
February 16, 2015 10:27

Optimal control in a multistage physiologically structured insect

population model.

DELPHINE PICART∗
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Abstract: We present an age- and stage-structured population model to study some

methods of control of one of the most important grapevine pests, the European grapevine
moth. We consider control by insecticides that reduce either the proportion of surviving

eggs, larvae or both, as well as chemicals that cause mating disruption, thereby reducing

the number of eggs laid. We formulate optimal control problems with cost functionals
related to real-life costs in the wine industry, and we prove that these problems admit a

unique solution. We also provide some numerical examples from simulation.

Keywords: population dynamics; age-structured population; partial differential equa-

tions; grape cultivar; hyperbolic systems; pest control; optimal control theory.

1. Introduction.

Crop industries are frequently confronted with pest populations that cause great

damage and losses. Many such pests are insects as, for example, the boll weevil

(Anthonomus grandis) in the cotton crop13, the European grapevine moth (Lobesia

botrana) in the wine industry8,18, or the apple leaf midge (Dasineura mali) in apple

crops6. The methods used to control these pest populations are mainly application

of insecticides (e.g. Bt, growth regulator), mating disruption to a lesser degree19, and

other modern methods currently in the testing process, such as biological control20

or development of transgenic plant mutants resistant to the particular insect13.

For many decades Lobesia botrana, the European grapevine moth (EGVM), has

been a major concern in vineyards in Europe, North Africa, Asia and —very

recently— also California5. In this paper, we model the first two control meth-

ods of this pest population with the goal of finding strategies that optimize the

reduction of pest population size and amount of chemicals used.

∗Corresponding author.
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Our model is built from the multistage physiologically structured population model

presented in 2,16, for any insect pest whose biological cycle consists of four main

stages–egg, larva, female and male. The males are not considered here because the

additional equation describing their population dynamics can be neglected in the

mathematical analysis given in that paper without any loss of generality. Let ue, ul,

and uf be, respectively, the age densities at time t of the egg, larva and adult female

moth populations. The dynamics of these populations in their free environment are

modeled as in 2,16 by the following so-called size-structured model in which the

structure variable a may represent size or another physiologically relevant variable:

∂ue

∂t (t, a) + ∂
∂a [ge(E(t), a)ue(t, a)] = −βe(E(t), a)ue(t, a)

−me(E(t), a)ue(t, a), (t, a) ∈ Ωe,
∂ul

∂t (t, a) + ∂
∂a

[
(gl(E(t), a)ul(t, a)

]
= −βl(E(t), a)ul(t, a)

−ml(P l, E(t), a)ul(t, a), (t, a) ∈ Ωl,
∂uf

∂t (t, a) + ∂
∂a

[
(gf (E(t), a)uf (t, a)

]
= −mf (E(t), a)uf (t, a), (t, a) ∈ Ωf ,

(1.1)

where Ωk = [0, T ] × [0, Lk], for k = e, l, f , the boundary conditions, for t ∈ [0, T ],

are given by 
ge(E(t), 0)ue(t, 0) =

∫ Lf
0

βf (P f , E(t), a)uf (t, a)da,

gl(E(t), 0)ul(t, 0) =
∫ Le

0
βe(E(t), a)ue(t, a)da,

gf (E(t), 0)uf (t, 0) =
∫ Ll

0
βl(E(t), a)ul(t, a)da,

(1.2)

and the initial conditions are

uk(0, a) = uk0(a), a ∈ [0, Lk], k = e, l, f. (1.3)

The total population for the k-stage is defined by

P k(t) =

∫ Lk

0

uk(t, a)da,

where Lk is the maximum age for the stage, and k takes the value e for egg, l for

larva and f for female. The variable E corresponds to the time-dependent vector

(T,H,R) modeling the changing climatic (Temperature and Humidity) and environ-

mental (food Resource) conditions. The motivations leading to this mathematical

framework of this population dynamics model and the explanation about the de-

pendency of the variables ml and βf on the total population P l, P f are given in

the paper 2. We just recall here to help the understanding of the next section that

equations of system (1.2) describe all the key steps of the insect’s biological cycle.

In particular, the first equation models the birth dynamics, the second models the

hatching dynamics and the third equation is a proxy for the adult flight dynamics.

For k = e, l, f , the initial functions uk0 are assumed non-negative and integrable,

the growth functions gk —bounded in the age variable (with additional conditions
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specified in the appendix), and the k-stage mortality functions mk —non-negative

and locally bounded, satisfying the conditions

lim
a→Lk

∫ t

0

mk(E(t), Xk(s; t, a))ds =∞, a > Xk(t),

lim
a→Lk

∫ t

Zk(0;t,a)

mk(E(t), Xk(s; t, a))ds =∞, a ≤ Xk(t),

for t ∈ [0, T ] and k = e, f , and the conditions

lim
a→Ll

∫ t

0

ml(P l, E(t), X l(s; t, a))ds =∞, a > X l(t),

lim
a→Ll

∫ t

Zl(0;t,a)

ml(P l, E(t), X l(s; t, a))ds =∞, a ≤ X l(t),

in order to ensure that all individuals from the first two life stages transition into

the next stage by the maximal age for their stage and that all female adult moths

die by the maximal age for the species.

The functions Xk and Zk (for k = e, l, f) parametrize , respectively with time t

and age a as parameters, the characteristic curves of (1.1) defined by{
(Xk)

′
(s) = gk(E(s), Xk(s)),

Xk(t) = a,

{
(Zk)

′
(s) = gk(E(Zk(s)), s),

Zk(a) = t,

and they are assumed to be Lipschitz continuous in the first variable, with Lipschitz

constant mK . The function βe models the transition between the egg and larval

stages, whereas the function βl models the transition between the larval and the

adult female moth stages. The function βf represents the age-specific fertility. These

last three functions are non-negative and bounded, and they satisfy

0 ≤ βk ≤ βk(E(t), a), βf (P f , E(t), a) ≤ β̄k, k = e, l.

Moreover, the fertility function is assumed Lipschitz continuous in the first variable,

P f , with Lipschitz constant βK .

In the next section we motivate and describe the control problems we shall analyze in

this paper. In Section 3, the existence of a solution for the resulting optimal control

problem is proved whereas in Section 4 the uniqueness of the optimal control pair

is obtained through the use of Ekeland’s principle3,7. Section 5 is devoted to the

numerical characterization of the optimal control through simulations. Finally, in

Section 6, we summarize our results and draw some conclusions.

2. New models for control.

We begin by describing how the two types of control we consider in this paper can

be built into the general model (1.1)-(1.3). Then, we describe the cost function we

consider and we give a rationale for the form of its functional dependence on the
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control(s) and densities.

Insecticides cause a direct decline in egg and larval populations by targeting either

population or both. For example, egg pesticides (ovicides) are sprayed just before

the onset of the egg laying dynamics in order to kill a maximal number of eggs,

thus guiding our model to include a modification of (1.2) as follows. We let v1 be an

indicator of the egg pesticide application at time t and age a, and we let α1 ∈ [0, 1]

represent its efficiency. More specifically, α1 is the percentage of eggs killed by the

ovicide per unit time, assumed to be the same for eggs of all ages. As for the

control, v1, we shall restrict it to take values in [0, 1], with 0 indicating it should not

be applied at the particular time and values in (0, 1] should be interpreted as the

dilution to use for optimal cost, which we shall assume results in a linear decrease of

its efficiency. In the linear case—when there is no density dependence in the fertility

function— our simulations seem to indicate that the optimal control actually takes

only the values 0 and 1, thus working just as a switch that turns on and off the

application of pesticide.

The pest population dynamics under the effect of egg pesticide control is modeled

by (1.1)-(1.3), except that the boundary condition for the egg density is now given

by

ge(E(t), 0)ue(t, 0) =

∫ Lf

0

[
1− α1v1(t, a)

]
βf (P f , E(t), a)uf (t, a) da. (2.1)

The number of eggs surviving the control is now computed from the number of

eggs laid without the use of control by subtracting the number of eggs killed by the

egg-pesticide.

