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Abstract

In this paper, the global stability of a schistosomiasis infection model that
involves human and intermediate snail hosts as well as an additional mam-
malian host and a competitor snail species is studied by constructing Lya-
punov functions and using properties of K monotone systems.
We derive the basic reproduction numberR0 for the deterministic model, and
establish that the global dynamics are completely determined by the values
of R0. We show that the disease can be eradicated when R0 ≤ 1. In the
case where R0 > 1, we prove the existence, uniqueness and global asymptotic
stability of an endemic steady state. This mathematical analysis of the model
gives insight about the epidemiological consequences of the introduction of a
competitor resistant snail species.

Keywords: Epidemic models, Nonlinear dynamical systems, Monotone
systems, Global stability, Reproduction number, Schistosomiasis.

1. Introduction

Schistosomiasis also known as bilharzia is a parasite-induced disease. The
prevalence of Schistosomiasis is high in tropical and sub-tropical countries,
especially in poor rural regions without access to safe drinking water and
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adequate sanitation. The parasites, schistosomes, have to go through an
intermediate host (snails in most cases) to complete their life cycle: from
eggs, to miracidia, to cercaria, finally to adult worms. Schistosomes have
two stages of reproduction: the first one consists in a sexual reproduction in
the blood vessels of humans and the second stage is an asexual amplification
in snails.
Many strategies are used to prevent and control the schistosomiasis infection:
chemotherapy, chemical molluscicides, improvement of sanitary conditions,
snail control.
For many endemic situations, mass drug administration with praziquantel is
recommended by the WHO (World Health Organization)[23]. However, as
reported by WHO, ”a major limitation to schistosomiasis control has been
access to praziquantel. Available data show that only 10% of people requiring
treatment were reached in 2011”. The price of a chemical antischistosomial
is still too expensive for people in many developing countries.
Biological control by introducing competitive snails of the intermediate snail
hosts is a control strategy that may require relatively little funding. For
instance, Schistosomiasis infection has declined in Puerto Rico due to the in-
troduction of Thiara granifera, a snail which competes with the intermediate
host snail of schistosomes Biomphalaria glabrata (see [17], [1]).
Mathematical modeling and analysis of schistosomiasis has drawn many at-
tentions since the first paper by MacDonald in [15]. Thereafter many others
researchers built excellent models and developed a decent understanding of
transmission mechanism of schistosomiasis (see [7, 6, 24]).
Recently, a schistosomiasis infection model described by E.J Allen and H.D
Victory [1] has been proposed. This model generalizes in some way, previous
mathematical models such as those described by Anderson and May [2];
Kimbir [13].
Here, we consider the model proposed in [1]. This model allows competition
between the intermediate host snails and a resistant snail species in order to
study the advantages of biological control. In [1], computational simulations
have been done to estimate some parameters and to study control of the
infection by chemotherapy and biological control using snail competition.
In this paper, we propose a complete mathematical analysis of the determin-
istic model of [1]. A stability analysis is provided to study the epidemiological
consequences of control strategies. Therefore, the specific objectives are to
determine the threshold parameter that measure initial disease transmission
and to analyze the steady states stability. This reproduction number can be
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used to assess the potential impact of biological control in the schistosomiasis
disease eradication. We show that the DFE is globally asymptotically stable
by constructing a Lyapunov function. The existence and uniqueness of a non-
trivial equilibrium (endemic equilibrium) is shown by applying a fixed point
Theorem due to Hethcote and Thieme [19] and its local asymptotic stability
is investigated using a Krasnoselskii sublinearity trick. The global asymp-
totic stability of this unique endemic equilibrium is shown using properties
of K-monotone systems [11].
The paper is organized as follows. In Section 2 we present the model de-
scribed by E.J Allen and H.D Victory [1]. Its well-posedness is established
and a reduced model is proposed. In Section 3, we determine R0 the basic
reproductive number of the model and we establish the global asymptotic
stability of the disease-free equilibrium when the basic reproductive number
is less or equal to one. Section 4 is devoted to the study of the system be-
havior when the basic reproductive number is larger than one. In this case,
by using some properties of K-monotone systems (see [18]), we prove the
existence of a unique endemic equilibrium and we show its global asymptotic
stability.
Finally, in Section 5 , we present some discussions about the characteristics
of the competitor resistant snail species that can be used to eliminate the
disease.

2. Model framework

We consider the model presented in [1]. In their work, four definite mam-
malian host sub-populations, three intermediate snail host sub-populations,
and a population of resistant competitor snails are considered. We assume
that the human births and deaths dynamics can be neglected compared to
the infection dynamics.
Further, it is assumed that infected snails and infected mammals do not
recover from schistosomiasis as their life span are short in comparison to
that for humans. The state variables of the model are:

• Hs(t) the susceptible (uninfected) human population size.

• Hi(t) the infected human population size.

• Ss(t) the susceptible snail host population size.
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• Se(t) the population size of the infected snails which are not yet shed-
ding cercariae (latent population size).

• Si(t) the infected and shedding snail population size(shedding popula-
tion size) .

