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Abstract

In this paper we propose a new spatially high order accurate-snplicit discontinuous Galerkin (DG) method for

the solution of the two dimensional incompressible NaBtykes equations on staggered unstructured curved meshes.
While the discrete pressure is defined on the primal griddiberete velocity vector field is defined on an edge-based
dual grid. The flexibility of high order DG methods on curvatstructured meshes allows to discretize even complex
physical domains on rather coarse grids.

Formal substitution of the discrete momentum equation fhéodiscrete continuity equation yields one sparse
block four-diagonal linear equation system for only ondacanknown, namely the pressure. The method is com-
putationally dficient, since the resulting system is not only very sparsealsat symmetric and positive definite for
appropriate boundary conditions. Furthermore, all thein@ and surface integrals needed by the scheme presented
in this paper depend only on the geometry and the polynoregtet of the basis and test functions and can therefore
be precomputed and stored in a preprocessor stage, whidhtteaavings in terms of computationébet for the time
evolution part. In this way also the extension to a fully @dvsoparametric approach becomes natural fliedta
only the preprocessing step. The method is validated forruohial degrees up tp = 3 by solving some typical
numerical test problems and comparing the numerical iesiith available analytical solutions or other numerical
and experimental reference data.

Keywords: semi-implicit Discontinuous Galerkin schemes, staggerestructured triangular meshes, high order
staggered finite element schemes, non-orthogonal grideedisoparametric elements, incompressible
Navier-Stokes equations

1. Introduction

The main dfficulty in the numerical solution of the incompressible Naax¢okes equations lies in the pressure
Poisson equation and the associated linear equation systeensolved on the discrete level. This is closely related
to the elliptic nature of these equations, where boundangditions dfect instantly the solution everywhere inside the
domain.

While finite difference schemes for the incompressible Navier-Stokesiegaatre well-established for several
decades now [48, 61, €60,/76], as well as continuous finiteet¢methods [71, 10, 53,42 ,/77) 50, 51], the development
of high order discontinuous Galerkin (DG) finite element negls for the incompressible Navier-Stokes equations is
still a very active topic of ongoing research.

Several high order DG methods for the incompressible Neviekes equations have been recently presented in
literature, see for examplel [3,167,/41) 59, 63,164, 32, 56therwork of Bassi et al.[ [2] based on the technique of
artificial compressibility, originally introduced by Chiorin [22,(23].
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In this paper we propose a new, spatially high order accgeate-implicit DG finite element scheme that is based
on the general ideas of [37,/69], following the philosophgemi-implicit staggered finite flerence schemes, which
have been successfully used in the past for the solutioredhttompressible Navier-Stokes equations [43, 61, €0, 76]
and the free surface shallow water and Navier-Stokes emsatee [52, 16, 17,119,178, 13]. Very recent developments
in the field of such semi-implicit finite ierence schemes for the free surface Navier-Stokes egaationbe found
in [14,[18, 15], together with their theoretical analysieggnted in [11, 12, 21].

In our semi-implicit staggered DG scheme, the discretespiresis defined on the control volumes of the primal
triangular mesh, while the discrete velocity vector is dedimn an edge-based, quadrilateral dual mesh. Thus, the
usual orthogonality condition on the grid that applies tmggered finite dference schemes which only use the edge-
normal velocity component is not necessary here. The nealinonvective terms are discretized explicitly in time,
using a classical RKDG scheme[30, 29, 31] based on the l@aHriedrichs (Rusanov) flux [65], while the viscous
terms are discretized implicitly using a fractional stegimoel. The DG discretization of the viscous fluxes is based on
the formulation of Gassner et al. [44], who obtained theatiscnumerical flux from the solution of the Generalized
Riemann Problem (GRP) of thefflision equation. The solution of the GRP has first been useshtstimict numerical
methods for hyperbolic conservation laws by Ben Artzi anttééch [5] and by Toro and Titarev [74, [72]. The
discrete momentum equation is then inserted into the desscantinuity equation in order to obtain the discrete form
of the pressure Poisson equation. The chosen dual grid eseddtaken as the one usediinl[6, 73,124/ 659, 7], which
leads to a sparse block four-diagonal system for the scedaspre. Once the new pressure field is known, the velocity
vector field can subsequently be updated directly. Verymgean accurate andiicient pressure-based hybrid finite
volume/ finite element solver using staggered unstructured mesiselden proposed in [7].

Other staggered DG schemes have been usedlin [24,/25, 28],25,,538]. However, to our knowledge, none of
these schemes has ever been applied to the incompressib&r{Stokes equations. To our knowledge, a staggered
DG scheme has been proposed only for the Stokes system seddf5]. For alternative semi-implicit DG schemes
on collocated grids see [75,/46/ 33} 34, 35].

The rest of the paper is organized as follows: in Sedfion Ztimerical method is described in detail, while in
Secior B a set of numerical test problems is solved in ordstumy the accuracy of the presented approach. Some
concluding remarks are given in Sectidn 4.

2. DG schemefor the 2D incompressible Navier-Stokes equations

2.1. Governing equations
The two dimensional incompressible Navier-Stokes equoatimd the continuity equation are given by

6—\7+V~Fc+Vp=vA\7, Q)

ot
vV-V=0, (2)
wherep = P/p indicates the normalized fluid pressukeis the physical pressure apds the constant fluid density;

v is the kinematic viscosity cdiécient;V = (u, v) is the velocity vector, where andv are the velocity components in
the x andy direction, respectively. = V® Vis the flux tensor of the nonlinear convective terms, namely:

Fcz( uu uv).
vu W

The viscosity term is first written ag\V = V - (vVV) and then grouped with the nonlinear convective term. So Eg.
(@) becomes

ov
E+V-F+Vp_0, 3)

whereF = F(V, W) = F¢(V¥) — vVVis a nonlinear tensor that depends on the velocity and itigmg see e.g. [44, 36].
We further use the abbreviatidifv) = 27+ V - F.



