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A NON-AUTONOMOUS SEIRS MODEL WITH GENERAL

INCIDENCE RATE

JOAQUIM P. MATEUS AND CÉSAR M. SILVA

Abstract. For a non-autonomous SEIRS model with general incidence, that
admits [T. Kuniya and Y. Nakata, Permanence and extinction for a nonau-
tonomous SEIRS epidemic model, Appl. Math. Computing 218, 9321-9331
(2012)] as a very particular case, we obtain conditions for extinction and strong
persistence of the infectives. Our conditions are computed for several partic-
ular settings and extend the hypothesis of several proposed non-autonomous
models. Additionally we show that our conditions are robust in the sense
that they persist under small perturbations of the parameters in some suitable
family. We also present some simulations that illustrate our results.

1. Introduction

The study of epidemiological models has a long history that goes back to the
construction of the ODE compartmental model of Kermack and Mckendrick [5]
in 1927. Since then, several aspects of these models were considered, including
thresholds conditions for persistence and extinction of the disease, existence of
periodic orbits, stability and bifurcation analysis.

In this work we focus on SEIRS models. For this models, several incidence
functions were discussed for the contact between susceptibles and infectives and
it is known that epidemiological models with different incidence rates can exhibit
very distinct dynamical behaviors. In [3] Hethcote and den Driessche considered
an autonomous SEIRS model with general incidence. In this paper we will consider
a family of models with general incidence in the non-autonomous setting. Namely,
we will consider models of the form































S′ = Λ(t)− β(t)ϕ(S,N, I) − µ(t)S + η(t)R

E′ = β(t)ϕ(S,N, I) − (µ(t) + ǫ(t))E

I ′ = ǫ(t)E − (µ(t) + γ(t))I

R′ = γ(t)I − (µ(t) + η(t))R

N = S + E + I +R

(1)

where S, E, I, R denote respectively the susceptible, exposed (infected but not
infective), infective and recovered compartments and N is the total population,
Λ(t) denotes the birth rate, β(t)ϕ(S,N, I) is the incidence into the exposed class
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of susceptible individuals, µ(t) are the natural deaths, η(t) represents the rate of
loss of immunity, ǫ(t) represents the infectivity rate and γ(t) is the rate of recovery.

Our general non-autonomous setting allows the discussion of the effect of sea-
sonal fluctuations but also of environmental and demographic effects that are non
periodic. For instance, for some diseases like cholera and yellow fever, the size of
the latency period may decrease with global warming [13] and this type of effects
lead to non-periodic parameters.

A particular case of our setting is the case of mass-action incidence, ϕ(S,N, I) =
SI, that was considered in papers by Zhang and Teng [14] and by Kuniya and
Nakata [6, 7]. For mass action incidence, Teng and Zhang defined a condition for
strong persistence and a condition for extinction based on the sign of some con-
stants that, even in the autonomous setting, were not thresholds. To improve this
result in the periodic mass action setting [6], Kuniya and Nakata obtained explicit
conditions based in a general method developed by Wang and Zhao [15] and Re-
belo, Margheri and Bacaër [12] and, in the general mass action non-autonomous
setting, Zhang and Teng’s result was improved in [7]. In this paper we follow the
approach in [7] to obtain explicit criteria for strong persistence and extinction in
the non-autonomous setting with general incidence and we consider particular situ-
ations, including autonomous and asymptotically autonomous models with general
incidence, periodic models with general incidence and non-autonomous model with
Michaelis-Menten incidence.

For non-autonomous models with no latency class [11, 16] similar results were
obtained. We emphasize that our situation is very different and in particular, unlike
the referred papers, in general we need three conditions to guarantee extinction and
other three to guarantee strong persistence.

Additionally to the obtention of strong persistence and extinction conditions, we
also show that these conditions are robust in a large family of parameter functions.
Namely, we show that if our conditions determine extinction (respectively strong
persistence) and we replace β, η, ǫ and γ by different parameter functions sufficiently
close in the C0 topology and also replace ϕ by some sufficiently close incidence
function we still have extinction (respectively strong persistence) for the new model.

The structure of this paper is the following: in section 2 we introduce some
notations, our setting and state some simple facts about our system, in section 3
we state our main theorems, in section 4 we apply Theorem 1 to particular situations
including autonomous and asymptotically autonomous models, periodic models and
non-autonomous models with Michaelis-Menten incidence functions, in section 5
we present the proofs of our results and finally, in section 6 we make some final
comments about our results.

2. Notation and Preliminaries

We will assume that Λ, µ, β, η, ǫ and γ are continuous bounded and nonnegative
functions onR

+
0 , that ϕ is a continuous bounded and nonnegative function on (R+

0 )
3

and that there are ωµ, ωΛ, ωβ > 0 such that

µ−
ωµ

> 0, Λ−
ωΛ

> 0 and β−
ωβ

> 0 (2)

where we are using the notation

h−
ω = lim inf

t→+∞

1

ω

∫ t+ω

t

h(s) ds and h+
ω = lim sup

t→+∞

1

ω

∫ t+ω

t

h(s) ds,
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that we will keep on using throughout the paper. For bounded h we will also use
the notation

hS = sup
t≥0

h(t).

For each δ and θ with δ > θ ≥ 0 define the set

∆θ,δ = {(x, n, z) ∈ R
3 : θ ≤ x ≤ n ≤ δ ∧ 0 ≤ z ≤ n ≤ δ}.

We note that for every solution (S(t), E(t), I(t), R(t)) of our system the vector
(S(t), N(t), I(t)) with N(t) = S(t) + E(t) + I(t) + R(t) stays in the region ∆0,K

(we can take any constant K > D with D given by iii) in Proposition 1) for every
t ∈ R

+
0 sufficiently large. We need some additional assumptions about our system.

Assume that:

H1) for each 0 ≤ x ≤ K and 0 ≤ z ≤ K, the function n 7→ ϕ(x, n, z) is non in-
creasing, for each 0 ≤ z ≤ n ≤ K the function x 7→ ϕ(x, n, z) is non decreasing
and for each 0 ≤ z ≤ K the function x 7→ ϕ(x, x, z) is non decreasing and
ϕ(0, n, z) = 0;

H2) for each 0 ≤ x ≤ n ≤ K the limit

lim
z→0+

ϕ(x, n, z)

z

exists and the convergence is uniform in (x, n) verifying 0 ≤ x ≤ n ≤ K;
H3) for each 0 ≤ x ≤ n ≤ K, the function

z 7→











ϕ(x, n, z)

z
if 0 ≤ z ≤ K

lim
z→0+

ϕ(x, n, z)

z
if z = 0

is continuous, bounded and non increasing;
H4) given θ > 0 there is Kθ > 0 such that

|ϕ(x1, n, z)− ϕ(x2, n, z)| ≤ Kθ|x1 − x2|z,

for (x1, n1, z), (x2, n2, z) ∈ ∆θ,K , and

|ϕ(x1, x1, z)− ϕ(x2, x2, z)| ≤ Kθ|x1 − x2|z,

for (x1, x1, z), (x2, x2, z) ∈ ∆θ,K .

Note that, by H2) and H3) and for every 0 ≤ x ≤ n ≤ K and 0 ≤ z ≤ n ≤ K, there
is M > 0 such that we have

ϕ(x, n, z)

z
≤ lim

δ→ 0+

ϕ(x, n, δ)

δ
≤ M < +∞. (3)

Note also that, if for each θ ∈]0,K] there is Kθ > 0 such that

∂ϕ

∂x
(x, n, z) ≤ Kθz,

for all (x, n, z) ∈ ∆θ,K , then H4) holds.
We emphasise that, as we will see, conditions H1)–H4) are verified in the usual

examples.
We now state some simple facts about our system.

Proposition 1. We have the following:

i) all solutions (S(t), E(t), I(t), R(t)) of (1) with nonnegative initial conditions,
S(0), E(0), I(0), R(0) ≥ 0, are nonnegative for all t ≥ 0;
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ii) all solutions (S(t), E(t), I(t), R(t)) of (1) with positive initial conditions, S(0),
E(0), I(0), R(0) > 0, are positive for all t ≥ 0;

iii) There is a constant D > 0 such that, if (S(t), E(t), I(t), R(t)) is a solution
of (1) with nonnegative initial conditions, S(0), E(0), I(0), R(0) ≥ 0, then

lim sup
t→+∞

N(t) = lim sup
t→+∞

(S(t) + E(t) + I(t) +R(t)) ≤ D.

Proof. Properties i) and ii) are easy to prove. In fact, since t 7→ Λ(t) and t 7→ µ(t)
are bounded, adding the first four equations in (1) we obtain for nonnegative initial
conditions,

N ′ = Λ(t)− µ(t)N.

By (2), there is T ≥ 0 such that
∫ t+ωµ

t
µ(s) ds ≥ 1

2µ
−
ωµ

ωµ for t ≥ T . Thus, given
t0 ≥ T we have

∫ t

t0

µ(s) ds ≥

∫ t0+⌊
t−t0
ωµ

⌋ωµ

t0

µ(s) ds

≥
1

2
µ−
ωµ

ωµ⌊
t− t0
ωµ

⌋

≥
1

2
µ−
ωµ

ωµ

(

t− t0
ωµ

− 1

)

=
1

2
µ−
ωµ

(t− t0)−
1

2
µ−
ωωµ

and, setting µ1 =
1

2
µ−
ωµ

and µ2 =
1

2
µ−
ωµ

ωµ, we conclude that there are µ1, µ2 > 0

and T > 0 sufficiently large such that, for all t ≥ t0 ≥ T we have

∫ t

t0

µ(s) ds ≥ µ1(t− t0)− µ2. (4)

By (4) we have, for all t ≥ T ,

N(t) = e
−

∫
t

t0
µ(s) ds

N0 +

∫ t

t0

e−
∫

t

u
µ(s) ds Λ(u) du

≤ e−µ1(t−t0)+µ2 N0 + ΛS

∫ t

t0

e−µ1(t−u)+µ2 du

= e−µ1(t−t0)+µ2 N0 +
ΛS eµ2

µ1

(

1− e−µ1(t−t0)
)

Therefore

lim sup
t→+∞

N(t) ≤ lim sup
t→+∞

[

e−µ1(t−t0)+µ2 N0 +
ΛS eµ2

µ1

(

1− e−µ1(t−t0)
)

]

=
ΛS eµ2

µ1

and we obtain the result setting D = ΛS eµ2 /µ1. �

Proposition 1 shows that, for every δ > 0, K > D (with D given by (iii) in Propo-
sition 1) and every solution (S(t), E(t), I(t), R(t)) of our system, (S(t), N(t), I(t))
stays in the region ∆0,K for t ∈ R

+
0 sufficiently large.
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3. Main results

We need to consider the following auxiliar differential equation

z′ = Λ(t)− µ(t)z. (5)

The next result summarizes some properties of the given equation.

