations of
the data, e.g.., in the way how it is applied to the Fokker–Planck or chemical mas-
ter equations using tensor train or quantized tensor train formats (see [40, 41]).
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u
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FIGURE 17 Example 4. Approximate solution on the mesh (417 ND), refinement step
(REF) 4.
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FIGURE 18 Example 4. (a) Optimal convergence of the total error and majorant. (b)
Decay of the majorant on the uniformly refined mesh and on the adaptively
refined one.

Next, we consider true error and majorant distributions obtained in each
refinement step (see Figure 19). We illustrate e 2

d and m2
d with respect to EL (num-

bered by the FE code implementation) after REF 2, 3, 4, 5 in Figures 19a, 19b,
19c, and 19d, respectively (the initial mesh is T3×3). The graphic confirms that
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FIGURE 19 Example 4. e 2
d and m2

d distributions after REF # = 2, 3, 4, 5.

the indicator indeed manages to mimic the error distribution and to catch the lo-
cal jumps very efficiently. Table 4 provides a comprehensive confirmation of the
efficiency of the total majorant.

TABLE 4 Example 4. Total error, the majorant, and the efficiency index with respect to
the refinement steps.

# REF # EL [ e ] 2 M 2
I Ieff

1 8 3.5229e-01 4.0889e-01 1.08
2 32 9.1112e-02 1.0682e-01 1.08
3 128 2.2969e-02 2.7215e-02 1.09
4 512 5.7541e-03 6.8586e-03 1.09
5 2048 1.4393e-03 1.7209e-03 1.09
6 8192 3.5987e-04 4.3096e-04 1.09
7 131072 2.2493e-05 2.6969e-05 1.09
8 524288 5.6231e-06 6.7435e-06 1.10
9 2097152 1.4058e-06 1.6861e-06 1.10
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Example 5. Finally, we study the same problem discussed in Example 1 from the
point of view of the space-time discretization. The FE spaces used are as follows:
v ∈ P1 and y ∈ P2. We consider two meshes obtained after the uniform refine-
ment steps REF 1, 2, 3, 4 (see Figures 20a, 20b, 20c, and 20d). Again, the local error
and indicator distributions are shown element-wise, where EL are numbered by
the algorithm implemented in the code. Table 5 provides the information about
the efficiency index of the majorant on every REF.
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FIGURE 20 Example 5. Distribution of error and majorant after refinement steps # =
1, 2, 3, 4.

TABLE 5 Example 5. Total error, the majorant, and the efficiency index with respect to
the refinement steps.

# REF # EL [ e ] 2 M 2
I Ieff

1 48 4.7719e-02 5.6030e-02 1.08
2 384 1.7268e-02 1.9175e-02 1.05
3 3072 8.4558e-03 9.4992e-03 1.06
4 24576 6.1427e-03 6.9789e-03 1.07
5 196608 5.5479e-03 6.2617e-03 1.06
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3.5 Guaranteed error estimates for problems on a decomposed do-
main

In the current section, we present another important result of our work, i.e., error
estimates that can be applied for more realistic problems defined on polygonal
(polyhedral) domains of a complicated structure and having a mixed BC with
non-trivial input functions. The main drawback of the majorant defined in Theo-
rem 3.1 is that it contains global Friedrichs’ CFΩ and trace CTΓR constants, which
are hard to calculate or reliably estimate on complex domains. From a numerical
point of view, the task is equivalent to the reconstruction of a guaranteed lower
bound of the least eigenvalue for the respective differential operator. Therefore,
in [PIII, PIV] we suggest the idea of decomposing domain Ω (DD) into a col-
lection of simple non-overlapping sub-domains, such that their characteristics
quantities, i.e., constants in (2.7), (2.8) and (2.9), are known or can be estimated
(see, e.g., [99, 113, 64, 71, PV]). The method of DD and its numerical efficiency
in relation to FEM and boundary element method (BEM) have been thoroughly
studied in [82, 28, 59].

Below, we consider the main idea of the suggested approach. Let Ω be de-
composed into a collection OΩ of non-overlapping sub-domains Ω := ∪Ωi∈OΩ

Ωi,
i = 1, . . . , N. Next, we sort the elements of the obtained collection into two differ-
ent sets OP and OO according to the values of the parameter λ, i.e., λ|OP ≥ P and
λ|OO ≤ P, respectively. The sorting is motivated by the strategy of the derivation
of error estimates, which depends on the behavior of reaction function λ. For the
elements of OO, we impose the condition{

r1−μ
f (v, y)

}
Ωi∈OO

= 0, for a. a. t ∈]0, T[, (3.35)

in order to apply (2.7). Since v and y are in our disposal, condition (3.35) is not
difficult to satisfy technically. Subdomains from OP are treated by standard ar-
guments due to the presence of a weak term with a relatively large λ. Due to
the decomposition of Ω, we obtain ΓR := ∪ΓR j∈SR ΓRj such that ΓRj = ∂Ωj ∩ ΓR,
j = 1, . . . , M, M ≤ N. Analogously, by imposing local conditions{

rσ(v, y)
}

ΓR j∈SR
= 0, for a. a. t ∈]0, T[, (3.36)

constant CTΓR can be excluded from (3.13), which is especially advantages if the
Robin boundary condition (2.16) is inhomogeneous with the non-trivial input
function. Provided that (3.36) is satisfied, we can use (2.7) in order to estimate
the error in the residual (3.11).

Based on the above-presented DD into collections OP, O0, SRj (see Figure
21), we construct complexes

ROP,{·}(t) := ∑
Ωl∈OP

|Ωl |
P2

{
r1−μ

f

}2

Ωl

, ROP, ‖·‖(t) := ∑
Ωl∈OP

C2
PΩl

λA

∥∥∥r1−μ
f

∥∥∥2

Ωl
,
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RO0(t) := ∑
Ωk∈OO

C2
PΩk
λA

∥∥∥r1−μ
f

∥∥∥2

Ωk
, RSR(t) := ∑

ΓR j∈SR

(
Ct

ΓR j

)2

λA
‖rσ‖2

ΓR j
, (3.37)

where the residual functionals r1−μ
f (v, y) and rσ(v, y) are defined in (3.12) and

(3.11), respectively. Then generalized estimates follow from Theorem 3.5.

ΩPΩO

Ωi

Ω2Ωj

ΓD

ΓR

ΓR1

ΓR2ΓRj

FIGURE 21 Example of the domain decomposition.

Theorem 3.5. Assume that (3.35) and (3.36) hold. Then for any v ∈ V1,1
0 (QT) and

y ∈ Ydiv(QT) and δ ∈ (0, 2], ρ1(t) ∈
[
(2 − 1

ρ2
)−1,+∞

[
, ρ2(t) ∈ [1,+∞[, the follow-

ing estimate holds:

[ e ] 2
(ν, θ, 1, 2) ≤ M

2
I,N(v, y; δ, ρ1, ρ2, μ) :=

T∫
0

(
ρ1

∥∥∥ 1
λ rμ

f

∥∥∥2

Ω
+ ρ2ROP,{·}(t)

+ α1‖rA ‖2
A−1 + α2

(
ROP,‖·‖(t) + ROO(t)

)
+ α3R SR(t)

)
dt. (3.38)

Here, r f (v, y) and rA(v, y) are defined in (3.9) and (3.10), respectively, and ROP,{·},

ROP,‖·‖, ROO, and R SR are determined in (3.37), ν = 2 − δ, θ(x, t) = λ(x)
(
2 − 1

ρ1
− 1

ρ2

)1/2

are positive weights, μ(x, t) ∈ [0, 1], and α1(t), α2(t), α3(t) are positive scalar-valued
functions satisfying the relation (3.15).

Proof. See, e.g., Theorem 3 (i) in [PIV]. �

In [PIV, Section 3.3], we show that the obtained estimate (3.38) is equiva-
lent to the error measured in the primal-dual norm. By analogous methods used
in Theorem 3.5, we obtain the form of the advanced majorant (3.23) applied for
the decomposed Ω, which is equivalent to the error measured by (3.7) (see [PIV,
Section 3.5]). Due to the fact that minorant in Theorem 3.4 does not contain any
global constants, it can be straightforwardly rewritten for the case of a decom-
posed domain.
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3.6 Sharp bounds of constants in Poincaré-type inequalities

In order to apply the estimates discussed in Section 3.5, we must have in our
disposal exact values or reliable estimates of the constants in (2.7), (2.8), and
(2.9). Due to the use of FE approximations here, the constants in the above-
mentioned inequalities on arbitrary nondegenerated triangles and tetrahedrons
are of main interest. Therefore, the work presented in [PV] is dedicated to sharp
upper bounds of the constants in classic Poincaré and Poincaré-type inequalities
for functions with zero mean on the boundary of arbitrary nondegenerated sim-
plexes in R

2 and R
3.
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C
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)

α T

Γ

(a)

AAAAA
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θ

C(0, 0, h3)

B(h1, 0, 0)

D

α

(b)

FIGURE 22 Simplices in (a) R2 and (b) R3.

For R
2, we consider two basic triangles T̂π/2 := conv

{
(0, 0), (1, 0), (0, 1)

}
and T̂π/4 := conv

{
(0, 0), (1, 0),

( 1
2 , 1

2

)}
, with Γ̂ :=

{
x1 ∈ [0, 1], x2 = 0}, in order to

obtain bounds of constants in (2.8) and (2.9). The corresponding exact values of
the constants were recalled in Section 2.1, i.e., C p

Γ̂,π/2
≈ 0.49291, C Tr

Γ̂,π/2
≈ 0.65602

and C p
Γ̂,π/4

≈ 0.24646, C Tr
Γ̂,π/4

≈ 0.70711. The estimates of Cp
Γ and CTr

Γ follow from
the Lemma 3.1 [PV, Section 2].

Lemma 3.1. For any w ∈ H̃1(T, Γ) defined on simplex

T := conv
{
(0, 0), (h, 0),

(
hρ cos α, hρ sin α

)}
(see Figure 22a) with face Γ :=

{
x1 ∈ [0, h], x2 = 0

}
, the Poincaré-type inequalities

‖w‖T ≤ Cp
Γ h ‖∇w‖T and ‖w‖Γ ≤ CTr

Γ h
1/2 ‖∇w‖T
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hold with

Cp
Γ ≤ C

p
Γ := min

{
cp,π/2 C p

Γ̂,π/2
, cp,π/4 C p

Γ̂,π/4

}
,

CTr
Γ ≤ C

Tr
Γ := min

{
cTr,π/2 C Tr

Γ̂,π/2
, cTr,π/4 C Tr

Γ̂,π/4

}
,

respectively. Here, the weighting parameters cp,π/2 = μ
1/2
π/2

, cp,π/4 = μ
1/2
π/4

,

cTr,π/2 =
(
ρ sin α

)−1/2 cp,π/2 , cTr,π/4 =
(
2ρ sin α

)−1/2 cp,π/4 ,

μπ/2(ρ, α) = 1
2

(
1 + ρ2 +

(
1 + ρ4 + 2 cos 2α) ρ2)1/2

)
, (3.39)

μπ/4(ρ, α) = 2ρ2 − 2ρ cos α + 1+ (3.40)(
(2ρ2 + 1)(2ρ2 + 1 − 4ρ cos α + 4ρ2 cos 2α)

)1/2, (3.41)

and C p
Γ̂,π/2

, C Tr
Γ̂,π/2

and C p
Γ̂,π/4

, C Tr
Γ̂,π/4

are the constants in (2.8) and (2.9) for reference

triangles T̂π/2 and T̂π/4 , respectively.

Proof. See [PV, Lemma 1, Section 2]. �

Analogously to Lemma 3.1, the upper bound of the constant in (2.7) can be
obtained. In addition to earlier defined Tπ/4 and Tπ/2, we consider third reference

triangle Tπ/3 := conv
{
(0, 0), (1, 0), (1

2 ,
√

3
2 )
}

. Consequently, the upper bound of
CP

Ω in (2.7) follows from the Lemma 3.2 [PV, Section 2].

Lemma 3.2. For any w ∈ H̃1(T), the estimate of the constant in

‖w‖T ≤ CP
Ωh ‖∇w‖T (3.42)

has the form

CP
Ω ≤ C

P,MR
Ω = min

{
cπ/4 C P

T̂,π/4
, cπ/3 C P

T̂,π/3
, cπ/2 C P

T̂,π/2

}
(3.43)

Here,
cπ/4 = μ

1/2
π/4

, cπ/3 = μ
1/2
π/3

, and cπ/2 = μ
1/2
π/2

,

where μπ/2 and μπ/4 are defined in (3.39) and (3.41) and

μπ/3(ρ, α) = 2
3(1 + ρ2 − ρ cos α) + 2

(1
9(1 + ρ2 − ρ cos α)2 − 1

3 ρ2 sin2 α
)1/2,

and C P
T̂,π/4

= 1√
2π

, C P
T̂,π/3

= 3
4π , and C P

T̂,π/2
= 1

π .