• Src(t) the competitor snail population size(resistant to infection).

• Ms(t) the susceptible mammal population size.

• Mi(t) the infected mammal population size.

In addition, the population of snails as well as mammals are assumed to be
competitive. Birth and death rates for the various sub-populations will be
denoted by bi and di. The transmission parameters for the model are:

• t15 = tHsSi
= transmission rate from infected snails to uninfected hu-

mans,

• t32 = tSsHi
= transmission rate from infected humans to uninfected

snails,

• t38 = tSsMi
= transmission rate from infected mammals to susceptible

snail,

• t75 = tMsSi
= transmission rate from infected snails to susceptible mam-

mals.

Competition parameters are defined for the populations as follows:
c33 is the competition parameter between Ss and Ss, Se, Si,
c44 and c55 are the competition parameters between Se and Si, respectively,
and Ss, Se, and Si,
c36 is the competition parameter for snails Src with snails Ss, c46 and c56 are
defined analogously,
c64 is the competition parameter for snails Ss, Se and Si with Src,
c66 is the competition parameter for Src with Src,
c77 and c88 are the competition parameter for the mammals populations.
The recovery rate for infected humans is denoted by r12 and r54 denotes the
rate that the latent snail population Se becomes shedding Si.
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The time evolution of the different populations is governed by the following
system of equations:

dHs

dt
= −t15 SiHs + r12Hi,

dHi

dt
= t15 SiHs − r12Hi,

dSs

dt
= b3 (Ss + Se + Si)− t32Hi Ss − d3 Ss − c33 Ss(Ss + Se + Si)

−c36 Ss Src − t38 SsMi,

dSe

dt
= t32Hi Ss + t38 SsMi − d4 Se − c44 Se(Ss + Se + Si)

−c46 Se Src − r54 Se,

dSi

dt
= r54 Se − d5 Si − c55 Si(Ss + Se + Si)− c56 Si Src,

dSrc

dt
= b6 Src − c64 Src(Ss + Se + Si)− c66 Src Src − d6 Src,

dMs

dt
= b7(Ms +Mi)− t75 SiMs − c77Ms(Ms +Mi)− d7Ms,

dMi

dt
= t75 SiMs − d8Mi − c88Mi(Ms +Mi).

(1)
It is assumed for simplicity that d3 = d4 = d5, d7 = d8, c33 = c44 = c55,
c77 = c88 and c46 = c56 = c36. The total human population NH = Hs +Hi is
constant since dNH

dt
= 0. The total no resistant snails population is denoted

NSi = Ss + Se + Si. Its time-evolution is governed by

dNSi

dt
= (b3 − d3)NSi − c33N2

Si − c36 SrcNSi.

It follows that

dNSi

dt
≤ (b3 − d3)NSi − c33N2

Si =

(
b3 − d3
c33

−NSi

)
c33NSi.

The dynamics of the resistant snails population and the total mammals pop-
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ulation (NM = Ms +Mi) are respectively governed by

dSrc

dt
= (b6 − d6)Src − c66 S2

rc − c64 Src(Ss + Se + Si) ≤
(
b6 − d6
c66

− Src

)
c66 Src,

dNM

dt
= (b7 − d7)NM − c77N2

M =

(
b7 − d7
c77

−NM

)
c77NM .

Thus the feasible region for the system (1) is

D = {(Hs, Hi, Ss, Se, Si, Src,Ms,Mi) ∈ IR8
+ :

NSi ≤
b3 − d3
c33

, NM ≤
b7 − d7
c77

, Src ≤
b6 − d6
c66

}.

Proposition 2.1. The compact set D is positively invariant and attracting
under the flow described by (1).

Proof. It is sufficient to consider the system on the faces of D and to show
that for each face, the vector fields associated to the system points into the
set D.

If NSi = 0 then
dNSi

dt
= 0.

If NSi =
b3 − d3
c33

then
dNSi

dt
≤ 0.

If NM = 0 then
dNM

dt
= 0.

If NM =
b7 − d7
c77

then
dNM

dt
≤ 0.

If Src = 0 then
dSrc

dt
= 0.

If Src =
b6 − d6
c66

then
dSrc

dt
= −c64

b6 − d6
c66

(Ss + Se + Si) ≤ 0.

Furthermore, the model (1) is well-posed epidemiologically. Hence, it is suf-
ficient to study the dynamics of the basic model in D.

2.1. Reduction of the system

We will reduce the stability analysis of (1), to the study of a smaller and
simpler system. The following theorem(see [22] ) will permit us to reduce
the stability analysis to a smaller system.
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Theorem 2.1 ([22], Theorem 3.1). Consider the following C1 system
ẋ = f(x); x ∈ Rn y ∈ Rm,

ẏ = g(x, y);

with an equilibrium point (x∗, y∗) i.e.,
f(x∗) = 0 and g(x∗, y∗) = 0.

(2)

If x∗ is globally asymptotically stable (GAS) in Rn for the system ẋ = f(x),
and if y∗ is GAS in IRm, for the system ẏ = g(x∗, y), then (x∗, y∗) is (locally)
asymptotically stable for (2).
Moreover, if all the trajectories of (2) are forward bounded, then (x∗, y∗) is
GAS for (2).