Larval pesticides are applied during the “black head” stage of egg development. We

let v2 be the indicator of larval pesticide application at time t and age a, and we let

α2 ∈ [0, 1] represent its efficiency. The pest population dynamics under the effect of

larval pesticide control is modeled by (1.1)-(1.3) with the equation describing the

egg population dynamics modified to

∂ue

∂t
(t, a) +

∂

∂a
[ge(E(t), a)ue(t, a)] = −βe(E(t), a)ue(t, a)

− [me(E(t), a) + α2v2(t, a)]ue(t, a), (t, a) ∈ Ωe.

(2.2)

The mating disruption consists of disturbing mating by diffusing the female sex

pheromone from dispensers thereby reducing the mating rate and, consequently,

the number of eggs laid; see19 for a more complete description of the mechanism.

The pheromone dispensers must be applied before the beginning of mating, typ-

ically during the egg laying dynamics. Therefore, this method of control can be

modeled in exactly the same way as control by ovicide, and that is the approach we

shall take in this paper.
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In summary, the population dynamics under these pest population control methods

is described by

∂ue

∂t (t, a) + ∂
∂a [ge(E(t), a)ue(t, a)] = − [βe(E(t), a) +me(E(t), a)]ue(t, a)

−α2v2(t, a)ue(t, a), (t, a) ∈ Ωe,
∂ul

∂t (t, a) + ∂
∂a

[
gl(E(t), a)ul(t, a)

]
= −βl(E(t), a)ul(t, a)−ml(P l, E(t), a)ul(t, a),

(t, a) ∈ Ωl,
∂uf

∂t (t, a) + ∂
∂a

[
gf (E(t), a)uf (t, a)

]
= −mf (E(t), a)uf (t, a), (t, a) ∈ Ωf ,

ge(E(t), 0)ue(t, 0) =
∫ Lf

0

[
1− α1v1(t, a)

]
βf (P f , E(t), a)uf (t, a) da, t ∈ [0, T ],

gl(E(t), 0)ul(t, 0) =
∫ Le

0
βe(E(t), a)ue(t, a )da, t ∈ [0, T ],

gf (E(t), 0)uf (t, 0) =
∫ Ll

0
βl(E(t), a)ul(t, a) da, t ∈ [0, T ],

uk(0, a) = uk0(a), a ∈ [0, Lk], k = e, l, f.

(2.3)

We remark that for both pesticides we have assumed here that the control product

targets a specific population that is function of the real time of the product appli-

cation: ovicide only affects the newly laid eggs and not the aged eggs, larvicide kills

at the egg stage and not at the larval. If we assume rather that the applied product

kills any eggs or any larvae, whatever their developmental stage, then system (2.3)

should be modified by adding the following 3 terms:

i) −α1v1(t, a)ue(t, a) in the equation related to the egg population dynamics to

model the eggs killed by the ovicide,

ii) −α2v2(t, a)ul(t, a) in the equation related to the larval population dynamics to

model the larvae killed by the larvicide,

iii) and the boundary equation of the larval stage is written by

gl(E(t), 0)ul(t, 0) =

∫ Le

0

[
1− α2v2(t, a)

]
βe(E(t), a)ue(t, a)da,

to model the number of new larvae (i.e. newly hatched eggs) killed as a consequence

of the larvicide application.

The vector function v = (v1, v2) represents the controls, which take values in the set

[0, 1] thus maintaining the positivity of the density functions in (2.3). The mathe-

matical analysis of this system is quite similar to this one developed in 2, leading

to the existence and uniqueness of solutions uk, for k = e, l, f , of (2.3) and to the

following a priori estimates that we shall state without proof: for k = e, l, f and

t ∈ [0, T ],

‖uk(t, ·)‖L1([0,Lk]) ≤ β̄fTP (0)eβ̄
fT = C(β̄f , T )P (0),

where P (0) is the sum of all initial populations.

Next we establish another technical result, namely the Lipschitz-dependence of the

densities on the controls. More precisely, we have the following result.
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Theorem 1. Let v = (v1, v2) and ṽ = (ṽ1, ṽ2) represent two controls. Then, there

exist positive constants Dk, k = e, l, f , such that

‖ukv(t, ·)− ukṽ(t, ·)‖L1(Ωk) ≤ Dk ‖v − ṽ‖L∞ ,

for any t ∈ [0, T ], where ukv and ukṽ are, respectively, the solutions of (2.3) with the

controls v and ṽ.

Proof: See the Appendix. �

Let now µ represent the financial cost of larval damage per larva per unit time, and

let η1/L
f and η2/L

e represent, respectively, the cost per unit time of carrying out

an application of ovicide (and/or mating disruption pheromones) and of larvicide.

We are then naturally led to study the following optimal control problem:

[P] : Find min
(v1,v2)∈K

J (v1, v2),

where

J (v1, v2) =

[
µ

∫
Ωl
ul(t, a) da dt+

η1

Lf

∫
Ωf

(v1)2(t, a) da dt+
η2

Le

∫
Ωe

(v2)2(t, a) da dt

]
,

and ul is the solution of (2.3) and, K is the convex compact set given by

K =
{
v ∈ L∞

(
Ωf × Ωe

)
: v1 : Ωf → [0, 1], v2 : Ωe → [0, 1]

}
. (2.4)

Note that the integrals forming the cost functional represent, respectively, the total

financial cost of grape losses due to the infestation, and the total cost of the appli-

cations of ovicides (and/or mating disruption hormones), and of larvicides. Since

one does not know the relation between the cost of an intervention and the amount

of product used the quadratic form on the control functions may be appropriate.

In general the control application is equidistributed among eggs/larvae/insects of

all ages so that v1 and v2 are age-independent. In such case we can simplify the

form of the functional to

J (v1, v2) =

[
µ

∫
Ωl
ul(t, a) da dt+ η1

∫ T

0

(v1)2(t) dt+ η2

∫ T

0

(v2)2(t) dt

]
.

We can find in the literature several results about optimal control for problems

governed by parabolic equations1,12,21, by integro-difference equations11 and, just

like here, by hyperbolic equations3,4,9,10. In all these articles, however, the cost

functional is expressed as a nonlinear (quadratic) function of the control(s) and the

density, whereas this dependency is linear in our problem [P ]. Barbu and Iannelli3

determined the optimal control to reduce the growth of a population. They modified

the Gurtin-Mac Camy model to include control functions as factors of the vital rates.

Fister and Lenhart9,10 and Busoni and Matuccia4 studied the optimal proportion

of harvested individuals in two populations. The controls were defined in this case

for the age-structured population equations as a functions that could be age- and

time-dependent.
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3. Existence of a solution.

In this section we establish the existence of a solution for problem [P]. This is quite

straightforward in contrast with the proof of uniqueness that we leave for the next

section as it requires considerably more work.

Theorem 2. The optimal control problem [P] admits a solution (v1, v2).

Proof: Let d = min
(v1,v2)∈K

J (v1, v2) and let
{
vn1 , v

n
2

}
n∈N be a minimizing sequence

such that

d < J (vn1 , v
n
2 ) ≤ d+

1

n
. (3.1)

Since the sequence
{
vn1 , v

n
2

}
n∈N belongs to the space K, there exists a convergent

subsequence
{
vnk1 , vnk2

}
k∈N in L2(Ωf ) × L2(Ωe); let (v∗1 , v

∗
2) be its limit. Consider

now the sequence of density functions
{

[ue]nk
}
k∈N defined by (2.3), given along the

characteristic curves by

[ue]nk(t, a) =

{
[ue0]nk(Xe(0; t, a))e−

∫ t
0

[he]nk (s,Xe(s;t,a))ds, a > Xe(t),
[ue]nk (Ze(0;t,a),0)
ge(E(Ze(0;t,a)),0) e

−
∫ t
Ze(0;t,a)

[he]nk (s,Xe(s;t,a))ds, a ≤ Xe(t),

where{
[he]nk(t, a) = βe(E(t), a) +me(E(t), a) + α2v

nk
2 (t, a) + ∂a[ge]nk(E(t), a),

[ge]nk(E(t), 0)[ue]nk(t, 0) =
∫ Lf

0

[
1− α1v

nk
1 (t, a)

]
βf
(
[P f ]nk , E(t), a

)
[uf ]nk(t, a) da.