Proof. See [PV, Lemma 2, , Section 2]. �

In [PV, Section 3], the bounds of C
p
Γ , C

Tr
Γ , and C

P,MR
Ω (provided by Lemmas

3.1 and 3.2) are compared with the corresponding minorants, which can be found
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by minimization of the Rayleigh quotients

Rp
Γ[w] = ‖∇w‖T

‖w−{w}Γ‖T
, RTr

Γ [w] = ‖∇w‖T
‖w−{w}Γ‖Γ

, and RP
Ω[w] = ‖∇w‖T

‖w−{w}Γ‖Γ
, (3.44)

for all w ∈ H̃1(T). Moreover, [PV] provides the comparison of C
P,MR
Ω with exist-

ing estimates from [86, 85] and [31]. Finally, we also discuss the structure of min-
imizers for Rayleigh quotients (3.44) and their behavior with respect to changing
parameters.

The same method can be applied for non-degenerate tetrahedrons T ∈ R
3

presented in the form

T = conv
{
(0, 0, 0), (h1, 0, 0), (0, 0, h3), (Dx1 , Dx2 , Dx3)

}
, (3.45)

where (Dx1 , Dx2 , Dx3) = (h1ρ cos α sin θ, h1ρ sin α sin θ, h1ρ cos(θ)), h1 and h3 are
the scaling parameters along axises Ox1 and Ox3 , respectively, α is a polar angle,
and θ is an azimuthal angle (see Fig. 22b). Let zero mean condition be imposed on
Γ = conv

{
(0, 0, 0), (h1, 0, 0), (0, 0, h3)

}
, and T̂θ̂,α̂ denote the reference tetrahedron,

where θ̂ and α̂ are fixed angles. Then, by Fθ̂,α̂ we denote the respective mapping
Fθ̂,α̂ : T̂θ̂,α̂ → T.

To the best of our knowledge, exact values of constants in Poincaré-type
inequalities for simplexes in R

3 are unknown. Therefore, in [PV] some reference
cases are calculated numerically with high accuracy and listed in Table 6. Based
on these data, we present the (approximate) bounds for an arbitrary tetrahedron
T:

‖v‖T ≤ C̃ p
Γ h1 h3 ‖∇v‖T, C̃ p

Γ = min
α̂={π/4,π/3,π/2,2π/3}

{
cp

π/2,α̂ C p
Γ̂,π/2,α̂

}
,

‖v‖Γ ≤ C̃ Tr
Γ (h1 h3)

1
2 ‖∇v‖T, C̃ Tr

Γ = min
α̂={π/4,π/3,π/2,2π/3}

{
cTr

π/2,α̂ C Tr
Γ̂,π/2,α̂

}
, (3.46)

where C p
Γ̂,π/2,α̂

and C Tr
Γ̂,π/2,α̂

are the constants related to four reference thetrahedron
from Table 6 and

cp
π/2,α̂ =

μ
1/2
π/2,α̂
h1h3

, cTr
π/2,α̂ =

(
h3 sin α̂

ρ sin α sin θ

)1/2
cp

π/2,α̂.

are the ratios of the mapping Fπ/2,α̂: T̂π/2,α̂ → T. Here,
T̂π/2,α̂ := conv

{
(0, 0, 0), (1, 0, 0), (0, 0, 1), (cos α̂, sin α̂, 0)

}
with α̂ = {π

4 , π
3 , π

2 , 2π
3 },

T is defined in (3.45), and Fπ/2,α̂(x̂) is presented by the relation

x = Fπ/2,α̂(x̂) = Bπ/2,α̂ x̂, Bπ/2,α̂ =

⎛⎜⎜⎝
h1

h1
sin α̂ (ρ cos α sin θ − cos α̂) 0

0 h1ρ
sin α sin(θ)

sin α̂ 0

0 h1ρ cos θ
sin α̂ h3

⎞⎟⎟⎠ .

The numerical tests and detailed discussions of the practical aspects of this
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TABLE 6 C p,M
Γ̂,π/2,α̂

and C Tr,M
Γ̂,π/2,α̂

with respect to M(N) for T̂θ̂,α̂ with ρ = 1, θ̂ = π
2 , and

several α̂.

θ̂ = π
2 , α̂ = π

4 θ̂ = π
2 , α̂ = π

3

x̂1

x̂2

x̂3

T̂π/4

Γ̂

α̂

x̂1

x̂2

x̂3

T̂π/3

Γ̂

α̂

M(N) C p,M
Γ̂,π/2,α̂

C Tr,M
Γ̂,π/2,α̂

C p,M
Γ̂,π/2,α̂

C Tr,M
Γ̂,π/2,α̂

7 0.32431 0.760099 0.325985 0.654654
26 0.338539 0.829445 0.340267 0.761278
63 0.341122 0.831325 0.342556 0.762901
124 0.341147 0.831335 0.342589 0.762905
215 0.341147 0.831335 0.342589 0.762905

θ̂ = π
2 , α̂ = π

2 θ̂ = π
2 , α̂ = 2π

3

x̂1

x̂2

x̂3

T̂π/2

Γ̂

α̂
θ̂

x̂1

x̂2

x̂3

T̂2π/3

Γ̂

α̂

M(N) C p,M
Γ̂,π/2,α̂

C Tr,M
Γ̂,π/2,α̂

C p,M
Γ̂,π/2,α̂

C Tr,M
Γ̂,π/2,α̂

7 0.360532 0.654654 0.4152099 0.686161
26 0.373669 0.751615 0.4274757 0.863324
63 0.375590 0.751994 0.4286444 0.864595
124 0.375603 0.751999 0.4286652 0.864630
215 0.375603 0.751999 0.4286652 0.864630

study can be found in [PV]. In [PV, Section 5], we provide an example that shows
possible applications of the results and derive a computable majorant of the dif-
ference between the exact solution of a boundary value problem and an arbi-
trary finite dimensional approximation computed on a simplicial mesh. Using
the above presented constants, one can weaken the pointwise continuity condi-
tion of normal components of the auxiliary flux on inner faces of the mesh in
the functional estimates (3.38). Instead, it is enough that the mean values of the
normal components are continuous, which allows us to use a wider space for the
approximation of the flux.



4 CONCLUSIONS AND OUTLOOK

In this chapter, we summarize the results presented in the study and give an out-
look on some future research. The first part of the thesis presents a new version
of the Picard–Lindelöf method for nonlinear ODEs supplied with guaranteed
and explicitly computable upper bounds of approximation errors. The estimates
derived take into account interpolation and integration errors and, therefore, pro-
vide objective on the accuracy of computed approximations (see [PI]).

In the second (major) part of the work, guaranteed bounds of distance to the
exact solution of the evolutionary reaction-diffusion problem with mixed BC are
discussed. We show that two-sided error estimates are directly computable and
equivalent to the error. Numerical experiments have confirmed that the estimates
provide accurate two-sided bounds of the overall error and generate efficient in-
dicators of local error distribution (see [PII] and Section 3.4 of the current work).

Earlier, we have generalized two-sided bounds to evolutionary reaction-
diffusion problems and adapted them to domains of complicated structure with
mixed Dirichlet–Robin BC. The estimates are also valid for problems with com-
plicated nonlinear source functions. To overcome computational difficulties, the
domain decomposition method was used. To obtain the error estimate, we have
exploited the classical Poincaré and Poincaré-type inequalities for functions with
zero mean boundary traces. Therefore, the new corresponding bounds of the dis-
tance to the exact solution contain only constants in local Poincaré-type inequal-
ities associated with subdomains, which quantitatively improves the majorant
value. Moreover, it has been proved that the bounds are equivalent to the primal
and primal-dual energy norms of the error (see [PIII, PIV]).

The above-introduced estimates require exact values of guaranteed and re-
alistic bounds of constants in respective functional inequalities. Therefore, in the
last part of the thesis, we present sharp estimates of constants in Poincaré and
Poincaré-type inequalities for functions having zero mean value on the bound-
ary of a Lipschitz domain or on a measurable part of it. These estimates are
particularly used in a posteriori error estimation methods for I-BVPs introduced
in [PIII] and [PIV]. Our focus was on computable relations that provide sharp
bounds of the constants in the above-mentioned inequalities on simplexes in 2D
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and 3D, which, based on numerical simulations, have confirmed to provide ef-
ficient numerical results. Also, we have numerically studied the behavior of the
constants in the classical Poincaré inequalities and compared these results with
known analytical estimates.

In the context of partial differential equations, we have studied only lin-
ear models. Thus, extension of these methods to nonlinear I-BVPs is a matter of
future work. Moreover, it would be interesting to extend the application of majo-
rant for nonconforming approximations. The estimates based on the domain de-
composition technique and local classical Poincaré and Poincaré-type inequalities
for functions with zero mean trace obtained in [PIV] can be further developed. Fi-
nally, one of the most important directions for the future work is to improve the
speed of majorant reconstruction, e.g., to implement a highly parallel algorithm
for its minimization.
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YHTEENVETO (FINNISH SUMMARY)

Tämä väitöskirja käsittelee funktionaalisia a posteriori virhe-estimaatteja ajasta
riippuville ongelmille. Väitöskirja koostuu viidestä julkaisusta, joista ensimmäi-
set käsittelevät epälineaaristen differentiaaliyhtälöiden Cauchy-ongelmaa, sekä
aika-riippuvaista parabolista reaktio-diffuusio-konvektio-ongelmaa. Julkaisuissa
tehdään teoreettinen a posteriori virhe-analyysi ja kattava numeerinen analyysi.
Kaksi viimeistä julkaisua keskittyvät Poincare-tyyppisiin epäyhtälöihin ja niiden
sisältämien vakioiden numeeriseen laskentaan. Näille vakioille johdetaan ylärajat
kolmioille ja tetraedreille. Osittaisdifferentiaaliyhtälöiden laskenta-alue diskre-
toidaan tyypillisesti tämän muotoisiin osa-alueisiin. Näiden vakioiden ylärajat
ovat erityisen hyödyllisiä sovellettuna funktionaalisiin virhe-ylärajoihin.

Tässä työssä esitellyt virhe-estimaatit ovat täysin laskettavissa, eli ne eivät
sisällä tuntemattomia muuttujia. Ne ovat myös täysin luotettavia, eli tarjoavat ai-
na aidon ylärajan virheelle. Työssä suoritetut kattavat numeeriset kokeet osoitta-
vat funktionaalisten virhe-estimaattien ja niistä johdettujen virhe-indikaattorien
tehokkuuden ja luotettavuuden. Kaikki tässä työssä tehdyt numeeriset kokeet
suoritettiin MATLABilla ja FEniCSin Python-rajapinnalla.
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= ϕ(u(t), t), u(t0) = u0, (1)

where the solution u(t) (which may be a scalar or vector function) must be found on
the interval [t0, tK ].
Existence and uniqueness of the solutions follow from the Picard-Lindelöf the-
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The problem (1) can be numerically solved by various well-known methods (e.g.,
the methods of Runge–Kutta and Adams). Typically, the methods are furnished by a
priori asymptotic estimates which show theoretical properties of the iteration algo-
rithm. However, these estimates may have mainly a qualitative meaning and do not
provide all necessary information about error bounds. This is the goal of a posteriori
error estimation methods. We deduce such type of estimates and suggest a version of
the Picard-Lindelöf method as a tool for constructing a fully reliable approximation
of (1).
The Picard-Lindelöf iteration is one of the efficient known numerical methods

for ODEs. Furthermore, it can be used not only for ODEs but for t-dependent al-
gebraic and functional equations (see, e.g., [5, 6]). It was shown that the speed of
convergence is quite independent of the step sizes. Numerical methods based on
Picard-Lindelöf iterations for dynamical processes (the so-called waveform relax-
ation in the context of electrical networks) are discussed in [2].
The approach discussed in this paper is based on two-sided a posteriori estimates

derived by Ostrowski [7] (see also systematic exposition presented in the books [4,
8]). The algorithm includes natural adaptation of the integration step and provides
guaranteed bounds for the accuracy on the time interval [t0, tK ].
In Sect. 2, we present the main idea of the Picard-Lindelöf method and obtain

the conditions which not only provide convergence of the method but also allow
applying a posteriori error estimates. However, these estimates cannot be directly
used. In practice computations based on the Picard-Lindelöf method we must take
into account interpolation and integration errors. This analysis is done in Sect. 3.
It leads to error bounds, derived in Sect. 4, which include the interpolation and
integration errors. The structure of the algorithm is exposed in Sect. 5, where results
of numerical tests are presented.

2 Picard-Lindelöf Method

Assume that the function ϕ(ξ (t), t) (which is allowed to be a vector-valued func-
tion) in (1) is continuous with respect to both variables in terms of the continuous
norm

‖u‖C([tk,tk+1]) := max
t∈[tk,tk+1]

|u(t)| (2)

and satisfies the Lipschitz condition in the form

‖ϕ(u2, t2)−ϕ(u1, t1)‖C([t1,t2]) ≤ L1‖u2−u1‖C([t1,t2]) +L2|t2− t1|,
∀(u1, t1),(u2, t2) ∈ Q, (3)

where L1, L2 are Lipschitz constants, and

Q := {(ξ , t) | ξ ∈ U, t0 ≤ t ≤ tN}. (4)
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U is the set of possible values of u which comes from an a priori analysis of the
problem. (It is clear that u0 ∈ U.)
In the Picard-Lindelöf method, we represent the differential equation in the inte-

gral form

u(t) =
∫ t

t0
ϕ(u(s),s)ds+u0. (5)

Now, the exact solution is a fixed point of (5), which can be found by the iteration
method

u j(t) =
∫ t

t0
ϕ(u j−1(s),s)ds+u0. (6)

We write in the form u j = T u j−1+u0, where T : X → X is the integral operator.
It is easy to show that the operator

T u :=
∫ t

tk
ϕ(u(τ),τ)dτ +u0,k

is q-contractive on Ik = [tk, tk+1], where Ik is a subinterval of the mesh FK =
∪K−1k=0 [tk, tk+1] defined on the interval [t0, tK ], with respect to the norm ‖u‖C(Ik), if
the condition

q := L1(tk+1− tk) < 1 (7)

is provided.
Therefore, if the interval [tk+1, tk] is small enough, then the solution can be found

by the iteration procedure. In the next sections, we call this method the Adaptive
Picard-Lindelöf (APL) method.