We define the proportions of the no resistant snails by: sj =
Sj

NSi

for j =

s, e, i, and the proportions of mammals mj =
Mj

NM

for j = s, i.

Using ṡj =
Ṡj

NSi

− ṄSi

NSi

sj =
Ṡj

NSi

− (a3 − c33NSi − c36Src) sj,

ṁj =
Ṁj

NM

− ṄM

NM

mj =
Ṁj

NM

− (b7 − d7 − c77NM)mj, and the fact that

ss + se + si = 1, ms + mi = 1, simple computations show that the new
variables Hi, se, si, mi, NSi, Src, and NM satisfy:

dHi

dt
= t15(NH −Hi) siNSi − r12Hi,

dse
dt

= (t32Hi + t38NM mi)(1− se − si)− (b3 + r54) se,

dsi
dt

= r54se − b3si,

dmi

dt
= t75NSi si(1−mi)− b7mi,

dNSi

dt
=

a3︷ ︸︸ ︷
(b3 − d3) NSi − c33N2

Si − c36SrcNSi = X1(NSi, Src),

dSrc

dt
=

a6︷ ︸︸ ︷
(b6 − d6) Src − c64SrcNSi − c66SrcSrc = X2(NSi, Src),

dNM

dt
= (b7 − d7)NM − c77N2

M .

(3)
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This system is triangular: the last three equations do not depend on the
variables Hi, se, si, mi.
The last equation has two equilibria: the trivial one which is unstable and a

positive equilibrium N∗M =
b7 − d7
c77

which is GAS.

Let us consider the following subsystem:
dNSi

dt
=

a3︷ ︸︸ ︷
(b3 − d3) NSi − c33N2

Si − c36SrcNSi = X1(NSi, Src),

dSrc

dt
=

a6︷ ︸︸ ︷
(b6 − d6) Src − c64SrcNSi − c66SrcSrc = X2(NSi, Src),

(4)

The equilibria of (4) are:
(0, 0) which is unstable: two positive eigenvalues a3 and a6.

E1 =

(
a3
c33
, 0

)
with eigenvalues −a3 and a6 −

c64a3
c33

=
c33a6 − c64a3

c33
.

E2 =

(
0,
a6
c66

)
with eigenvalues −a6 and a3 −

c36a6
c66

=
c66 a3 − c36a6

c66
.

If c33a6 − c64a3 < 0 then E1 is LAS. If c66 a3 − c36a6 < 0 then E2 is LAS.
The system (4) has a positive equilibrium E∗:

N∗Si =
c36a6 − c66a3
c36c64 − c33c66

=
c66a3 − c36a6
c33c66 − c36c64

,

S∗rc =
c64a3 − c33a6
c36c64 − c33c66

=
c33a6 − c64a3
c33c66 − c36c64

.

(5)

We remark that

N∗Si =
c66 a3 − c36 a6
c33 a6 − c64 a3

S∗rc (6)

The equilibrium E∗ = (N∗Si, S
∗
rc) exists if and only if

1. 1st case: c33c66 − c36c64 > 0. In this case the existence of E∗ implies
that E∗ is LAS and the other are unstable.

2. 2nd case: c33c66 − c36c64 < 0. In this case E∗ exists if c33a6 − c64a3 < 0
and c66a3 − c36a6 < 0. In this case E1 and E2 are LAS but E∗ is
unstable.
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We shall assume that E1 and E2 are unstable which implies that

c33a6 − c64a3 > 0 and c66 a3 − c36a6 > 0. (7)

This implies
c33c66 − c36c64 > 0. (8)

In this case E∗ is LAS: eigenvalues with negative real part.
Let V a lyapunov function defined as follows :

V = (NSi −N∗Si logNSi) + d (Src − S∗rc logSrc).

Then, its derivative along the solutions of (4) satisfies :

V̇ = (NSi −N∗Si)(a3 − c33NSi − c36Src) + d (Src − S∗rc)(a6 − c64NSi − c66Src).

Using equilibria relations, we obtain:

V̇ = (NSi −N∗Si)(c33N∗Si + c36S
∗
rc − c33NSi − c36Src) + d (Src − S∗rc)(c64N∗Si

+c66S
∗
rc − c64NSi − c66Src)

= −c33(NSi −N∗Si)2 − d c66(Src − S∗rc)2 − c36(NSi −N∗Si)(Src − S∗rc)
−d c64(NSi −N∗Si)(Src − S∗rc)

= −c33(NSi −N∗Si)2 − d c66(Src − S∗rc)2 − (c36 + d c64)(NSi −N∗Si)(Src − S∗rc).

We choose d =
c66a

2
3

c33a26
. With this and using (8) we can show

(c36 + d c64)
2 − 4 d c33 c66 < 0, (9)

then V̇ is definite negative and hence the equilibrium (N∗Si, S
∗
rc, N

∗
M) is GAS.