Proposition 2. We have the following:

i) Given t0 ≥ 0, all solutions z(t) of equation (5) with initial condition z(t0) ≥ 0
are nonnegative for all t ≥ 0;

ii) Given t0 ≥ 0, all solutions z(t) of equation (5) with initial condition z(t0) > 0
are positive for all t ≥ 0;

iii) Each fixed solution z(t) of (5) with initial condition z(t0) ≥ 0 is bounded and
globally uniformly attractive on [0,+∞[;

iv) there is D ≥ 0 and T > 0 such that if t0 ≥ T , z(t) is a solution of (5) and
z̃(t) is a solution of

z′ = Λ(t)− µ(t)z + f(t) (6)

with f bounded and z̃(t0) = z(t0) then

sup
t≥t0

|z̃(t)− z(t)| ≤ D sup
t≥t0

|f(t)|.

v) There exists constants m1,m2 > 0 such that, for each solution of (5) with
z(0) = z0 > 0, we have

m1 ≤ lim inf
t→∞

z(t) ≤ lim sup
t→∞

z(t) ≤ m2.

Proof. Given t0 ≥ 0, the solution of (5) with initial condition z(t0) = z0 is given
by

z(t) = e
−

∫
t

t0
µ(s) ds

z0 +

∫ t

t0

e−
∫

t

u
µ(s) ds Λ(u) du

and thus, since Λ(t) ≥ 0 for all t ≥ 0, if z0 ≥ 0 we obtain z(t) ≥ 0 for all t ≥ t0 and
if z0 > 0 we obtain z(t) > 0 for all t ≥ t0. This establishes i) and ii).

By (2) (recalling (4)), there are µ1, µ2 > 0 sufficiently small and t0 > 0 suffi-
ciently large such that, for all t ≥ t0 we have

z(t) = e
−

∫
t

t0
µ(s) ds

z0 +

∫ t

t0

e−
∫

t

u
µ(s) ds Λ(u) du

≤ e−µ1(t−t0)+µ2 z0 + ΛS

∫ t

t0

e−µ1(t−u)+µ2 du

= e−µ1(t−t0)+µ2 z0 +
ΛS eµ2

µ1

(

1− e−µ1(t−t0)
)

(7)

and we conclude that z(t) is bounded.
Let z1 be a solution of (5) with z1(t0) = z0,1. By (2), there is t0 > 0 and µ̃ > 0

such that, for t ≥ t0 we have

|z(t)− z1(t)| = e
−

∫
t

t0
µ(s) ds

|z0 − z0,1| ≤ e−µ1(t−t0)+µ2 |z0 − z0,1|

and thus |z(t)− z1(t)| → 0 as t → +∞ and we obtain iii).
Subtracting (5) and (6) and setting w(t) = z̃(t)− z(t) we obtain

w′ = −µ(t)w + f(t)
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and thus, since w(t0) = z̃(t0)−z(t0) = 0, we get again by (2) (and the computations
in (4)), for t0 sufficiently large

|z̃(t)− z(t)| = |w(t)| =

∫ t

t0

e−
∫

t

u
µ(s) ds |f(u)| du ≤ sup

t≥t0

|f(t)|

∫ t

t0

e−µ1(t−u)+µ2 du

=
eµ2

µ1
sup
t≥t0

|f(t)|
(

1− e−µ1(t−t0)
)

≤
eµ2

µ1
sup
t≥t0

|f(t)|,

for all t ≥ t0, and we obtain iv).
For all t > 0 sufficiently large there is Λ1 > 0 such that

z(t) = e
−

∫
t

t−ωΛ
µ(s) ds

z0 +

∫ t

t−ωΛ

e−
∫

t

u
µ(s) ds Λ(u) du

≥

∫ t

t−ωΛ

e−µSωΛ Λ(u) du

≥ Λ1 e
−µSωΛ

and thus lim inf
t→+∞

z(t) ≥ Λ1 e
−µSωΛ . By (7) we have lim sup

t→+∞
z(t) ≤

ΛS eµ2

µ1
. Therefore

we obtain v). �

For p > 0 and t > 0, define the auxiliary functions

gδ(p, t, z) = β(t)
ϕ(z(t), z(t), δ)

δ
p+ γ(t)−

(

1 +
1

p

)

ǫ(t), (8)

h(p, t) = γ(t)−

(

1 +
1

p

)

ǫ(t),

bδ(p, t, z) = β(t)
ϕ(z(t), z(t), δ)

δ
p− µ(t)− ǫ(t), (9)

where z(t) is any solution of (5) such that z(0) > 0, and also consider the function

W (p, t) = pE(t)− I(t).

For each solution z(t) of (5) with z(0) > 0 and λ > 0, p > 0 we define

Re(λ, p) = Exp

[

lim sup
t→+∞

∫ t+λ

t

lim
δ→0+

bδ(p, s, z(s)) ds

]

, (10)

Rp(λ, p) = Exp

[

lim inf
t→+∞

∫ t+λ

t

lim
δ→0+

bδ(p, s, z(s)) ds

]

, (11)

R∗
e(λ, p) = Exp

[

lim sup
t→+∞

∫ t+λ

t

ǫ(s)

p
− µ(s)− γ(s) ds

]

, (12)

R∗
p(λ, p) = Exp

[

lim inf
t→+∞

∫ t+λ

t

ǫ(s)

p
− µ(s)− γ(s) ds

]

, (13)

and finally

G(p) = lim sup
t→+∞

lim
δ→0+

gδ(p, t, z(t)) (14)

and

H(p) = lim inf
t→+∞

h(p, t). (15)
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Note that, if the incidence function is differentiable, then the equations (10), (11)
and (14) simplify. In fact, in this case, according to H4) we have ϕ(x, n, 0) = 0,
and thus

lim
δ→0+

ϕ(z(t), z(t), δ)

δ
=

∂ϕ

∂z
(z(t), z(t), 0).

The next lemma shows that numbers Re(λ, p), Rp(λ, p), and G(p) above do not
depend on the particular solution z(t) of (5) with z(0) > 0.

Lemma 1. We have the following:

1. Let p > 0, ε > 0 be sufficiently small and 0 < θ ≤ K. If

a, b ∈ ]θ,K[ and a− b < ε,

then

bδ(p, t, a)− bδ(p, t, b) < βSKθpε. (16)

2. The numbers Rp(λ, p) and Re(λ, p) and G(p) are independent of the partic-
ular solution z(t) with z(0) > 0 of (5).

We will also use the next technical lemma in the proof of our main theorem.

Lemma 2. If there is a positive constant p > 0 such that G(p) < 0 or H(p) > 0
then there exists T ≥ 0 such that either W (p, t) ≤ 0 for all t ≥ T or W (p, t) > 0 for
all t ≥ T . Additionally, if there are positive constants p, λ > 0 such that G(p) < 0
or H(p) > 0, Rp(λ, p) > 1 and R∗

p(λ, p) > 1, then there exists T ≥ 0 such that
W (p, t) ≤ 0.

We say that the infectives go to extinction in in system (1) if

lim
t→+∞

I(t) = 0

and we say that the infectives are strongly persistent in system (1) if

lim inf
t→+∞

I(t) > 0.

We now state our main theorem on the extinction and strong persistence of the
infectives in system (1).

Theorem 1. We have the following for system (1).

1. If there are constants λ > 0 and p > 0 such that Re(λ, p) < 1, R∗
e(λ, p) < 1

and G(p) < 0 then the infectives I go to extinction.
2. If there are constants λ > 0 and p > 0 such that Re(λ, p) < 1, R∗

e(λ, p) < 1
and H(p) > 0 then the infectives I go to extinction.

3. If there are constants λ > 0 and p > 0 such that Rp(λ, p) > 1, R∗
p(λ, p) > 1

and G(p) < 0 then the infectives I are strongly persistent.
4. If there are constants λ > 0 and p > 0 such that Rp(λ, p) > 1, R∗

p(λ, p) > 1
and H(p) > 0 then the infectives I are strongly persistent.

5. In the assumptions of 1. any disease-free solution (S1(t), 0, 0, R1(t)) is glob-
ally asymptotically stable.

We also want to discuss the robustness of the conditions Re(λ, p) > 0, R∗
e(λ, p) >

0, Rp(λ, p) < 0, R∗
p(λ, p) < 0, H(p) > 0 and G(p) < 0, i.e., roughly speaking if

for sufficiently small perturbations of the parameters of our model in some ad-
missible family of functions the conditions above are preserved. We will consider
differentiable functions ϕ.
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Consider the family of systems































S′ = Λ(t)− βτ (t)ϕτ (S,N, I)− µ(t)S + ητ (t)R

E′ = βτ (t)ϕτ (S,N, I)− (µ(t) + ǫτ (t))E

I ′ = ǫτ (t)E − (µ(t) + γτ (t))I

R′ = γτ (t)I − (µ(t) + ητ (t))R

N = S + E + I +R

, (17)

where τ ∈ [−ζ, ζ] and we assume that, making τ = 0, we have ϕ0 = ϕ, β0 = β, η0 =
η, ǫ0 = ǫ and γ0 = γ and that, for τ = 0 the parameters satisfy our assumptions
(i.e. for τ = 0 we have our original system (1)). We also assume that for each
τ ∈ [−ζ, ζ] the parameter functions βτ , ητ , ǫτ and γτ are continuous and bounded
in R

+
0 , that ϕτ is differentiable in ∆0,K and that ϕτ (x, n, 0) = 0.