These relations show explicitly the dependence of the densities on the sequence{
vnk1 , vnk2

}
k∈N. Similarly, we can see the dependence of the density functions{

[ul]nk
}
k∈N and

{
[uf ]nk

}
k∈N defined by (2.3) on

{
vnk1 , vnk2

}
k∈N. From the hy-

pothesis made in Section 2 we can easily prove (as described in 14) that the se-

quence of functions [P l]nk(t) =
∫ Ll

0
[ul]nk(t, a) da, k ∈ N, converges strongly to

[P l]∗(t) =
∫ Ll

0
[ul]∗(t, a) da, with [ul]∗ solution of (2.3) with (v∗1 , v

∗
2), since the se-

quence is bounded in H !. Finally, we see that lim
n→∞

J (vn1 , v
n
2 ) = J (v∗1 , v

∗
2) and, from

the first inequality of (3.1), it follows that (v∗1 , v
∗
2) is a solution of [P ]. �

4. Uniqueness of the solution.

The method we shall use to establish uniqueness is based on that of Barbu and

Iannelli’s paper3. We carry out the same procedure they used and utilize their no-

tation.
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We shall need the following dual problem associated to (2.3),

− ∂
∂tp

e(t, a)− ge(E(t), a) ∂∂ap
e(t, a) + [βe(E(t), a) +me(E(t), a)] pe(t, a)

+α2v2(t, a)pe(t, a)− pl(t, 0)βe(E(t), a) = 0, (t, a) ∈ Ωe,

− ∂
∂tp

l(t, a)− gl(E(t), a) ∂∂ap
l(t, a) + pl(t, a)

[
βl(E(t), a) +ml(P l, E(t), a)

+∂xm
l(P l, E(t), a)ul(t, a)

]
− pf (t, 0)βl(E(t), a) + µ = 0, (t, a) ∈ Ωl,

− ∂
∂tp

f (t, a)− gf (E(t), a) ∂∂ap
f (t, a) +mf (E(t), a)pf (t, a) =

[
1− α1v1(t, a)

]
pe(t, 0)

×
[
βf (P f , E(t), a) + ∂xβ

f (P f , E(t), a)uf (t, a)
]
, (t, a) ∈ Ωf ,

pk(T, a) = 0, a ∈ [0, Lk], k = e, l, f,

pk(t, Lk) = 0, t ∈ [0, T ], k = e, l, f.

(4.1)

Using the method of characteristics, we can produce an explicit solution for this

system that satisfies the Lipschitz conditions given in theorem 3 below that will be

useful later.

Theorem 3. The system (4.1) admits a unique solution and, for t ∈ [0, T ], it

satisfies

|pev(., 0)− peṽ(., 0)|∞ ≤ G ‖v − ṽ‖L∞ , (4.2)

‖pev − peṽ‖L2(Ωe) ≤ H ‖v − ṽ‖L∞ , (4.3)

where G and H are positive constants, pev and peṽ are solutions of (4.1) correspond-

ing, respectively, to the controls v and ṽ, and | · |∞ denotes the L∞
(
[0, T ]

)
-norm.

Proof: See the Appendix. �

The dual problem associated with [P ] is given by (4.1) and its optimality conditions

are given in the following lemma.

Lemma 1. The optimality conditions for problem [P ] are

2η1v1(·, a) + α1p
e(·, 0)βf (P f , ·, a)uf (·, a) = 0, a ∈ [0, Lf ],

2η2v2(·, a) + α2u
e(·, a)pe(·, a) = 0, a ∈ [0, Le],

identically in [0, T ] where v = (v1, v2) is the optimal control, (uf , ue) satisfy (2.3)

for the optimal v, and pe is the solution of (4.1) satisfying the condition

− 2η1

βfP fmin
≤ pe(t, 0) ≤ 0,

where P fmin > 0 is the minimum of the adult female population size for t ∈ [0, T ].

Proof: Follows directly from computing the derivatives of the cost functional with

respect to the controls.

�
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We then prove the uniqueness of solutions to problem [P ]. Following Barbu and

Iannelli3 we define the function

Φ(v) =

{
J ′(v), v ∈ K,
+∞, otherwise,

so that, for ε ≥ 0, there exists vε = (v1
ε , v

2
ε ) ∈ K satisfying

Φ(vε) ≤ inf
v∈K

Φ(v) + ε, (4.4)

Φ(vε) ≤ inf
v∈K

(
Φ(v) +

√
ε

2∑
i=1

‖vi − viε‖L1

)
. (4.5)

Computing the derivatives with respect to the vector v of the Lagrangian of the

cost functional defined by the expression in parentheses in (4.5) we get the following

relations,

∫
Ωf

[
2η1v

1
ε (t, a) + α1p

e(t, 0)βf (P f , E(t), a)uf (t, a)
]
h1(t, a) da dt

+
√
ε

∫
Ωf
h1(t, a) da dt ≥ 0,

∫
Ωe

[
2η2v

2
ε (t, a) + α2u

e(t, a)pe(t, a)
]
h2(t, a) da dt+

√
ε

∫
Ωe
h2(t, a) da dt ≥ 0,

for all h = (h1, h2) ∈ Tvε(K), where the set Tvε(K) represents the tangent cone

to K at vε. The two expressions in the square brackets are the components of a

vector in L1(Ωf × Ωe) and then, as a consequence of proposition 5.3 of Barbu and

Iannelli3, we have the existence of a function θε = (θ1
ε , θ

2
ε ) ∈ L∞(Ωf ×Ωe), |θiε| < 1

for i = 1, 2, such that the functions{
2η1v

1
ε (t, a) + α1p

e(t, 0)βf (P f , E(t), a)uf (t, a) +
√
ε θ1
ε , (t, a) ∈ Ωf ,

2η2v
2
ε (t, a) + α2u

e(t, a)pe(t, a) +
√
ε θ2
ε , (t, a) ∈ Ωe,

are the components of a vector in Nvε(K), the normal cone of K at vε. We can

deduce from the above that the solution vε is given byv
1
ε (t, a) = L

(
− α1

2η1
pe(t, 0)βf (P f , E(t), a)uf (t, a)−

√
ε

2η1
θ1
ε (t, a)

)
, (t, a) ∈ Ωf ,

v2
ε (t, a) = L

(
− α2

2η2
ue(t, a)pe(t, a)ds−

√
ε

2η2
θ2
ε (t, a)

)
, (t, a) ∈ Ωe,

where the mapping L is given by

(Lf)(t, a) =


f(t, a), g ≤ f(t, a) ≤ ḡ,
g, f(t, a) ≤ g,
ḡ, f(t, a) ≥ ḡ.

We can now prove the following uniqueness result.
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Theorem 4. Let us define the following positive conditions,{
γ1 = β̄f‖uf‖L∞G+ β̄f |pe(·, 0)|∞Df + βK |pe(·, 0)|∞‖uf‖L∞Df ,

γ2 = ‖pe‖L∞De + (LT )1/2‖ue‖L∞H,

where Df and De are positive constants given in Theorem 1 whereas G and H are

those given in Theorem 3. If, 0 ≤ γ1

2η1
, γ2

2η2
< 1, then problem [P ] has a unique

solution v = (v1, v2) ∈ K.

The above conditions (γ1, γ2) guaranteeing the uniqueness are dependent on the

density functions ue and uf that are solutions of the system (2.3) and linked with

the dual variables pe and, independent on the control functions (v1, v2). Since all

terms of these conditions are positive then we can simplify them as follow

β̄f‖uf‖L∞G < 2η1, and (LT )1/2‖ue‖L∞G < 2η2,

because H = G (see Annex) and deduce this condition on the maximal value on

the female density functions,

‖uf‖L∞ ≤
η1

η2

(LT )1/2

ge
P fmax,

that requires to be lesser than the maximal number of female P fmax times a positive

constant.