3 Application of the Ostrowski Estimates

For the considered problem, the Ostrowski estimate reads as follows:

Theorem 1 ([7]). Assume that (7) is satisfied on Ik := [tk, tk+1]. Then, the following
estimate holds:

M�j :=
1
1+q

‖u j−u j+1‖C(Ik) ≤ ‖u−u j‖C(Ik) ≤
q

1−q
‖u j−u j−1‖C(Ik) =:M⊕j . (8)

Remark 1. It is possible to derive more accurate error bounds for ‖u− u j‖C(Ik) by
using additional elements of the sequence {u j}∞

j=1 that have indexes greater than j:

‖u−u j‖C(Ik) ≤M
⊕,p
j :=

1
1−qp

‖u j−u j+p‖C(Ik). (9)

By the mathematical induction method it can be proved that the optimal form of the
majorant and minorant based on P correspondent elements of the sequence are as
follows:
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M�,P
j := sup

p=1,...,P

{
1

1+qp
‖u j−u j+p‖C(Ik)

}
,

M⊕,P
j := inf

p=1,...,P

{
1

1−qp
‖u j−u j+p‖C(Ik)

}
.

(10)

However, the estimates (8) cannot be directly used because numerical approxi-
mations include interpolation and integration errors, which must be taken into ac-
count by fully reliable schemes.
Let us discuss this issue within the paradigm of a single (e.g., the first) step of

the APL:
u1(t) =

∫ t

t0
ϕ(u0(τ),τ)dτ, t ∈ [t0, t1], (11)

where u0 is the initial approximation defined as a piecewise affine function on the
mesh ΩSk = ∪

Sk−1
s=0 [zs,zs+1] on the interval [t0, t1].

If q< 1 and u1 is computed exactly, then

‖u1(t)−u(t)‖C([t0,t1]) ≤
q
1−q

‖u1(t)−u0(t)‖C([t0,t1]). (12)

However, in general, u1 is approximated by a piecewise affine continuous function

ū1(t) = πu1 ∈CP1([zs,zs+1]), s= 0, ...,Sk−1, (13)

where π is the projection operator π : C → CP1([t0, t1]) satisfying the relation
π u(zs) = ū(zs). Thus, on the right-hand side of (12) we can estimate as follows:

‖u1(t)−u0(t)‖C([t0,t1]) ≤ ‖ū1(t)−u0(t)‖C([t0,t1]) +‖ū1(t)−u1(t)‖C([t0,t1]). (14)

Here ‖ū1(t)−u1(t)‖C([t0,t1]) = ‖ē1‖C([t0,t1]) is an interpolation error. In general, this
term is unknown, but we can estimate it using an interpolation error estimate.
Numerical integration generates other errors which must be taken into account.

Indeed, the values ū(zs), s= 0, ...,Sk, cannot be found exactly. Hence, at every node
zs instead of ū1(zs) we have û1(zs). Now, (14) implies

‖u1(t)−u0(t)‖C([t0,t1]) ≤ ‖û1(t)−u0(t)‖C([t0,t1])+

+‖û1(t)− ū1(t)‖C([t0,t1]) +‖ū1(t)−u1(t)‖C([t0,t1]), (15)

where ‖û1(t)− ū1(t)‖C([t0,t1]) = ‖ê1‖C([t0,t1]) is the integration error.
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4 Estimates of Interpolation and Integration Errors

4.1 Interpolation Error

We study the difference between u1 and ū1, where ū1 is the linear interpolant of u1
defined at the points {zs}Sks=0:

u1(zs) = ū1(zs) =
∫ zs

0
ϕ(u0(t), t)dt. (16)

For all z ∈ [zs,zs+1],

ū1(z) = u1(zs)+
u1(zs+1)−u1(zs)

Δs
(z− zs). (17)

Then,

ē= ū1(z)−u1(z) =

=

[∫ zs

0
ϕ(u0(t), t)dt+

∫ zs+1
zs ϕ(u0(t), t)dt

Δs
(z− zs)

]
−

∫ z

0
ϕ(u0(t), t)dt =

=
z− zs

Δs

∫ zs+1

zs
ϕ(u0(t), t)dt−

∫ z

zs
ϕ(u0(t), t)dt. (18)

Taking into account that u0 is affinely interpolated, consider the last integral on the
right-hand side of (18)∫ z

zs
ϕ(u0(t), t)dt =

∫ z

zs
ϕ

(
u0,s+

u0,s+1−u0,s
Δs

(t− zs), t
)
dt. (19)

Define
λ =

t− zs
Δs

=
t− zs
zs+1− zs

, (20)

where zs and zs+1 are nodes of the mesh defined in Section 3. Substitute
t = zs+(zs+1− zs)λ to ϕ(u0(t), t)

ϕ
(
u0,s+

u0,s+1−u0,s
Δs

(t− zs), t
)

=

= ϕ(u0,s+(u0,s+1−u0,s)λ ,zs+λ (zs+1− zs)) =

= ϕ(λu0,s+1+(1−λ )u0,s,λ zs+1+(1−λ )zs). (21)

Let
ϕ̃[s,s+1] := ϕs+

ϕs+1−ϕs
Δs

(t− zs), (22)

where ϕs = ϕ(u0,s,zs) and ϕs+1 = ϕ(u0,s+1,zs+1). Using (20), we rewrite (22)
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ϕ̃[s,s+1] = ϕs+(ϕs+1−ϕs)λ = λϕs+1+(1−λ )ϕs. (23)

Thus, we can derive the following estimate with the help of (23) and (3):∣∣∣∣ϕ (
u0,s+

u0,s+1−u0,s
Δs

(t− zs), t
)
− ϕ̃[s,s+1]

∣∣∣∣≤
≤ |ϕ(λu0,s+1+(1−λ )u0,s, λ zs+1+(1−λ )zs)−λϕs+1+(1−λ )ϕs| ≤

≤ (1−λ )
[
L1,s |λu0,s+1+(1−λ )u0,s−u0,s|+

+L2,s |λ zs+1+(1−λ )zs− zs|
]
+

+ λ
[
L1,s|λu0,s+1+(1−λ )u0,s−u0,s+1|+

+L2,s|λ zs+1+(1−λ )zs− zs+1|
]
≤

≤ 2λ (1−λ ) [L1,s|u0,s+1−u0,s|+L2,s|zs+1− zs|]

≤ 2
(zs+1− t)(t− zs)

Δ 2s
[L1,s|u0,s+1−u0,s|+L2,sΔs] .

(24)

We decompose (19)∫ z

zs
ϕ(u0(t), t)dt =

=
∫ z

zs
ϕ̃[s,s+1](t)dt+

∫ z

zs

[
ϕ(u0,s+

u0,s+1−u0,s
Δs

(t− zs), t)− ϕ̃[s,s+1]

]
dt. (25)

Let us denote the first integral on the right-hand side of (25) by ĩs(z). Then,

ĩs(z) :=
∫ z

zs

(
ϕs+

ϕs+1−ϕs
Δs

(t− zs)
)
dt = (z− zs)

[
ϕs+

ϕs+1−ϕs
2Δs

(z− zs)
]
.

(26)

The second integral on the right-hand side of (25) is estimated with the help of (24):∫ z

zs

∣∣∣∣ϕ (
u0,s+

u0,s+1−u0,s
Δs

(t− zs), t
)
− ϕ̃[s,s+1]

∣∣∣∣dt ≤
≤
2 [L1,s|u0,s+1−u0,s|+L2,sΔs]

Δ 2s

∫ z

zs
(t− zs)(zs+1− t)dt =

=
2 [L1,s|u0,s+1−u0,s|+L2,sΔs]

Δ 2s

∫ z

zs
(t− zs)(zs+Δs− t)dt =

=
2 [L1,s|u0,s+1−u0,s|+L2,sΔs]

Δ 2s
(z− zs)2

[
Δs
2
−
z− zs
3

]
=

=
[L1,s|u0,s+1−u0,s|+L2,sΔs]

3Δ 2s
(z− zs)2(2zs+3Δs−2z).

(27)
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Since
max

z∈[zs,zs+1]
(z− zs)2(2zs+3Δs−2z) = Δ 3s , (28)

we find that∫ z

zs

∣∣ϕ(u0,s+
u0,s+1−u0,s

Δs
(t− zs), t)− ϕ̃[s,s+1]

∣∣dt ≤
≤

[L1,s|u0,s+1−u0,s|+L2,sΔs]Δ 3s
3Δ 2s

=

=
[L1,s|u0,s+1−u0,s|+L2,sΔs]Δs

3
. (29)

We represent the interpolation error (18) using (26),

ū1(z)−u1(z) =
z− zs

Δs

∫ zs+1

zs
ϕ(u0(t), t)dt−

∫ z

zs
ϕ(u0(t), t)dt =

=
z− zs

Δs
ĩs(zs+1)− ĩs(z)+ ε1(z)+ ε2(z), (30)

where
ε1 =

∫ zs+1

zs

∣∣∣∣ϕ(u0,s+
u0,s+1−u0,s

Δs
(t− zs), t)− ϕ̃[s,s+1]

∣∣∣∣dt,
ε2 =

∫ z

zs

∣∣∣∣ϕ(u0,s+
u0,s+1−u0,s

Δs
(t− zs), t)− ϕ̃[s,s+1]

∣∣∣∣dt. (31)

Thus, we estimate the interpolation error as follows:

ē= ‖ū1(z)−u1(z)‖C([zs,zs+1]) ≤

≤ max
z∈[zs,zs+1]

∣∣∣∣ z− zsΔs
ĩs(zs+1)− ĩs(z)

∣∣∣∣+ max
z∈[zs,zs+1]

|ε1(z)+ ε2(z)|. (32)

For the first term on the right hand side of (32) we have (see (26))

max
z∈[zs,zs+1]

∣∣∣∣ z− zsΔs
ĩs(zs+1)− ĩs(z)

∣∣∣∣dt ≤ |ϕs+1−ϕs|
2Δs

max
z∈[zs,zs+1]

|(z− zs)(zs+1− z)| ≤

≤
|ϕs+1−ϕs|
2Δs

Δ 2s
4

=
1
8
|ϕs+1−ϕs|Δs. (33)

For the second term, we have (see (29))

max
z∈[zs,zs+1]

|ε1(z)+ ε2(z)| ≤ 2
Δs

[
L1,s|u0,s+1−u0,s|+L2,sΔs

]
3

. (34)

Hence, the overall estimate of the interpolation error has the form
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‖ū1(z)−u1(z)‖C([zs,zs+1]) ≤
ϕs+1−ϕs

8
Δs+

2
3

Δs
[
L1,s|u0,s+1−u0,s|+L2,s Δs

]
. (35)

4.2 Integration Error

The interpolation error estimate (35) does not account for the fact that computations
of the integral are performed approximately. It is not difficult to evaluate the inte-
gration errors by noting that for a Lipschitz function f (t) the error encompassed in
the simplest trapezoidal quadrature formula∫ t1

t0
f (t)dt 


f (t0)+ f (t1)
2

(t1− t0) (36)

can be estimated as follows:

eint ≤
L
4
(t1− t0)2−

1
4L

[ f (t1)− f (t0)]2. (37)

Then, it is not difficult to show that the integration error can be estimated as

‖û1(t)− ū1(t)‖C([zs,zs+1]) ≤
Ls
4

Δ 2s −
1
4Ls

[ϕs+1−ϕs]2, (38)

where Ls = L1,s ls+L2,s. (Here, ls is the slope of the piecewise function on every
interval [zs,zs+1], s= 0, ...,Sk−1.)

4.3 Guaranteed Error Bounds for Picard-Lindelöf Method

Thus, on every subinterval [zs,zs+1] the interpolation error can be estimated with the
help of (35). Then, for whole interval [t0, t1] :=∪

Sk−1
s=0 [zs,zs+1] the interpolation error

estimate is the following:

‖ū1(t)−u1(t)‖C([t0,t1]) ≤

≤ ∑
s=0,...,Sk−1

ϕs+1−ϕs
8

Δs+
2
3
[
L1,s|u0,s+1−u0,s|+L2,sΔs

]
Δs. (39)

Analogously, for the integration error

‖ū1(t)− û1(t)‖C([t0,t1]) ≤ ∑
s=0,...,Sk−1

Ls
2

Δ 2s −
1
2Ls

[ϕs+1−ϕs]2. (40)

Then, the inequality (15) implies the estimate
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‖u1(t)−u0(t)‖C([t0,t1]) ≤ ‖û1(t)−u0(t)‖C([t0,t1])+

+ ∑
s=0,...,Sk−1

(
ϕs+1−ϕs

8
Δs+

2
3

Δs
[
L1,s|u0,s+1−u0,s|+L2,sΔs

])
+

+ ∑
s=0,...,Sk−1

(
Ls
2

Δ 2s −
1
2Ls

[ϕs+1−ϕs]2
)

. (41)

After j steps of the iterations we obtain

‖u j+1(t)−u j(t)‖C([t0,t1]) ≤M
⊕,1
j+1(û j) :=

‖û j+1(t)− û j(t)‖C([t0,t1]) +E
1
interp+E

1
integr, (42)

where

E1interp := ∑
s=0,...,Sk−1

(
ϕ(û j, s+1,zs+1)−ϕ(û j, s,zs)

8
Δs+

+
2
3

Δs
[
L1,s|û j,s+1− û j,s|+L2,sΔs

])
(43)

and

E1integr := ∑
s=0,...,Sk−1

(
Ls
2

Δ 2s −
1
2Ls

[
ϕ(û j, s+1,zs+1)−ϕ(û j, s,zs)

]2)
, (44)

where for j= 0 the function û j is taken as a piecewise affine interpolation of u0, and
for j ≥ 1 it is taken from the previous iteration step.
The quantity M⊕,1

j is fully computable, and it shows the overall error associated
with the step number j on the first interval.

Remark 2. Estimate of the overall error related to the interval [t0, tK ] includes all
errors computed on the intervals. In other words the error associated with [t0, tk−1]
is appended to the error on [tk−1, tk] (which formally follows from the fact that the
initial condition on [tk−1, tk] includes errors on the previous intervals).

Thus, we have shown that fully guaranteed and computable bounds can indeed
be derived for the problem (1) with the Lipschitz function ϕ , i.e. for every finite time
interval [t0, tK ] and for every a priori required accuracy ε an approximate solution of
the problem can be found by the APL method discussed above.

5 APL Algorithm and Numerical Examples

Let ε be a required accuracy of an approximate solution. Then, practical computa-
tion can be performed by Algorithm 1.



10 S. Matculevich, P. Neittaanmäki, S. Repin

Algorithm 1 The algorithm of the APL method
Input: ε {required accuracy on the interval}, u0 {input initial boundary condi-
tion}

FK =
K−1⋃
k=0

[tk, tk+1] { constructed byMesh Generation Procedure}

εk = ε
K {obtain accuracy of the approximate solution on interval [tk, tk+1]}

ΩSk =
Sk−1⋃
s=0

[zs,zs+1] {initial mesh for each subinterval}

for k = 1 to K do
j = 0
do
if k = 1
a= u0

else
a= vk−1(tk−1)

endif
vkj = Integration Procedure(ϕ,vkj−1,Sk)+a
calculate Ekinterp and Ekintegr by using (43) and (44)
M⊕,k
j = ‖vkj− vkj−1‖C([tk−1,tk]) +E

k
interp+Ekintegr

e⊕j = q
1−qM

⊕,k
j

if Ekinterp+Ekintegr > εk
Sk = 2Sk {refine the mesh ΩSk}

endif
j = j+1

whilee⊕j > εk

vk = vkj {approximate solution on the interval [tk−1, tk]}
e⊕,k = e⊕j {error bound achieved for the interval [tk−1, tk]}

end for
Output: {vk}Kk=1 {approximate solution}

{e⊕,k}Kk=1 {error bounds estimates on sub intervals}

In general, the algorithm should start with the generation of a suitable mesh (i.e.,
select time intervals). Here, we do not discuss this question in detail, but only note
that theMesh Guaranteed Proceduremust adapt the mesh to the nature of ϕ(u(t), t),
which requires information about U (see (4)). In practise, such information can be
obtained by solving the problem (1) numerically with the help of some heuristic
(e.g., Runge-Kutta) method on a coarse mesh.
The APL algorithm is a cycle over all the intervals of the meshFK =∪K−1k=0 [tk, tk+1].

On each subinterval, the algorithm is realized as a subcycle (whose index is j). In
the subcycle, we apply the PL method and try to find an approximation that meets
the accuracy requirements imposed (i.e., the accuracy must be higher than εk). Ini-
tial data are taken from the previous step (for the first step, the initial condition is
defined by u0).
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Fig. 1 The error and error
majorants
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⊕

After computing an approximation on [tk, tk+1] we use our majorant and find a
guaranteed upper bound (which includes the interpolation and integration errors).
Iterations are continued unless the required accuracy εk has been achieved. After
that we save the results and proceed to the next interval.
Note that in Algorithm 1, we do not discuss in detail the process of integration on

an interval, which is performed on a local mesh with a certain amount of subintervals
(whose size is Δs). In principle, it may happen that the desired level of accuracy,
εk, is not achieved with the Δs selected. This fact will be easily detected because
interpolation and integration errors will dominate and do not allow the overall error
to decrease below εk. In this case, Δs must be reduced, and computations on the
corresponding interval must be repeated.

Example 1. Consider the problem

du
dt

= 4ut sin(8t), t ∈ [0,3/2],

u(0) = u0 = 1
(45)

with the exact solution
u= e

1
16 sin(8t)−

1
2 t cos(8t).

In Fig. 1, we depict the error (bold dots), error bounds computed by the Ostrowski
estimates (dotted line) and by the advanced form of the estimate (dashed line). In
order to make the results more transparent, we depict the approximate solution to-
gether with the zone which contains the exact solution (see Figs. 2(a) and 3(a)). The
form of this (shaded) zone is determined by the a posteriori estimates.
Thus, the APL method computes two-sided guaranteed bounds containing the

exact solution. It may happen that the desired level of accuracy has been exceeded
at some moment t ′ < tK and further Picard-Lindelöf iterations are unable to reduce
the error. This situation may arise if the amount of internal points used for numerical
integration on each interval is too small. In this case, we must enlarge the number
of internal nodes (which will reduce integration and interpolation errors) and repeat
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(b)

Fig. 2 (a) Exact and approximate solutions with guaranteed bounds of deviation computed by the
Ostrowski estimate. (b) A zoomed interval of exact and approximate solutions with bounds of
deviation computed by the majorant.

(a)

1.15 1.2 1.25

1.65

1.7

1.75

1.8

1.85

1.9

1.95 uτ

u
M

⊕,P

(b)

Fig. 3 (a) Exact and approximate solutions with guaranteed bounds of deviation computed by the
advanced form of the estimate. (b) A zoomed interval of exact and approximate solutions with
bounds of deviation computed by the majorant.

the computations. Numerical results illustrated in Figs. 2(a) and 3(a) show that the
advanced majorant provides much sharper bounds of the deviation.
Values of the components of the estimate (the first term, the estimate of ‖ē‖ and

the estimate of ‖ê‖ from (42)) are presented in Table 1. We see that in this example
the values of Sk were selected properly, so that interpolation and integration error
estimates are insignificant with respect to the first term.

Example 2. The APL method works with stiff problems as well. Consider the clas-
sical stiff equation
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Table 1 Components of the general estimate

Estimate of ‖e j‖ Estimate of ‖ē j‖ Estimate of ‖ê j‖

2.2658e-002 8.6160e-008 9.5725e-008
4.6095e-002 1.8847e-007 5.8148e-007
5.4949e-002 2.5299e-007 5.9301e-007
7.4818e-002 2.5768e-007 2.3618e-006
9.5993e-002 3.0190e-007 2.3699e-006
1.0302e-001 3.4216e-007 2.3807e-006
1.5427e-001 4.8963e-007 2.4320e-006
1.5647e-001 6.1877e-007 2.4999e-006
2.3495e-001 9.4891e-007 2.6183e-006
2.7145e-001 9.8935e-007 2.6328e-006
3.0533e-001 9.9923e-007 2.6373e-006
3.2838e-001 1.0158e-006 2.6404e-006
4.4629e-001 1.0182e-006 2.6517e-006

du
dt

= 50cos(t)−50u, t = [0,1],

u(0) = u0 = 1
(46)

with the exact solution

u=
1
2501

e−50t +
2500
2501

cos(t)+
50
2501

sin(t).

Analogously to the previous example, in Fig. 4(a) the general error (lines with
dots on the top) estimated by the Ostrowski estimate (dotted line) and the advanced
form of the estimate (dashed line) are illustrated. Another way to depict obtained
results is shown in Fig. 4(b).

Example 3. The APL method can also be applied to stiff systems of ODEs. As an
example, we consider the system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

du1
dt

= 998u1+1998u2,
du2
dt

=−999u1−1999u2,

u1(t0) = 1,u2(t0) = 1,
t ∈ [0,5 ·10−3]

with the exact solutions u1 = 4e−t − 3e−1000t and u2 = −2e−t + 3e−1000t . In Figs.
5(a), 5(b), 6(a) and 6(b), we present the same type of information (behavior of the
solution and guaranteed bounds) as in the previous examples.
We note that for stiff equations getting an approximate solution with guaranteed

and sharp error bounds requires much larger expenditures than in relatively simple
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Fig. 4 (a) Error and error majorants. (b) Exact and approximate solutions with a guaranteed devi-
ation bound.
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Fig. 5 Exact solutions and approximate solutions of the system and guaranteed error bounds com-
puted by the Ostrowski method.

Examples 1 and 2. This result is not surprising because (as it is quite natural to
expect) for such type of problems fully reliable computations will be much more
expensive.
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Abstract

The paper is concerned with sharp estimates of constants in classical Poincaré inequalities and Poincaré-type
inequalities for functions having zero mean value in a simplicial domain or on a part of its boundary. These es-
timates are important for quantitative analysis of problems generated by differential equations where numerical
approximations are typically constructed with the help of simplicial meshes. We suggest easily computable rela-
tions that provide sharp bounds of the respective constants and compare these results with analytical estimates
(if they are known). In the last section, we present an example that shows possible applications of the results
and derive a computable majorant of the difference between the exact solution of a boundary value problem
and an arbitrary finite dimensional approximation computed on a simplicial mesh, which uses above mentioned
constants.

1 Introduction

Let T be an open bounded connected domain in R
d (d ≥ 2) with Lipschitz boundary ∂T . It is well known that the

Poincaré inequality ([29, 30])
‖w‖T ≤ C

P
T ‖∇w‖T (1)

holds for any

w ∈ H̃
1(T ) :=

{
w ∈ H

1(T )
∣∣ {|w|}T = 0

}
,

where ‖w‖T denotes the norm in L
2(T ), {|w|}T := 1

|T |
∫
T w dx is the mean value of w, and |T | is the Lebesgue

measure of T . The constant CP
T depends only on T and d.

Poincaré-type inequalities also hold for

w ∈ H̃
1(T,Γ) :=

{
w ∈ H

1(T )
∣∣ {|w|}Γ = 0

}
,

where Γ is a measurable part of ∂T such that measd−1Γ > 0 (in particular, Γ may coincide with the whole boundary).

For any w ∈ H̃
1(T,Γ), we have two inequalities similar to (1). The first one

‖w‖T ≤ C
p
Γ‖∇w‖T (2)

is another form of the Poincaré inequality (1), which is stated for a different set of functions and contains a different
constant, i.e. CP

T ≤ C
p
Γ. The constant Cp

Γ is associated with the minimal positive eigenvalue of the problem

−Δu = λu in T ; ∂nu = λ {|u|} on Γ; ∂nu = 0 on ∂T \Γ, ∀u ∈ H
1(T,Γ). (3)

The second inequality
‖w‖Γ ≤ C

Tr
Γ ‖∇w‖T (4)

1



estimates the trace of w ∈ H̃
1(T,Γ) on Γ. It is associated with the minimal nonzero eigenvalue of the problem

−Δu = 0 in T ; ∂nu = λu on Γ; ∂nu = 0 on ∂T \Γ, ∀u ∈ H
1(T,Γ). (5)

The problem (5) is a special case of the Steklov problem with spectral parameter appearing in the boundary
condition. It is called the sloshing problem, which describes the oscillations of fluid in a container. The extensive
study of the properties of sloshing eigenvalues and eigenfunctions can be found in [9, 2, 15, 16, 17] and references
therein. The question on the spectrum of the operator corresponding to the latter problem also have gained interest
from the viewpoint of spectral geometry (see [11]).

Poincaré-type inequalities are often used in analysis of nonconforming approximations (e.g., discontinuous
Galerkin or mortar methods), domain decomposition methods (see, e.g., [14, 8] and [34]), analysis of problems
described in terms of vector valued functions (see, e.g., [10, 26]), a posteriori estimates, and other applications
related to quantitative analysis of partial differential equations. In [13, 20], the analysis of error constants for
piecewise constant and linear interpolations over triangular finite elements can be found. Paper [4] introduces fully
computable two-sided bounds on the eigenvalues of the Laplace operator based on the approximation of the cor-
responding eigenfunction in the nonconforming Crouzeix-Raviart FE space. Therefore, exact values of respective
constants (or sharp and guaranteed bounds of them) are interesting from both analytical and computational points
of view.