For g : R
+
0 → R denote by ‖ · ‖∞ the supremum norm (given by ‖g‖∞ =

supt≥0 |g(t)|) and for f : (R+
0 )

3 → R denote by ‖ · ‖∆0,K
the C1 norm of the

restriction f |∆0,K
:

‖f‖∆0,K
= max

x∈∆0,K

|f(x)|+ max
x∈∆0,K

‖dxf‖.

Denote by Rτ
e (λ, p), R

τ
p(λ, p), (R

∗
e)

τ (λ, p),
(

R∗
p

)τ
(λ, p), Gτ

p(λ) and Hτ
p (λ), re-

spectively the numbers (10), (11), (12), (13) (14) and (15) with respect to the τ
system in our family of models.

We have the following result on the robustness of conditions Re(λ, p) > 0,
R∗

e(λ, p) > 0, Rp(λ, p) < 0, R∗
p(λ, p) < 0, H(p) > 0 and G(p) < 0.

Theorem 2. Assume that ‖βτ − β‖∞, ‖ητ − η‖∞, ‖ǫτ − ǫ‖∞, ‖γτ − γ‖∞ and
‖ϕτ − ϕ‖∆0,K

converge to 0 as τ → 0. Then there is L > 0 such that, for all
τ ∈ [−L,L], the numbers

|Gτ (p)−G(p)| , |Hτ (p)−H(p)| , |Rτ
e (λ, p)−Re(λ, p)| ,

∣

∣Rτ
p(λ, p)−Rp(λ, p)

∣

∣ , |(R∗
e)

τ
(λ, p)−R∗

e(λ, p)| and
∣

∣

(

R∗
p

)τ
(λ, p)−R∗

p(λ, p)
∣

∣

converge to 0 as τ → 0.

The following is an immediate corollary.

Corollary 1. There is L > 0 such that for all τ ∈ [−L,L] we have.

1. If there are constants λ > 0 and p > 0 such that Re(λ, p) < 1, R∗
e(λ, p) < 1

and G(p) < 0 then the infectives I go to extinction in system (17).
2. If there are constants λ > 0 and p > 0 such that Re(λ, p) < 1, R∗

e(λ, p) < 1
and H(p) > 0 then the infectives I go to extinction in system (17).

3. If there are constants λ > 0 and p > 0 such that Rp(λ, p) > 1, R∗
p(λ, p) > 1

and G(p) < 0 then the infectives I are strongly persistent in system (17).
4. If there are constants λ > 0 and p > 0 such that Rp(λ, p) > 1, R∗

p(λ, p) > 1
and H(p) > 0 then the infectives I are strongly persistent in system (17).

5. In the assumptions of 1. any disease-free solution (S1(t), 0, 0, R1(t)) is glob-
ally asymptotically stable in system (17).
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4. Examples

Example 1 (Autonomous case). Letting Λ(t) = Λ > 0, µ(t) = µ > 0, η(t) = η ≥ 0,
ǫ(t) = ǫ ≥ 0, γ(t) = γ ≥ 0 and β(t) = β > 0 in (1) and requiring that ϕ satisfies H1)
to H4) we obtain an autonomous SEIRS model verifying our assumptions. It is easy
to see that z(t) = Λ/µ is a solution of (5) with positive initial condition in this case.
Letting

Lϕ,Λ,µ = lim
δ→0+

ϕ(Λ/µ,Λ/µ, δ)

δ
, (18)

we have
G(p) = βpLϕ,Λ,µ + γ − (1 + 1/p)ǫ,

H(p) = γ −

(

1 +
1

p

)

ǫ,

Re(λ, p) = Rp(λ, p) = Exp [(βpLϕ,Λ,µ − µ− ǫ)λ] ,

and
R∗

e(λ, p) = R∗
p(λ, p) = Exp [(ǫ/p− µ− γ)λ] .

Define

RA =
ǫβ Lϕ,Λ,µ

(µ+ ǫ)(µ+ γ)
(19)

The following result is a consequence of Theorem 1 in the autonomous case.

Corollary 2. We have the following for the autonomous system above.

1. If RA < 1 then the infectives go to extinction;
2. If RA > 1 then the infectives are strongly persistente;
3. The disease free equilibrium (Λ/µ, 0, 0, 0) is globally asymptotically stable.

Proof. Assuming that RA < 1 we have

ǫβ

(µ+ ǫ)(µ+ γ)
Lϕ,Λ,µ < 1

and thus for all p > 0 such that

ǫ

µ+ γ
< p <

µ+ ǫ

βLϕ,Λ,µ
,

we have
ǫ

p
< µ+ γ ⇔

ǫ

p
− µ− γ < 0 ⇔ R∗

e(λ, p) < 1

and also

βpLϕ,Λ,µ < µ+ ǫ ⇔ βpLϕ,Λ,µ − µ− ǫ < 0 ⇔ Re(λ, p) < 1.

Since

G

(

ǫ

µ+ γ

)

= βLϕ,Λ,µ
ǫ

µ+ γ
+ γ −

(

1 +
µ+ γ

ǫ

)

ǫ = (RA − 1)(µ+ ǫ) < 0

and G is continuous we conclude that there is p > 0 satisfying Re(λ, p) < 1,
R∗

e(λ, p) < 1 and G(p) < 0. Thus, by 1. in Theorem 1, the infectives go to
extinction and we obtain 1..

Assuming now that RA > 1 we have

ǫβ

(µ+ ǫ)(µ+ γ)
Lϕ,Λ,µ > 1
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and thus, by the same reasoning, for all p > 0 such that

ǫ

µ+ γ
> p >

µ+ ǫ

βLϕ,Λ,µ
,

we have R∗
e(λ, p) > 1 and Re(λ, p) > 1. Since

G

(

µ+ ǫ

βLϕ,Λ,µ

)

= βLϕ,Λ,µ
µ+ ǫ

βLϕ,Λ,µ
+ γ −

(

1 +
βLϕ,Λ,µ

µ+ ǫ

)

ǫ = (µ+ γ)
(

1−RA
)

< 0

and G is continuous we conclude that there is p > 0 satisfying Re(λ, p) < 1,
R∗

e(λ, p) < 1 and G(p) < 0. Thus, by 3. in Theorem 1, the infectives are strongly
persistent and we obtain 2..

By 5. in Theorem 1 we obtain immediatly 3.. �

Several particular forms for ϕ for particular SEIRS or SEIR model have been
considered. For instance, in [8], for a SEIR autonomous model under different
assumption than ours, an incidence of the form ϕ(S,N, I) = SI/(1 + bN) with
b > 0 was considered. Also for a SEIR autonomous model [4] a general incidence
of the form ϕ(S,N, I) = g(I)S satisfying g ∈ C1, g(I) > 0, g(0) = 0 and Λ = µ
was considered. In [1] an incidence of the form ϕ(S,N, I) = IS(1+αI) with Λ = µ
is considered. We can write our conditions for the previous incidence rates using
Corollary 2. For ϕ(S,N, I) = SI/(1 + bN) we get the threshold RA = ǫβΛ/[(µ +
ǫ)(µ+γ)(µ+bΛ)], for ϕ(S,N, I) = g(I)S with g ∈ C1, g(I) > 0, g(0) = 0 and Λ = µ
we obtain the threshold RA = ǫβg′(0)/[(µ+ǫ)(µ+γ)] and for ϕ(S,N, I) = IS(1+αI)
we have the threshold RA = ǫβ/[(µ+ ǫ)(µ+ γ)].

Example 2 (Asymptotically autonomous case). In this section we are going to
consider the asymptotically autonomous SEIRS model. That is, additionally to the
assumptions on Theorem 1, we are going to assume for system (1) that the time-
dependent parameters are asymptotically constant: µ(t) → µ, η(t) → η, ǫ(t) → ǫ,
γ(t) → γ and β(t) → β as t → +∞. Denoting by F (t, x, y, z, w) the right hand side
of (1) and by F0(x, y, z, w) the right hand side of the limiting system, we also need
to assume that

lim
t→+∞

F (t, x, y, z, w) = F0(x, y, z, w),

with uniform convergence on every compact set of (R+
0 )

4 and we will also assume
that (x, y, z, w) 7→ F (t, x, y, z, w) and (x, y, z, w) 7→ F0(x, y, z, w) are locally Lips-
chitz functions.

There is a general setting that will allow us to study this case. Namely, let
f : R × R

n → R and f0 : Rn → R be continuous and locally Lipschitz in R
n.

Assume also that the non-autonomous system

x′ = f(t, x) (20)

is asymptotically autonomous with limit equation

x′ = f0(x), (21)

that is, assume that f(t, x) → f0(x) as t → +∞ with uniform convergence in every
compact set of Rn. The following theorem is a particular case of a result established
in [9] (for related results and applications see for example [2, 10]).
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Theorem 3. Let Φ(t, t0, x0) and ϕ(t, t0, y0) be solutions of (20) and (21) respec-
tively. Suppose that e ∈ R

n is a locally stable equilibrium point of (21) with attrac-
tive region

W (e) =

{

y ∈ R
n : lim

t→+∞
ϕ(t, t0, y) = e

}

and that WΦ ∩W (e) 6= ∅, where WΦ denotes the omega limit of Φ(t, t0, x0). Then
lim

t→+∞
Φ(t, t0, x0) = e.

Since (R+)4 is the attractive region for any solution of system (1) with initial
condition in (R+)4 and the omega limit of every orbit of the asymptotically au-
tonomous system with I(t0) > 0 is contained in (R+)4, we can use Theorem 3 to
obtain the following result.

Corollary 3. Let RA be the basic reproductive numbers of the limiting autonomous
system, defined by (19). Then we have the following for the asymptotically au-
tonomous systems above.

1. If RA < 1 then the infectives are extinct;
2. If RA > 1 then the infectives are strongly persistente.

Example 3 (Periodic model with constant Λ, µ). Next we assume that some model
coefficients are periodic functions with the same period, namely we assume that
there is ω > 0 such that, for all t ≥ 0, we have η(t) = η(t + ω), ǫ(t) = ǫ(t + ω),
γ(t) = γ(t + ω) and β(t) = β(t + ω). We also assume that µ and Λ are constant
functions and that ϕ satisfies H1) to H4).