Proof: Let E be the Banach space (L∞(Ωf × Ωe)), and consider the mapping

(Fv)(t) : E → E given by(F1v)(t, a) = L
(
− α1

2η1
pev(t, 0)βf (P fv , E(t), a)ufv (t, a)

)
,

(F2v)(t, a) = L
(
− α2

2η2
uev(t, a)pev(t, a)

)
,

(4.6)

where (peṽ, u
e
ṽ, u

f
ṽ ) and (pev, u

e
v, u

f
v ) are solutions of (4.1) and (2.3) with the controls

ṽ and v, respectively. First, we prove that the mapping Fv is a contraction. Let

v = (v1, v2) and ṽ = (ṽ1, ṽ2) be two controls; then, from (4.6) we deduce that

|F1v(t, a)−F1ṽ(t, a)| ≤ 1

2η1
|peṽ(t, 0)− pev(t, 0)| |βf (P fv , E(t), a)ufṽ (t, a)|

+
1

2η1
|pev(t, 0)|

∣∣∣βf (P fv , E(t), a)− βf (P fṽ , E(t), a)
∣∣∣ |ufṽ (t, a)|

+
β̄f

2η1
|pev(t, 0)|

∣∣∣ufṽ (t, a)− ufv (t, a)
∣∣∣ ,

|F2v(t, a)−F2ṽ(t, a)| ≤ 1

2η2
|ueṽ(t, s)− uev(t, s)| |pev(t, s)|

+
1

2η2
ueṽ(t, s) |peṽ(t, s)− pev(t, s)| .
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Using theorems 1 and 3, the above inequalities become

|F1v(t, a)−F1ṽ(t, a)| ≤ 1

2η1

[
β̄f‖ufṽ‖L∞G+ β̄f |pev(., 0)|∞Df

+βK |pev(., 0)|∞‖ufṽ‖L∞D
f
]
||ṽ − v||L∞ ,

|F2v(t, a)−F2ṽ(t, a)| ≤ 1

2η2

[
‖pev‖L∞De + (LT )1/2‖ueṽ‖L∞H

]
‖ṽ − v‖L∞ ,

where the estimate of the L2-norm of the dual variable pe is given in the Appendix.

Let us denote by γ1 and γ2, respectively, the terms inside the square brackets of the

first and second inequalities above, so that those inequalities are now rewritten as{
|F1v(t, a)−F1ṽ(t, a)| ≤ γ1

2η1
‖ṽ − v‖L∞ ,

|F2v(t, a)−F2ṽ(t, a)| ≤ γ2

2η2
‖ṽ − v‖L∞ .

(4.7)

Since we have

0 ≤ γ1

2η1
,
γ2

2η2
< 1, (4.8)

the mapping F is a contraction admitting a unique fixed point, say v∗. Next, we

prove that the solution of [P ′] is unique, and it is v∗. Indeed, for i = 1, 2, we have

‖v∗i − viε‖L∞ ≤
∣∣Fi(v∗i )−F1(viε)

∣∣+

√
ε

2ηi
|θiε(t, a)|,

which implies, using (4.7), that for i = 1, 2,

‖v∗i − viε‖L∞ ≤
[
1− γi

2ηi

]−1 √
ε

2ηi
.

Finally, we conclude that lim
ε→0

vε = v∗ and, by inequality (4.4), v∗ is the unique

minimizer of [P ′] and, therefore, also the unique minimizer of [P ].

�

5. Numerical characterization of the controls.

We present next the results from a numerical simulation and the corresponding

optimal controls for the resulting problem [P ].

We combine a Quasi-Newton (QN) method to compute the optimal solutions of

problem [P ] with a Finite Difference procedure to approximate the egg, larval and

adult density functions of system (2.3). One can prove the convergence of this

method in the same way as in15. We consider the analogous discrete adjoint problem,
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that is (using the same notation given in 15)

λe,n0−1
i0

= ∆t
∆a

λ
e,n0
i0+1v

e,n0
i0

1+∆t(βe+me)
n0+1
i0+1 +∆tα2v

n0+1
2,i0+1

+ λe,n0

i0

(1− ∆t
∆a v

e,n0
i0

)

1+∆t(βe+me)
n0+1
i0

+∆tα2v
n0+1
2,i0

+∆t
λ
l,n0
1 β

e,n0
i0

1+∆t(βl+ml)
n0+1
1

,

λl,n0−1
i0

= ∆t
∆a

λ
l,n0
i0+1v

l,n0
i0

1+∆t(βl+ml)
n0+1
i0+1

+ λl,n0

i0

(1− ∆t
∆a v

l,n0
i0

)

1+∆t(βl+ml)
n0+1
i0

+ ∆t
λ
f,n0
1 β

l,n0
i0

1+∆tm
f,n0+1
1

,

λf,n0−1
i0

= ∆t
∆a

λ
f,n0
i0+1v

f,n0
i0

1+∆tm
f,n0+1
i0+1

+ λf,n0

i0

(1− ∆t
∆a v

f,n0
i0

)

1+∆tm
f,n0+1
i0

+ ∆t
λ
e,n0
1 (1−α1(v1)

n0
i0

)β
f,n0
i0

1+∆t(βe+me)
n0+1
1 +∆tα2(v2)

n0+1
1

,

for 1 ≤ i0 ≤ Na and 1 ≤ n0 ≤ Nt.

The parameters of the model are chosen so that the growth of the population is

chronological and constant in time as observed under laboratory conditions 16,18

(120 eggs per female on average, no mortality and no competition for food) that is

gk(E(t), a) ≡ 1, mk(E(t), a) ≡ 0, for k = e, l, f,

making the model age-structured; we use truncated normal distributions for the

fertility and stage-transition functions given by

βe(t, a) = d1e
−( a−7.5

0.35 )2

= βl(t, a), βf (P f , E(t), a) = d2e
−( a−3.5

0.35 )2

,

with d1 = 16.12, d2 = 19.34, and Le = Lf = Ll = 10. In order to be able to present

in a single graph the population dynamics of all classes we assume the fertility rate

to be one tenth of its actual value, i.e. 12 eggs by female. The only growth variations

considered in these examples are inside cohorts as measured and showed in 16,18 .

We computed numerically the optimal control for a population initialized by a

cohort of one hundred females with truncated-normal age distribution, that is

uf (0, a) = d3e
−( a−1

0.25 )2

, d3 = 225.67.

The temporal dynamics of these females is represented in Figure 1 by the dotted

line, that of their eggs by the solid line, and that of the eggs that become larvae

after few days by the dash-dotted line. The total number of larvae during the whole

experiment is 1200 individuals.

The financial cost of larval damages per larva per unit of time is assumed to equal

one unit, i.e. µ = 1, and the the multiplier for the application of ovicide and larvicide

is also set equal to unity, i.e. η1 = η2 = 1. For simplicity we take the cost of an

ovicide application to be the same as the cost of a mating disruption use, though this

is not true in reality. The issue here is not to discuss the actual cost or performance

of the pest control methods but rather to show to numerically realize the solution

of the optimal control problem [P ].
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Figure 1. Population dynamics of females (dotted line), eggs (solid line) and larvae (dashed-dotted
line) without any control applied. The popluation is initialized with 100 females.

cost or performance of the pest control methods but rather to show to numerically

realize the solution of the optimal control problem [P ].

We focus on just the first generation of the simulated population dynamics and

determine through the optimal control problem [P ] presented in Section 2 the best

way to use the whole array of chemical products described to minimize the economic

damage caused by this insect population. The age- and time-discretization steps are

chosen equal to 0.1 and the QN algorithm is initialized with the step-functions rep-

resented by the dashed-dotted curves of figure 2.

The optimal solution computed for problem [P ] is given in Figure 2. According

to it, the optimal strategy to control a population with dynamics as in Figure 1

is to continuously spray ovicides during the egg laying dynamics (or to combine

an egg pesticide application with a use of pheromone dispensers provided that the

efficiency of the combination of these chemical products is maximal). In addition to

that a larvicide application seems to be required to totally eliminate the insects but,

actually, when looking at the integral of this solution v2 (cf. Table 1) the amount

of product is almost null.

Table 1 below shows the contributions to the three components of the cost function

for the optimal solution (v1, v2) of problem [P ].

6. Concluding remarks.

In this paper we described and analyzed a mathematical model that may realisti-

cally guide the “best” choice of control strategies for one of the most ravaging pests
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Figure 2. Optimal Control (v1,v2 in solid curves) for the population of Figure 1, determined from
problem [P ]. The horizontal axis represents the time. The dash-dotted curves are the QN initial
functions.

component µ
∫ T

0
P l
(v1,v2)

(t)dt η1

Lf

∫ T

0
(v1(t))

2dt η2

Le

∫ T

0
(v2(t))

2dt J
value 0.139 0.2534 0.00271 0.39511

Table 1. Values of the three integrals that form the cost functional J at the optimum (v1, v2) of
the control problem [P ] presented in Section 2, and the minimum value of the functional J .

that damages the grapes and decreases production in European and American vine-

yards, specifically that caused by the European grapevine moth (Lobesia botrana).