Then, under the condition (8), (N∗Si, S
∗
rc, N

∗
M) is GAS.

Remark 2.1. It is also possible to prove the GAS of (N∗Si, S
∗
rc) by using

Dulac criterion [25] with the function ρ(NSi, Src) =
1

NSi Src

defined on the

set U =]0,
b3 − d3
c33

[×]0,
b6 − d6
c66

[.

We have
∂(ρX1)

∂NSi

+
∂(ρX2)

∂Src

= −
(
c33
Src

+
c66
NSi

)
< 0.
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Therefore, under the assumption (8) and using Theorem 2.1, the stability
properties of system (10) on the set D are the same as those of the following
reduced system

dHi

dt
= t15(NH −Hi)N

∗
Si si − r12Hi,

dse
dt

= (t32Hi + t38N
∗
M mi)(1− se − si)− (b3 + r54) se,

dsi
dt

= r54 se − b3 si,

dmi

dt
= t75N

∗
Si si (1−mi)− b7mi,

(10)

defined on the set

D1 = {0 ≤ Hi ≤ NH , 0 ≤ se + si ≤ 1, 0 ≤ mi ≤ 1}

3. The Disease-free equilibrium and the basic reproductive number

In this section, we will give an analytic expression for R0 the basic repro-
ductive number of the system (for more details concerning the definition and
the computation of R0 one can see [20, 9, 5]), and completely answer the
stability question for the disease-free equilibrium (DFE). As usual ρ(M) is
the spectral radius of the matrix M .

3.1. R0 and the local stability of the DFE

Proposition 3.1. The DFE for system (10) is the origin (Hi, se, si,mi) =
(0, 0, 0, 0) = E0 and the basic reproduction ratio is given by:

R0 =

√
r54N

∗
Si (b7 t15 t32NH + r12 t38 t75N

∗
M)

b3 b7 r12 (b3 + r54)
= T

1/2
0 .

Moreover The DFE is LAS if T0 < 1 and is unstable if T0 > 1.

Proof. It is clear that the DFE is E0 = (0, 0, 0, 0). Using, the now standard
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techniques [9, 20], it is easy to show that the basic reproduction ratio is

R0 = ρ(



0
r54 t15NH N

∗
Si

b23 + r54b3

t15NH N
∗
Si

b3
0

t32
r12

0 0
t38N

∗
M

b7

0 0 0 0

0
r54 t75N

∗
Si

b23 + r54b3

t75N
∗
Si

b3
0


).

A simple computation gives:

R0 =

√
r54N

∗
Si (b7 t15 t32NH + r12 t38 t75N

∗
M)

b3 b7 r12 (b3 + r54)
= T

1/2
0 .

The Jacobian matrix of (3) at E0 is

J0 =


−r12 0 t15NH N

∗
Si 0

t32 −(b3 + r54) 0 t38N
∗
M

0 r54 −b3 0
0 0 t75N

∗
Si −b7

 .

J0 is a Metzler matrix and we can write J0 = F + V with

F=


0 0 t15NH N

∗
Si 0

t32 0 0 t38N
∗
M

0 0 0 0
0 0 t75N

∗
Si 0

 , V =


−r12 0 0 0

0 −(b3 + r54) 0 0
0 r54 −b3 0
0 0 0 −b7

 .

We have F > 0 and V is Metzler stable, see [3, 12, 10, 4]. Thanks to Varga’s
Theorem in [21]: s(J0) ≤ 0 iff ρ(−F V −1) ≤ 1. Since ρ(−F V −1) = R0, we
then deduce that E0 is LAS if R0 < 1 and is unstable if R0 > 1.

3.2. Global stability of the DFE

We have the following global behavior for system (3) when R0 ≤ 1.

Theorem 3.1. If R0 ≤ 1 then the DFE is GAS.
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Proof. Consider the candidate Lyapunov function:

V =
t32
r12

Hi + se +
b3 + r54
r54

si +
t38N

∗
M

b7
mi.

Its derivative along the solutions of (10) satisfies:

V̇ =
t32
r12

t15(NH −Hi) siN
∗
Si − t32Hi

+(t32Hi + t38N
∗
M mi)(1− se − si)− (b3 + r54) se

+
b3 + r54
r54

(r54se − b3si) +
t38N

∗
M

b7
(t75N

∗
Si si(1−mi)− b7mi)

= −t32Hisi − t38N∗M misi

+se

(
b3 + r54
r54

r54 − (b3 + r54)− t32Hi − t38N∗M mi

)
+si

(
t32
r12

t15N
∗
Si (NH −Hi)−

b3 + r54
r54

b3 +
t38 t75N

∗
M

b7
N∗Si (1−mi)

)
= − (se + si) (t32Hi + t38N

∗
M mi)

+si

(
t32
r12

t15N
∗
Si (NH −Hi)−

b3 + r54
r54

b3 +
t38 t75N

∗
M

b7
N∗Si (1−mi)

)
.