We have in his case

Re(ω, p) < 1 ⇔ lim sup
t→+∞

∫ t+ω

t

β(s)Lϕ,Λ,µ ds ⇔
[

pβ̄Lϕ,Λ,µ − µ− ǭ
]

ω < 0

R∗
e(ω, p) < 1 ⇔ lim sup

t→+∞

∫ t+ω

t

ǫ(s)/p− µ− γ(s) ds < 0 ⇔ (ǭ/p− µ− γ̄)ω < 0,

G(p) = max
t∈[0,1]

[β(t)pLϕ,Λ,µ + γ(t)− (1 + 1/p)ǫ(t)] ,

H(p) = min
t∈[0,1]

[γ(t)− (1 + 1/p)ǫ(t)] ,

Define

Rper =
ǭ β̄ Lϕ,Λ,µ

(µ+ ǭ)(µ+ γ̄)

where f̄ = 1
ω

∫ ω

0
f(s) ds and Lϕ,Λ,µ is given by (18). The following result is a

consequence of Theorem 1 in this case.

Corollary 4. We have for the periodic system with constant µ and Λ.

1. If G (ǭ/(µ+ γ̄)) < 0 or H
(

(µ+ ǭ)/(β̄Lϕ,Λ,µ)
)

> 0 and Rper < 1 then the
infectives go to extinction;

2. If G
(

(µ+ ǭ)/(β̄Lϕ,Λ,µ)
)

< 0 or H (ǭ/(µ+ γ̄)) > 0 and Rper > 1 then the
infectives are strongly persistent.



12 JOAQUIM P. MATEUS AND CÉSAR M. SILVA

Proof. By the same computations as in the proof of corollary 2 we conclude that
Rper

e < 1 if and only if there is

p ∈ I =

(

ǭ

µ+ γ̄
,

µ+ ǭ

β̄Lϕ,Λ,µ

)

such that Re(λ, p) < 1 and R∗
e(λ, p) < 1 and that there is λ > 0 such that Rper

p (λ) >
1 if and only if there is p ∈ I such that Rp(λ, p) > 1 and R∗

p(λ, p) > 1.
Moreover, by continuity of the functions G and H , if

G

(

ǭ

µ+ γ̄

)

< 0 or H

(

µ+ ǭ

β̄Lϕ,Λ,µ

)

> 0

then there is p ∈ I such that G(p) < 0 or H(p) > 0 and, by theorem 1, we obtain 1..
By simmilar arguments we obtain 2.. �

In [12], a method to find threshold conditions in a general periodic epidemiolog-
ical model relying in the spectral radius of some operator was obtained. Thought
our conditions are not thresholds in the periodic case, they have the advantage that
can be easily computed.

To illustrate the above corollary we consider the following family of periodic
models































S′ = µ− β(1 + b cos(2πt))SI − µS + ηR

E′ = β(1 + b cos(2πt))SI − (µ+ ǫ(1 + d cos(2πt)))E

I ′ = ǫ(1 + d cos(2πt))E − (µ+ γ(1 + k cos(2πt)))I

R′ = γ(1 + k cos(2πt))I − (µ+ η)R

N = S + E + I +R

(22)

where |b| < 1. In [6] it was showed that for µ = 2, ǫ = 1, γ = 0.02, η = 0.1, β = 6.2
and b = 0.6 and d = k = 0 the number Rper is not a threshold. Our result is not
applicable in this case since in this case G (ǫ/(µ+ γ)) = G(0.49505) = 1.91089 > 0.
More generally it is easy to check that, for the system (22), letting β and b vary and
µ = 2, ǫ = 1, γ = 0.02, η = 0.1 and d = k = 0, we have that Rper < 1 (respectively
Rper > 1) is equivalent to β < 6.06 (respectively β > 6.06), G(ǫ/(µ + γ)) < 0
is equivalent to β(1 + |b|) < 6.06, G ((µ+ ǫ)/(βLϕ,Λ,µ)) < 0 is equivalent to β >
9|b|+6.06 and H (ǫ/(µ+ γ)) > 0 and H ((µ+ ǫ)/(βLϕ,Λ,µ)) > 0 are impossible. In
the first plot in figure 1 we plot the region of parameters (b, β) where corollary 4 is
applicable and where we have extinction (purple) and permanence (blue).

Using the parameters in [6] but letting γ and k vary, we consider µ = 2, η = 0.1,
ǫ = 1, β = 6.06 and b = d = 0, we conclude that G(ǫ/(µ+ γ)) < 0 is equivalent to
(2+γ) (3− γ|k|) > 6.06, G ((µ+ ǫ)/(βLϕ,Λ,µ)) < 0 is equivalent to γ(1+|k|) < 0.02,
H (ǫ/(µ+ γ)) > 0 is impossible and H ((µ+ ǫ)/(βLϕ,Λ,µ)) > 0 is equivalent to
γ(1 − |k|) > 3.02. Additionally Rper < 1 is equivalent to γ > 0.02 and Rper > 1
is equivalent to γ < 0.02. In the second plot in figure 1 we plot the region of
parameters (k, γ) where corollary 4 is applicable and where we have extinction
(purple) and permanence (blue).

Finally, letting ǫ and d vary and setting µ = 2, γ = 0.02, η = 0.1, β = 6.06
and b = k = 0, we conclude that Rper < 1 is equivalent to ǫ < 1, Rper > 1 is
equivalent to ǫ > 1, G(ǫ/(µ + γ)) < 0 is equivalent to 2(ǫ − 1) + (2.02 + ǫ)|d| < 0,
G ((µ+ ǫ)/(βLϕ,Λ,µ)) < 0 is equivalent to |d| < 1− (2.02 + ǫ)(2 + ǫ)/(ǫ(8.06 + ǫ)),
H (ǫ/(µ+ γ)) > 0 is equivalent to 2.01ǫ(1+|b|) < 0.02 and H ((µ+ ǫ)/(βLϕ,Λ,µ)) >



A NON-AUTONOMOUS SEIRS MODEL WITH GENERAL INCIDENCE RATE 13

0 is equivalent to 0.02(2+ ǫ)− (8.06+ ǫ)ǫ(1 + |b|) > 0. In the third plot in figure 1
we plot the region of parameters (d, ǫ) where corollary 4 is applicable and where we
have extinction (purple) and permanence (blue).
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Figure 1. first: µ = 2, ǫ = 1, γ = 0.02, η = 0.1 and d = k = 0;
second: µ = 2, ǫ = 1, η = 0.1, β = 6.2 and b = d = 0; third: µ = 2,
γ = 0.02, η = 0.1, β = 6.2 and b = k = 0

Example 4 (Michaelis-Menten contact rates). We consider the particular form
for the incidence ϕ(S,N, I) = C(N)SI

N . These rates are called Michaelis-Menten
contact rates were considered for instance in [17] and have as particular cases the
standard incidence (C(N) = 1) and the simple incidence (C(N) = N). We will
assume that Λ and µ are constant, that

n 7→ C(n)/n is non increasing (23)

and that, for each θ > 0,

‖C(n1)− C(n2)‖ ≤ Kθ‖n1 − n2‖. (24)

We have

Re(λ, p) < 1 ⇔ lim sup
t→+∞

∫ t+λ

t

β(s)C(Λ/µ)p− µ− ǫ(s) ds < 0

⇐ pC(Λ/µ) lim sup
t→+∞

∫ t+λ

t

β(s) ds− (µ+ ǫ−λ )λ < 0

⇔
[

pC(Λ/µ)β+
λ − µ− ǫ−λ

]

λ < 0

R∗
e(λ, p) < 1 ⇔ lim sup

t→+∞

∫ t+λ

t

ǫ(s)/p− µ− γ(s) ds < 0

⇐
(

ǫ+λ /p− µ− γ−
λ

)

λ < 0,

and analogously

Rp(λ, p) > 1 ⇐
[

pC(Λ/µ)β−
λ − µ− ǫ+λ

]

λ > 0

and

R∗
p(λ, p) > 1 ⇐

(

ǫ−λ /p− µ− γ+
λ

)

λ > 0.

Define

RM
e (λ) =

ǫ+λ β
+
λ C(Λ/µ)

(µ+ ǫ−λ )(µ+ γ−
λ )

and RM
p (λ) =

ǫ−λ β
−
λ C(Λ/µ)

(µ+ ǫ+λ )(µ+ γ+
λ )

.
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Corollary 5. We have the following for the Michaelis-Menten contact-rates with
constant Λ and µ and satisfying (23) and (24).

1. If G(ǫ+λ /(µ+ γ−
λ )) < 0 or H((µ+ ǫ−λ )/(C(Λ/µ)β+

λ )) > 0 and RM
e (λ) < 1 for

some λ > 0 then the infectives go to extinction;
2. If G((µ+ ǫ−λ )/(C(Λ/µ)β+

λ )) < 0 or H(ǫ+λ /(µ+ γ−
λ )) > 0 and RM

p (λ) > 1 for
some λ > 0 then the infectives are strongly persistent.

Proof. We begin by noting that there is p > 0 such that G(p) < 0 if and only if
there is p > 0 such that pG(p) < 0. Since pG(p) has two zeros, a0 ∈ R

− and
a1 ∈ R

+, and the coefficient of p2 is positive, we conclude that there is p > 0 such
that G(p) < 0 if and only if there is p ∈]0, a1[ such that G(p) < 0.