Our model for control of the pest is based on the Lobesia botrana Model published

in 2. We considered a reduced version of it with modifications to both one of the

differential equations and to the boundary condition for the egg density in order

to account, respectively, for the application of larval pesticides and that of ovicides

and/or pheromones that disrupt and reduce mating and thus reduce egg production

too. These three techniques are, in fact, the most widely used in many vineyards in

Europe, see 8,17,19 for example. We constructed a cost function that is amenable to

matching with real-life financial costs by allowing linear dependence on the density

of the pest and nonlinear dependence on the control. This is in sharp contrast with

the majority of models for optimal control where the dependence of the cost on the

relevant density and on the control is quadratic so that classical techniques based

on a Lagrangian and a dual problem can be applied to show existence of an optimal

control. This is one of the novel features in our results, and one that is very desirable

when trying to apply a mathematical model to a real-life situation.
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tration of the optimal control pair that consists of continous functions for a given

population dynamics.

These results provide a solid ground on which vineyard managers can base a treat-

ment protocol for this pest that will minimize financial losses. Even though our

model includes the possible use of mating disruption as a control measure, diffi-

culties arise when considering its efficiency. On the other hand, while the use of

pesticides has a clear direct financial cost given by the purchase and application

costs for the chemical, it also has another cost, more subtle and harder to model

and evaluate, that we could refer to as “environmental cost” due to the poisoning

of the soil. We shall address these and other issues related to the modeling of the

coefficients in the control terms and in the cost function in a forthcoming paper.

Bibliography

1. B. Ainseba, S. Anita, M. Langlais, Optimal control for a nonlinear age-structured pop-
ulation dynamics model, Electronic Journal of Differential Equations, 28: 1-9 (2002).

2. B. Ainseba, D. Picart, An innovative multistage, physiologically structured, popula-
tion model to understand the European grapevine moth dynamics. Journal of Math-
ematical analysis and Applications, 382: 34-46(2011).

3. V. Barbu and M. Iannelli, Optimal Control of Population Dynamics. Journal of opti-
mization theory and applications 102: 1-14 (1999)

4. G. Busoni, S. Matuccia, Problem of Optimal Harvesting Policy in Two-Stage Age-
Dependent Populations. Mathematical Biosciences, 143: 1-33 (1997).

5. European Grapevine Moth (EGVM), California Department of Food and Drugs,
http://www.cdfa.ca.gov/plant/egvm/index.html

6. J.V. Cross, D.R. Hall, Exploitation of the sex pheromone of apple leaf midge Dasineura
mali Kieffer (Diptera: Cecidomyiidae) for pest monitoring: Part1. development of lure
and trap. Crop Protection, 28: 139-144 (2009).

7. I. Ekeland, On the variational principle, Journal Math. Appl. 47: 324-353 (1974).
8. D. Esmenjaud, S. Kreiter, M. Martinez, R. Sforza, D. Thiéry, M. Van Helden, M.
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7. Appendix.

For the proofs presented in the following we make some additional hypotheses. The

growth functions gk, for k = e, l, f , are non-negative and bounded away from zero

at the initial age 0,

0 < gk ≤ gk(E(t), 0) ≤ ḡk, k = e, l, f.

The birth function βf (P f , t, a) is differentiable in the first variable P f and its

derivative is Lipschitz continuous with constant βK such that

|βf (P fv , E(t), a)− βf (P fṽ , E(t), a)|+ |∂xβf (P fv , E(t), a)− ∂xβf (P fṽ , E(t), a)|

≤ βK‖ufv − u
f
ṽ‖L1 ,

where P fv (t) =
∫ Lf

0
ufv (t, a)da and ufv satisfies (2.3) with the control v.

The larval mortality function ml(P l, E(t), a) is differentiable in the first variable P l

and its derivative is Lipschitz continuous with constant mK such that

|ml(P lv, E(t), a)−ml(P lṽ, E(t), a)|+ |∂xml(P lv, E(t), a)− ∂xml(P lṽ, E(t), a)|
≤ mK‖ulv − ulṽ‖L1 ,

where P lv(t) =
∫ Ll

0
ulv(t, a)da and ulv satisfies (2.3) with the control v.

7.1. Continuity of the state variables with respect to the controls.

Proof of theorem 1: Let us introduce the following change of variables,

ûkv(t, a) = e−λt ukv(t, a), (t, a) ∈ Ωk, k = e, l, f,
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where ukv satisfies (2.3) and the new variables ûkv satisfy the following system,

∂
∂t û

e
v(t, a) + ∂

∂a [ge(E(t), a)ûev(t, a)] + λûev(t, a) + (βe(E(t), a) +me(E(t), a)) ûev(t, a)

+α2v2(t, a)ûev(t, a) = 0,
∂
∂t û

l
v(t, a) + ∂

∂a

[
gl(E(t), a)ûlv(t, a)

]
+ λûlv(t, a) + βl(E(t), a)ûlv(t, a)

+ml(P l, E(t), a)ûlv(t, a) = 0,
∂
∂t û

f
v (t, a) + ∂

∂a

[
gf ûfv (t, a)

]
+ λûfv (t, a) +mf (E(t), a)ûfv (t, a) = 0,

ge(E(t), 0)ûev(t, 0) =
∫ Lf

0
(1− α1v1(t, a))βf (P f , E(t), a)ûfv (t, a)da,

gl(E(t), 0)ûlv(t, 0) =
∫ Le

0
βe(E(t), a)ûev(t, a)da,

gf (E(t), 0)ûfv (t, 0) =
∫ Ll

0
βl(E(t), a)ûlv(t, a)da,

ûkv(0, a) = e−λtuk0(a), k = e, l, f.

(7.1)

Now, let v and ṽ be two controls and let ûkv and ûkṽ , respectively, be the correspond-

ing solutions of (7.1), for k = e, l, f . The corresponding differences between these

solutions, denoted ûk, satisfy the system (7.2) below,

∂
∂t û

e(t, a) + ∂
∂a [ge(E(t), a)ûe(t, a)] + λûe(t, a) + (βe(E(t), a) +me(E(t), a))ûe

+α2ṽ2(t, a)ûe + α2(v2(t, a)− ṽ2(t, a))ûev = 0,
∂
∂t û

l(t, a) + ∂
∂a

[
gl(E(t), a)ûl(t, a)

]
+ λûl(t, a) + (βl(E(t), a) +ml

v)û
l(t, a)

+(ml
v −ml

ṽ)u
l
ṽ = 0,

∂
∂t û

f (t, a) + ∂
∂a

[
gf (E(t), a)ûf (t, a)

]
+ λûf (t, a) +mf (E(t), a)ûf (t, a) = 0,

ge(E(t), 0)ûe(t, 0) =
∫ Lf

0
(1− α1ṽ1(t, a))βfv û

f (t, a)da

−
∫ Lf

0
α1(v1 − ṽ1)(t, a)βfv û

f
v (t, a)da+

∫ Lf
0

(1− α1ṽ1(t, a))(βfv − β
f
ṽ )ûfṽ (t, a)da,

gl(E(t), 0)ûl)(t, 0) =
∫ Le

0
βe(E(t), a)ûe(t, a)da,

gf (E(t), 0)ûf (t, 0) =
∫ Ll

0
βl(E(t), a)ûl(t, a)da,

ûk(0, a) = 0, k = e, l, f,

(7.2)

where ml
v = ml(P lv, E(t), a) and βfv = βf (P fv , E(t), a). We multiply the first, second

and third equations of (7.2), respectively, by ûe, ûl and ûf , then we integrate them

on the corresponding domain Ωk to get the following system,

λ
∫

Ωe
(ûe)2(t, a) da dt− 1

2

∫ T
0
ge(E(t), 0) (ûe(t, 0))

2
dt

≤
∫

Ωe

[
ṽ2(t, a)− v2(t, a)

]
ûev(t, a)ûe(t, a) da dt

λ
∫

Ωl
(ûl)2(t, a) da dt− 1

2

∫ T
0
gl(E(t), 0)

(
ûl(t, 0)

)2
dt

≤
∫

Ωl
(ml

v −ml
ṽ)û

l
ṽ(t, a)ûl(t, a) da dt

λ
∫

Ωf
(ûf )2(t, a) da dt− 1

2

∫ T
0
gf (E(t), 0)

(
ûf (t, 0)

)2
dt ≤ 0.
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These can be modified by applying Young’s inequality to the integrals of the first

and second equations on the right side to obtain system (7.3).