Hence

V̇ ≤ − (se + si) (t32Hi + t38N
∗
M mi)

+si

(
t32
r12

t15N
∗
SiNH −

b3 + r54
r54

b3 +
t38 t75N

∗
M

b7
N∗Si

)
= − (se + si) (t32Hi + t38N

∗
M mi)

+si
b3 + r54
r54

b3

(
r54N

∗
Si (b7 t15 t32NH + r12 t38 t75N

∗
M)

b3 (b3 + r54) b7 r12
− 1

)
.

Therefore V̇ ≤ − (se + si) (t32Hi + t38N
∗
M mi) +

b3 + r54
r54

b3 (R2
0 − 1) si ≤ 0

if R0 ≤ 1.
If R0 < 1, then V̇ = 0 implies si = se = 0, or si = mi = Hi = 0 and if
R0 = 1, then V̇ = 0 implies si = se = 0, or mi = Hi = 0. However, in
each case the largest invariant subset of V̇ = 0 is the singleton E0. Thus, by
LaSalle Invariance Principle [14], E0 is GAS on D1 when R0 ≤ 1.
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4. Endemic Equilibrium

4.1. Existence and uniqueness of the endemic equilibrium

We have shown that the disease-free equilibrium is globally asymptotically
stable when R0 ≤ 1. In the following, we will prove that system (10) has
a unique endemic equilibrium when R0 > 1. To this end we formulate the
problem as a fixed point problem. Then we use a theorem due to Hethcote
and Thieme ([19], Theorem 2.1) for the existence and uniqueness of a posi-
tive fixed point of a multi-variable function. To be self contained, we recall
hereafter the result of Hethcote and Thieme:

Theorem 4.1. ([19], Theorem 2.1) Let F (x) be a continuous, monotone
non-decreasing, strictly sublinear, bounded function which maps the non-
negative orthant IRn

+ = [0,∞) into itself. Let F (0) = 0 and F ′(0) exists
and be irreducible. Then F (x) does not have a non-trivial fixed point on the
boundary of IRn

+. Moreover, F (x) has a positive fixed point iff ρ(F ′(0)) > 1.
If there is a positive fixed point, then it is unique.

An equilibrium point (H∗i , s
∗
e, s
∗
i ,m

∗
i ) for system (10) satisfies

s∗i =
r54
b3
s∗e,

t15(NH −H∗i ) s∗i N
∗
Si − r12H∗i = 0.

This implies

H∗i =
t15N

∗
SiNH

r54
b3
s∗e

r12 + t15N∗Si
r54
b3
s∗e
.

Solving the equations in (10) at steady state gives

s∗e =
b3
r54

s∗i , m∗i =
t75N

∗
Si

t75N∗Si s
∗
i + b7

s∗i , H∗i =
t15NHN

∗
Si s
∗
i

t15N∗Si s
∗
i + r12

. (11)

Thus

s∗e =
(t32H

∗
i + t38N

∗
M m∗i )

(b3 + r54) + (t32H∗i + t38N∗M m∗i )(1 +
r54
b3

)
.

13



The fourth equation gives

m∗i =
N∗Si t75

r54
b3
s∗e

b7 +N∗Si t75
r54
b3

.

We write this as
U = F (U),

where U =

 Hi

se
mi

 , and

F =

 F1

F2

F3

 =



t15N
∗
SiNH

r54
b3
se

r12 + t15N∗Si
r54
b3
se

(t32Hi + t38N
∗
M mi)

(b3 + r54) + (t32Hi + t38N∗M mi)(1 +
r54
b3

)

N∗Si t75
r54
b3
se

b7 +N∗Si t75
r54
b3
se



.

It is easy to remark that F1 ≤ NH , F2 ≤ 1 and F3 ≤ 1.
The equilibrium points satisfy the relation U = F (U). We use this formula-
tion to prove existence and uniqueness of an endemic equilibrium point.
Let Ω = {(Hi, se,mi) : 0 ≤ Hi ≤ NH , 0 ≤ se ≤ 1, 0 ≤ mi ≤ 1}. The function
F is a continuous bounded function that maps Ω into itself and it is infinitely
differentiable with Jacobian

F ′(U) =

 0 J12 0
J21 0 J23
0 J32 0


where:

14



J12 =
b3r12r54t15NHN

∗
Si

(b3r12 + r54 t15N∗Si se)
2
, J21 =

b23 t32
(b3 + r54) (b3 + t32Hi + t38N∗M mi) 2

,

J23 =
b23 t38N

∗
M

(b3 + r54) (b3 + t32Hi + t38N∗M mi) 2
, J32 =

b3 b7 r54 t75N
∗
Si

(b3 b7 + r54 t75N∗Si se)
2
.

The off-diagonal elements of the matrix F ′(U) are non-negative. Thus the
function F (U) is monotone non-decreasing. We have F (0) = 0 and ρ(F ′(0)) =
R0 > 1. Thanks to the graph theory, we claim that F ′(0) is irreducible be-
cause the associated graph of the matrix is strongly connected.
Let us now prove that F is strictly sublinear in Ω, i.e., F (λU) > λF (U), for
any U ∈ Ω with U > 0, and λ ∈ (0, 1). Some calculations give

λF1(U)

F1(λU)
=
r12 + t15N

∗
Si

r54
b3
r se

r12 + t15N∗Si
r54
b3
se

< 1.

λ F2(U)

F2(λU)
=

(b3 + r54) + (t32Hi + t38N
∗
M mi)(1 +

r54
b3

)

(b3 + r54) + r (t32Hi + t38N∗M mi)(1 +
r54
b3

)
< 1.

λ F3(U)

F3(λU)
=
b7 +N∗Si t75

r54
b3
λ se

b7 +N∗Si t75
r54
b3
se

< 1.

So the function F (U) is strictly sublinear. In this way we have proved the
following theorem

Theorem 4.2. If R0 ≤ 1, the only equilibrium point of the system is the
disease-free equilibrium E0. If R0 > 1, there also exists a unique endemic
equilibrium E∗ in int(Ω) whose coordinates satisfy (11).

4.2. Local Stability of the Endemic Equilibrium

In this section, we shall prove the local stability of the endemic equilibrium
when R0 > 1. For this we shall follow the method given by Hethcote and
Thieme, which is based on a Krasnoselskii technique [19]. A usual way to
prove the local asymptotic stability of an equilibrium point x̄ of the system
of differential equations ẋ = f(x) is to prove that the linearized equation
ż = Df(x̄) z has no solutions of the form

z(t) = Z exp(wt) (12)
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with Z ∈ Cn \ {0}, w ∈ C and Re(w) ≥ 0, i.e., wZ = Df(x̄)Z with
Z ∈ Cn \ {0}, w ∈ C implies Re(w) < 0.
Substituting a solution of the form (12) in the linearized equation at the
endemic equilibrium, we obtain the following linear equations.

wZ1 = − (t15 s
∗
i N

∗
Si + r12) Z1 + t15 (NH −H∗i ) N∗Si Z3,

w Z2 = (1− s∗e − s∗i ) t32 Z1 − (t32H
∗
i + t38N

∗
M m∗i ) Z2

− (b3 + r54) Z2 − (t32H
∗
i + t38N

∗
M m∗i ) Z3

+N∗M t38 (1− se − si) Z4,

w Z3 = r54 Z2 − b3 Z3,

w Z4 = t75N
∗
Si (1−m∗i ) Z3 − (t75N

∗
Si s
∗
i + b7) Z4.

(13)

Solving for Z3 from the third equation of (13), and substituting the result
into the second equation (and simplifying), gives the equivalent system

(
1 +

w + t15 s
∗
i N

∗
Si

r12

)
Z1 =

t15 (NH −H∗i ) N∗Si
r12

Z3,

(1 +G2 (w)) Z2 =
1− s∗e − s∗i
b3 + r54

(
t32 Z1 + (t38N

∗
M m∗i ) Z4

)
,(

1 +
w

b3

)
Z3 =

r54
b3
Z2,(

1 +
t75N

∗
Si s
∗
i

b7

)
Z4 =

t75N
∗
Si (1−m∗i )
b7

Z3,

where

G2(w) =
w

b3 + r54
+

(t32Hi + t38N
∗
M mi)

b3 + r54

(
1 +

r54
w + b3

)
.

Denoting in the same way

G1(w) =
w + t15N

∗
Si s
∗
i

r12
, G3(w) =

w

b3
, G4(w) =

w + t75N
∗
Si s
∗
i

b7
,
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we obtain the system

[1 +G1(w)] Z1 = (H Z)3 ,

[1 +G2(w)] Z2 = (H Z)1 + (H Z)4 ,

[1 +G3(w)] Z3 = (H Z)2 ,

[1 +G4(w)] Z4 = (H Z)3 ,

(14)

with

H =



0 0
t15 (NH −H∗i ) N∗Si

r12
0

t32 (1− s∗e − s∗i )
b3 + r54

0 0
t38N

∗
M (1− s∗e − s∗i )
b3 + r54

0
r54
b3

0 0

0 0
t75N

∗
Si (1−m∗i )
b7

0


.

System (14) can spells in a compact way as follows

(1 +Gi(w)) Zi = (H Z)i ,

where Z = (Z1, Z2, Z3, Z4) with the lexicographic order. Note that the no-
tation (H Z)i (with i = 1, ..., 4)) denotes the ith coordinate of the vector
H Z. It should further be noted that the matrix H has non-negative entries,
and the equilibrium E∗ = (H∗i , s

∗
e, s
∗
i ,m

∗
i ) satisfies E∗ = H E∗. Furthermore,

since the coordinates of E∗ are all positive, it follows then that if Z is a
solution of (14), then it is possible to find a minimal positive real number ρ,
depending on Z, such that

| Z |≤ ρE∗, (15)

where | Z |= (| Z1 |, | Z2 |, | Z3 |, | Z4 |) and | · | is a norm in C. Now we want
to show that Re(w) < 0. We assume that Re(w) ≥ 0. From this assumption
one has two cases : w = 0 and w 6= 0. In the first case, the determinant
∆ of the homogeneous linear system (13) in the variable Zi (i = 1, ..., 4)
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corresponds to the determinant of the matrix

−1−G1(0) 0
t15N

∗
Si (NH −H∗i )

r12
0

t32 (1− s∗e − s∗i )
b3 + r54

−1−G2(0) 0
t38N

∗
M (1− s∗e − s∗i )
b3 + r54

0
r54
b3

−1−G3(0) 0

0 0
t75N

∗
Si (1−m∗i )
b7

−1−G4(0)


.