It is known that for convex domains CP
T ≤ diam(T )

π (see [27]). However, for triangles this estimate was improved

in [19], i.e., CP
T ≤ diam(T )

j1,1
, where j1,1 ≈ 3.8317 is the smallest positive root of the Bessel function J1. Moreover, for

isosceles triangles it was shown that

C
P
T ≤ C

P,�
T := diam(T ) ·

⎧⎪⎪⎨⎪⎪⎩
1

j1,1
α ∈ (0, π

3 ],

min
{

1
j1,1

,
1

j0,1

(
2(π − α) tan(α/2)

)−1/2
}

α ∈ (π3 ,
π
2 ],

1
j0,1

(
2(π − α) tan(α/2)

)−1/2
α ∈ (π2 , π).

(6)

Here, j0,1 ≈ 2.4048 and j1,1 ≈ 3.8317 are the smallest positive roots of the Bessel functions J0 and J1, respectively.
A lower bound of CP

T for convex domains was derived in [6]. It was shown that

C
P
T ≥ diam (T )

2 j0,1
. (7)

This estimate compliments the upper bound presented by the Payne–Weinberger estimate, and according to [1], is
known to be the best lower bound for general domains with diameter scaling among all known so far. However, for
triangles work [18] provides lower bound

C
P
T ≥ P

4π , (8)

which improves (7) for some cases. Here, P is perimeter of T .
Exact values of Cp

Γ and C
Tr
Γ were derived in [25] for parallelepipeds, rectangles, and right triangles. Below, we

present a concise summary of these results related to the case d = 2:

1. If T := conv
{
(0, 0), (0, h), (h, 0)

}
, and Γ :=

{
x1 ∈ [0, h], x2 = 0

}
(i.e., Γ coincides with one of the legs of the

isosceles right triangle), then

C
p
Γ = h

ζ0
, and C

Tr
Γ =

(
h

ζ̂0 tanh(ζ̂0)

)1/2

, (9)

where ζ0 and ζ̂0 are unique roots in (0, π) of the equations

z cot(z) + 1 = 0 and tan(z) + tanh(z) = 0, (10)

respectively.

2. If T := conv
{
(0, 0), (0, h),

(
h
2 ,

h
2

)}
and Γ coincides with the hypotenuse of the isosceles right triangle, then

C
p
Γ = h

2ζ0
, and C

Tr
Γ =

(
h
2

)1/2
.

It is worth noting that values of constant C
Tr
Γ on the right isosceles triangle follow from the exact solutions of

Stecklov problem on the square. This specific case was mentioned in the work [11].

Exact value of constants in classical Poincaré inequality on equilateral triangle Tπ/3
:= conv

{
(0, 0), (1, 0), (12 ,

√
3
2 )
}

is derived in [28], i.e., Cp
Γ,π/2,π/3

= 3
4π . Constants for the right isosceles triangles with legs

√
2
2 and 1, which are de-

fined correspondingly as Tπ/4
:= conv

{
(0, 0), (1, 0), (12 ,

1
2 )
}
and Tπ/2

:= conv
{
(0, 0), (1, 0), (0, 1)

}
, are C

P
T̂ ,π/4

= 1√
2π

2



and C
P
T̂ ,π/2

= 1
π , respectively. The latter one can be found from [12] and [13]. Explicit formulas of the same constants

for some three-dimensional domains can be found in papers [3] and [12].
Above mentioned results form a basis for deriving sharp bounds of the constants Cp

Γ, C
Tr
Γ , and C

P
T for arbitrary

non-degenerate triangles and tetrahedrons, which are typical objects in various discretization methods. In Section
2, we deduce guaranteed and easily computable bounds of Cp

Γ, C
Tr
Γ , and C

P
T for triangular domains. The efficiency

of these bounds is tested in Section 3, where C
p
Γ, C

Tr
Γ are compared with lower bounds computed numerically by

solving generalized eigenvalue problem generated by Rayleigh quotients discretized over sufficiently representative
sets of trial functions. In the same section, we make a similar comparison of numerical lower bounds related to the
constant CP

T with obtained upper bounds and existing estimates known from works [18, 19] and [6]. Lower bounds
of the constants presented in Section 3 have been computed by two independent codes. The first code is based on
MATLAB Symbolic Math Toolbox [33], and the second one uses The FEniCS Project [21]. Section 4 is devoted to
tetrahedrons. We combine numerical and theoretical estimates in order to derive two sided bounds of the constants.
For convinience of the reader, we collect all the figures in Appendix 6. Finally, in Section 5 we present an example
that shows one possible application of the estimates considered in previous sections. Here, the constants are used
in order to deduce a guaranteed and fully computable upper bound of the distance between the exact solution of
an elliptic boundary value problem and an arbitrary function (approximation) in the respective energy space.

2 Majorants of C
p
Γ and CTr

Γ for triangular domains

We set
T = conv

{
(0, 0), (h, 0),

(
hρ cosα, hρ sinα

)}
and Γ :=

{
x1 ∈ [0, h]; x2 = 0

}
, (11)

where ρ > 0, h > 0, and α ∈ (0, π) are geometrical parameters that fully define a triangle T (see Fig. 1). Lemma
below is based on analysis of the mapping from the reference triangles to (11) using well known transformation of
the integrals (see, e.g., [7]). Easily computable bounds of Cp

Γ and C
Tr
Γ are presented below.

x1

x2

A(0, 0) B(h, 0)

C

(
hρ cosα, hρ sinα

)

α
T

Γ

Figure 1: Simplex in R
2.

AAAAA

Tθ,α

Γ
x1

x2

x3

θ

C(0, 0, h3)

B(h1, 0, 0)

D

α

BBBB((((h

Figure 2: Simplex in R
3.

Lemma 1 For any w ∈ H̃
1(T,Γ), the estimates

‖w‖T ≤ C
p
Γ h ‖∇w‖T and ‖w‖Γ ≤ C

Tr
Γ h

1/2 ‖∇w‖T (12)

hold with

C
p
Γ ≤ C

p

Γ = min
{
c
p
π/2

C
p

Γ̂,π/2
, c

p
π/4

C
p

Γ̂,π/4

}
and C

Tr
Γ ≤ C

Tr

Γ = min
{
c
Tr
π/2

C
Tr
Γ̂,π/2

, c
Tr
π/4

C
Tr
Γ̂,π/4

}
,

respectively. Here,

c
p
π/2

= μ

1/2
π/2

, c
Tr
π/2

=
(
ρ sinα

)−1/2
c
p
π/2

, c
p
π/4

= μ

1/2
π/4

, c
Tr
π/4

=
(
2ρ sinα

)−1/2
c
p
π/4

,

where

μπ/2
(ρ, α) = 1

2

(
1 + ρ

2 +
(
1 + ρ

4 + 2 ρ2 cos 2α
)1/2
)
, (13)

μπ/4
(ρ, α) = 2ρ2 − 2ρ cosα+ 1 +

(
(2ρ2 + 1)(2ρ2 + 1− 4ρ cosα+ 4ρ2 cos 2α)

)1/2
, (14)

3



and C
p

Γ̂,π/2
≈ 0.49291, C Tr

Γ̂,π/2
≈ 0.65602 and C

p

Γ̂,π/4
≈ 0.24646, C Tr

Γ̂,π/4
≈ 0.70711.

Proof: Consider a linear mapping Fπ/2
: T̂π/2

→ T

x = Fπ/2
(x̂) = Bπ/2

x̂, where Bπ/2
=

(
h ρh cosα

0 ρh sinα

)
, detBπ/2

= ρh
2 sinα.

For any ŵ ∈ H̃
1(T̂π/2

, Γ̂), we have the estimate

‖ ŵ ‖T̂π/2
≤ C

p

Γ̂,π/2
‖∇ŵ ‖T̂π/2

, (15)

where C
p

Γ̂,π/2
is the constant associated with the basic simplex

Tπ/2
:= conv

{
(0, 0), (1, 0), (0, 1)

}
. (16)

Note that

‖ ŵ ‖2
T̂π/2

= 1
ρh2 sinα‖w ‖2T , (17)

and

‖∇ŵ ‖2
T̂π/2

≤ 1
ρh2 sinα

∫
T

Aπ/2
(h, ρ, α)∇w · ∇w dx, (18)

where

Aπ/2
(h, ρ, α) = h

2

(
1 + ρ

2 cos2 α ρ
2 sinα cosα

ρ
2 sinα cosα ρ

2 sin2 α

)
.

It is not difficult to see that

λmax(Aπ/2
) = h

2
μπ/2

(ρ, α), μπ/2
(ρ, α) = 1

2

(
1 + ρ

2 +
(
1 + ρ

4 + 2 cos 2αρ
2
)1/2
)
,

where μπ/2
(ρ, α) is defined in (13). We use (15), (17), and (18), and obtain

‖w ‖T ≤ c
p
π/2

C
p

Γ̂,π/2
h ‖∇w ‖T , c

p
π/2

(ρ, α) = μ

1/2
π/2

(ρ, α). (19)

Next, in view of (4), for any ŵ ∈ H̃
1(T̂π/2

, Γ̂) we have

‖ ŵ ‖Γ̂ ≤ C
Tr
Γ̂,π/2

‖∇ŵ ‖T̂π/2
,

where C
Tr
Γ̂,π/2

is the constant associated with the reference simplex

T̂π/4
:= conv

{
(0, 0), (1, 0),

(
1
2 ,

1
2

)}
. (20)

Since
‖ ŵ ‖2

Γ̂
= 1

h‖w ‖2Γ,
we obtain

‖w ‖Γ ≤ c
Tr
π/2

C
Tr
Γ̂,π/2

h
1/2‖∇w ‖T , c

Tr
π/2

(ρ, α) =
(

μπ/2
(ρ,α)

ρ sinα

)1/2

. (21)

The mapping

x = Fπ/4
(x̂) = Bπ/4

x̂, where Bπ/4
=

(
h 2ρh cosα −h
0 2ρh sinα

)
and detBπ/4

= 2ρh2 sinα > 0,

yields another pair of estimates for the functions in H̃
1(T,Γ):

‖w ‖T ≤ c
p
π/4

C
p

Γ̂,π/4
h ‖∇w ‖T , c

p
π/4

(ρ, α) = μ

1/2
π/4

(ρ, α), (22)

and

‖w ‖Γ ≤ c
Tr
π/4

C
Tr
Γ̂,π/4

h
1/2‖∇w ‖T , c

Tr
π/4

(ρ, α) =
(

μπ/4
(ρ,α)

2ρ sinα

)1/2

, (23)

where μπ/4
(ρ, α) is defined in (14). Now, (12) follows from (19), (21), (22), and (23). �
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Remark 1 The selection of Γ and α in T depends on the finite element implementation, i.e., we select Γ out three
edges of T such that it satisfies the condition {|w|}Γ = 0. According to the results of numerical experiments, to
provide optimal values of Cp

Γ , Γ must coincide with with longest side of T , and between two adjacent angles we
select minimum one to be α. For the constant CTr

Γ , minimum values are attained for α lying in the interval (π3 ,
2π
3 )

(see Section 3).

Remark 2 Let us show that obtained w belongs to the correct space. Assume that w ∈ H̃
1(T̂ , Γ̂) and consider

mean value of w after the transformation. We note that

{|w|}Γ :=

∫
Γ

w(x) ds = h

∫
Γ̂

w(x(x̂)) dŝ = h

∫
Γ̂

ŵ dŝ = 0.

Therefore, the mean value of the function on the boundary remains zero and indeed w ∈ H̃
1(T,Γ).

Analogously to Lemma 1, one can obtain the upper bound of the constant in (1). For that we consider three

reference triangle Tπ/2
, Tπ/4

(defined in (16) and (20)), and Tπ/3
:= conv

{
(0, 0), (1, 0), (12 ,

√
3
2 )
}
.

Lemma 2 For any w ∈ H̃
1(T ), the estimate of the constant in

‖w‖T ≤ C
P
Ωh ‖∇w‖T (24)

has the form

C
p
Γ ≤ C

P

T = min
{
cπ/4

C
P
T̂ ,π/4

, cπ/3
C

P
T̂ ,π/3

, cπ/2
C

P
T̂ ,π/2

}
(25)

Here,

cπ/4
= μ

1/2
π/4

, cπ/3
= μ

1/2
π/3

, and cπ/2
= μ

1/2
π/2

,

where μπ/2
and μπ/4

are defined in (13) and (14) and

μπ/3
(ρ, α) = 2

3 (1 + ρ
2 − ρ cosα) + 2

(
1
9 (1 + ρ

2 − ρ cosα)2 − 1
3ρ

2 sin2 α
)1/2

, (26)

and C
P
T̂ ,π/4

= 1√
2π

, C P
T̂ ,π/3

= 3
4π , C

P
T̂ ,π/2

= 1
π .