λ
∫

Ωe
(ûe)2(t, a)da dt ≤ 1

2

∫ T
0
ge(E(t), 0) (ûe(t, 0))

2
dt+

ε1‖ûev‖
2
L2

2

∫
Ωe

(ûe)2(t, a)da dt

+ 1
2ε1

∫
Ωe
|ṽ2(t, a)− v2(t, a)|2da dt

λ
∫

Ωl
(ûl)2(t, a)da dt ≤ 1

2

∫ T
0
gl(E(t), 0)

(
ûl(t, 0)

)2
dt+mKL

l‖ûlv‖L2

∫
Ωl

(ûl)2(t, a)da dt

λ
∫

Ωf
(ûf )2(t, a)da dt ≤ 1

2

∫ T
0
gf (E(t), 0)

(
ûf (t, 0)

)2
dt.

(7.3)

Next we use the boundary conditions given in (7.2) for the densities ûk(t, 0) (k =

e, l, f) to evaluate the first integrals on the right hand sides of the three inequalities

above to obtain



1
2

∫ T
0
ge(E(t), 0) (ûe(t, 0))

2
dt = 1

2

∫ T
0

1
ge(E(t),0)

[∫ Lf
0

(1− α1ṽ1(t, a))βfv û
f (t, a)da

+α1

∫ L
0

(ṽ1 − v1)(t, a)βfv û
f
v (t, a)da+

∫ Lf
0

(1− α1ṽ1(t, a))(βfv − β
f
ṽ )ûfṽ (t, a)da

]2
dt,

1
2

∫ T
0
gl(E(t), 0)

(
ûl(t, 0)

)2
dt = 1

2

∫ T
0

1
gl(t,0)

[∫ Le
0

βe(t, a)ûe(t, a)da
]2
dt,

1
2

∫ T
0
gf (E(t), 0)

(
ûf (t, 0)

)2
dt = 1

2

∫ T
0

1
gf (t,0)

[∫ Ll
0
βl(t, a)ûl(t, a)da

]2
dt.

Developing the squares in the above expressions, and applying Young’s and Cauchy-

Swartz’s inequalities, we see that



1

2

∫ T

0

ge(E(t), 0) (ûe(t, 0))
2
dt ≤ 1

2ge

∫ T

0

[
‖βf‖2L2 + 2β̄fβKL

f‖ûfṽ (t)‖L1

+(βK)2Lf‖ûfṽ (t)‖2L1 + ε2‖βf‖2L2 + ε3L
fβK‖ûfṽ (t)‖L1

] ∫ Lf

0

(ûf )2(t, a) da dt

+
(β̄f )2

2ge
‖ûfv (t)‖2L2

[
1

ε2
+
βK
ε3

+ 1

] ∫
Ωf

[
ṽ1(t, a)− v1(t, a)

]2
da dt,

1

2

∫ T

0

gl(E(t), 0)
(
ûl(t, 0)

)2
dt ≤

‖βe‖2L2

2gl

∫
Ωe

(ûe)2(t, a) da dt,

1

2

∫ T

0

gf (E(t), 0)
(
ûf (t, 0)

)2
dt ≤

‖βl‖2L2

2gf

∫
Ωl

(ûl)2(t, a) da dt.

(7.4)
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We now substitute the estimates (7.4) into (7.3) to obtain the following inequalities:

(
λ−

ε1‖ûev‖2L2

2

)∫
Ωe

(ûe)2(t, a) da dt ≤ A

2ge

∫
Ωf

(ûf )2(t, a) da dt

+
B

2ge

∫
Ωf
|ṽ1(t, a)− v1(t, a)|2 da dt+

1

2ε1

∫
Ωf
|ṽ2(t, a)− v2(t, a)|2 da dt

(
λ−mKL

l‖ûlv‖L2

) ∫
Ωl

(ûl)2(t, a) da dt ≤
‖βe‖2L2

2gl

∫
Ωe

(ûe)2(t, a) da dt

λ

∫
Ωf

(ûf )2(t, a) da dt ≤
‖βl‖2L2

2gf

∫
Ωl

(ûl)2(t, a) da dt,

(7.5)

where

A =
[
‖βf‖2L2 + 2β̄fβKL

f‖ûfṽ (t)‖L1 + (βK)2Lf‖ûfṽ (t)‖2L1 + ε2‖βf‖2L2

+ε3L
fβK‖ûfṽ (t)‖L1

]
> 0,

and,

B = (β̄f )2‖ûfv (t)‖2L2

[
1

ε2
+
βK
ε3

+ 1

]
> 0. (7.6)

If we now set

ε1 =
2(λ− 1)

‖ûev‖2L2

, ε2 = 1, ε3 = 1,

and assume λ > ml
KL

f‖ûlv‖L2 and it also satisfies the condition

λ(λ−mKL
l‖ûlv‖L2) >

A‖βl‖2L2‖βe‖2L2

8gegfgl
> 0, (7.7)

then, from (7.5) we derive the following inequality:
∫

Ωe
(ûe)2(t, a) da dt ≤

C−1B

2ge

∫
Ωf
|ṽ1(t, a)− v1(t, a)|2 da dt+

C−1

2ε1

∫
Ωf
|ṽ2(t, a)− v2(t, a)|2 da dt,

where

C =

(
1− A

2λge
‖βl‖2L2

2gf
‖βe‖2L2

2gl
1

(λ−mKLl‖ûlv‖L2)

)
, (7.8)

and it then follows that the L2-norm of the density ûe can be bounded as follows:

‖ûe‖L2(Ωe) ≤ C−1/2

[(
B

2ge

)2

+

(
‖ûev‖2L2

4(λ− 1)

)2
]1/2

‖ṽ − v‖L∞ .
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Finally, we conclude the proof of theorem 1 for k = e using the constants

De
1 = LT

(
B

2Cge

)1/2

,

De
2 =

LT‖ûev‖L2

2

[
1

C(λ− 1)

]1/2

,

where the constants B and C are defined, respectively, in (7.6) and (7.8), and λ

satisfies the condition (7.7).

Similarly, in order to derive the two other inequalities of theorem 1 (for k = e, l)

we use the inequalities (7.5) with the above definition of εi, i = 1, 2, 3, to finally

conclude that the corresponding constants Dl and Df are given by

Dl
1 =

LT‖βe‖L2

2

[(
B

gegl

)(
C−1

λ−mKLl‖ûlv‖L2

)]1/2

,

Dl
2 =

LT‖βe‖L2‖ûev‖L2

2

[(
1

gl(λ− 1)

)(
C−1

λ−mKLl‖ûlv‖L2

)]1/2

,

Df
1 =

LT‖βe‖L2‖βl‖L2

2

[(
B

2geglgf

)(
(λC)−1

λ−mKLl‖ûlv‖L2

)]1/2

,

Df
2 =

LT‖βe‖L2‖βl‖L2‖ûev‖L2

2

[(
1

glgf (λ− 1)

)(
(λC)−1

λ−mKLl‖ûlv‖L2

)]1/2

,

and λ satisfies the condition (7.7).

7.2. Continuity of the dual variables with respect to the controls.

Before giving the proof of theorem 3 we shall estimate the L2-norm of the dual

variable pe.

Let us introduce the following change of variables,

p̂kv(t, a) = eλtpkv(t, a) k = e, l, f,

where pkv satisfies (4.1) with the control v = (v1, v2), and p̂kv satisfies system (7.9)
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below.