Tacking into account that G3(0) = 0, some elementary calculations give

∆ =
(

1 +G4(0)
)(

1 +G1(0) +G2(0) +G1(0)G2(0)
)

− 1− s∗e − s∗i
(b3 + r54) s∗e

(
t32H

∗
i

(
1 +G4(0)

)
+ t38N

∗
M m∗i

(
1 +G1(0)

))
.

Denoting α = max{1 +G1(0), 1 +G4(0)}, and using the equilibrium relation
(t32H

∗
i + t38N

∗
M m∗i )(1− s∗e − s∗i )− (b3 + r54) s

∗
e = 0, we have

∆ >
(

1 +G4(0)
)(

1 +G1(0)
)(

1 +G2(0)
)
− α.

This shows that ∆ > 0 since G1(0), G2(0), and G4(0) are positive. Therefore,
for w = 0, the only solution of the system (14) is the trivial one Z = 0
which implies that w 6= 0. Assume now that w 6= 0, and Rew ≥ 0. Let
G(w) = min {|1 +Gi(w)| , i = 1, ..., 4}. It is easy to prove that in this case
|1 +Gi(w)| > 1 for all i, and therefore G(w) > 1. Taking norms on both sides
of (14), and using the fact that H is non-negative, we obtain the following
inequality:

G(w) | Z |≤ H | Z | . (16)

Using (15) and (16), we get

G(w) | Z |≤ ρH E∗ = ρE∗.

Which implies

| Z |≤ ρ

G(w)
E∗ < ρE∗.

But this contradicts the minimality of ρ. Therefore Re(w) < 0. We have
then proved the following theorem.
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Theorem 4.3. If R0 > 1, then the positive endemic equilibrium E∗ of the
system (10) is locally asymptotically stable.

4.3. Global Stability of the Endemic Equilibrium

In this section we will establish the global stability of the unique endemic
equilibrium point when R0 > 1. We shall use the properties of K-monotone
systems for the analysis of our system (see [18]). We begin by recalling the
definition of K-monotone systems as well as a result concerning convergence
properties of strongly monotone systems. Let

ẋ = f(x) (17)

where f is a continuously differentiable function defined on a convex, open
set U in IRn. Let q = (q1, ..., qn), qi ∈ {0, 1}, 1 ≤ i ≤ n, and K =
{x ∈ IRn : (−1)qi xi ≥ 0, 1 ≤ i ≤ n}. The solution φt(x) of (17) preserves the
partial ordering ≤K (for t ≥ 0) and system (17) is said to be of type K-
monotone if whenever x, y ∈ U with x ≤K y then φt(x) ≤K φt(y) for all
t ≥ 0 for which both φt(x) and φt(y) are defined. The following lemma gives
necessary and sufficient conditions for (17) to be a type K-monotone system
in the case that f ∈ C1(U) for an open convex set U ∈ IRn.

Lemma 4.1. (Smith [18], Lemma 2.1) If f ∈ C1(U) where U is open and
convex in IRn then φt preserves the partial ordering ≤K for t ≥ 0 if only if
PqDf(x)Pq has nonnegative off-diagonal elements for every x ∈ U , where
Pq = diag ((−1)q1 , ..., (−1)qn).

For strongly monotone systems, we recall the following useful result:

Theorem 4.4. (Hirsh [11], theorem 10.3) Suppose X is an open subset of
a strongly ordered topological vector space, and f generates a strongly mono-
tone flow in X. Let W ⊂ X be an open set of points with compact orbit
closures, and assume that there is a unique equilibrium p in

⋃
x∈W ω(x).

Then φt(x) −→ p for all x ∈ W .

We shall use this global convergence result to prove the following result

Theorem 4.5. If R0 > 1, then the positive endemic equilibrium state E∗ of
the system (10) is globally asymptotically stable in the interior of the set D1.
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Proof. We rewrite the system (10) using the variables (Hi, ss, si,mi) instead
of (Hi, se, si,mi) used in the previous sections. We get the following system:

dHi

dt
= t15(NH −Hi)N

∗
Si si − r12Hi,

dss
dt

= b3 − (t32Hi + t38N
∗
M mi + b3) ss,

dsi
dt

= r54 (1− ss − si)− b3 si,

dmi

dt
= t75N

∗
Si si (1−mi)− b7mi.


= f(Hi, ss, si,mi) = f(x).

(18)
With Jacobian

Df(x) =
−r12−t15N∗Sisi 0 t15N

∗
Si (NH−Hi) 0

−t32 ss −b3−t32Hi−t38N∗M mi 0 −t38N∗M ss
0 −r54 −b3 − r54 0
0 0 t75N

∗
Si (1−mi) −b7−t75N∗Sisi

.
If we choose the matrix P as

P =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 .

Then the matrix P Df(x)P is a Metzler matrix, i.e., it has nonnegative off-
diagonal elements for all x ∈ D1. Thus, system (18) is K-monotone in D̊1

(the interior of D1) with respect to the partial ordering defined by the orthant
K = {Hi ≥ 0, ss ≤ 0, si ≥ 0,mi ≥ 0}. Moreover it is strongly monotone with
respect to the orthant K because Df(x) is irreducible.
Thanks Hirsch’s theorem 4.4 and the fact that we have only one endemic
equilibrium E∗ in D̊1 which is locally asymptotically stable when R0 > 1
we can conclude that E∗ is globally asymptotically stable in D̊1 when R0 >
1.

5. Biological control

The first way to eradicate the disease is to use a competitor resistant snail
species that is able to eliminate the population of the intermediate host
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snails. This means that system (4) admits E2 =

(
0,
a6
c66

)
as a globally

asymptotically stable equilibrium state. This equilibrium corresponds to
the absence of the intermediate host snails: NSi = 0. According to the
computations done in Paragraph 2.1, the parameters must satisfy c66 a3 −

c36a6 < 0 and the other equilibrium E1 =

(
a3
c33
, 0

)
must be unstable which

implies that we must have c33a6 − c64a3 > 0. Remark that when the two
above conditions are satisfied then the coexistence equilibrium E∗ does not
exist.
To summarize, the population of the intermediate host snails can be elimi-
nated if the parameters satisfy the following condition

a6
a3

=
b6 − d6
b3 − d3

> max

{
c66
c36
,
c64
c33

}
(19)

This situation is illustrated in Figure 1. The simulation has been done using
parameter values from [1].

However the above condition (19) is strong and may be hard to satisfy in
practice. Therefore a second method to eradicate the disease without com-
pletely eliminating the intermediate host snails is to choose a competitor
resistant snail species in such a way that R0 ≤ 1. Recall that

R2
0 =

r54N
∗
Si (b7 t15 t32NH + r12 t38 t75N

∗
M)

b3 b7 r12 (b3 + r54)
.

In the expression of R0, the only quantity that depends on the competitor

resistant snail species is N∗Si since (by relation (5)) N∗Si =
c36a6 − c66a3
c36c64 − c33c66

and

the other terms do not depend on the competitor.
We can remark that the introduction of a competitor reduces the value of
R0 since the value of the steady state size of the intermediate host snail in

the absence of the competitor (which is equal to
a3
c33

) is larger than its value

in the presence of the competitor.
Now, R0 ≤ 1 iff

c36a6 − c66a3
c36c64 − c33c66

= N∗Si ≤
b3 b7 r12 (b3 + r54)

r54 (b7 t15 t32NH + r12 t38 t75N∗M)
(20)
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The right-hand side expression of the above inequality (20) depends only
on the disease characteristics as well as on the human , mammal and inter-
mediate snail demographic parameters. It does not depend on the resistant
competitor snail species.
The competitor characteristics have then to satisfy the inequality (20) in
order to eradicate the disease. This means that the resistant competitor
snail species has to be able to reduce the steady state size of the intermediate
snail species under some quantity that depends on the disease characteristics
(r12, r54, t15, t32, t75), on the demographic parameters of the intermediate
snail, and on the human and mammal populations.

6. Summary and conclusions

In this paper, we have presented a stability analysis of a deterministic model
for the transmission dynamics of a schistosomiasis infection. Eight sub pop-
ulation sizes were considered: human host susceptible and infected, snail in-
termediate host susceptible, latent, and shedding, resistant competitor snail,
mammal host susceptible and infected. The snails competition is used to
control the transmission of the disease.
Mathematical properties of the model are analyzed and used to reduce the
dimension of the system under consideration.
The reproductive number R0 is then analytically and explicitly computed.
We proved that the disease-free steady state E0 is globally asymptotically
stable if R0 ≤ 1.
We have also established the existence and uniqueness of an endemic equi-
librium E∗ in the case where R0 > 1. Using some properties of monotone
systems we have proved the global asymptotic stability of the endemic equi-
librium when it exists i.e., when R0 > 1.
In a more realistic situation, the speed of a river should affect the transmission
dynamics of schistosomiasis. We are working on this perspective. A model
with spatial structure involving the present ODE system coupled with a
shallow water equations is being studied, see [8].
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Figure 1: Evolution of the latent Se(t) and infected Si(t) snails when the elimination
condition (19) is satisfied.

[1] E. J. Allen and H. D. J. Victory. Modelling and simulation of a schis-
tosomiasis infection with biological control. Acta Trop, 87(2):251–267,
2003.

[2] R. Anderson and R. May. Helminth infections of humans: mathematical
models, population dynamics, and control. Advances in parasitology,
24:1–101, 1985.

[3] A. Berman and R. J. Plemmons. Nonnegative matrices in the mathe-
matical sciences. SIAM, 1994.
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