Proof: The mapping Fπ/2
: T̂π/2

→ T coincides with (2) from Lemma 1. Therefore the bound

‖w ‖T ≤ cπ/2
C

P
T̂ ,π/2

h ‖∇w ‖T , cπ/2
(ρ, α) = μ

1/2
π/2

(ρ, α) (27)

is obtained by following the steps of the previous proof. From analysis of mappings

x = Fπ/3
(x̂) = Bπ/3

x̂, where Bπ/3
=

(
h

h√
3
(2ρ cosα− 1) −h

0 2h√
3
ρ sinα

)
, detBπ/3

= 2h2√
3
sinα > 0,

and

x = Fπ/4
(x̂) = Bπ/4

x̂, where Bπ/4
=

(
h 2ρh cosα −h
0 2ρh sinα

)
, detBπ/4

= 2ρh2 sinα > 0,

we obtain alternative estimates for function w ∈ H̃
1(T )

‖w ‖T ≤ cπ/3
C

P
T̂ ,π/3

h ‖∇w ‖T , cπ/3
(ρ, α) = μ

1/2
π/3

(ρ, α), (28)

‖w ‖T ≤ cπ/4
C

P
T̂ ,π/4

h ‖∇w ‖T , cπ/4
(ρ, α) = μ

1/2
π/4

(ρ, α), (29)

where μπ/3
(ρ, α) and μπ/4

(ρ, α) are defined in (26) and (14), respectively. Therefore, (25) follows from (27), (28),

and (29). Analogously to Remark 2, if ŵ ∈ H̃
1(T̂ ), it follows that w ∈ H̃

1(T ). �
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3 Minorants of C
p
Γ and CTr

Γ for triangular domains

3.1 Two-sided bounds of C
p
Γ and CTr

Γ

Majorants of Cp
Γ and C

Tr
Γ provided by Lemma 1 should be compared with the corresponding minorants, which can

be found by solving generalized eigenvalue problem generated by the discretized Rayleigh quotients

Rp
Γ[w] =

‖∇w‖T

‖w−{|w|}Γ‖T
and RTr

Γ [w] = ‖∇w‖T

‖w−{|w|}Γ‖Γ
. (30)

Here, w is approximated by the basis of finite dimensional subspaces V N ⊂ H
1(T ) formed by sufficiently represen-

tative collections of test functions. For this purpose, we use either power or Fourier series and introduce

V
N
1 := span

{
x
i
y
j
}
, and V

N
2 := span

{
cos(πix) cos(πjy)

}
, i, j = 0, . . . , N, (i, j) �= (0, 0),

with dimV
N
1 = dimV

N
2 = M(N) := (N + 1)2 − 1. The corresponding constants are denoted by C

M,p
Γ and C

M,Tr
Γ ,

where M(N) indicates the amount of used basis functions in the finite dimensional subspace. Since above defined
finite dimensional spaces are limit dense in H

1(T ), the minorants tend to exact constants as M(N) tends to infinity.
The quotients (30) follow from the definition of the constants Cp

Γ and C
Tr
Γ for w ∈ H

1(T ), i.e.,

‖w − {|w|}Γ ‖T ≤ C
p
Γ‖∇w‖T and ‖w − {|w|}Γ ‖Γ ≤ C

Tr
Γ ‖∇w‖T . (31)

Embeddings (31) are justified by the equivalence of quantity ‖w‖l := ‖∇w‖T +
∣∣ ∫
Γ

w ds
∣∣ to the norm of H1(T ), so

that the existence of Cp
Γ and C

Tr
Γ follows automatically.

Numerical results presented below are obtained with two different codes based on MATLAB Symbolic Math
Toolbox [33] and The FEniCS Project [21]. Table 1 demonstrates that the ratios between exact constants and their
approximate values (for the selected ρ and α) are quite close to 1 (as it is expected) even for relatively small N .
Therefore, we select N = 6 or 7 in tests discussed below.

α = π
2
, ρ = 1 α = π

4
, ρ =

√
2

2

N M(N) cM
p,π/2

cM
Tr,π/2

cM
p,π/4

cM
Tr,π/4

1 3 0.8801 0.9561 0.8647 1.0000
2 8 0.9945 0.9898 0.9925 1.0000
3 15 0.9999 0.9998 0.9962 1.0000
4 24 1.0000 0.9999 1.0000 1.0000
5 35 1.0000 1.0000 1.0000 1.0000
6 48 1.0000 1.0000 1.0000 1.0000

Table 1: Ratios of cMp,π/2
, cMTr,π/2

and c
M
p,π/4

, cMTr,π/4
with respect to increasing N and M(N).

In Figs. 3a and 3c, we depict CM,p
Γ for M(N) = 48 (thin line) for different T with ρ =

√
2
2 , ρ = 1, and α ∈ (0, π).

Guaranteed upper bounds C
p
π/2

= c
p
π/2

C
p

Γ̂,π/2
and C

p
π/4

= c
p
π/4

C
p

Γ̂,π/4
are depicted by dashed lines. By the bold line,

we emphasize on C
p
π/2

and C
p
π/4

, which present C
p

Γ as it is defined in Lemma 1. Analogously in Figs. 4a and 4b, the

lower bound C
M,Tr
Γ (for M(N) = 48) of the constant CTr

Γ is presented together with the upper bound C
Tr

Γ (which is

defined as minimum of C
Tr
π/2

= c
Tr
π/2

C
Tr
Γ̂,π/2

and C
Tr
π/4

= c
Tr
π/4

C
Tr
Γ̂,π/4

; dashed lines. Parameter M is fixed to 48 since the

difference of order 1e−8 between C
M,Tr
Γ (for bigger M) becomes unnoticeable. In the digital form, the information

is represented in Table 2.

Fig. 3a corresponds to the case ρ =
√
2
2 . It is worth noting that for α = π

4 the lower bound C
M,p
Γ coincides with

constant Cp
Γ (C

p
π/4

). This happens because for α = π
4 the mapping Fπ/4

is identical (see, e.g., Fig. 3b). Analogous

coincidence can be observed for CTr
Γ (C

Tr
π/4

) in Fig. 4a. In Fig. 3c, the curve corresponding to C
M,p
Γ coincides with

the line of Cp
Γ (C

p
π/2

) at the point α = π
2 (due to the fact for this angle F is the identical mapping and T coincides

with T̂π/2
(see Fig. 3d)). Fig. 4b exposes similar results for C

M,Tr
Γ and C

Tr
Γ (C

Tr
π/2

). Figs. 5 and 6 demonstrate the

same bounds for more interesting ρ =
√
3
2 and 3

2 , which stay quite efficient even for the cases unrelated to the

reference triangles, e.i., if ρ =
√
3
2 , Ieff ≈ 1.0463÷ 0.1300 for C

p
Γ and Ieff ≈ 1.0363÷ 1.3388 for CTr

Γ , and if ρ = 3
2 ,

Ieff ≈ 1.0249÷ 0.1634 for Cp
Γ and Ieff ≈ 1.2917÷ 1.7643 for CTr

Γ .
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ρ =
√

2
2

ρ = 1

α C48,p
Γ C

p
Γ C48,Tr

Γ C
Tr
Γ C48,p

Γ C
p
Γ C48,Tr

Γ C
Tr
Γ

π/18 0.2429 0.2657 1.2786 1.5386 0.3245 0.3486 1.2572 1.6971
π/9 0.2414 0.2627 0.9289 1.0838 0.3248 0.3493 0.9058 1.2116
π/6 0.2389 0.2577 0.7919 0.8792 0.3268 0.3527 0.7632 1.0118
2π/9 0.2379 0.2507 0.7259 0.7543 0.3339 0.3636 0.6906 0.9201
5π/18 0.2632 0.2722 0.6945 0.7503 0.3514 0.3884 0.6529 0.9003
π/3 0.3008 0.3220 0.6829 0.8348 0.3809 0.4269 0.6362 0.8634

7π/18 0.3382 0.3694 0.6840 0.8432 0.4173 0.4721 0.6332 0.7840
4π/9 0.3740 0.4140 0.6947 0.7973 0.4556 0.5187 0.6404 0.7162
π/2 0.4075 0.4554 0.7136 0.7801 0.4929 0.4929 0.6560 0.6560
5π/9 0.4382 0.4933 0.7409 0.7973 0.5280 0.5340 0.6797 0.7162

11π/18 0.4660 0.5165 0.7779 0.8432 0.5600 0.5710 0.7125 0.7840
2π/3 0.4905 0.5361 0.8274 0.9118 0.5884 0.6037 0.7569 0.8634

13π/18 0.5115 0.5552 0.8948 1.0040 0.6129 0.6318 0.8175 0.9607
7π/9 0.5289 0.5720 0.9898 1.1292 0.6332 0.6550 0.9033 1.0874
5π/6 0.5426 0.5856 1.1334 1.3107 0.6492 0.6733 1.0332 1.2673
8π/9 0.5524 0.5956 1.3796 1.6118 0.6607 0.6865 1.2565 1.5623

17π/18 0.5583 0.6017 1.9436 2.2851 0.6676 0.6944 1.7692 2.2179

Table 2: Lower and upper bounds of Cp
Γ and C

Tr
Γ with respect to α and for ρ =

√
2
2 and 1.

3.2 Two-sided bounds of CP
T

The spaces V
N
1 and V

N
2 are also used for analysis of the quotient RT [w] =

‖∇w‖T

‖w−{|w|}T ‖T
, which yields guaranteed

lower bounds of the constant in (1) denoted by C
M,P
T . Obtained numerical results are compared with above presented

estimate C
P

T , C
P,⊕
T := diam(T )

j1,1
, and C

P
T := max

{
diam(T )
2 j0,1

,
P
4π

}
, which follow from (7) and (8), respectively.

In Figs. 7a, 7b, 7d, and 7e, we illustrate C
M,P
T (M(N) = 48) together with C

P

T , C
P,⊕
T and C

P
T with respect to

α ∈ (0, π) for T with ρ =
√
2
2 ,

√
3
2 , 3

2 , and 2. We see that C48,P
T indeed lies within the admissible two-sided bound.

From these figures, it is obvious that obtained upper bounds C
P

T are sharper than existing estimates C
P,⊕
T for T

with ρ �= 1. True values of the constant lie between the bold and dashed lines, but closer to the bold line, which
practically illustrates the constant (this follows from the fact that increasing M(N) does not provide a noticeable
change for the line, e.g., for M(N) = 63 maximal difference with respect to Fig. does not exceed 1e−8). Also, we
note that, the lower bound C

P
T is quite efficient, and, moreover, asymptotically exact for α → π.

Due to [19], we know the improved upper bound C
P,�
T (cf. (6)) for isosceles triangles. In Fig. 7c, we compare

C
M,P
T (M(N) = 48) with both upper bounds C

P

T (from the Lemma 2) and C
P,�
T . It is easy to see that C

P,�
T is

rather accurate and for α → 0 and α → π provide almost exact estimates. C
P

T improves C
P,�
T only for some α.

Moreover, the lower bound C
48
T indeed converges to C

P,�
T as T degenerates when α tends to 0 (see [19]).

3.3 Shape of the minimizer

Exact constants in (2) and (4) are generated by minimal positive eigenvalues of (3) and (5). This section presents
results related to the respective eigenfunctions. In order to depict all of them in a unified form, we use barycentric

coordinates λi ∈ (0, 1), i = 1, 2, 3,
3∑

i=1

λi = 1. Figs. 8 and 9 show eigenfunctions computed for isosceles triangles

with different angles α between two legs (zero mean condition is imposed on one of the legs). They are constructed

in the process of finding C
M,p
Γ and C

M,Tr
Γ and normalized such that the maximal value of a function is equal to 1.

For α = π
2 , the exact eigenfunction associated with the smallest positive eigenvalue λp

Γ =
(
z0
h

)2
, is known (see [25]).

It is (see Fig 8d)

u
p
Γ = cos( z0x1

h ) + cos
( z0(x2−h)

h

)
,

where z0 is the root of the first equation in (10). We can compare it with the approximate eigenfunction u
M,p
Γ

computed by minimization of Rp
Γ[w]. It is depicted in Fig. 8c.

Analogous results for eigenfunctions related to the constant CM,Tr
Γ are presented in Fig. 9. Again, for α = π

2 we
know the exact one

u
Tr
Γ = cos(ẑ0x1) cosh

(
ẑ0(x2 − h)

)
+ cosh(ẑ0 x1) cos

(
ẑ0(x2 − h)

)
,

where ẑ0 is the root of second equation in (10) (see Fig. 9d), which minimizes the quotient RTr
Γ [w] associated with

the smallest positive eigenvalue λ
Tr
Γ = ẑ0 tanh(ẑ0)

h . It is easy to see that with the assigned value of M(N) numerical
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approximation practically coincides with the exact one.
In the above considered examples, the eigenfunctions associated with minimal positive eigenvalues expose a

continuous evolution with respect to α. However, this is not true for the quotient RT [w], where the minimizer
may cardinally change the profile. Fig. 7c indicates a possibility of such rapid change at α = π

3 , where the curve

(related to C
48
T ) obviously becomes non-smooth. This happens because equilateral triangle has double eigenvalue

and the function, minimizing RT [w] over V
N
1 , changes its profile. Figs. 10d–10i show three eigenfunctions u

48
T,1,

u
48
T,2, and u

48
T,3 related to three minimal eigenvalues λ

48
T,1, λ

48
T,2, and λ

48
T,3 computed in the process of minimization

of RT [w]. All functions are computed for isosceles triangles and are sorted in accordance with increasing values of
the respective eigenvalues. Fig. 10 illustrates these three eigenfunctions for T with angles α = π

3 ,
π
3 + ε, and π

3 − ε,
where ε = π

36 . It is easy to see that at α = π/3 the first and the second eigenfunctions change places. Table 3
presents the corresponding results in the digital form.