By the simmilar computations to the ones in the proof of corollary 2 we conclude
that if there is λ > 0 such that RM

e (λ) < 1 then there is

p ∈ I =

(

ǫ+λ
µ+ γ−

λ

,
µ+ ǫ−λ

C(Λ/µ)β+
λ

)

such that Re(λ, p) < 1 and R∗
e(λ, p) < 1. Thus, if G(ǫ+λ /(µ + γ−

λ )) < 0 there is

p > 0 such that ]0, a1[∩I 6= ∅. Therefore if G(ǫ+λ /(µ + γ−
λ )) < 0 there is there is

p > 0 such that Re(λ, p) < 1, R∗
e(λ, p) < 1 and G(p) < 0. Thus, by Theorem 1, the

infectives go to extinction. On the other hand, since H is continuous, if H((µ +
ǫ−λ )/(C(Λ/µ)β+

λ )) > 0 there is p ∈ I such that Re(λ, p) < 1, R∗
e(λ, p) < 1 and

H(p) > 0. Therefore if H((µ + ǫ−λ )/(C(Λ/µ)β+
λ )) > 0 there is there is p > 0 such

that Re(λ, p) < 1, R∗
e(λ, p) < 1 and H(p) > 0. Thus, by Theorem 1, the infectives

go to extinction and we obtain 1..
By the simmilar computations we get 2.. �

In particular, setting C(N) = N (mass-action incidence) we get

RM
e (λ) =

ǫ+λ β
+
λ Λ/µ

(µ+ ǫ−λ )(µ+ γ−
λ )

and RM
p (λ) =

ǫ−λ β
−
λ Λ/µ

(µ+ ǫ+λ )(µ+ γ+
λ )

.

and setting C(N) = 1 (standard incidence) we obtain

RM
e (λ) =

ǫ+λ β
+
λ

(µ+ ǫ−λ )(µ+ γ−
λ )

and RM
p (λ) =

ǫ−λ β
−
λ

(µ+ ǫ+λ )(µ+ γ+
λ )

.

To illustrate the above corollary we consider the following family of nonperiodic
models































S′ = µ− β(1 + b(1 + e−t) cos(2πt))SI − µS + ηR

E′ = β(1 + b(1 + e−t) cos(2πt))SI − (µ+ ǫ)E

I ′ = ǫE − (µ+ γ)I

R′ = γI − (µ+ η)R

N = S + E + I +R

It is easy to see that, in this case, β+
1 = β−

1 = β and thus

RM
e (λ) = RM

p (λ) =
ǫβ

(µ+ ǫ)(µ+ γ)

The following figures show situations where we have strong persistence and extinc-
tion for the above model with different values for β and b and µ = 2, ǫ = 1, γ = 0.02
and η = 0.1. For instance, for β = 10 and b = 0.3 we can see that RM

p (1) = 1.65 > 1
and G(3/10) = −0.41 < 0 and we conclude that we have strong persistence and for
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β = 5 and b = 0.2 we can see that RM
e (1) = 0.82 < 1 and G(0.495) = −0.03 < 0

and we conclude that we have extinction (see figure 2).

0 20 40 60 80 100

0.1

0.2

0.3

0.4

0 20 40 60 80

0.00002

0.00004

0.00006

0.00008

0.0001

Figure 2. left: β = 10 and b = 0.3; right: β = 5 and b = 0.2.

5. Proofs

5.1. Proof of Lemma 1. Assume that p > 0, ε > 0 and 0 ≤ θ ≤ K, a, b ∈]θ,K[
and a− b ≤ ε. We have, by H4),

|ϕ(a, a, δ)− ϕ(b, b, δ)| ≤ Kθ|a− b|δ.

Therefore, if a > b we have by H1)

β(t)
ϕ(a, a, δ)

δ
− β(t)

ϕ(b, b, δ)

δ
≤ β(t)Kθ|a− b| = β(t)Kθ(a− b) ≤ βSKθε (25)

and if a < b, again by H1),

β(t)
ϕ(a, a, δ)

δ
− β(t)

ϕ(b, b, δ)

δ
≤ 0 ≤ βSKθε. (26)

By (25) and (26) we have

bδ(p, t, a)− bδ(p, t, b) ≤ βSKθpε

and we obtain (16).
On the other side, again by H4), assuming that p > 0, ε > 0, 0 ≤ δ ≤ K,

a, b ∈]θ,K[ and |a− b| ≤ ε we get

β(t)
ϕ(a, a, δ)

δ
− βSKθε ≤ β(t)

ϕ(b, b, δ)

δ
≤ β(t)

ϕ(a, a, δ)

δ
+ βSKθε,

and thus

bδ(p, t, a)− βSKθpε ≤ bδ(p, t, b) ≤ bδ(p, t, a) + βSKθpε. (27)

We will now show that Re(λ, p) and Re(λ, p) are independent of the particular
solution z(t) of (5) with z(0) > 0. In fact, letting z1 be some solution of (5) with
z1(0) > 0, by v) in Proposition 2, we can choose θ1 > 0 such that z(t), z1(t) ≥ θ1
for all t ≥ T . On the other hand, by iii) in Proposition 2, given ε > 0 there is a
Tε > 0 such that |z(t)− z1(t)| < ε for every t ≥ Tε. Letting a = z(t) and b = z1(t)
and computing the integral from t to t+ λ in (27) we get

∣

∣

∣

∣

∣

∫ t+λ

t

lim
δ→0+

bδ(p, s, z1(s)) ds−

∫ t+λ

t

lim
δ→0+

bδ(p, s, z(s)) ds

∣

∣

∣

∣

∣

≤ λβSKθ1p ε,
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for every t ≥ Tε. We conclude that, for every ε > 0,

lim sup
t→+∞

∫ t+λ

t

lim
δ→0+

bδ(p, s, z1(s)) ds− λβSKθ1p ε

≤ lim sup
t→+∞

∫ t+λ

t

lim
δ→0+

bδ(p, s, z(s)) ds

≤ lim sup
t→+∞

∫ t+λ

t

lim
δ→0+

bδ(p, s, z1(s)) ds+ λβSKθ1p ε,

and thus Re(λ, p) is independent of the chosen solution. Taking lim inf instead of
lim sup, the same reasoning shows that Rp(λ, p) is also independent of the particular
solution. Similar computations imply that G(p) is also independent of the particular
chosen solution. This proves the lemma.

5.2. Proof of Lemma 2. Lets assume first thatG(p) < 0 and let (S(t), E(t), I(t), R(t))
be some solution of (1) with S(T0), E(T0), I(T0), R(T0) > 0 for some T0 > 0. Then
there is T1 > 0 such that gδ(p, t,N(t)) > 0 for all t ≥ T1 (note that N(t) is a
solution of (5)). By contradiction, assume also that there is no T2 ≥ T1 such that
W (p, t) ≤ 0 or W (p, t) > 0 for all t ≥ T2. Therefore there is s ≥ T1 such that

W (p, s) = 0 ⇔ pE(s) = I(s)

and
dW

dt
(p, s) > 0.

Since s ≥ T1 we have lim
δ→0+

gδ(p, s,N(s)) < 0. By H1), H3) and (8) we obtain

0 <
dW

dt
(p, s)

=
d

dt
[pE(t)− I(t)]|t=s

= pE
′(s)− I

′(s)

= p [β(s)ϕ(S(s), N(s), I(s))− (µ(s) + ǫ(s))E(s)]− ǫ(s)E(s) + (µ(s) + γ(s))I(s)

=

[

pβ(s)
ϕ(S(s), N(s), I(s))

I(s)
+ µ(s) + γ(s)

]

I(s)− [p(µ(s) + ǫ(s)) + ǫ(s)]E(s)

≤

[

pβ(s) lim
δ→0+

ϕ(S(s),N(s), δ)

δ
+ µ(s) + γ(s)

]

I(s)−

[

µ(s) + ǫ(s) +
ǫ(s)

p

]

pE(s)

=

[

pβ(s) lim
δ→0+

ϕ(S(s),N(s), δ)

δ
+ γ(s)− ǫ(s)

(

1 +
1

p

)]

I(s)

≤

[

pβ(s) lim
δ→0+

ϕ(N(s), N(s), δ)

δ
+ γ(s)− ǫ(s)

(

1 +
1

p

)]

I(s)

= lim
δ→0+

gδ(p, s,N(s))I(s) ≤ 0

witch contradicts the assumption. Thus there is T2 ≥ T1 such that W (p, t) ≤ 0 or
W (p, t) > 0 for all t ≥ T2.

Assume now that H(p) ≥ 0 and let (S(t), E(t), I(t), R(t)) be some solution of (1)
with S(T0), E(T0), I(T0), R(T0) > 0 for some T0 > 0. Then there is T3 > 0 such
that h(p, t) > 0 for all t ≥ T3. By contradiction, assume also that there is no
T4 ≥ T3 such that W (p, t) ≤ 0 or W (p, t) > 0 for all t ≥ T4. Therefore there is
s ≥ T3 such that

W (p, s) = 0 ⇔ pE(s) = I(s)
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and
dW

dt
(p, s) < 0.

Since s ≥ T3 we have h(p, s) > 0. By H1), H3) and (8) we obtain

0 >
dW

dt
(p, s)

=
d

dt
[pE(t)− I(t)]|t=s

= pE
′(s)− I

′(s)

= p [β(s)ϕ(S(s), N(s), I(s))− (µ(s) + ǫ(s))E(s)]− ǫ(s)E(s) + (µ(s) + γ(s))I(s)

≥ [µ(s) + γ(s)] I(s)−

[

µ(s) + ǫ(s) +
ǫ(s)

p

]

pE(s)

=

[

γ(s)− ǫ(s)

(

1 +
1

p

)]

I(s)

= h(p, s)I(s) ≥ 0

witch is a contradiction. Thus there is T4 ≥ T3 such thatW (p, t) ≤ 0 orW (p, t) > 0
for all t ≥ T4. Assuming that G(p) < 0 or H(p) > 0, Rp(λ, p) > 1 and R∗

p(λ, p) > 1
for some p, λ > 0, by the previous arguments, we have W (p, t) > 0 for all t ≥ T2 or
W (p, t) ≤ 0 for all t ≥ T2. Suppose by contradiction that W (p, t) > 0 for all t ≥ T2.
We have E(t) > I(t)/p for all t ≥ T2. Then, by the third equations in (1) we have

d

dt
I(t) > ǫ(t)

1

p
I(t)− (µ(t) + γ(t))I(t) = [ǫ(t)

1

p
− µ(t)− γ(t)]I(t)

and thus, for all t ≥ T2, we have

I(t) > I(T2) e
∫

t

T2
ǫ(r) 1

p
−µ(r)−γ(r)dr

.

Since R∗
p(λ, p) > 1, by (13) we conclude that there is η > 0 and T > 0 such that,

for all t ≥ T , we have
∫ t+λ

t

ǫ(r)
1

p
− µ(r)− γ(r) dr > η.