2.2. Unstructured grid

In this paper we use the same general unstructured staggersd proposed in_[69]. In this section we briefly
summarize the grid construction and the main notation. Tmeputational domain is covered with a sethyfnon-
overlapping triangle$; with i = 1...N;. By denoting withN; the total number of edges, thieth edge will be called
T'j. B(Q) denotes the set of indicgsorresponding to boundary edges. The three edges of eanQleT; constitute
the setS; defined byS; = {j € [1,N;] | T'j is an edge of;}. For everyj € [1...N;] — B8() there exist two triangles
i1 andiy that shard’;. It is possible to assign arbitrarily a left and a right tgéencalleds(j) andr(j), respectively.
The standard positive direction is assumed to be from lefgtat. Letii; denote the unit normal vector defined on the
edgej and oriented with respect to the positive direction fron tefright. For every triangular elemenand edge
i € Si, the neighbor triangle of elemefi at edgd’; is denoted by(i, j).

For everyj € [1, N;] — B8(€Q) the quadrilateral element associated tis calledR; and it is defined, in general,
by the two centers of gravity af(j) andr(j) and the two terminal nodes &%, see alsol[6, 73, 69]. We denote by
Ti; = R; N T; the intersection element for eveiyand j € S;. Figure[l summarizes the notation used here, the
main triangular and the dual quadrilateral meshes. Acogrth [69], we often call the mesh of triangular elements

n3

n

* 1,

Figure 1: Example of a triangular mesh element with its threlghbors and the associated staggered edge-based dtral wolumes, together
with the notation used throughout the paper.

{Tilier.ng themain gridor theprimal grid and the quadrilateral grigR;}jep.n;) is termed thedual grid.

On the dual grid we define the same quantities as for the man lgniefly: N, is the total amount of edges of
R;; T’ indicates thd-th edge;vj, the set of edgekof j is indicated withS;; VI, £; (1) andr; (I) are the left and the
right quadrilateral element, respectivell; fi is the standard normal vector definedland assumed positive with
respect to the standard orientationlddefined, as above, from the left to the right). Finally, eli@ngleT; is defined
starting from an arbitrary node and oriented in countecloldse direction. Similarly, each quadrilateral elemBnt
is defined starting frorf(j) and oriented in counter-clockwise direction.

2.3. Basis functions

According to [69] we proceed as follows: we first construetpiolynomial basis up to a generic polynomial degree
p on some reference triangular and quadrilateral elementsrder to do this we tak&sg = {(£,y) € R>* |y <
1- £V 0 < &< 1) as the reference triangle and the unit square as the reteqeradrilateral elemeiRgy = [0, 1]
Using the standard nodal approach of conforming contintinite elements, we obtaiN, = &2("*2) basis functions

{PKkerrng] ON Tsig @ndNy, = (p + 1)? basis functions oRsq. The connection between reference and physical space
3
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is performed by the maps; — Tgyq for everyi = 1...N;; R; — Rgyq for everyj = 1...Nj and its inverse,
T1 T

calledT; «— Tgqand R;  Rsta, respectively. The maps from physical coordinates to esfeg coordinates can be

constructed following a classical sub-parametric or a detepso-parametric approach.

2.4. Semi-Implicit DG scheme
We define the spaces of piecewise polynomials used on thegridiand the dual grid as follows,

V= gl e PPA)VIE[LNDL  and  VE=( : iR € Q°R).Vi€[LN]-B@)  (4)

wherelPP(T;) is the space of polynomials of degree at mpsin T;, while QP(R;) is the space of tensor products of
one-dimensional polynomials of degree at mpsin R;.

The discrete pressum, is defined on the main grid while the discrete velocity vedigld v, is defined on the
dual grid, namelyp, € V" and¥, € V¢ for each component of the velocity vector.

The numerical solution of{2J-(3) is represented by piesevgiolynomials and written in terms of the basis func-
tions on the primary and the dual grid as

Ny ) .

CSAEIUCRY R RICSYI0} (5)
1=1
Ny ) . . .

Vit y. 1) = >y 00y = w00 y)v), (6)
1=1

where the vector of basis functioggx,y) andy(x,y) are generated from(¢,y) on ¢(&,y) on R, respectively.
Formally¢®(x,y) = ¢(Ti(x,y)) fori = 1...N; andy(x,y) = ¢(T;(x, y)) for everyj = 1...N;.

Figure 2: Jumps op on the main grid (left) and of on the dual grid (right)

A weak formulation of equatioril2) is obtained by multiplgiit by ¢ and integrating over a control volunig,
foreveryk = 1...N,. The resulting weak formulation dfl(2) reads

f #VV - vdxdy= 0. (7)
T,

Similarly, multiplication of the momentum equatidd (3) #yand integrating over a control voluni® one obtains,
componentwise,

f zﬁ(kj)(g +V- F)dxdy+ f yIvpdxdy= 0, (8)
Ri j
foreveryj = 1...Njandk = 1...N,. Using integration by parts Ed.](7) yields
9§¢S>v. it ds— fwss) -Vdxdy= 0, (9)
aT, T,
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whereri; indicates the outward pointing unit normal vector. The disepressurgy, in general presents a discontinuity
onT'j and also the discrete velocity field jumps on the edges &; (see Figurél2). Hence, equationk (8) ddd (9) have
to be split as follows:

> f ¢V¥; - it ds— f Vg . v dxdy| = 0, (10)
jESi rJ Ti~i

oV,
f lﬁ“)( v F)dxdy+ v Vpedxdy+| v V) dxdy+ f v (Priy = Pecp) M ds =0,
£(j). Tr(J)J

Whereﬁij = Tilr,. Definitions [$) andL{6) allow to rewrite the above equatibysplitting the spatial and temporal
variables, namely

> f oQun st - f vouVdxdyd ;| = 0, (11)

JESI
Jesi T Ti\j

and

f Dy D dxayla(@ ) + f WOV D dxdy by + f yDT5 D dxdy

O] Tr(J)J

f o Prijdspre) - f w9 Pridspra) =

rJ
12)
where we have used the standard summation convention foepleated indek L;, is an appropriate discretization

of the operatot. and will be given later. For eveiyand j, Egs. [I1){(IR) are written in a compact matrix form such
as

> D9 =0, (13)
j€Si
and
MiLn(@) + R; By — £ Prgy = O, (14)
respectively, where:
M, = f yPuPdxay (15)
f Oy Vh;ds - f veUuDdxdy, (16)
Ti\j
R = f yD g Drds f y v Daxdy 17)
f Teon
L= [WPaPmas— [y Daray (8

€i).j
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According to [69] the action of tensos andR can be generalized by introducing the new ter@gy, defined as

Q= [ uPvePaxdy- [uPePo s (19
Ti; L
whereo j is a sign function defined by
() -2+ ()
T D) (20)
In this wayQj),j = —£Lj andQ(j),; = R;, and then Eq[{14) becomes in termadf
MjLn(%) + Qr(jy.i Prii) + Qui.i Prgiy = O, (21)
or, equivalently, .
MjLn(%) + Qi B + Qu(i.jy.i Poci.jy = O. (22)

We discretize the velocity in EqL(IL3) implicitly and the gseare in Eq.[{14) semi-implicitly by using the theta

method in time, namely
~n+1

X DV =0,

jESi A o (23)

whereg™? = 9p™?! + (1 - 6)p"; and@ is an implicitness factor to be taken in the ramge [%,1], see e.g.[16].
Discretizing Eqgs.[(23) as described above and using theulation [22), we get for everyandj € S;

~n+1
Z Di,j\-}r; =0, (24)
j€Si
(7?”- B I/:F,T an+1 An+1 A A
Mj—f— + 0(Qj B + Quin.i B)) + (1= 0) (Quil + Qugijy.i ) = O. (25)

—n
WhereF\'/’j is an appropriate discretization of the nonlinear convectind viscous terms. The details for the com-

putation ofﬁ? will be presented later in Section® Formal substitution of the momentum equation (25) int® th
continuity equation(24), see also [17] 37], yields

— OAt Z D M}lQi,j ﬁml — 6At Z D;iM ;lQQ(i,j),j f)zJ(rllJ) = bin, (26)
J€Si jeS;
where . »
b= - Z D F\7] + (1 - 0)At Z D (M j) (Qi,j B+ Qi j ﬁz(i,j),j) , (27)
J€S; j€Si

groups all the known terms at tint'ed

Eq. (26) represents a block four-diagonal system for the prassureg™™. It can be interpreted as the discrete
form of the pressure Poisson equation of the incompreshiiager-Stokes equations. Once the new pressure field is
known, the velocity field can be readily updated from the motum equation, Eq(25). We emphasize that in the
present algorithm, the only unknown is thealar pressurepy,.

It remains to complete the system by introducing the boundanditions. In order to do this observe how, for
i €[1,N] andj € S; n B(Q), the boundary elemefR; = T j is atriangular elementindnota quadrilateral element.
The basis functions to be used are the one generatd@d@nin this way the matricedlj, D j, Q; j defined in[(15),
(@8) and[(I19), have to be modified for boundary elements.
For everyj € S; N B(Q)

Ny
v = Z¢|\7|,j, (28)
=]
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where thep, are the basis functions on the reference triafiglg The matrices can be recomputed jar S; N B(Q2)
and will be calledD?;, Q.
Equatlons[(ZB)Eb?) are consequently computed with tlegular boundary elements and one so obtains

OAt | — Z Z)Iﬁj M;lQﬁj - Z D M;lQi,j f),ml — 6At Z D M}lQKO(i,j),] p;(, i) = bln, (29)
jeSinB(Q) jeS—B(Q) jeS—B(Q)

where now the vector of known terms is

—n —n
Z DijFV; + Z D) FY;
j€Si-B(Q) i€SINB(Q)
H1-0At Z DM Q) + (1 - O)at Z DijM (Q' A+ Qi p[;(,,,»))-

jESi QB(Q) jESi—B(Q)
(30)

As implied by Eq. [(Z2D), the stencil of the present scheme onglves thei—th element and its direct Neumann
neighbors. Thus, sinceS# = 3, the system described Hy {29) is a block-four-diagonal dkewe will show later,
the system is symmetric and positive definite for appropretundary conditions, hence it can Batently solved
by using a matrix-free implementation of the conjugate gnaidalgorithm [49]. Once the new pressure has been
computed, the new velocity field can be readily updated fram(E3) for everyj ¢ B(Q):

~n+1

—n
\7j = F\7j - HAth_l (Qiyj p,”*l + Qo). j &oz,lj)) -(1- H)Ath_l (Qi,j B+ Qo). p;(i’j)) . (31)

The above equationg (29).{30) aid](31) can be madified oB(Q2) according to the type of boundary conditions
(velocity or pressure boundary condition). Note that adl thatrices used in the above algorithm can be precomputed
once and forall for a given mesh and polynomial degree

2.5. Nonlinear convection-flusion

In problems where the convective term and the viscosity aandglected we can taHé\”/? = \7? in Eq. (21).
Otherwise, an explicit cell-centered RKDG methoo [30] oadlual mesh is used in this paper for the discretization of
the nonlinear convective terms. The viscosity contributodiscretized implicitly using a fractional step methid,
order to avoid additional restrictions on the time sid¢pThe semi-discrete DG scheme for the nonlinear convection-
diffusion terms on the dual mesh is given by

flﬁkdtvthdy+ flﬁkGh fids— fVlﬁk F(Vh, VVh)dxdy= 0, (32)
R; aR; R;

and the numerical flux for both, the convective and the visamntribution, is given by [65, 44, 36] as

1 2 Smax( ). (33)

1
Gnofi=3 (FOV. V) + F(¥. V¥,)) - 5

with

2y 2p+1
h* +h \/g
which contains the maximum eigenvalue of the Jacobian mafrthe purely convective transport operaty in
normal direction, see [37], and the stabilization term fug viscous flux, see [36, 44]. Furthermore, tHeand
Vv, denote the velocity vectors and their gradients, extrapdleo the boundary oR; from within the elemenR;
and from the neighbor element, respectivéiy.andh™ are the maximum radii of the inscribed circlefty and the
neighbor element, respectively. A classical third ordeuaate TVD Runge-Kutta method is used for time integration
of the nonlinear convective terms, see el.g. [68) 417, 30¢esthe explicit discretization of higher order DG schemes

Smax = 2 max(\7h’ -, |\7r:r : ﬁ|) +

(34)
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with a simple first order Euler method in time would lead toreeéirly unstable scheme. The above method requires
that the time step size is restricted by a CFL-type restnictor DG schemes, namely:

(- CFL  hmin
C2p+ 1 2Vmad’

(35)

wherehnn is the smallest incircle diameter; CRL0.5; andvinaxis the maximum convective speed. Furthermore, the
time step of the global semi-implicit schemenist affected by the local time step used for the time integratiomef t
convective terms if a local time steppipgubcycling approach is employed, see [20, 70].

Implicit discretization of the viscous contributiéfv in (32) with a fractional step method involves a block five-
diagonal system that can béieiently solved using the GMRES algorithim [66]. The solutadrthis system is not
necessary in problems where the viscous terms are smallamnidecintegrated explicitly in time. The stability of the
method is linked to the nonlinear convective term, so thehwats stable under condition {35).

2.6. Extension to curved elements

The maps used to switch between reference and physical spacke defined using a simple sub-parametric
vertex based approach or a fully isoparametric approachhdriirst case only the vertices of the eleméehtand
R; are required to map the physical element into the refereneeand vice versa. In this simple case an explicit
expression for the maps, Ti‘1 ande‘l can be computed while for the mdp we use the Newton method (see e.g.
[69]). A simple extension to the complete isoparametrieaasjuires to store more information about each element,
namely we need to know the coordinates of the nc{d)é,sY)L}k:LNé for each triangular elemen@and{(X, Y),‘}lzlyNw
for each quadrilateral elemeptThe inverse map$,* andT:* are defined by using the same basis functignand
Yk used for representing the discrete solution of the PDEwiechave

Ny Ny
X=X y=) Vo (36)
k k
and
Ny ) Ny )
x= 3 XL y=) wY, 37)
k k

for triangles and quadrilateral elements, respectivelythls case the mapg andT; become nonlinear and so the
Newton method has to be used for both. Also the Jacobian antbttmal vectors are not, in general, constant through
the element and the edges, respectively. The main advamitdtge approach is that now the edges become curved and
so the computational domain can better approximate theigdlysne. It is important to observe how this approach
affects only the preprocessing step.

2.7. Remarks on the main system and further improvements

In this section we will show how the main system for the comfiah of the pressure, developed in Secfion 2.4
results symmetric and, in general, positive semi-definiteese results allows to use very fast methods to solve the
system such as the conjugate gradient method with a sigmifigan in terms of computational time. In order to do
this observe how, from the definitioris {16) ahd](19), we cathér generalize the action @ in terms ofQ such as
D =-Q" since

T

Q= - f v dxdy- f ¢l jids
ij [

—fwf”wss)dxdwf¢f1)¢ﬁ)m,,—ﬁ,—ds=1)i,,— (38)

Qi T



and ifi = £(j), fij; coincides withfij, else, it is—f;, Vi, j € S;. Consequently, the main system|(26) can be written as

AzoatY Q] @t + oat >a @y L = b,

j€Si J€Si
that we will call in the followingA. If we do not introduce any boundary conditions, we have tilewing

Lemma 1. Without any boundary conditions the systéhis singular.

Proof 1. Let gy € V[, in order to show thatA is singular we investigate the kernel of the linear operatorSince
detA # 0 & Kerﬂ {0}, we would like to show that the kernel does not contain ordyzéiro. A weak formulation
of Vp, overQ; is given byQyj),i Pe(jy + Qr(j).j Pr(j), then we have the identity

Q(j),j Peij) + Qr(j),j Pr(j) =0 < Vplo, =0 (39)

We are looking for a p# 0 such thatApy = 0. For a fixed i€ [1, Nj],

— OAt Z Z), J Q. i anrl OAt Z D, ] QﬁO(i,j),j f)%l]) = 0
j€Si J€S|
—6At Z D, ] Q. i p Ty Qo). j f)gzlj)] = 0
=
—0At Z D, 1 QK(J) j p?(,) + Qu(j).j pn(J)] =0 (40)

jesi
Hence, if p= constant, the left side @#Q) vanishes and thefp; = c Vi, c € R} c kerA.

This represents a natural result since the incompressibleduiations depend only on the gradient of the pressure
and not directly on the pressure. Once we have an exact@olai the pressurge, then every solution of the kind
pe + c with ¢ € R is also a solution. If we introduce the boundary conditiom$&e specify the pressure in at least one
point (i.e. in at least one degree of freedom), this is edentao choose the constamaind the system becomes non-
singular. The following results state that the developedtiesy has several important properties such as the symmetry
and, in general, positive semi-definiteness:

Lemma 2 (Symmetry). The system matrix ofl is symmetric.

Proof 2. In the following we denote witi, k) the k— th degree of freedom of the-ith element. For the symmetry of
A we have to verify thati, k) act on(i, k) as (i, k) act on(i, k). If i =T, the action is described by, Q] (Mj)il Qi
j€Si

that is trivially symmetric sincéM; = MjT is symmetric. If ¢ (i, S;) the two actions are zero so it is also trivially

verified. Remains the case ¢(i, S;). In this case, the actions of the right element on the leftamrvice versa are,
respectively@;;, ;M Qi) ; andQ/; ;M Qyj),j. A simple computation leads to

Ny
Mk ) = D" MIHKk Q) Vk=1...N,, I=1...N,
£=1



andthenvk=1... Ny, | = 1... Ny,

-1
Qi) iM; Qi (k. 1)

Ny

D Qi ke V) (M7 @ry) 0. )

y=1
Ny N,

= Z Q;(J'),i(k’ 7) Z Mj_l(% EQ(j,i(E
y=1 =1

Ny,
= > Qi NIM Qi (€ )

vé=1

Ny
= > Quyilr- M. 0@ (1.£)

vé=1

Ny
= > Qi OMIEYNQu (- K
vé=1
= Q)M Quj.i(k 1) (41)
Lemma 3. The matrixA is positive semi-definite, i.eTAx> 0 ¥xe RNMNs

Proof 3. We do the computation directly” Ax = >; (x" AX); and

(A = % Z QM Qijx + X Z QM1 Q. i %o6i.i)
j€Si j€S;
_1 T 1
= Z(szQi,iXi) (szQi,in)
j€Si
_1 T 1

+Z(Mi ZQi’iXi) ('V',- ZQmi),J’Xp(i,j))

€S

where we used that Ms symmetric and positive definite, hencf,‘lNds symmetric and positive definite and then exists

1 1\ T 1 1
the so called square operator, namélyl; ? such that M* = (Mj_ﬁ) (Ml_z) By defining T := M, *Q; ; we obtain

KA = > (Tagx) (Tx) + 3 (Tiix) " (Totn %) (42)
j€S; j€S;
and consequently
N; Ni
XTAX= 03 (Tix) (Tix) + 0 > (Ti%) (Toeini%n) (43)
i=1 jESi i=1 jESi

Remark that the double summatin'ﬁleEsi sum every element i and edge j. From the edge point of view,
every edge gives two contributions, one given when/{j) and one when k& r(j). The double summation can be
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consequently inverted as follows:

Ni N;j

D (Teaiixey) (Teni%en)
i=1 jeS; =1

—
3
x

SN—

—~
=
=

N—

[

N
+ Z (Tru),jxr(j))T (Tr(i),jxr(j))
=1
Ni N;

Z (Tm),jxe(j))T (Tr(j),ixr(j))
i—1 jeSi =1

—
o

>

SN—

“

—
—
=
£

N

|

N;j
+ Z (Tru),jxr(j))T (Te(j),ixe(j)) (44)
=1

and then, by recompose everything

N;j

X'Ax = Z [(Te(i),jxf(j))T (Tep.i%ean) + (Tr(i),jxr(j))T (Tep.i%)
<

=y

(Tf(j),ixf(i))T (Tr(i),jxrm) + (Tru),jxr(i))T (Tf(j),ixf(i))]

N;j
.

= Z(Te(j),ixf(i) + Tri%e) (Te.i X + Tr(iXeap)
=1
N; .

_ [( Ty O )( Xe(j) )} [( Ty O )( Xe(j) )]
I\ 0 T X (j) 0 Trjj Xe(j)
N Tgpi O\ ( Tapi O Xe(j)

— (X[‘,Xr‘)( (1), )( (1), )( i )
LTI 0 Ty 0 Tpg )\ xq)
N;j

= Z)?TTTT)?J (45)
=1

And, since/ := 777 is a positive semi-definite matrix by constructiﬁﬁf?,— > 0and then XAx = }; )?T‘f)?,— >0
We introduce now the boundary elements and, in particular,
DY = f ¢y ds— f Ve yDdxdy
T Ti;

and
Qlal = fl//i(J)V(ﬁl(l)dXdy—fl//i“)(ﬁl(l)o‘i,jﬁjds
Ti\j T

Then it s still true thatD?, = — (fo,—)T and the complete systefi can be written asA = A + 8 where
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It is easy to check thaB is symmetric and at least positive semi-definite.

We have to introduce now some types of boundary conditionsder to show that, if the pressure is specified on
the boundary, the complete systefiis positive definite.

Let us rewritex” 8x by including the external contribution and in the form of e (4%), namely

N, .

T _ 9 . 9 a i a

X BX = Z;(Tm),jxf’(l) [T X]extj) (Tfm,ixf(l) [T X]ext,j)
]:

_1
whereTfj = M, ZQﬁj and [Tf')x]eXLj is a known external contribution that depends on the boyndamditions. In

particular, if the pressure is specified at the boundary ﬂfﬁ;ti = Tf(j),j

general is part of the known right hand side vector. Sincexiternal pressure is specified, tﬁE}?ﬂH Xe(i) +[Tﬁx] =

extj
0 © Xgj) = Xextj- We take nowx" Bx = 0 that implicitly fixesxex: = 0. In this wayx.j = 0 Vj € B(Q). Usingjthe
same reasoning on the matr&kwe can conclude that= 0, and henceA is positive definite in this case. A possible
way to specify the velocity at the boundary is to neglect tiag contribution for the pressure at the boundary or
equivalent, takemexj = Xqj) Vi € B(Q). It is easy to check that if we have only this type of boundaogditions
thenx” Ax = 0 for everyx constant, and then the matri& is only positive semi-definite.

and[T?x| . is a known quantity that in
extj

3. Numerical test problems

3.1. Convergence test

We consider a smooth steady state problem in order to metmuoeder of accuracy of the proposed method. For
this purpose, the Navier-Stokes equations are first remriti cylindrical coordinates (@ndg), with r2 = x2 + y?,
tany = x/y, the radial velocity component and the angular velocity component In order to derive an analytical
solution we suppose a steady vortex-type flow with angulearsgtry, i.e.d/dt = 0, 9/d¢ = 0 andu, = 0. With
these assumptions, the continuity equation is autombtisatisfied and the system of incompressible Navier-Stokes
equations reduces to

op _ %

a e (46)
2

AT Y

One can now recognize in the second equatiof df (46) a ctdssicond order Cauchy Euler equation and so obtain
two solutions fowu,, namely:

U, = Ca, 47
u =2, (48)
for everyc; € R. The corresponding pressures read
p =—F t0Cy, (49)
2
G
p = —2r—2 + Cz. (50)
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respectively. In this section we set the boundary conditiarorder to obtain the non-trivial solution {48)-{50). Due

to the singularity ofi, forr = 0, letQ = C(5) — C(1) whereC(r) = {(x,y) € R? | 4/x2 +y2 < r}. As initial condition

we impose Eqs.[(48)-(50) witty = u,(1) = 2 andc, = 0. The exact velocity is imposed at the internal boundary
while exact pressure is specified at the external circle. groposed algorithm is validated for several polynomial

degreesp using successively refined grids. The chosen parametethdanumerical simulations atg,g = 0.75;
6 = 1;v = 10°°; the time stepAt is taken according to the CFL time restriction for the expliiscretization of the
nonlinear convective terni (B5). The error between the analytical and the numerical solutiomisputed as

e(p) = (Pn— pe)?dxdy. (V) = (Vh — Ve)?dxdy,
v v

for the pressure and for the velocity vector field, respetfiwwhere the subscrifitindicates the numerical solution
ande denotes the exact solution.

(51)

Ni p=0 p=1
e(p) (V) o) oM e(p) () o(p) OW)
124 | 7.902E-01| 1.095E-00| - - 3.944E-01| 4.311E-01| - -
496 | 5.026E-01| 7.086E-01| 0.7 | 0.6 | 8.830E-02| 1.221E-01| 2.2 | 1.8
1984 | 2.982E-01| 4.502E-01| 0.8 | 0.7 | 2.325E-02| 3.299E-02| 1.9 | 1.9
7936 | 1.659E-01| 2.797E-01| 0.8 | 0.7 | 6.207E-03| 8.725E-03| 1.9 | 1.9
31744 | 8.797E-02| 1.714E-01| 0.9 0.7 | 1.615E-03| 2.318E-03| 1.9 1.9
Table 1: Numerical convergence results for 0 andp = 1.
N; p=2 p=3
e(p) (V) o(p) oW €(p) (V) o(p) OW)
124 | 9.366E-02| 1.990E-01| - - 4.346E-02| 9.317E-02| - -
496 | 1.054E-02| 3.069E-02| 3.2 | 2.7 | 2.966E-03| 8.027E-03| 3.9 | 3.5
1984 | 1.193E-03| 3.686E-03| 3.1 | 3.1 | 1.783E-04| 7.153E-04| 4.1 | 3.5
7936 | 1.438E-04| 4.425E-04| 3.1 | 3.1 | 1.313E-05| 5.997E-05| 3.8 | 3.6

Table 2: Numerical convergence results for 2 andp = 3.

Tabled1 anfll2 show tHe convergence rates for successive refinements of the grietediip) andO(V) represent
the order of accuracy achieved for the pressure and theityeligtd, respectively. The optimal convergenceis reached
up top = 2 while for p = 3 the observable order of accuracy for the velocity vectdd feecloser top + % rather then

p+1.

3.2. Womersley profiles
In this section the proposed algorithm is verified againstekact solution for an oscillating flow in a rigid tube

of lengthL. The unsteady flow is driven by a sinusoidal pressure gradiethe boundaries

pout(t) — pinlet(t) —

Eeiwt’
0

(52)

whereg’is the amplitude of the pressure gradignis the fluid densityq is the frequency of the oscillatiohindicates
the imaginary unitpinet and poyt are the inlet and outlet pressures, respectively. The oalgolution was derived

by Womersley in|[80]. According to [80, B9] no convective tdpution is considered. By imposing Eq._{52) at the
tube ends, the resulting unsteady velocity field is unifanrthie axial direction and is given by

p1
Us(X, Y, t) = P2

piw

}ei“'t » Ve(x Y1) =0, (53)



where{ = 2y/D is the dimensionless radial coordinaleis the diameter of the tube;= 2 \/g is a constant; andy

is the zero-th order Bessel function of the first kind. Forghesent test we take = [-0.5, 1] x[-0.2,0.2]; p = 1000;
p = 1000;w = 2r; 6 = 0.6; andv = 8.94x 10™*. The computational domaif is covered with a total number of
N; = 98 triangles and the time step size is chosentas 0.01. The numerical results fqr = 3 are shown in Fig. 13
for several times at = 0.1. A good agreement between exact and numerical solutioheabserved.

Exact solution
O Numerical solution (p=3)

02

0.1

01

Figure 3: Comparison between the exact and the numericati@olfor the Womersley profiles at timeés= 1.7,t = 1.9,t = 20,t = 1.2,
respectively, from left to right.

3.3. Blasius boundary layer

Another classical test problem concerns the Blasius bayrdger. For the particular case of laminar stationary
flow over a flat plate, a solution of Prandtl’s boundary layguations was found by Blasius in [9] and is determined
by the solution of a third-order non-linear ODE, namely:

f7 4 17 =0
f(0)=0

f/(0) = 0
Mg £(6) = 1

(54)

where¢é =y, /5= is the Blasius coordinatef’ = o; anduy, is the farfield velocity. The reference solution is

V.

computed here using a tenth-order DG ODE solver, see e.d, t@&fether with a classical shooting method. In
order to obtain the Blasius velocity profile in our simulasowe consider a steady flow over a a wedge-shaped
object. As a result of the viscosity, a boundary layer appeadong the obstacle. For the present test, we consider
Q = [0,1] x [-0.25,0.25] and a wedge shape object with upper edge correspondihg tteegmenx = [0, 1]. An
initially uniform flow u(x,y,0) = u, = 1, v(x,y,0) = 0 andp(x,y,0) = 1 is imposed as initial condition, while an
inflow boundary is imposed on the left and outflow boundaryditions are imposed on the other edges of the external
box. Finally, no-slip wall boundary conditions are cons@teover the wedge shape object. We caqvewith a total
amount ofN; = 278 triangles and use= 1 andp = 3. The resulting Blasius velocity profile is shown in Figlte 4
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while the profile with respect to the Blasius coordinate shown in Figur€ls in order to verify whether the obtained
solution is self-similar with respect g0 A comparison between the numerical results presentedinerthe reference
solution is depicted in Figuig 6 for = 0.4 andx = 0.6. A good agreement between the reference solution and the

Figure 4: Computational domain used for the simulation efBfesius boundary layer. The colors represent the hoateetocity u.

i

Figure 5: Velocity profile with respect to the Blasius cooateé.

numerical results obtained with the staggered semi-imiié scheme is obtained, despite the use of a very coarse
grid. Note that the solution in terms of the Blasius coortégas independent from. The numerical solution is also
verified to maintain the self-similar Blasius profile in the4) plane, see Fid.]15.

3.4. Lid-driven cavity flow

We consider here another classical benchmark problem éinttompressible Navier-Stokes equations, namely
the lid-driven cavity problem. This test problem is solvadnerically with the new staggered DG scheme on very
coarse grids using a polynomial degregof 3. LetQ = [-0.5,0.5] x [-0.5, 0.5], set velocity boundary conditions
u = 1 andv = 0 on the top boundary (i.e; = 0.5) and impose no-slip wall boundary conditions on the otlogres.

As initial condition we takau(x,y, 0) = v(x,y, 0) = 0. We use a grid withN; = 73 triangles foRe= 100,400 1000
andN; = 359 triangles foRe= 3200. A sketch of the main and dual grid is shown in Eig. 7.

For the present test= 1; At is taken according to condition (85); atly = 150. According toIEQS], primary
and corner vortices appear frdRe= 100 toRe = 3200, a comparison of the velocities against the data predém
[@], as well as the streamline plots are shown in Figlire 8e#/\good agreement is obtained in all cases, even if a
very coarse grid has been used.
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Figure 6: Numerical and reference solution for the Blasiosrigary layer ak = 0.4 andx = 0.6.

3.5. Backward-facing step.

In this section, the numerical solution for the fluid flow oeebackward-facing step is considered. For this test
problem, both experimental and numerical results are abigilat several Reynolds numbers (see e.d. |1, 38]). The
computational domai2 and the main notation are reported in Figlite 9. The fluid flowlrigen by a pressure
gradient imposed at the left and the right ends of the contiputa domain. On all the other boundaries, no-slip wall
boundary conditions are imposed. According to [1], we tRke- % whereD = 2h;; U is the mean inlet velocity;

v is the kinematic viscosity. The computational domain isered with a total number df;, = 260 triangles with
characteristic sizh = 0.2 for x < 5 andh = 0.48 for x > 5 (see Figurgl9). Finally we uge= 3; 0 = 1 andAt is the
one given by the CFL condition for the nonlinear convectemt;t.ng = 80s. Figurd 11 shows the vortices generated
at different Reynolds numbers, while in Figlreg 10 the main rectocuh pointX1 is compared with experimental
data given by Armaly in|1], and the explicit second-ordewim finite difference scheme introduced|in [8]. A good
agreement with the experimental data is shown uRee= 316 but, according ta [1], the experiment becomes three
dimensional foRe > 400, so the comparison can be done only uR#és= 400. Indeed, one can see in Hig] 11 how
the secondary vortex occurs fBe = 426, while in the experiments it appears at higher Reynaloisbers (see e.g.

[2D).

3.6. Rotational flow past a circular half-cylinder

Here we consider a rotational flow past a circular half-acj¢éin A comparison between numerical and exact
analytical solution is possible for incompressible andsoi fluid, i.e. here we set= 0. We use the computational
setup of Feistauer and Kuceral[40], hefize [-5,5] x [0, 5] — { /X% + y2 < 0.5}; as boundary conditions we impose
the velocity at the left boundary; homogeneous Neumann denynconditions on the top and right boundaries and
inviscid wall at the bottom and the surface of the half-ogén The farfield velocity field is given by =y andv = 0.
The exact analytical solution to this problem was found kaeirkel in[[43]. For the present test we chopse 3; At
is set according td (35) and we cov@mwith N; = 800 triangles, using only 6 triangles to describe the hglifader.

16



0.4

e

(g();:};

S~
N

A

NAVAE P

) %
N
KRS
NEPE
VAVAVAN

-0.4 -0.2 0 0.2 0.4

0.2

g

4

b
/N

N/

%
7

-0.2

E;ZA
2

-0.4

Figure 7: Main and dual grid used for the lid-driven cavitpiplem forRe= 100 40Q 1000.

Curved isoparametric elements are considered in ordempt@sent the geometry of the half-cylinder properly. As
initial conditions we impos@(x,y, 0) = 1; u(x,y, 0) = y andv(x, y, 0) = 0. Two vortices appear near the half-cylinder
(see FigIR left), while a comparison between analyticdl mummerical velocity magnitude on the cylinder surface
(i.e.r = 0.5) is shown on the right of Fig._12. A good agreement betweaitytinal and numerical results is obtained
also with a very coarse grid. An important remark is that fos test problem the use of isoparametric elements is
crucial, as previously shown for inviscid flow past a cireudglinder by Bassi and Rebay in [4].

3.7. Flow over a circular cylinder

In this section we consider the flow over a circular cylinddso in this case, the use of the isoparametric approach
is mandatory to represent the geometry of the cylinder wak,[4| 69]. In particular, two cases are considered: first,
an inviscid flow around the cylinder is assumed in order taiobd steady potential flow; finally, the complete viscous
case is considered in order to get the unsteady von Karmaexstreet. For the first case afsciently large domain
Q=[-8,8]x[-8,8] - {/x2 +y2 < 1} is employed. The exact solution for this case is known andsea

u(r, @) = U(l - ;—Rzg)cos@), Uy(r, @) = —U(l + %)Sin(tp),
p= %Uz(zr—ig cos(2p) — ;5;) (55)

whereu is the inflow velocity; R; is the cylinder radiusy, andu, are the radial and angular components of the
velocity, respectively. An initial conditiofi(x, y, 0) = (u, 0) is used, while the exact velocity distribution is taken as
the external boundary condition. An inviscid wall boundaondition is imposed on the cylinder. For the present
testu = 0.01;R. = 1;v = 0; p = 3; § = 0.6; At is the one taken according to the CFL restrictionl (35)¢ = 10.
The domaim is covered with a total number &f = 1464 triangles and an isoparametric approach is considered
represent the cylinder wall properly. Figlirgd 13 shows theashlines and the pressure contours obtaindgd=afl0

as well as the comparison between exact and numerical @olatiseveral radii. A very good agreement between
exact and numerical solution is observed. We consider newutly viscous case in order to show the formation
of the von Karman vortex street. Two domains are consideesd:2; = [-20,80] x [-20, 20] covered with a

17



N; = 1702 triangles; an@, = [-5,30] x [-10, 10] covered with a\; = 1706 triangles. As initial condition we
setv(x,y,0) = (u,0); 8 = 0.6; andu = 0.5. Different viscosity coicients are used in order to obtainfdrent
Reynolds numbers. For the present test weAtsaccording to[(35)p = 3; 6 = 1. The velocity (i, 0) is prescribed

at the left boundary while homogeneous Neumann boundaitbomns are imposed on the other external edge of the
domains. Finally viscous wall boundary condition is impbsa the cylinder surface. Figurel14 shows the obtained
relationship between the Strouhal number, computesltas ir—f the numerical results given by Qu et al (see [62])
and the experimental law given in_[79]. The simulations earoéfqrmed on the domaif2;. The numerical results fit
well the experimental data and the numerical referencdisalup toRe = 150. Better results can be obtained by
further enlarging the computational domain. The velociydfiand the vorticity show dierent structures when low
and high Reynolds numbers are considered. The vorticityocws are shown in FiguteL5 f&e= 50 andRe= 125

at timet = 500. In the case dRe = 125 the von Karman vortex street is fully developed while,Re = 50, the
two initial vortices remain present behind the cylinderddonger time. This is due to the low value of the Reynolds
number, taken close to the limit &e= 40 for the generation of the vortex street.

The time evolution of the generation of the von Karman vosteget is presented at several timesRer= 200 on
Q, in Figure[16.

Finally, in Figure[1V we report a comparison between the adatpnal time needed per time step for the main
parts of the algorithm presented in this paper up to the timel0s usingRe = 100 onQ; if we employ a GMRES
method or the cheaper CG method for the solution of the lisgstem. Note that since our particular semi-implicit
DG discretization of the incompressible Navier-Stokesagigns on staggered grids leads to a symmetric and positive-
definite linear system, we can employ the CG method. This isalweays the case for DG schemes applied to the
incompressible Navier-Stokes equations since some fations may also lead to non-symmetric linear systems.

The time required to compute the convective-viscous tepresgents in the second case the main computational
effort. Using the GMRES algorithm the computational time neddesolve the linear system increases a lot compared
to the CG method and becomes the main cost of the algorithpartitular, the mean time to solve the system using
the GMRES algorithm is, for this test,Z while using the CG method is only abou04& For all tests, the tolerance
for solving the linear system was setttd = 10712, We underline that for a fair comparison of the two methods, n
preconditioners have been used and that faster convergande obtained by using a proper preconditioner for each
iterative solver.

4, Conclusions

A new, spatially high order accurate semi-implicit DG scledor the solution of the incompressible Navier-Stokes
equations on staggered unstructured non-orthogonal dumeshes has been proposed. The high order of accuracy
in space was verified and compared with reference solutienpdlynomial degrees up tp = 3. The numerical
results agree very well with the reference data for all teases considered in this paper. The proposed numerical
method reduces to a classical semi-implicit finite-volume finite-diference scheme on staggered meshep tof.
Furthermore, the use of matrices that depend only on the gegrand on the polynomial degree and hence can
be precomputed before runtime, leads to a computationfilient scheme. In addition, the resulting main matrix
results symmetric and positive definite for appropriatertataury conditions. This allows to use fast iterative methods
for the solution of the sparse linear system with a significein in terms of computational time.

Future research will concern the extension of the schemigtodrder of accuracy also in time using a space-time
DG approach as well as the extension to the fully three-d#ioeral case on unstructured tetrahedral meshes.
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Figure 11: Streamlines at Reynolds numhiRes= 44,113 250 316 426 and 633 from top to bottom.
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Figure 16: Temporal evolution of the vorticity profile foe 15,t = 30,t = 50,t = 75 from top left to bottom right aRe= 200.
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