It is worth noting that for equilateral triangles two minimal eigenfunctions are known (see [23]):

u1 = cos
(

2 π
3 (2 x1 − 1)

)
− cos

(
2π√
3
x2

)
cos
(

π
3 (2 x1 − 1)

)
,

u2 = sin
(

2π
3 (2 x1 − 1)

)
+ cos

(
2 π√
3
x2

)
sin
(

π
3 (2 x1 − 1)

)
.

These functions practically coincide with the functions u48
T,1 and u

48
T,2 presented in Fig. 10d. Finally, we note that this

phenomenon (change of the minimal eigenfunction) does not appear for, e.g., ρ =
√
2
2 or ρ = 3

2 , due to the fact that
non-quadrilateral triangles have simple lowest eigenvalue. The eigenvalues as well as the constants corresponding
to the eigenfunctions presented in Figs 10 are summarized in the Table 3.

π
3
− ε π

3
π
3
+ ε

uM
T,i C48

T,i λ48
T,i C48

T,i λ48
T,i C48

T,i λ48
T,i

ρ = 1
u48
T,1 0.2419 17.0951 0.2387 17.5463 0.2537 15.5404

u48
T,2 0.2229 20.1216 0.2387 17.5463 0.2355 18.0309

u48
T,3 0.1353 54.6024 0.1378 52.6396 0.1422 49.4818

ρ =
√
2

2

u48
T,1 0.23137 18.6804 0.23671 17.8471 0.24336 16.8850

u48
T,2 0.17082 34.2707 0.17435 32.8970 0.17642 32.1295

u48
T,3 0.1229 66.2058 0.12789 61.1402 0.13298 56.5493

ρ = 3
2

u48
T,1 0.34714 8.2983 0.35523 7.9247 0.3648 7.5143

u48
T,2 0.24485 16.6801 0.24885 16.1482 0.25125 15.8412

u48
T,3 0.18258 29.9981 0.19084 27.4575 0.19845 25.3921

Table 3: CM,P
T and λ

M
T corresponding to the first three eigenfunctions in Fig. 10.

4 Two-sided bounds of C
p
Γ and CTr

Γ for tetrahedrons

A nondegenerate tetrahedron T ∈ R
3 can be presented in the form

T = conv
{
(0, 0, 0), (h1, 0, 0), (0, 0, h3), (Dx1 , Dx2 , Dx3)

}
, (32)

where (Dx1 , Dx2, Dx3) = (h1ρ cosα sin θ, h1ρ sinα sin θ, h1ρ cos(θ)), h1 and h3 are the scaling parameters along
axises Ox1 and Ox3 , respectively, α is a polar angle, and θ is an azimuthal angle (see Fig. 2). Let zero mean
condition be imposed on

Γ = conv
{
(0, 0, 0), (h1, 0, 0), (0, 0, h3)

}
,

and T̂θ̂,α̂ denote the reference tetrahedron, where θ̂ and α̂ are fixed angles. Then, by Fθ̂,α̂ we denote the respective

mapping Fθ̂,α̂ : T̂θ̂,α̂ → T .
It is possible that these results could be generalized to the other spectral problems that authors consider. To

the best of our knowledge, exact values of constants in Poincaré-type inequalities for simplexes in R
3 are unknown.

Therefore, we first consider several reference tetrahedrons with ρ = 1, θ̂ = π
2 , and α̂1 = π

4 , α̂2 = π
3 , α̂3 = π

2 , and
α̂4 = 2π

3 , and find the constants numerically with high accuracy. Table 4 shows convergence of the constants with
respect to increasing M(N). Then, for an arbitrary tetrahedron T , we have

‖v‖T ≤ C̃
p
Γ h1 h3 ‖∇v‖T , C̃

p
Γ = min

α̂={π/4,π/3,π/2,2π/3}

{
c
p
π/2,α̂

C
p

Γ̂,π/2,α̂

}
,

‖v‖Γ ≤ C̃
Tr
Γ (h1 h3)

1
2 ‖∇v‖T , C̃

Tr
Γ = min

α̂={π/4,π/3,π/2,2π/3}

{
c
Tr
π/2,α̂

C
Tr
Γ̂,π/2,α̂

}
, (33)
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θ̂ = π
2
, α̂ = π

4
θ̂ = π

2
, α̂ = π

3
θ̂ = π

2
, α̂ = π

2
θ̂ = π

2
, α̂ = 2π

3

x̂1

x̂2

x̂3

T̂π/4

Γ̂

α̂

x̂1

x̂2

x̂3

T̂π/3

Γ̂

α̂

x̂1

x̂2

x̂3

T̂π/2

Γ̂

α̂
θ̂

x̂1

x̂2

x̂3

T̂2π/3

Γ̂

α̂

M(N) C p,M

Γ̂,π/2,α̂
C Tr,M

Γ̂,π/2,α̂
C p,M

Γ̂,π/2,α̂
C Tr,M

Γ̂,π/2,α̂
C p,M

Γ̂,π/2,α̂
C Tr,M

Γ̂,π/2,α̂
C p,M

Γ̂,π/2,α̂
C Tr,M

Γ̂,π/2,α̂

7 0.32431 0.760099 0.325985 0.654654 0.360532 0.654654 0.4152099 0.686161
26 0.338539 0.829445 0.340267 0.761278 0.373669 0.751615 0.4274757 0.863324
63 0.341122 0.831325 0.342556 0.762901 0.375590 0.751994 0.4286444 0.864595
124 0.341147 0.831335 0.342589 0.762905 0.375603 0.751999 0.4286652 0.864630
215 0.341147 0.831335 0.342589 0.762905 0.375603 0.751999 0.4286652 0.864630

Table 4: C p,M

Γ̂,π/2,α̂
and C

Tr,M

Γ̂,π/2,α̂
with respect to M(N) for T̂θ̂,α̂ with ρ = 1, θ̂ = π

2 , and several α̂.

where C p

Γ̂,π/2,α̂
and C

Tr
Γ̂,π/2,α̂

are the constants related to four reference thetrahedron fromTable 4 and c
p
π/2,α̂

and c
Tr
π/2,α̂

are the ratios of the mapping Fπ/2,α̂: T̂π/2,α̂ → T . Here, T̂π/2,α̂ := conv
{
(0, 0, 0), (1, 0, 0), (0, 0, 1), (cos α̂, sin α̂, 0)

}
with α̂ = {π

4 ,
π
3 ,

π
2 ,

2π
3 }, T is defined in (32), and Fπ/2,α̂(x̂) is presented by the relation

x = Fπ/2,α̂(x̂) = Bπ/2,α̂x̂, Bπ/2,α̂ =

⎛⎜⎝ h1
h1

sin α̂ (ρ cosα sin θ − cos α̂) 0

0 h1ρ
sinα sin(θ)

sin α̂ 0

0 h1ρ
cos θ
sin α̂ h3

⎞⎟⎠ . (34)

The mapping ratios of (34) depend on the maximum eigenvalue of the matrix

Aπ/2,α̂ :=

⎛⎜⎝ h
2
1 + b

2
12 b12b22 b12b32

b12b22 b
2
22 b22b32

b12b32 b22b32 h
2
3 + b

2
32

⎞⎟⎠

= h
2
1 ·

⎛⎜⎜⎜⎝
1 + 1

sin2 α̂ (ρ cosα sin θ − cos α̂)2 ρ sinα sin θ
sin2 α̂ (ρ cosα sin θ − cos α̂) ρ cos θ

sin2 α̂ (ρ cosα sin θ − cos α̂)

ρ sinα sin θ
sin2 α̂ (ρ cosα sin θ − cos α̂) ρ2 sin2 α cos2 θ

sin2 α̂
ρ2 sinα sin 2θ

2 sin2 α̂

ρ cos θ
sin2 α̂

(ρ cosα sin θ − cos α̂) ρ2 sinα sin 2θ
2 sin2 α̂

h2
3

h2
1
+ ρ

2 cos2 θ
sin2 α̂

⎞⎟⎟⎟⎠ ,

where b12, b22, b32 are elements of Bπ/2,α̂ in (34). Accordingly, λmax(Aπ/2,α̂) is defined by the relation

λmax(Aπ/2,α̂) = μπ/2,α̂ = E
1/3

4 − E2E−1/3

4 + 1
2E1,

where

E1 = b
2
12 + b

2
22 + b

2
32 + h

2
1 + h

2
3,

E2 = 1
3

(
h
2
3

(
b
2
12 + b

2
22

)
+ h

2
1

(
b
2
22 + b

2
32

)
− 1

3E
2
1 + h

2
1h

2
3

)
,

E3 = 1
27E

3
1 − 1

6E1
(
h
2
3

(
b
2
12 + b

2
22

)
+ h

2
1

(
b
2
22 + b

2
32

)
+ h

2
1 h

2
3

)
+ 1

2b
2
22 h

2
1 h

2
3,

E4 = E3 +
((

h2
3

3

(
b
2
12 + b

2
22

)
+

h2
1

3

(
b
2
22 + b

2
32

)
− 1

9E
2
1 + 1

3h
2
1h

2
3

)3
+ E2

3

)1/2

.

Therefore, cpπ/2,α̂
and c

Tr
π/2,α̂

in (33) reads as follows

c
p
π/2,α̂

=
μ
1/2
π/2,α̂

h1h3
, c

Tr
π/2,α̂

=
(

h3 sin α̂
ρ sinα sin θ

)1/2

c
p
π/2,α̂

.

Lower bounds of the constants C
p
Γ and C

Tr
Γ are computed by minimization of Rp

Γ[w] and RTr
Γ [w] over the set

V
N
3 ⊂ H

1(T ), where

V
N
3 :=

{
ϕijk = x

i
y
j
z
k
, i, j, k = 0, . . . , N, (i, j, k) �= (0, 0, 0)

}
, dimV

N
3 = M(N) := (N + 1)3 − 1.
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The respective results are presented in Tables 5 and 6 for T with h1 = 1, h3 = 1, and ρ = 1. We note that
exact values of constants are probably closer to the numbers presented in left-hand side columns. For a fixed angle
θ = π

/2, we also present estimates of CM,p
Γ and C

M,Tr
Γ graphically in Fig. 11.

α = π
6

α = π
4

α = π
3

α = π
2

θ CM,p
Γ C̃ p

Γ CM,p
Γ C̃ p

Γ CM,p
Γ C̃ p

Γ CM,p
Γ C̃ p

Γ

π/6 0.23883 0.49035 0.24621 0.49841 0.25870 0.51054 0.29484 0.51308
π/4 0.23883 0.45388 0.24621 0.46173 0.25870 0.47683 0.29484 0.49075
π/3 0.29666 0.41958 0.31194 0.42259 0.33489 0.43724 0.38976 0.46002
π/2 0.34302 0.35667 0.34112 0.34115 0.34256 0.34259 0.37559 0.37560
2π/3 0.40428 0.41958 0.40562 0.42259 0.40927 0.43724 0.42867 0.46002
3π/4 0.42890 0.45388 0.43110 0.46173 0.43505 0.47683 0.45017 0.49075
5π/6 0.44964 0.49035 0.45193 0.49841 0.45539 0.51054 0.46607 0.51308

α = π
2

α = 2π
3

α = 3π
4

α = 5π
6

θ CM,p
Γ C̃ p

Γ CM,p
Γ C̃ p

Γ CM,p
Γ C̃ p

Γ CM,p
Γ C̃ p

Γ

π/6 0.29484 0.51308 0.33069 0.51792 0.34468 0.52253 0.35499 0.52694
π/4 0.29484 0.49075 0.33069 0.50261 0.34468 0.51308 0.35499 0.52253
π/3 0.38976 0.46002 0.43880 0.48413 0.45742 0.50261 0.47106 0.51792
π/2 0.37559 0.37560 0.42865 0.42867 0.45017 0.45731 0.46607 0.47811
2π/3 0.42867 0.46002 0.45997 0.48413 0.47457 0.50261 0.48598 0.51792
3π/4 0.45017 0.49075 0.47204 0.50261 0.48239 0.51308 0.49064 0.52253
5π/6 0.46607 0.51308 0.47972 0.51792 0.48607 0.52253 0.49115 0.52694

Table 5: CM,p
Γ (M(N) = 124) and C̃

p
Γ .

α = π
6

α = π
4

α = π
3

α = π
2

θ CM,Tr
Γ C̃ Tr

Γ CM,Tr
Γ C̃ Tr

Γ CM,Tr
Γ C̃ Tr

Γ CM,Tr
Γ C̃ Tr

Γ

π/6 1.09760 3.78259 0.96245 2.71866 0.91255 2.27382 0.93123 2.05449
π/4 1.09760 2.43897 0.96245 1.78094 0.91255 1.50166 0.93123 1.38951
π/3 0.89122 1.74467 0.79146 1.31130 0.75950 1.12431 0.78904 1.06349
π/2 0.98017 1.22920 0.83132 0.83133 0.76290 0.76291 0.75199 0.75200
2π/3 1.17698 1.74467 0.99473 1.31130 0.90578 1.12431 0.86463 1.06349
3π/4 1.35195 2.43897 1.14144 1.78094 1.03737 1.50166 0.98220 1.38951
5π/6 1.65317 3.78259 1.39424 2.71866 1.26490 2.27382 1.19017 2.05449

α = π
2

α = 2π
3

α = 3π
4

α = 5π
6

θ CM,Tr
Γ C̃ Tr

Γ CM,Tr
Γ C̃ Tr

Γ CM,Tr
Γ C̃ Tr

Γ CM,Tr
Γ C̃ Tr

Γ

π/6 0.93123 2.05449 1.07244 2.39471 1.21573 2.95902 1.47044 4.21999
π/4 0.93123 1.38951 1.07244 1.64324 1.21573 2.01841 1.47044 2.80588
π/3 0.78904 1.06349 0.91773 1.27423 1.04309 1.50833 1.26357 2.11790
π/2 0.75199 0.75200 0.86459 0.86463 0.98220 1.12971 1.19017 1.67033
2π/3 0.86463 1.06349 0.96174 1.27423 1.08134 1.50833 1.30191 2.11790
3π/4 0.98220 1.38951 1.07921 1.64324 1.20686 2.01841 1.44721 2.80588
5π/6 1.19017 2.05449 1.29582 2.39471 1.44268 2.95902 1.72383 4.21999

Table 6: CM,Tr
Γ (M(N) = 124) and C̃

Tr
Γ .

5 Example

Constants in the Friedrichs’, Poincaré, and other functional inequalities arise in various problems of numerical
analysis, where we need to know values of the respective constants associated with particular domains. For example,
results related to extension and projection type estimates for FEM can be found in [24, 7] (and many other
publications). Concerning constants in the trace inequalities associated with polygonal domain, we mention the
paper [5]. Constants in functional (embedding) inequalities arise in various error estimates. We deduce an advanced
version of the estimate (46) in [31], which uses constants in Poincaré-type inequalities for functions with zero mean
traces on inter-element boundaries in order to maximally extend the space of admissible fluxes. Below we address
the latter case and first explain reasons that invoke the constants in general terms.

Let u denote the exact solution of an elliptic boundary value problem generated by the pair of conjugate operators
grad and −div (e.g., the problem (38)–(41) considered below) and v be a function in the energy space satisfying
the prescribed (Dirichlét) boundary conditions. Typically, the error e := u − v is measured in terms of the energy
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norm ‖∇ e‖ (or some other equivalent norm), which square is bounded from above by the quantities∫
Ω

R(v, divq) e dx,

∫
Ω

D(∇v, q) · ∇ e dx, and

∫
ΓN

RΓN (v, q · n) e ds,

where ΓN is the Neumann part of the boundary ∂T , n is the outward unit normal, and q is an approximation
of the dual variable (flux). The terms R, D, and RΓN represent residuals of the differential (balance) equation,
constitutive (duality) relation, and Neumann boundary condition, respectively. Since v and q are known from a
numerical solution, fully computable estimates can be obtained if these integrals are estimated by the Hölder,
Friedrichs, and trace inequalities (which involve the corresponding constants). However, for a Lipschitz domain
Ω with piecewise smooth (e.g., polynomial) boundaries these constants may be unknown. A way to avoid these
difficulties is suggested by modifications of the estimates using ideas of domain decomposition. Assume that Ω is
polygonal (polyhedral) domain decomposed into a collection of non-overlapping convex polygonal sub-domains Ωi,
i.e.,

Ω :=
⋃

Ωi∈OΩ

Ωi, OΩ :=
{
Ωi ∈ Ω

∣∣ Ωi′ ∩ Ωi′′ = ∅, i′ �= i
′′
, i = 1, . . . , N

}
.

We denote the set of all edges (faces) by G and the set of all interior faces by Gint (i.e., Γij ∈ Gint, if Γij = Ωi ∩ Ωj).
Analogously, GN denotes the set of edges on ΓN . The latter set is decomposed into ΓNk

:= ΓN ∩ ∂Ωk (the number
of faces that belongs to ΓNk

is KN ). Now, the integrals associated with R and RΓN can be replaced by sums of
local quantities

N∑
i=1

∫
Ωi

RΩ(v, divq) e dx, and

KN∑
k=1

∫
ΓNk

RΓN (v, q · n) e ds.

If the residuals satisfy the conditions∫
Ωi

RΩi(v, divq) dx = 0, ∀i = 1, . . . , N,

and ∫
ΓNk

RΓN (v, q · n) ds = 0, ∀k = 1, . . . ,KN ,

then ∫
Ωi

RΩ(v, divq) e dx ≤ C
P
Ωi
‖RΩi(v, divq)‖Ωi ‖∇ e‖Ωi , (35)

and ∫
ΓNk

RΓN (v, q · n) e ds ≤ C
Tr
ΓNk

‖RΓN (v, q · n)‖ΓNk
‖∇ e‖Ωk

. (36)

Hence, we can deduce a computable upper bound of the error that contains local constants CP
Ωi

and C
Tr
ΓNk

for simple

subdomains (e.g., triangles or tetrahedrons) instead of the global constants associated with Ω.
The constant CP

Ω may arise if, e.g., nonconforming approximations are used. For example, if v does not exactly
satisfy the Dirichlét boundary condition on ΓDk

, then in the process of estimation it may be necessary to evaluate
terms of the type ∫

ΓDk

GD(v) e ds, k = 1, . . . ,KD,

where ΓDk
is a part of ΓD associated with a certain Ωk, and GD(v) is a residual generated by inexact satisfaction of

the boundary condition. If we impose the requirement that the Dirichlét boundary condition is satisfied in a weak
sense, i.e., {|GD(v)|}ΓDk

= 0, then each boundary integral can be estimated as follows:∫
ΓDk

GD(v) e ds ≤ C
P
ΓDk

‖GD(v)‖ΓDk
‖∇ e‖Ωk

. (37)

After summing (35), (36), and (37), we obtain a product of weighted norms of localized residuals (which are known)
and ‖∇e‖Ω. Since the sum is bounded from below by the squared energy norm, we arrive at computable error
majorant.
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Now, we discuss elaborately these questions with the paradigm of the following boundary value problem: find u

such that

−divp+ �
2
u = f, in Ω, (38)

p = A∇u, in Ω, (39)

u = uD, on ΓD, (40)

A∇u · n = F on ΓN . (41)

Here f ∈ L
2(Ω), F ∈ L

2(ΓN ), uD ∈ H
1(Ω), and A is a symmetric positive definite matrix with bounded coefficients

satisfying the condition λ1|ξ|2 ≤ Aξ · ξ, where λ1 is a positive constant independent of ξ. The generalized solution

of (38)–(41) exists and is unique in the set V0 + uD, where V0 :=
{
w ∈ H

1(Ω) | w = 0 on ΓD

}
.

Assume that v ∈ V0 + uD is a conforming approximation of u. We wish to find a computable majorant of the
error norm

|||e |||2 := ‖∇e‖2A + ‖� e‖2, (42)

where ‖∇e‖2A :=
∫
Ω

A∇e ·∇e dx. First, we note that the integral identity that defines u can be rewritten in the form

∫
Ω

A∇e · ∇w dx +

∫
Ω

�
2
ew dx =

∫
Ω

(fw − �
2
v w −A∇v · ∇w) dx +

∫
ΓN

Fw ds, ∀w ∈ V0. (43)

It is well known (see [31, Section 4.2]) that this relation yields computable majorant of ||| e |||2, if we introduce a
vector valued function q ∈ H(Ω, div) and transform (43) by means of integration by parts relations. The majorant
has the form

|||e ||| ≤ ‖DΩ(∇v, q)‖A−1 + C1‖R(v, divq)‖Ω + C2‖RΓN (v, q · n)‖ΓN , (44)

where C1 and C2 are positive constants explicitly defined by λ1, the Friedrichs’ inequality C
F
Ω in ‖v‖Ω ≤ C

F
Ω‖∇v‖Ω

for functions vanishing on ΓD, and constant C
Tr
ΓN

in the trace inequality associated with ΓN . The integrands are
defined by the relations

D(∇v, q) := A∇v − q, R(v, divq) := divq + f − �
2
v, and RΓN (v, q · n) := q · n− F.

In general, finding C
F
Ω and C

Tr
ΓN

may be not an easy task. We can exclude C2 if q additionally satisfies the condition
q · n = F . Then, the last term in (44) vanishes. However, this condition is difficult to satisfy, if F is a complicated
nonlinear function. In order to exclude C1, we can apply domain decomposition and use (35) instead of the global
estimate. Then, the estimate will operate with the constants C

P
Ωi

(which upper bounds are known for convex
domains). Moreover, it is shown below that using the inequalities (2) and (4), we can essentially weaken the
assumptions required for the variable q.

Define the space of vector valued functions

Ĥ(Ω,OΩ, div) :=
{
q ∈ L

2(Ω,Rd) | q = qi ∈ H(Ωi, div),{∣∣divqi + f − �
2
v

∣∣}
Ωi

= 0, ∀Ωi ∈ OΩ,

{|(qi − qj) · nij |}Γij
= 0, ∀Γij ∈ Gint,

{|qi · nk − F |}ΓNk
= 0, ∀ k = 1, . . . ,KN

}
.

We note that the space Ĥ(Ω,OΩ, div) is wider then H(Ω, div) (so that we have more flexibility in determination of
optimal reconstruction of numerical fluxes). Indeed, the vector valued functions in H(Ω, div) must have continuous
normal components on all Γij ∈ Gint and satisfy the Neumann boundary condition in the pointwise sense. The

functions in Ĥ(Ω,OΩ, div) satisfy much weaker conditions: namely, the normal components are continuous only in
terms of mean values (integrals) and the Neumann condition must hold in the integral sense only.

We reform (43) by means of the integral identity∑
Ωi∈OΩ

∫
Ωi

(q · ∇w + divq w) dx =
∑

Γij∈Gint

∫
Γij

(qi − qj) · nij w ds+
∑

ΓNk
∈ΓN

∫
ΓNk

qi · ni w ds,
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which holds for any w ∈ V0 and q ∈ Ĥ(Ω,OΩ, div). Setting w = e in (43) and applying the Hölder inequality, we
find that

|||e |||2 ≤ ‖D(∇v, q)‖A−1‖∇e‖A +
∑

Ωi∈OΩ

‖R(v, divq)‖Ωi

∥∥e− {|e|}Ωi

∥∥
Ωi

+
∑

Γij∈Gint

rij(q)
∥∥e− {|e|}Γij

∥∥
Γij

+
∑

ΓNk
∈ΓN

ρk(q)
∥∥∥e− {|e|}ΓNk

∥∥∥
ΓNk

,

where
rij(q) := ‖(qi − qj) · nij‖Γij , ρk(q) := ‖qk · nk − F‖ΓNk

.

In view of (1) and (4), we obtain

|||e |||2 ≤ ‖D(∇v, q)‖A−1‖∇e‖A +
∑

Ωi∈OΩ

‖R(v, divq)‖ΩiC
P
Ωi
‖∇e‖Ωi

+
∑

Γij∈Gint

rij(q)C
Tr
Γij

‖∇e‖Ωi +
∑

ΓNk
∈ΓN

ρk(q)C
Tr
ΓNk

‖∇e‖Ωi . (45)

The second term in the right hand side is estimated by the quantity �1(v, q) ‖∇e‖Ω, where

�2
1(v, q) :=

∑
Ωi∈OΩ

(diamΩi)
2

π2 ‖R(v, divq)‖2Ωi
.

We can represent any Ωi ∈ OΩ as a sum of simplexes such that each simplex has one edge on ∂Ωi. Let C
Tr
i,max denote

the largest constant in the respective Poincaré-type inequalities (4) associated with all edges of ∂Ωi. Then, the last
two terms of (45) can be estimated by the quantity �2(v, q) ‖∇e‖Ω, where

�2
2(q) :=

∑
Ωi∈OΩ

(CTr
i,max)

2
η
2
i , with η

2
i =

∑
Γij∈Gint,

Γij∩∂Ωi �=∅

1
4r

2
ij(q) +

∑
Γk∈GN,

Γk ∩ ∂Ωi �=∅

ρ
2
k(q).

Then, (45) yields the estimate

|||e |||2 ≤ ‖D(∇v, q)‖A−1‖∇e‖A + (�1(v, q) + �2(q)) ‖∇e‖Ω,

which shows that
|||e ||| ≤ ‖D(∇v, q)‖A−1 + 1

λ1

(
�1(v, q) + �2(q)

)
. (46)

Here, the term �2(q) controls violations of conformity of q (on interior edges) and inexact satisfaction of boundary
conditions (on edges related to ΓN ). It is easy to see that �2(q) = 0, if and only if q·n is continuous on Gint and exactly
satisfy the boundary condition. Hence, it can be viewed as a measure of the “flux nonconformity”. Other terms have
the same meaning as in known a posteriori estimates of the functional type, namely, the first term measures the
violation in the relation q = A∇v (cf. (39)), and �1(v, q) measures inaccuracy in the equilibrium (balance) equation
(38). The right-hand side of (46) contains known functions (approximation v and the reconstruction of the flux q)
and constants that can be easily computed using results of Section 2-4. Finally, we note that estimates similar to
(46) were derived in [32] for elliptic variational inequalities and in [22] for a class of parabolic problems.
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6 Appendix

For convenience, we collect in this part the graphics cited in Section 3 and 4.
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