Thus, for all t > max{T2, T }, we obtain I(t) > I(T2) e
( t−T2

λ
−1)η. Thus I(t) → +∞

and this contradicts the fact that I(t) must be bounded. Then we must have
W (p, t) ≤ 0 and lemma is proved.

5.3. Proof of Theorem 1. Assume that there are constants λ > 0 and p > 0
such that Re(λ, p) < 1, R∗

e(λ, p) < 1 and G(p) < 0 and let (S(t), E(t), I(t), R(t))
be some solution of (1) with S(T0), E(T0), I(T0), R(T0) > 0 for some T0 > 0. By
contradiction, assume that lim inf

t→+∞
I(t) > 0 and thus that there are T ≥ T0 and

ε0 > 0 and such that I(t) > ε0 for all t > T .
Since Re(λ, p) < 1, by (10) we conclude that there is T1 ≥ T such that

∫ t+λ

t

lim
δ→0+

bδ(p, s,N(s)) ds < −η < 0,

for all t ≥ T1.
By iii) in Proposition 1, we may assume that (S(t), N(t), I(t)) ∈ ∆0,k for t ≥ T1.
By Lemma 2 we have W (p, t) > 0 for all t ≥ T1 or W (p, t) ≤ 0 for all t ≥ T1.

Assume first that W (p, t) > 0 for all t ≥ T1. Since I(T0) > 0, by ii) in Proposition 1
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we have that I(t) > 0 for all t ≥ T0 and, by the second equation in (1), H1), H3)
and (9), there is T2 ≥ T1 such that

E′(t) = β(t)ϕ(S(t), N(t), I(t)) − (µ(t) + ǫ(t))E(t)

= β(t)
ϕ(S(t), N(t), I(t))

I(t)
I(t)− (µ(t) + ǫ(t))E(t)

< β(t)
ϕ(N(t), N(t), I(t))

I(t)
pE(t)− (µ(t) + ǫ(t))E(t)

≤ β(t) lim
δ→0+

ϕ(N(t), N(t), δ)

δ
pE(t)− (µ(t) + ǫ(t))E(t)

= lim
δ→0+

bδ(p, t,N(t))E(t)

(28)

for all t ≥ T2 and 0 < δ ≤ δ1. Thus, integrating (28) we obtain

E(t) ≤ E(T2) Exp

[
∫ t

T2

lim
δ→0+

bδ(p, s,N(s)) ds

]

= E(T2) Exp

[

∫ T2+λ⌊
t−T2

λ
⌋

T2

lim
δ→0+

bδ(p, s,N(s)) ds+

+

∫ t

T2+λ⌊
t−T2

λ
⌋

lim
δ→0+

bδ(p, s,N(s)) ds

]

≤ E(T2) Exp

[

∫ T2+λ⌊
t−T2

λ
⌋

T2

lim
δ→0+

bδ(p, s,N(s)) ds+

+

∫ t

T2+λ⌊
t−T2

λ
⌋

β(s) lim
δ→0+

ϕ(N(s), N(s), δ)

δ
p ds

]

< E(T2) Exp

[

−η⌊
t− T2

λ
⌋+ βSMpλ

]

,

for all t ≥ T2. We conclude that 0 ≤ lim sup
t→+∞

I(t) ≤ p lim sup
t→+∞

E(t) = 0 assuming

that W (p, t) > 0 for all t ≥ T1.
Assume now that W (p, t) ≤ 0 for all t ≥ T1. By the third equation in (1) we

have

I ′(t) ≤ ǫ(t)I(t)/p− (µ(t) + γ(t))I(t) = (ǫ(t)/p− µ(t)− γ(t))I(t) (29)

for all t ≥ T1. Since R∗
e(λ, p) < 1, by (12) we conclude that there are constants

η2 > 0 and T3 ≥ T1 such that
∫ t+λ

t

ǫ(s)/p− µ(s)− γ(s) ds < −η2 < 0, (30)

for all t ≥ T3. Thus, by (29) and (30), we have

I(t) ≤ I(T3) e
∫

t

T3
ǫ(s)/p−µ(s)−γ(s) ds

≤ I(T3) e
−η2⌊

t−T3
λ

⌋+
λεS
p ,

for all t ≥ T3. We conclude that I(t) → 0, assuming that W (p, t) ≤ 0 for all t ≥ T1.
Therefore we obtain 1. in the theorem.

Assume now that there are constants λ > 0, p > 0 such that Rp(λ, p) > 1,
R∗

p(λ, p) > 1 and G(p) < 0 for all t ≥ T and let (S(t), E(t), I(t), R(t)) be some
fixed solution of (1) with S(T0), E(T0), I(T0), R(T0) > 0 for some T0 > 0.
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Since Rp(λ, p) > 1, by (11) and H2) we conclude that there are constants 0 <
δ2 ≤ K, η > 0 and T4 > 0 such that

∫ t+λ

t

β(s)
ϕ(N(s), N(s), δ)

δ
p− µ(s)− ǫ(s) ds > η > 0, (31)

for all t ≥ T4 and 0 < δ ≤ δ2 and that gδ(p, t,N(t)) < 0 for all t ≥ T5 and
0 < δ ≤ δ2. By Proposition 1, we may also assume that (S(t), N(t), I(t)) ∈ ∆0,K

for all t ≥ T4.
By (2) we can choose ε1 > 0, 0 < ε2 < δ2, ε3 > 0 and 0 < η1 < η such that, for

all t ≥ T4, we have
∫ t+λ

t

β(s)Mε2 − (µ(s) + ǫ(s))ε1 ds < −η1 (32)

∫ t+λ

t

γ(s)ε2 − (µ(s) + η(s))ε3 ds < −η1 (33)

θ1 =
m1

2
− ε1 − [1 + βSMλ+ γSλ]ε2 − ε3 > 0 (34)

and

κ = Kθ1 [ε1 + [1 + βSMλ+ γSλ]ε2 + ε3] <
η

2pβSλ
(35)

where M is given by (3).
We will show that

lim sup
t→+∞

I(t) > ε2. (36)

Assume by contradiction that it is not true. Then there exists T5 > T4 such that,
for all t ≥ T5, we have

I(t) ≤ ε2. (37)

Suppose that E(t) ≥ ε1 for all t ≥ T5. Then, by the second equation in (1), (3),
H3) and (32), we have for all t ≥ T5

E(t) = E(T5) +

∫ t

T5

β(s)ϕ(S(s), N(s), I(s)) − (µ(s) + ǫ(s))E(s) ds

= E(T5) +

∫ t

T5

β(s)
ϕ(S(s), N(s), I(s))

I(s)
I(s)− (µ(s) + ǫ(s))E(s) ds

≤ E(T5) +

∫ t

T5

β(s)Mε2 − (µ(s) + ǫ(s))ε1 ds

= E(T5) +

∫ T5+⌊
t−T5

λ
⌋λ

T5

β(s)Mε2 − (µ(s) + ǫ(s))ε1 ds

+

∫ t

T5+⌊
t−T5

λ
⌋λ

β(s)Mε2 − (µ(s) + ǫ(s))ε1 ds

< E(T5)− η1⌊
t− T5

λ
⌋+ βSMε2λ

and thus E(t) → −∞ witch contradicts ii) in Proposition 1. We conclude that there
exists T6 ≥ T5 such that E(T6) < ε1. Suppose that there exists a T7 > T6 such
that E(T7) > ε1 + βSMε2λ. Then we conclude that there must exist T8 ∈]T6, T7[
such that E(T8) = ε1 and E(t) > ε1 for all t ∈]T8, T7]. Let n ∈ N0 be such that
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T7 ∈ [T8+nλ, T8+(n+1)λ]. Then, by the second equation in (1), (3), (37) and (32)
we have

ε1 + βSMε2λ < E(T7)

= E(T8) +

∫ T7

T8

β(s)ϕ(S(s), N(s), I(s)) − (µ(s) + ǫ(s))E(s) ds

< E(T8) +

∫ T7

T8

β(s)Mε2 − (µ(s) + ǫ(s))ε1 ds

≤ ε1 − η1n+

∫ T7

T8+nλ

βSMε2 ds

≤ ε1 + βSMε2λ

and this is a contradiction. We conclude that, for all t ≥ T7 we have

E(t) ≤ ε1 + βSMε2λ. (38)

Suppose that R(t) ≥ ε3 for all t ≥ T9. Then, by the fourth equation in (1), (37)
and (33), we have for all t ≥ T9

R(t) = R(T9) +

∫ t

T9

γ(s)I(s)− (µ(s) + η(s))R(s) ds

≤ R(T9) +

∫ t

T9

γ(s)ε2 − (µ(s) + η(s))ε3 ds

= R(T9) +

∫ T9+λ⌊
t−T9

λ
⌋

T9

γ(s)ε2 − (µ(s) + η(s))ε3 ds

+

∫ t

T9+λ⌊
t−T9

λ
⌋

γ(s)ε2 − (µ(s) + η(s))ε3 ds

< R(T9)− η1⌊
t− T9

λ
⌋+ γSε2λ

and thus R(t) → −∞ witch contradicts ii) in Proposition 1. We conclude that there
exists T10 ≥ T9 such that R(T10) < ε3. Suppose that there exists a T11 ≥ T10 such
that R(T11) > ε3 + γSε2λ. Then we conclude that there must exist T12 ∈]T10, T11[
such that R(T12) = ε3 and R(t) > ε3 for all t ∈]T12, T11]. Let n ∈ N0 be such that
T11 ∈ [T12 +nλ, T12 +(n+1)λ]. Then, by the fourth equation in (1), (37) and (33)
we have

ε3 + γSε2λ < R(T11)

= R(T12) +

∫ T11

T12

γ(s)I(s)− (µ(s) + η(s))R(s) ds

< R(T12) +

∫ T11

T12

γ(s)ε2 − (µ(s) + η(s))ε3 ds

< ε3 − η1n+

∫ T11

T12+nλ

γSε2 ds

≤ ε3 + γSε2λ

and this is a contradiction. We conclude that, for all t ≥ T10 we have

R(t) ≤ ε3 + γSε2λ. (39)
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By Lemma 2 there exists T13 ≥ T10 such that pE(t) ≤ I(t), for all t ≥ T13.
According to the second equation in (1) and H3) and recalling that by (37) and the
assumptions we have I(t) ≤ ε2 < δ2, for all t ≥ T13 we get,

E′(t) = β(t)ϕ(S(t), N(t), I(t)) − (µ(t) + ǫ(t))E(t)

= β(t)
ϕ(S(t), N(t), I(t))

I(t)
I(t)− (µ(t) + ǫ(t))E(t)

≥ β(t)
ϕ(S(t), N(t), δ2)

δ2
I(t)− (µ(t) + ǫ(t))E(t)

(40)

By (37), (38) and (39), we have, for all t ≥ T13,

N(t)− S(t) = E(t) + I(t) +R(t)

≤ ε1 + βSMε2λ+ ε2 + ε3 + γSε2λ

= ε1 + [1 + βSMλ+ γSλ]ε2 + ε3.