− ∂
∂t p̂

e
v(t, a)− ge(E(t), a) ∂∂a p̂

e
v(t, a) + λp̂ev(t, a) +

[
βe(E(t), a) +me(E(t), a)

]
p̂ev(t, a) =

+α2v2(t, a)p̂ev(t, a) + p̂lv(t, 0)βe(E(t), a),

− ∂
∂t p̂

l
v(t, a)− gl(E(t), a) ∂∂a p̂

l
v(t, a) + λp̂lv(t, a) +

[
βl(E(t), a) +ml(P lv, E(t), a)

+∂xm
l(P lv, E(t), a)ulv(t, a)

]
p̂lv(t, a) = p̂fv (t, 0)βl(E(t), a)− µeλt,

− ∂
∂t p̂

f
v (t, a)− gf (E(t), a) ∂∂a p̂

f
v (t, a) + λp̂fv (t, a) +mf (E(t), a)p̂fv (t, a) =[

1− α1v1(t, a)
]
p̂ev(t, 0)

[
βf (P fv , E(t), a) + βf (P fv , E(t), a)

′
ulv(t, a)

]
,

p̂kv(T, a) = 0, k = e, l, f,

p̂kv(t, Lk) = 0, k = e, l, f,

(7.9)

where P kv (t) =
∫ Lk

0
ukv(t, a) da, k = l, f , and ukv is given by (2.3). We next multiply

the first three equations of (7.9), respectively by p̂ev, p̂
l
v and p̂fv , and then we integrate

the resulting equations on the corresponding sets Ωk (k = e, l, f) to see that

1

2

∫ T

0

(p̂ev)
2(t, 0) dt+ λ

∫
Ωe

(p̂ev)
2(t, a) da dt ≤

∫
Ωe
p̂lv(t, 0)βe(E(t), a)p̂ev(t, a) da dt,

1

2

∫ T

0

(p̂lv)
2(t, 0) dt+ λ

∫
Ωl

(p̂lv)
2(t, a) da dt ≤

∫
Ωl
p̂fv (t, 0)βl(E(t), a)p̂lv(t, a) da dt,

1

2

∫ T

0

(p̂fv )2(t, 0) dt+ λ

∫
Ωf

(p̂fv )2(t, a) da dt ≤
∫

Ωf
p̂ev(t, 0)

[
βf (P f , E(t), a)

+βf (P f , E(t), a)
′
ul(t, a)

]
p̂fv (t, a) da dt.

(7.10)

We apply now Young’s and Cauchy Schwartz’s inequalities to the right-hand sides

of the above inequalities to obtain the bounds

∫
Ωe
p̂lv(t, 0)βe(E(t), a)p̂ev(t, a) da dt ≤

ε1‖βe‖2L2

2

∫
Ωe

(p̂ev)
2(t, a) da dt

+
1

2ε1

∫ T

0

(p̂lv)
2(t, 0) dt,∫

Ωl
p̂fv (t, 0)βl(E(t), a)p̂lv(t, a)da dt ≤

ε3‖βl‖2L2

2

∫
Ωl

(p̂lv)
2(t, a) da dt

+
1

2ε3

∫ T

0

(p̂fv )2(t, 0) dt,∫
Ωf
p̂ev(t, 0)

[
βf (P f , E(t), a) + βf (P f , E(t), a)

′
ulv(t, a)

]
p̂fv (t, a) da dt

≤

(
ε5‖βf‖2L2

2
+
ε6β

f
P ‖ulv(t)‖2L2

2

)∫
Ωf

(p̂fv )2(t, a) da dt

+

(
1

2ε5
+
βfP
2ε6

)∫ T

0

(p̂ev)
2(t, 0)dt.
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Next, by setting

ε1 =
λ− 1

‖βe‖2L2

, ε3 =
2λ

‖βl‖2L2

, ε5 =
2(λ− 1)

‖βf‖2L2

, ε6 =
2

‖ulv(t)‖2L2

,

system (7.10) becomes

1

2

∫ T

0

(p̂ev)
2(t, 0) dt+

∫
Ωe

(p̂ev)
2(t, a) da dt ≤ 1

2ε1

∫ T

0

(p̂lv)
2(t, 0) dt,

1

2

∫ T

0

(p̂lv)
2(t, 0) dt ≤ 1

2ε3

∫ T

0

(p̂fv )2(t, 0) dt,

1

2

∫ T

0

(p̂fv )2(t, 0) dt ≤

(
1

2ε5
+
βfP
2ε6

)∫ T

0

(p̂ev)
2(t, 0) dt,

that leads immediately to the single inequality∫
Ωe

(p̂ev)
2(t, a) da dt ≤ 1

2ε1ε3

(
1

ε5
+
βfP
ε6

)∫ T

0

(p̂ev)
2(t, 0) dt.

If λ > 1 and λ satisfies the condition

8λ(λ− 1)2 > ‖βe‖2L2‖βl‖2L2‖βf‖2L2 ,

then, using Lemma 1, we see that the L2-norm of dual variable p̂ev is bounded as

follows,

‖p̂ev(t)‖L2(Ωe) ≤
2η1

βfP fmin
<∞,

where P fmin = min
t≥0

{
P f (t)

}
for all time. �

Proof of (4.2) in theorem 3:

Let v and ṽ be two controls and, p̂kv and p̂kṽ (k = e, l, f) the corresponding solutions

of (7.9). We now denote by p̂k the difference between pkv and pkṽ , and these functions

satisfy the following system

− ∂
∂t p̂

e(t, a)− ge(E(t), a) ∂∂a p̂
e(t, a) + λp̂e(t, a) + (βe(E(t), a) +me(E(t), a) + α2ṽ2(t, a))p̂e(t, a) =

p̂l(t, 0)βe(E(t), a)− α2(v2(t, a)− ṽ2(t, a))p̂ev(t, a),

− ∂
∂t p̂

l(t, a)− gl(E(t), a) ∂∂a p̂
l(t, a) + λp̂l(t, a) +

(
βl(E(t), a) +ml

ṽ(E(t), a) + ∂xm
l
ṽu
l
ṽ(t, a)

)
p̂l(t, a)

+(ml
v −ml

ṽ)p̂
l
v(t, a) + (∂xm

l
vu
l
v − ∂xml

ṽu
l
ṽ)p̂

l
v(t, a) = p̂f (t, 0)βl(a),

− ∂
∂t p̂

f (t, a)− gf (E(t), a) ∂∂a p̂
f (t, a) + λp̂f (t, a) +mf (E(t), a)p̂f (t, a) = (1− α1ṽ1(t, a))p̂e(t, 0)

×
[
βfṽ + ∂xβ

f
ṽu

l
ṽ

]
− α1 (v1(t, a)− ṽ1(t, a))

[
βfv + ∂xβ

f
vu

l
v

]
p̂ev(t, 0)

+(1− α1ṽ1(t, a))p̂ev(t, 0)
[
βfv − β

f
ṽ + ulv∂xβ

f
v − ulṽ∂xβ

f
ṽ

]
,

p̂k(T, a) = 0, k = e, l, f,

p̂k(t, Lk) = 0, k = e, l, f,
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where P k(t) =
∫ Lk

0
ukv(t, a)da (k = l, f) and ukv is given by (2.3). We multiply now

the first three equations above, respectively by p̂e, p̂l and p̂f and we integrate the

resulting equations on the corresponding domain Ωk to get



1

2

∫ T

0

(p̂e)2(t, 0) dt+ λ

∫
Ωe

(p̂e)2(t, a) da dt ≤
∫

Ωe

∣∣p̂l(t, 0)βe(E(t), a)p̂e(t, a)
∣∣ da dt

+

∫
Ωe

∣∣[ṽ2(t)− v2(t)
]
p̂ev(t, a)p̂e(t, a)

∣∣ da dt,
1

2

∫ T

0

(p̂l)2(t, 0) dt+ λ

∫
Ωl

(p̂l)2(t, a) da dt ≤
∫

Ωl

∣∣p̂f (t, 0)βl(E(t), a)p̂l(t, a) da dt
∣∣

+

∫
Ωl

∣∣[(ml
v −ml

ṽ + ulv∂xm
l
v − ulṽ∂xml

ṽ)
]
p̂lv(t, a)p̂l(t, a)

∣∣ da dt,
1

2

∫ T

0

(p̂f )2(t, 0) dt+ λ

∫
Ωf

(p̂f )2(t, a) da dt ≤
∫

Ωf

∣∣∣p̂e(t, 0)
[
βfṽ + ufṽ∂xβ

f
ṽ

]
p̂f (t, a)

∣∣∣ da dt
+

∫
Ωf

∣∣(ṽ1(t)− v1(t)) p̂ev(t, 0)
[
βfv + ufv∂xβ

f
v

]
p̂f (t, a)