(41)

Un the other side, by v) in Proposition 2, there is T14 > T13 such that, for all
t ≥ T14, we have N(t) ≥ m1/2. Therefore, for all t ≥ T14, we have by (41) and (34)

S(t) ≥ N(t)− ε1 − [1 + βSMλ+ γSλ]ε2 − ε3

≥
m1

2
− ε1 − [1 + βSMλ+ γSλ]ε2 − ε3

= θ1 > 0.

Thus, by H4), (41) and (35) we have

|ϕ(S(t), N(t), δ2)− ϕ(N(t), N(t), δ2)| ≤ Kθ1 |S(t)−N(t)|δ2

≤ Kθ1 [ε1 + [1 + βSMλ+ γSλ]ε2 + ε3]δ2

= κδ2.

Therefore, by (40), (41), (35), H4) and since pE(t) ≤ I(t), we obtain, for all t ≥ T14,

E′(t) ≥ β(t)
ϕ(N(t), N(t), δ2)− κδ2

δ2
I(t)− (µ(t) + ǫ(t))E(t)

=

[

β(t)
ϕ(N(t), N(t), δ2)

δ2
− β(t)κ

]

I(t)− (µ(t) + ǫ(t))E(t)

≥

[

β(t)
ϕ(N(t), N(t), δ2)

δ2
p− β(t)κp− µ(t)− ǫ(t)

]

E(t).

(42)

Therefore, integrating (42) an using (31) and (35), we have

E(t) ≥ E(T14) Exp

[
∫ t

T14

β(s)
ϕ(N(s), N(s), δ2)

δ2
p− µ(s)− ǫ(s)− βSκp ds

]

= E(T14) Exp

[

∫ T14+λ⌊
t−T14

λ
⌋

T14

β(s)
ϕ(N(s), N(s), δ2)

δ2
p− µ(s)− ǫ(s)− βSκp ds +

+

∫ t

T14+λ⌊
t−T14

λ
⌋

β(s)
ϕ(N(s), N(s), δ2)

δ2
p− µ(s)− ǫ(s)− βSκp ds

]

.

≥ E(T14) Exp

[

(η − βSκpλ)⌊
t− T14

λ
⌋ − (µS + εS + βSκp)λ

]

≥ E(T14) Exp

[

η/2⌊
t− T14

λ
⌋ − (µS + εS + βSκp)λ

]
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and we conclude that E(t) → +∞. This is a contradiction with the boundedness
of E established in Proposition 1. We conclude that lim sup

t→+∞
I(t) > ε2 holds.

Next we prove that

lim inf
t→+∞

I(t) ≥ ℓ, (43)

where ℓ > 0 is some constant to be determined.
Similarly to (32)–(35), letting λ3 = kλ > 0 with k ∈ N be sufficiently large and

recalling (2), we conclude that there is T15 ≥ T14, ε1 > 0, ε2 > 0, ε3 > 0 sufficiently
small such that for all t ≥ T15 we have

N(t) = S(t) + E(t) +R(t) + I(t) < 2m2, (44)

∫ t+λ3

t

β(t)Mε2 − (µ(s) + ǫ(s))ε1 ds < −2m2, (45)

∫ t+λ3

t

γ(s)ε2 − (µ(s) + δ(s))ε3 ds < −2m2, (46)

∫ t+λ3

t

β(s)
ϕ(N(s), N(s), δ2)

δ2
p− µ(s)− ǫ(s) ds > kη, (47)

θ1 =
m1

2
− ε1 − [1 + βSMλ+ γSλ]ε2 − ε3 > 0.

κ = Kθ1 [ε1 + [1 + βSMλ+ γSλ]ε2 + ε3] < min

{

η

2βSpλ
,
2(µS + γS)

βSp

}

(48)

According to (36) there are only two possibilities: there exists T > 0 such that
I(t) ≥ ε2 for all t ≥ T or I(t) oscillates about ε2.

In the first case we set ℓ = ε2 and we obtain (43).
Otherwise we must have the second case. Let T17 ≥ T16 > T15 be constants

such that W (p, t) ≤ 0, for all t ≥ T15 (we may assume this by Lemma 2) and
that I(T16) = I(T17) = ε2 and I(t) < ε2 for all t ∈ [T16, T17]. Suppose first that
T17 − T16 ≤ C + 2λ3 where C satisfies

C ≥
1

µS + γS

[

(3µS + γS + 2ǫS)λ3 + ln
2

ηk

]

, (49)

From the third equation in (1) we have

I ′(t) ≥ −(µS + γS)I(t). (50)

Therefore, we obtain for all t ∈ [T16, T17],

I(t) ≥ I(T16) e
−

∫
t

T16
µS+γS ds

≥ ε2 e
−(µS+γS)(C+2λ3) .

On the other hand, if T17 − T16 > C + 2λ3 then, from (50) we obtain

I(t) ≥ ε2 e
−(µS+γS)(C+2λ3),

for all t ∈ [T16, T16 + C + 2λ3]. Set ℓ = ε2 e
−(µS+γS)(C+2λ3). We will show that

I(t) ≥ ℓ for all t ∈ [T16 + C + 2λ3, T17] and this establishes the result.
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Suppose that E(t) ≥ ε1 for all t ∈ [T16, T16+λ3]. Then, from the second equation
in (1), (3), (44) and (45) we have

E(T16 + λ3)

= E(T16) +

∫ T16+λ3

T16

β(s)ϕ(S(s), N(s), I(s)) − (µ(s) + γ(s))E(t) ds

≤ E(T16) +

∫ T16+λ3

T16

β(s)Mε2 − (µ(s) + γ(s))ε1 ds

< 2m2 − 2m2 = 0,

witch is a contradiction with i) in Proposition 1. Therefore, there exists a T18 ∈
[T16, T16+λ3] such that E(T18) < ε1. Then, as in the proof of (38) and using (45),
we can show that E(t) ≤ ε1 + βSMε2λ3, for all t ≥ T18. Also proceeding as in the
proof of (39) and using (46) we may assume that R(t) ≤ ε3+γSε2λ3 for all t ≥ T18.

By (50) we have

I(t) ≥ I(T16) e
−

∫
t

T16
µS+γS ds

= I(T16) e
−(µS+γS)(t−T16) ≥ ε2 e

−(µS+γS)λ3 (51)

for all t ∈ [T16 + λ3, T16 + 2λ3].
Assume that there exists a T19 > 0 such that T19 ∈ [T16+C+2λ3, T17], I(T19) = ℓ

and I(t) ≥ ℓ for all t ∈ [T16, T19] (otherwise the result is established). By (41)
and (51) we have, for all t ∈ [T16 + λ3, T16 + 2λ3],

E′(t) ≥ β(t)
ϕ(S(t), N(t), δ2)

δ2
I(t)− (µS + ǫS)E(t)

≥ β(t)

(

ϕ(N(t), N(t), δ2)

δ2
− κ

)

ε2 e
−(µS+γS)λ3 −(µS + ǫS)E(t),

(52)

where κ is given by (35). By (52), (47) and (48), we get

E(T16 + 2λ3)

≥ e−(µS+ǫS)λ3E(T16 + λ3) +

∫ T16+2λ3

T16+λ3

β(s)

(

ϕ(N(s), N(s), δ2)

δ2
− κ

)

ε2×

× e−(µS+γS)λ3 e−(µS+ǫS)(T16+2λ3−s) ds

≥ e−(µS+γS)λ3

∫ T16+2λ3

T16+λ3

β(s)

(

ϕ(N(s), N(s), δ2)

δ2
− κ

)

ε2 e
−(µS+ǫS)λ3 ds

≥ e−(2µS+γS+ǫS)λ3ε2

∫ T16+2λ3

T16+λ3

β(s)
ϕ(N(s), N(s), δ2)

δ2
− βSκ ds

≥ e−(2µS+γS+ǫS)λ3ε2 (kη/p− βSκλ3)

= e−(2µS+γS+ǫS)λ3ε2 (η/p− βSκλ) k

> e−(2µS+γS+ǫS)λ3ε2ηk/(2p).

(53)

On the other side, by (42) we obtain

E′(t) ≥

[

β(t)
ϕ(N(t), N(t), δ2)

δ2
p− β(t)κp− µ(t)− ǫ(t)

]

E(t). (54)
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and thus, by (53), (47), (48) and (54), letting n = 2 + ⌊T19−T16

λ3
⌋

ε2 e
−(µS+γS)(C+2λ3)

= I(T19)

≥ pE(T19)

≥ pE(T16 + 2λ3)Exp

[

∫ T19

T16+2λ3

β(s)
ϕ(N(s), N(s), δ2)

δ2
p− β(s)κp− µ(s)− ǫ(s) ds

]

≥ pE(T16 + 2λ3)Exp

[

∫ T16+nλ3

T16+2λ3

β(s)
ϕ(N(s), N(s), δ2)

δ2
p− β(s)κp− µ(s)− ǫ(s) ds

+

∫ T19

T16+nλ3

β(s)
ϕ(N(s), N(s), δ2)

δ2
p− β(s)κp− µ(s)− ǫ(s) ds

]

> pe−(3µS+γS+2ǫS)λ3ε2
ηk

2p
e(n−2)(ηk−βSκpλ3) e−βSκpλ3

> pe−(3µS+γS+2ǫS)λ3ε2
ηk

2p
e(n−2)ηk/2 e−βSκpλ3

>
1

2
e−(3µS+γS+2ǫS)λ3ε2ηk e

−βSκpλ3

>
1

2
e−(3µS+γS+2ǫS)λ3ε2ηk e

−2(µS+γS)λ3

and this implies that

C <
1

µS + γS

[

(3µS + γS + 2ǫS)λ3 + ln
2

ηk

]

,

contradicting (49). This shows (43) and proves 3. in the theorem.
We recall that, by (4), there are µ1, µ2 > 0 sufficiently small and T > 0 suffi-

ciently large such that, for all t ≥ t0 ≥ T we have

−

∫ t

t0

µ(s) ds ≤ −µ1(t− t0) + µ2.

Assume that Re(λ, p) < 1, R∗
e(λ, p) < 1 and G(p) < 0 and let (S1(t), 0, 0, R1(t))

be a disease-free solution of (1) with S1(t0) = S1,0 and R1(t0) = R1,0 and let
(S(t), E(t), I(t), R(t)) with S(t0) = S0, E(t0) = E0, I(t0) = I0 and R(t0) = R0 be
some solution of (1).

Since we are in the conditions of 1), for each ε > 0 there is Tε > 0 such that
I(t) ≤ ε for each t ≥ Tε. Therefore, using the second equation in (1), we get, for
t ≥ Tε,

E′(t) = β(t)
ϕ(S(t), N(t), I(t))

I(t)
I(t)− (µ(t) + ǫ(t))E(t)

≤ βSMε− µ(t)E(t)
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and thus, for t ≥ t0 ≥ max{T, Tε}, we have

E(t) ≤ e
−

∫
t

t0
µ(s) ds

E0 +

∫ t

t0

βSMε e−
∫

t

u
µ(s) ds du

≤ e−µ1(t−t0)+µ2 E0 + βSMε

∫ t

t0

e−µ1(t−u)+µ2 du

= e−µ1(t−t0)+µ2 E0 +
βSM eµ2

µ1
(1− e−µ1(t−t0))ε

and, since ε > 0 is arbitrary, we conclude that

lim sup
t→+∞

E(t) = 0. (55)

By the fourth equation in (1) and setting w = R(t)−R1(t), we have, for t ≥ Tε

w′(t) = γ(t)I(t)− (µ(t) + η(t))w(t)

≤ γSε− (µ(t) + η(t))w(t)

and thus, for t ≥ t0 ≥ max{T, Tε}, we have

w(t) ≤ e
−

∫
t

t0
µ(s)+η(s) ds

(R0 −R0,1) +

∫ t

t0

γSε e
−

∫
t

u
µ(s)+η(s) ds du

≤ e−µ1(t−t0)+µ2(R0 −R0,1) + γSε

∫ t

t0

e−µ1(t−u)+µ2 du

= e−µ1(t−t0)+µ2(R0 −R0,1) +
γS eµ2

µ1
(1− e−µ1(t−t0))ε

and, since ε > 0 is arbitrary, we conclude that lim sup
t→+∞

R(t)−R1(t) ≤ 0. Repeating

he computations with w(t) replaced by w1(t) = R1(t) − R(t) we conclude that
lim sup
t→+∞

R1(t)−R(t) ≤ 0. Thus

lim sup
t→+∞

|R(t)−R1(t)| = lim sup
t→+∞

|w(t)| = 0. (56)

Let N = S +E + I +R and N1 = S1 +R1 and set u(t) = N(t)−N1(t). By (5),
for t ≥ T , we have u′(t) = −µ(t)u(t) and thus, for t ≥ t0 ≥ max{T, Tε} we have

u(t) = e
−

∫
t

t0
µ(s) ds

(N0 −N0,1) ≤ e−µ1(t−t0)+µ2(N0 −N0,1).

Therefore

lim sup
t→+∞

|S(t)− S1(t)|

= lim sup
t→+∞

|N(t)− E(t)− I(t)−R(t)− (N1(t)−R1(t))|

≤ lim sup
t→+∞

( |N(t)−N1(t)|+ E(t) + I(t) + |R(t)−R1(t)| ) = 0.

(57)

By (55), (56) and (57), we have 5. in the theorem.
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5.4. Proof of Theorem 2. Let bτδ denote the function in (9) with ϕ replaced by
ϕτ . Let δ > 0. We have that there is L > 0 such that for τ ∈ [−L,L] we have by
assumption supt≥0 |βτ (t)− β(t)| < δ and thus βτ (t) < βS + δ for all t ≥ 0. Write
B = βS + δ. By (9) and (3) we have

|bτδ (p, t, z(t))− bδ(p, t, z(t))|

=

∣

∣

∣

∣

βτ (s)
ϕτ (z(t), z(t), δ)

δ
p− µ(t)− ǫτ (t)− β(s)

ϕ(z(t), z(t), δ)

δ
p+ µ(t) + ǫ(t)

∣

∣

∣

∣

≤ |βτ (t)| p

∣

∣

∣

∣

ϕτ (z(t), z(t), δ)− ϕ(z(t), z(t), δ)

δ

∣

∣

∣

∣

+ |βτ (t)− β(t)| p
ϕ(z(t), z(t), δ)

δ
+ ‖ǫτ − ǫ‖∞

≤ Bp

∣

∣

∣

∣

ϕτ (z(t), z(t), δ)− ϕ(z(t), z(t), δ)

δ

∣

∣

∣

∣

+Mp‖βτ − β‖∞ + ‖ǫτ − ǫ‖∞

(58)

Since for τ ∈ [−L,L], ϕτ is differentiable and ϕτ (x, y, 0) = ϕ(x, y, 0) = 0, we get

|ϕτ (z(t), z(t), δ)− ϕ(z(t), z(t), δ)|

= |∂3ϕτ (z(t), z(t), 0)δ +Rτ (δ) − ∂3ϕ(z(t), z(t), 0)| δ +R(δ)|

≤ |∂3ϕτ (z(t), z(t), 0)− ∂3ϕ(z(t), z(t), 0)| δ + |Rτ (δ)|+ |R(δ)|

(59)

where R(δ)/δ → 0 and Rτ (δ)/δ → 0 as δ → 0, where ∂3 denotes the partial
derivative with respect to the third coordinate. By (59) we obtain

|ϕτ (z(t), z(t), δ)− ϕ(z(t), z(t), δ)|

δ

≤ |∂3ϕτ (z(t), z(t), 0)− ∂3ϕ(z(t), z(t), 0)|+
|Rτ (δ)|

δ
+

|R(δ)|

δ

≤ ‖ϕτ − ϕ‖∆0,K
+

|Rτ (δ)|

δ
+

|R(δ)|

δ

(60)

Thus, by (58) and (60) we get

|bτδ (p, s, z(s))− bδ(p, s, z(s))|

≤ Bp

∣

∣

∣

∣

ϕτ (z(t), z(t), δ)− ϕ(z(t), z(t), δ)

δ

∣

∣

∣

∣

+Mp‖βτ − β‖∞ + ‖ǫτ − ǫ‖∞

≤ Bp

(

‖ϕτ − ϕ‖∆0,K
+

|Rτ (δ)|

δ
+

|R(δ)|

δ

)

+Mp‖βτ − β‖∞ + ‖ǫτ − ǫ‖∞.

Therefore

lim
δ→0+

|bτδ (p, s, z(s))− bδ(p, s, z(s))|

≤ Bp‖ϕτ − ϕ‖∆0,K
+Mp‖βτ − β‖∞ + ‖ǫτ − ǫ‖∞.

Thus
∣

∣

∣

∣

∣

∫ t+λ

t

lim
δ→0+

bτδ (p, s, z(s))− lim
δ→0+

bδ(p, s, z(s)) ds

∣

∣

∣

∣

∣

≤

∫ t+λ

t

lim
δ→0+

|bτδ (p, s, z(s))− bδ(p, s, z(s))| ds ≤ Θ(τ),
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where

Θ(τ) = λBp‖ϕτ − ϕ‖∆0,K
+Mpλ‖βτ − β‖∞ + λ‖ǫτ − ǫ‖∞.

Thus

lnRe(λ, p) −Θ(τ) ≤ lnRτ
e (λ, p) ≤ lnRe(λ, p) + Θ(τ)

and then

Re(λ, p) e
−Θ(τ) ≤ Rτ

e (λ, p) ≤ Re(λ, p) e
Θ(τ)

and sending τ → 0 we get

lim
τ→0

Rτ
e (λ, p) = Re(λ, p).

Similarly we obtain also lim
τ→0

(R∗
e)

τ
(λ, p) = (R∗

e)(λ, p), lim
τ→0

Rτ
p(λ, p) = Rp(λ, p),

lim
τ→0

(

R∗
p

)τ
(λ, p) = (R∗

p)(λ, p), lim
τ→0

Gτ (p) = G(p) and lim
τ→0

Hτ (p) = H(p).

6. Discussion

In this paper we considered a non-autonomous family of SEIRS models with gen-
eral incidence and obtained conditions for strong persistence and extinction of the
infectives. We obtained corollaries for autonomous and asymptotically autonomous
systems, where the conditions became thresholds, and we obtained also corollaries
for the general incidence periodic setting and for non-autonomousMichaelis-Menten
incidence functions. To illustrate our results we considered some concrete family
of periodic models and we obtained regions of strong persistence and extinction for
several pairs of parameters.

Naturally we would like to obtain explicit thresholds for the general non-autonomous
family. The regions obtained in figure 1 suggest that big oscillations in the param-
eters lead to situations where our conditions do not apply. This is a consequence
of the use of lim sup and lim inf in conditions (10) to (15). We believe that to
overcome this problem we must have expressions that include some features more
closely linked to the shape of the incidence functions.

Finally, we saw that our conditions for strong persistence and extinction are
robust in some general family of C1 parameter functions. Naturally, if we restrict
our family to the autonomous setting, this has to do with the fact that the thresholds
are given by (19) and it is immediate that small perturbations of the parameters
in (19) yield a number close to the original one.

To obtain Theorem 2 we felt the need to assume that the birth and death rates
remain the same for all the family. This motivates the following question: do we
have the same result if we only assume that the birth and death rates are close in
the C0 topology?
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