∣∣ da dt
+

∫
Ωf

∣∣∣p̂ev(t, 0)
[
βfv − β

f
ṽ + ufṽ∂xβ

f
vx− u

f
ṽ∂xβ

f
ṽ

]
p̂f (t, a)

∣∣∣ da dt.
(7.11)

Applying Young’s and Cauchy Schwartz’s inequalities to the integrals on the right-

hand sides of these inequalities we are led to the following relations,



∫
Ωe

∣∣p̂l(t, 0)βe(E(t), a)p̂e(t, a)
∣∣ da dt ≤ ε1

2
‖βe‖2L2

∫
Ωe

(p̂e)2(t, a) da dt

+
1

2ε1

∫ T

0

(p̂l)2(t, 0) dt,∫
Ωe

∣∣[ṽ2(t, a)− v2(t, a)
]
p̂ev(t, a)p̂e(t, a)

∣∣ da dt ≤ ε2
2
‖p̂ev‖2L2

∫
Ωe

(p̂e)2(t, a) da dt

+
1

2ε2

∫
Ωe

[
ṽ2(t, a)− v2(t, a)

]2
da dt,

(7.12)

for the first inequality in (7.11);



∫
Ωl

∣∣p̂f (t, 0)βl(E(t), a)p̂l(t, a)
∣∣ da dt ≤ ε3

2
‖βl‖2L2

∫
Ωl

(p̂l)2(t, a) da dt

+
1

2ε3

∫ T

0

(p̂f )2(t, 0) dt,∫
Ωl

∣∣[(ml
v −ml

ṽ + ulv∂xm
l
v − ulṽ∂xml

ṽ)
]
p̂lv(t, a)p̂l(t, a)

∣∣ da dt ≤ mK(Dl)2

2ε4
‖v − ṽ‖2L∞

+
mKε4

2
‖p̂lv‖2L2

∫
Ωl

(p̂l)2(t, a) da dt,

(7.13)
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for the second inequality in (7.11);

∫
Ωf

∣∣∣p̂e(t, 0)
[
βfṽ + ufṽ∂xβ

f
ṽ

]
p̂f (t, a)

∣∣∣ da dt ≤ βK‖ufṽ‖L1

Lf ε5
2

∫
Ωf

(p̂f )2(t, a) da dt

+
βK‖ufṽ‖L1

2ε5

∫ T

0

(p̂e)2(t, 0) dt,∫
Ωf

∣∣[ṽ1(t, a)− v1(t, a)] p̂ev(t, 0)
[
βfv + ulv∂xβ

f
v

]
p̂f (t, a)

∣∣ da dt ≤ |pev(., 0)|∞βK‖ufv‖L1

×
∫

Ωf

(
1

2ε6

[
ṽ1(t, a)− v1(t, a)

]2
+
Lf ε6

2
(p̂f )2(t, a)

)
da dt,∫

Ωf

∣∣∣p̂ev(t, 0)
[
βfv − β

f
ṽ + ufṽ∂xβ

f
vx− u

f
ṽ∂xβ

f
ṽ

]
p̂f (t, a)

∣∣∣ da dt ≤ |pev(., 0)|∞βK

×
(

(Df )2

2ε7
‖ṽ − v‖2L∞ +

Lf ε7
2

∫
Ωf

(p̂f )2(t, a) da dt

)
,

(7.14)

for the last one. Next, we choose ε1 and ε2 in the inequalities (7.12) as

ε1 =
2(λ− 1)

‖βe‖2L2

, ε2 =
2

‖p̂ev‖2L2

,

and then the first relation of (7.11) becomes

1

2

∫ T

0

(p̂e)2(t, 0) dt ≤ 1

2ε1

∫ T

0

(p̂l)2(t, 0) dt+
1

2ε2

∫
Ωe

[
v2(t, a)− ṽ2(t, a)

]2
da dt.

(7.15)

Similarly, we choose ε3 and ε4 in the inequalities (7.13) as

ε3 =
2(λ− 1)

‖βl‖2L2

, ε4 =
2

mK‖p̂lv‖2L2

,

and the second relation of (7.11) becomes

1

2

∫ T

0

(p̂l)2(t, 0) dt ≤ 1

2ε3

∫ T

0

(p̂f )2(t, 0) dt+
mK

ε4
(Dl)2 ‖v − ṽ‖2L∞ . (7.16)

Finally, we choose ε5, ε6 and ε7 in the inequalities of (7.14) as

ε5 =
2 (λ− 2)

βKLf‖ufṽ‖2L1

, ε6 =
2

LfβK‖ufv‖2L1 |pev(., 0)|∞
, ε7 =

2

LfβK |pev(., 0)|∞
,

and the third relation of (7.11) becomes

1

2

∫ T

0

(p̂f )2(t, 0) dt ≤ βK |pev(., 0)|∞‖ufv‖L1

2ε6

∫
Ωf

[
ṽ1(t, a)− v1(t, a)

]2
da dt

+
βK‖ufṽ‖L1

2ε5

∫ T

0

(p̂e)2(t, 0) dt+
βK |pev(., 0)|∞

2ε5
(Df )2 ‖ṽ − v‖2L∞ . (7.17)
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We substitute this last bound (7.17) in the inequality (7.16) to get

1

2

∫ T

0

(p̂l)2(t, 0) dt ≤ 1

ε3

[
βK |pev(., 0)|∞‖ufv‖L1

2ε6

∫
Ωf

[
ṽ1(t, a)− v1(t, a)

]2
da dt

+
βK‖ufṽ‖L1

2ε5

∫ T

0

(p̂e)2(t, 0)dt+
βK |pev(., 0)|∞

2ε5
(Df )2 ‖ṽ − v‖2L∞

]
+
mK

ε4
(Dl)2 ‖v − ṽ‖2L∞ ,

and now substitute this inequality into (7.15) to see that(
1

2
− βK‖ufṽ‖L1

2ε1ε3ε5

)∫ T

0

(p̂e)2(t, 0) dt ≤ 1

ε1ε3

[
βK |pev(., 0)|∞‖ufv‖L1

2ε6

×
∫

Ωf

[
ṽ1(t, a)− v1(t, a)

]2
da dt+

βK |pev(., 0)|∞
2ε5

(Df )2 ‖ṽ − v‖2L∞
]

+
mK

ε1ε4
(Dl)2 ‖v − ṽ‖2L∞ +

1

2ε2

∫
Ωe

[
ṽ2(t, a)− v2(t, a)

]2
da dt.

If we take λ such that

8(λ− 2)(λ− 1)2 > ‖βe‖2L2‖βl‖2L2βKL
f‖ufṽ‖L1 ,

then inequality (7.18) can be rewritten as∫ T

0

(p̂e)2(t, 0) dt ≤ 1

ε1ε3

[
βK |pev(., 0)|∞‖ufv‖L1

2ε6

×
∫

Ωf

[
ṽ1(t, a)− v1(t, a)

]2
da dt+

βK |pev(., 0)|∞
2ε5

(Df )2 ‖ṽ − v‖2L∞
]

(7.18)

+
mK

ε1ε4
(Dl)2 ‖v − ṽ‖2L∞ +

1

2ε2

∫
Ωe

[
ṽ2(t, a)− v2(t, a)

]2
da dt.

We now let

G1 =

[
βK |pev(., 0)|∞‖ufv‖L1

2ε1ε3ε6
+
βK |pev(., 0)|∞

2ε1ε3ε5
(Df

1 )2 +
mK

ε1ε4
(Dl

1)2

]1/2

,

G2 =

[
βK |pev(., 0)|∞

2ε1ε3ε5
(Df

2 )2 +
mK

ε1ε4
(Dl

2)2 +
1

2ε2

]1/2

, (7.19)

and then (7.18) leads to the first inequality of theorem 3, that is

|pev(t, 0)− peṽ(t, 0)| ≤ |p̂e(t, 0)| ≤ G · ‖v − ṽ‖L∞ ,

for all t, with G = max{G1, G2}. �

Proof of (4.3) of theorem (3):

We consider systems (7.11), (7.12), (7.13) and (7.14), and we choose the constants

εi, for i = 1, ..., 7 as in the previous proof except that ε1 is given now by

ε1 =
2(λ− 2)

‖βe‖2L2

.
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The same argument just used for the first estimate in theorem 3 now leads to the

second estimate in the theorem, with H = G defined in (7.19). �




