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Abstract

In this paper we propose a new spatially high order accurate semi-implicit discontinuous Galerkin (DG) method for
the solution of the two dimensional incompressible Navier-Stokes equations on staggered unstructured curved meshes.
While the discrete pressure is defined on the primal grid, thediscrete velocity vector field is defined on an edge-based
dual grid. The flexibility of high order DG methods on curved unstructured meshes allows to discretize even complex
physical domains on rather coarse grids.

Formal substitution of the discrete momentum equation intothe discrete continuity equation yields one sparse
block four-diagonal linear equation system for only one scalar unknown, namely the pressure. The method is com-
putationally efficient, since the resulting system is not only very sparse butalso symmetric and positive definite for
appropriate boundary conditions. Furthermore, all the volume and surface integrals needed by the scheme presented
in this paper depend only on the geometry and the polynomial degree of the basis and test functions and can therefore
be precomputed and stored in a preprocessor stage, which leads to savings in terms of computational effort for the time
evolution part. In this way also the extension to a fully curved isoparametric approach becomes natural and affects
only the preprocessing step. The method is validated for polynomial degrees up top = 3 by solving some typical
numerical test problems and comparing the numerical results with available analytical solutions or other numerical
and experimental reference data.

Keywords: semi-implicit Discontinuous Galerkin schemes, staggeredunstructured triangular meshes, high order
staggered finite element schemes, non-orthogonal grids, curved isoparametric elements, incompressible
Navier-Stokes equations

1. Introduction

The main difficulty in the numerical solution of the incompressible Navier-Stokes equations lies in the pressure
Poisson equation and the associated linear equation systemto be solved on the discrete level. This is closely related
to the elliptic nature of these equations, where boundary conditions affect instantly the solution everywhere inside the
domain.

While finite difference schemes for the incompressible Navier-Stokes equations are well-established for several
decades now [48, 61, 60, 76], as well as continuous finite element methods [71, 10, 53, 42, 77, 50, 51], the development
of high order discontinuous Galerkin (DG) finite element methods for the incompressible Navier-Stokes equations is
still a very active topic of ongoing research.

Several high order DG methods for the incompressible Navier-Stokes equations have been recently presented in
literature, see for example [3, 67, 41, 59, 63, 64, 32, 56], orthe work of Bassi et al. [2] based on the technique of
artificial compressibility, originally introduced by Chorin in [22, 23].
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In this paper we propose a new, spatially high order accuratesemi-implicit DG finite element scheme that is based
on the general ideas of [37, 69], following the philosophy ofsemi-implicit staggered finite difference schemes, which
have been successfully used in the past for the solution of the incompressible Navier-Stokes equations [48, 61, 60, 76]
and the free surface shallow water and Navier-Stokes equations, see [52, 16, 17, 19, 78, 13]. Very recent developments
in the field of such semi-implicit finite difference schemes for the free surface Navier-Stokes equations can be found
in [14, 18, 15], together with their theoretical analysis presented in [11, 12, 21].

In our semi-implicit staggered DG scheme, the discrete pressure is defined on the control volumes of the primal
triangular mesh, while the discrete velocity vector is defined on an edge-based, quadrilateral dual mesh. Thus, the
usual orthogonality condition on the grid that applies to staggered finite difference schemes which only use the edge-
normal velocity component is not necessary here. The nonlinear convective terms are discretized explicitly in time,
using a classical RKDG scheme [30, 29, 31] based on the local Lax-Friedrichs (Rusanov) flux [65], while the viscous
terms are discretized implicitly using a fractional step method. The DG discretization of the viscous fluxes is based on
the formulation of Gassner et al. [44], who obtained the viscous numerical flux from the solution of the Generalized
Riemann Problem (GRP) of the diffusion equation. The solution of the GRP has first been used to construct numerical
methods for hyperbolic conservation laws by Ben Artzi and Falcovich [5] and by Toro and Titarev [74, 72]. The
discrete momentum equation is then inserted into the discrete continuity equation in order to obtain the discrete form
of the pressure Poisson equation. The chosen dual grid used here is taken as the one used in [6, 73, 24, 69, 7], which
leads to a sparse block four-diagonal system for the scalar pressure. Once the new pressure field is known, the velocity
vector field can subsequently be updated directly. Very recently, an accurate and efficient pressure-based hybrid finite
volume/ finite element solver using staggered unstructured meshes has been proposed in [7].

Other staggered DG schemes have been used in [24, 25, 28, 26, 27, 57, 58]. However, to our knowledge, none of
these schemes has ever been applied to the incompressible Navier-Stokes equations. To our knowledge, a staggered
DG scheme has been proposed only for the Stokes system so far,see [55]. For alternative semi-implicit DG schemes
on collocated grids see [75, 46, 33, 34, 35].

The rest of the paper is organized as follows: in Section 2 thenumerical method is described in detail, while in
Secion 3 a set of numerical test problems is solved in order tostudy the accuracy of the presented approach. Some
concluding remarks are given in Section 4.

2. DG scheme for the 2D incompressible Navier-Stokes equations

2.1. Governing equations

The two dimensional incompressible Navier-Stokes equations and the continuity equation are given by

∂~v
∂t
+ ∇ · Fc + ∇p = ν∆~v, (1)

∇ · ~v = 0, (2)

wherep = P/ρ indicates the normalized fluid pressure;P is the physical pressure andρ is the constant fluid density;
ν is the kinematic viscosity coefficient;~v = (u, v) is the velocity vector, whereu andv are the velocity components in
thex andy direction, respectively;Fc = ~v⊗ ~v is the flux tensor of the nonlinear convective terms, namely:

Fc =

(
uu uv
vu vv

)
.

The viscosity term is first written asν∆~v = ∇ · (ν∇~v) and then grouped with the nonlinear convective term. So Eq.
(1) becomes

∂~v
∂t
+ ∇ · F + ∇p = 0, (3)

whereF = F(~v,∇~v) = Fc(~v)− ν∇~v is a nonlinear tensor that depends on the velocity and its gradient, see e.g. [44, 36].
We further use the abbreviationL(~v) = ∂

∂t~v+ ∇ · F.
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2.2. Unstructured grid

In this paper we use the same general unstructured staggeredmesh proposed in [69]. In this section we briefly
summarize the grid construction and the main notation. The computational domain is covered with a set ofNi non-
overlapping trianglesTi with i = 1 . . .Ni . By denoting withN j the total number of edges, thej−th edge will be called
Γ j . B(Ω) denotes the set of indicesj corresponding to boundary edges. The three edges of each triangleTi constitute
the setSi defined bySi = { j ∈ [1,N j] | Γ j is an edge ofTi}. For everyj ∈ [1 . . .N j ] − B(Ω) there exist two triangles
i1 andi2 that shareΓ j . It is possible to assign arbitrarily a left and a right triangle calledℓ( j) andr( j), respectively.
The standard positive direction is assumed to be from left toright. Let~n j denote the unit normal vector defined on the
edge j and oriented with respect to the positive direction from left to right. For every triangular elementi and edge
j ∈ Si , the neighbor triangle of elementTi at edgeΓ j is denoted by℘(i, j).

For every j ∈ [1,N j] − B(Ω) the quadrilateral element associated toj is calledR j and it is defined, in general,
by the two centers of gravity ofℓ( j) andr( j) and the two terminal nodes ofΓ j , see also [6, 73, 69]. We denote by
Ti, j = R j ∩ Ti the intersection element for everyi and j ∈ Si . Figure 1 summarizes the notation used here, the
main triangular and the dual quadrilateral meshes. According to [69], we often call the mesh of triangular elements

i

i1

i2

i3

j1

j2

j3

n1

n2

n3

Ti

R j1

Γ j1

Ti, j3

Figure 1: Example of a triangular mesh element with its threeneighbors and the associated staggered edge-based dual control volumes, together
with the notation used throughout the paper.

{Ti}i∈[1,Ni ] themain gridor theprimal grid and the quadrilateral grid{R j} j∈[1,N j ] is termed thedual grid.
On the dual grid we define the same quantities as for the main grid, briefly: Nl is the total amount of edges of

R j ; Γl indicates thel-th edge;∀ j, the set of edgesl of j is indicated withS j ; ∀l, ℓ jl (l) andr jl (l) are the left and the
right quadrilateral element, respectively;∀l, ~nl is the standard normal vector defined onl and assumed positive with
respect to the standard orientation onl (defined, as above, from the left to the right). Finally, eachtriangleTi is defined
starting from an arbitrary node and oriented in counter-clockwise direction. Similarly, each quadrilateral elementR j

is defined starting fromℓ( j) and oriented in counter-clockwise direction.

2.3. Basis functions

According to [69] we proceed as follows: we first construct the polynomial basis up to a generic polynomial degree
p on some reference triangular and quadrilateral elements. In order to do this we takeTstd = {(ξ, γ) ∈ R

2,+ | γ ≤
1− ξ ∨ 0 ≤ ξ ≤ 1} as the reference triangle and the unit square as the reference quadrilateral elementRstd = [0, 1]2.
Using the standard nodal approach of conforming continuousfinite elements, we obtainNφ =

(p+1)(p+2)
2 basis functions

{φk}k∈[1,Nφ ] on Tstd andNψ = (p+ 1)2 basis functions onRstd. The connection between reference and physical space
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is performed by the mapsTi
Ti−→ Tstd for every i = 1 . . .Ni ; R j

T j−→ Rstd for every j = 1 . . .N j and its inverse,

calledTi

T−1
i←− Tstd andR j

T−1
j←− Rstd, respectively. The maps from physical coordinates to reference coordinates can be

constructed following a classical sub-parametric or a complete iso-parametric approach.

2.4. Semi-Implicit DG scheme
We define the spaces of piecewise polynomials used on the maingrid and the dual grid as follows,

Vm
h = {φ : φ|Ti

∈ Pp(Ti),∀i ∈ [1,Ni ]}, and Vd
h = {ψ : ψ|R j

∈ Qp(R j),∀ j ∈ [1,N j] − B(Ω)}, (4)

wherePp(Ti) is the space of polynomials of degree at mostp on Ti , whileQp(R j) is the space of tensor products of
one-dimensional polynomials of degree at mostp on R j .

The discrete pressureph is defined on the main grid while the discrete velocity vectorfield ~vh is defined on the
dual grid, namelyph ∈ Vm

h and~vh ∈ Vd
h for each component of the velocity vector.

The numerical solution of (2)-(3) is represented by piecewise polynomials and written in terms of the basis func-
tions on the primary and the dual grid as

pi(x, y, t) =
Nφ∑

l=1

φ
(i)
l (x, y)p̂l,i(t) =: φ(i)(x, y) p̂i(t), (5)

~v j(x, y, t) =
Nψ∑

l=1

ψ
( j)
l (x, y)~̂vl, j(t) =: ψ( j)(x, y)~̂v j(t), (6)

where the vector of basis functionsφ(x, y) andψ(x, y) are generated fromφ(ξ, γ) on ψ(ξ, γ) on Rstd, respectively.
Formallyφ(i)(x, y) = φ(Ti(x, y)) for i = 1 . . .Ni andψ( j)(x, y) = ψ(T j(x, y)) for every j = 1 . . .N j .

ℓ( j)

r( j)

j

ηr( j)ηℓ( j)

i

Ti, j1
Ti, j2

Ti, j3

Figure 2: Jumps ofp on the main grid (left) and of~v on the dual grid (right)

A weak formulation of equation (2) is obtained by multiplying it by φ and integrating over a control volumeTi ,
for everyk = 1 . . .Nφ. The resulting weak formulation of (2) reads

∫

T i

φ(i)
k ∇ · ~vdxdy= 0. (7)

Similarly, multiplication of the momentum equation (3) byψ and integrating over a control volumeR j one obtains,
componentwise, ∫

R j

ψ
( j)
k

(
∂~v
∂t
+ ∇ · F

)
dxdy+

∫

R j

ψ
( j)
k ∇p dxdy= 0, (8)

for every j = 1 . . .N j andk = 1 . . .Nψ. Using integration by parts Eq. (7) yields
∮

∂T i

φ(i)
k ~v · ~ni ds−

∫

T i

∇φ(i)
k · ~v dxdy= 0, (9)
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where~ni indicates the outward pointing unit normal vector. The discrete pressureph in general presents a discontinuity
onΓ j and also the discrete velocity field~vh jumps on the edges ofR j (see Figure 2). Hence, equations (8) and (9) have
to be split as follows:

∑

j∈Si



∫

Γ j

φ
(i)
k ~v j · ~ni j ds−

∫

T i, j

∇φ(i)
k · ~v j dxdy


= 0, (10)

and
∫

R j

ψ
( j)
k

(
∂~v j

∂t
+ ∇ · F j

)
dxdy+

∫

Tℓ( j), j

ψ
( j)
k ∇pℓ( j)dxdy+

∫

Tr( j), j

ψ
( j)
k ∇pr( j) dxdy+

∫

Γ j

ψ
( j)
k

(
pr( j) − pℓ( j)

)
~n j ds= 0,

where~ni j = ~ni |Γ j . Definitions (5) and (6) allow to rewrite the above equationsby splitting the spatial and temporal
variables, namely

∑

j∈Si



∫

Γ j

φ
(i)
k ψ

( j)
l ~ni jds~̂vl, j −

∫

T i, j

∇φ(i)
k ψ

( j)
l dxdy~̂vl, j


= 0, (11)

and
∫

R j

ψ
( j)
k ψ

( j)
l dxdyLh(~̂vl, j) +

∫

Tℓ( j), j

ψ
( j)
k ∇φ

(ℓ( j))
l dxdy p̂l,ℓ( j) +

∫

Tr( j), j

ψ
( j)
k ∇φ

(r( j))
l dxdy p̂l,r( j)

+

∫

Γ j

ψ
( j)
k φ

(r( j))
l ~n jdsp̂l,r( j) −

∫

Γ j

ψ
( j)
k φ

(ℓ( j))
l ~n jdsp̂l,ℓ( j) = 0,

(12)

where we have used the standard summation convention for therepeated indexl. Lh is an appropriate discretization
of the operatorL and will be given later. For everyi and j, Eqs. (11)-(12) are written in a compact matrix form such
as

∑

j∈Si

Di, j~̂v j = 0, (13)

and

M jLh(~̂v j) + R j p̂r( j) −L j p̂ℓ( j) = 0, (14)

respectively, where:

M j =

∫

R j

ψ
( j)
k ψ

( j)
l dxdy, (15)

Di, j =

∫

Γ j

φ(i)
k ψ

( j)
l ~ni j ds−

∫

Ti, j

∇φ(i)
k ψ

( j)
l dxdy, (16)

R j =

∫

Γ j

ψ
( j)
k φ

(r( j))
l ~n jds+

∫

Tr( j), j

ψ
( j)
k ∇φ

(r( j))
l dxdy, (17)

L j =

∫

Γ j

ψ
( j)
k φ

(ℓ( j))
l ~n jds−

∫

Tℓ( j), j

ψ
( j)
k ∇φ

(ℓ( j))
l dxdy. (18)
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According to [69] the action of tensorsL andR can be generalized by introducing the new tensorQi, j , defined as

Qi, j =

∫

T i, j

ψ
( j)
k ∇φ

(i)
l dxdy−

∫

Γ j

ψ
( j)
k φ

(i)
l σi, j~n jds, (19)

whereσi, j is a sign function defined by

σi, j =
r( j) − 2i + ℓ( j)

r( j) − ℓ( j)
. (20)

In this wayQℓ( j), j = −L j andQr( j), j = R j , and then Eq. (14) becomes in terms ofQ

M jLh(~̂v j) +Qr( j), j p̂r( j) +Qℓ( j), j p̂ℓ( j) = 0, (21)

or, equivalently,
M jLh(~̂v j) +Qi, j p̂i +Q℘(i, j), j p̂℘(i, j) = 0. (22)

We discretize the velocity in Eq. (13) implicitly and the pressure in Eq. (14) semi-implicitly by using the theta
method in time, namely 

∑
j∈Si

Di, j~̂v
n+1

j = 0,

M j
~̂v

n+1
j −F̂~v

n

j

∆t +Qr( j), j p̂n+θ
r( j) +Qℓ( j), j p̂n+θ

ℓ( j) = 0,
(23)

where p̂n+θ = θ p̂n+1 + (1 − θ) p̂n; andθ is an implicitness factor to be taken in the rangeθ ∈ [ 1
2 , 1], see e.g. [16].

Discretizing Eqs. (23) as described above and using the formulation (22), we get for everyi and j ∈ Si

∑

j∈Si

Di, j~̂v
n+1

j = 0, (24)

M j

~̂v
n+1

j − F̂~v
n

j

∆t
+ θ

(
Qi, j p̂n+1

i +Q℘(i, j), j p̂n+1
℘(i, j)

)
+ (1− θ)

(
Qi, j p̂n

i +Q℘(i, j), j p̂n
℘(i, j)

)
= 0, (25)

whereF̂~v
n

j is an appropriate discretization of the nonlinear convective and viscous terms. The details for the com-

putation ofF̂~v
n

j will be presented later in Section 2.5. Formal substitution of the momentum equation (25) into the
continuity equation (24), see also [17, 37], yields

− θ∆t
∑

j∈Si

Di, j M−1
j Qi, j p̂n+1

i − θ∆t
∑

j∈Si

Di, j M−1
j Q℘(i, j), j p̂n+1

℘(i, j) = bn
i , (26)

where
bn

i = −
∑

j∈Si

Di, j F̂~v
n

j + (1− θ)∆t
∑

j∈Si

Di, j

(
M j

)−1 (
Qi, j p̂n

i +Q℘(i, j), j p̂n
℘(i, j), j

)
, (27)

groups all the known terms at timetn.
Eq. (26) represents a block four-diagonal system for the newpressure ˆpn+1

i . It can be interpreted as the discrete
form of the pressure Poisson equation of the incompressibleNavier-Stokes equations. Once the new pressure field is
known, the velocity field can be readily updated from the momentum equation, Eq. (25). We emphasize that in the
present algorithm, the only unknown is thescalarpressureph.

It remains to complete the system by introducing the boundary conditions. In order to do this observe how, for
i ∈ [1,Ni] and j ∈ Si ∩ B(Ω), the boundary elementR j = Ti, j is atriangular elementandnot a quadrilateral element.
The basis functions to be used are the one generated onTstd. In this way the matricesM j ,Di, j ,Qi, j defined in (15),
(16) and (19), have to be modified for boundary elements.
For everyj ∈ Si ∩ B(Ω)

~v j =

Nφ∑

l=1

φl~̂vl, j, (28)
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where theφl are the basis functions on the reference triangleTstd. The matrices can be recomputed forj ∈ Si ∩ B(Ω)
and will be calledD∂

i, j ,Q
∂
i, j .

Equations (26)-(27) are consequently computed with the triangular boundary elements and one so obtains

θ∆t

−
∑

j∈Si∩B(Ω)

D
∂
i, j M

−1
j Q

∂
i, j −

∑

j∈Si−B(Ω)

Di, j M−1
j Qi, j

 p̂n+1
i − θ∆t

∑

j∈Si−B(Ω)

Di, j M−1
j Q℘(i, j), j p̂n+1

℘(i, j) = b̃n
i , (29)

where now the vector of known terms is

b̃n
i = −

∑

j∈Si−B(Ω)

Di, j F̂~v
n

j +
∑

j∈Si∩B(Ω)

D
∂
i, j F̂~v

n

j

+(1− θ)∆t
∑

j∈Si∩B(Ω)

D
∂
i, j M

−1
j Q

∂
i, j p̂

n
i + (1− θ)∆t

∑

j∈Si−B(Ω)

Di, j M−1
j

(
Qi, j p̂n

i +Q℘(i, j), j p̂n
℘(i, j)

)
.

(30)

As implied by Eq. (29), the stencil of the present scheme onlyinvolves thei−th element and its direct Neumann
neighbors. Thus, since #Si = 3, the system described by (29) is a block-four-diagonal one. As we will show later,
the system is symmetric and positive definite for appropriate boundary conditions, hence it can be efficiently solved
by using a matrix-free implementation of the conjugate gradient algorithm [49]. Once the new pressure has been
computed, the new velocity field can be readily updated from Eq. (25) for everyj < B(Ω):

~̂v
n+1

j = F̂~v
n

j − θ∆tM−1
j

(
Qi, j p̂n+1

i +Q℘(i, j), j p̂n+1
℘(i, j)

)
− (1− θ)∆tM−1

j

(
Qi, j p̂n

i +Q℘(i, j), j p̂n
℘(i, j)

)
. (31)

The above equations (29),(30) and (31) can be modified forj ∈ B(Ω) according to the type of boundary conditions
(velocity or pressure boundary condition). Note that all the matrices used in the above algorithm can be precomputed
once and forall for a given mesh and polynomial degreep.

2.5. Nonlinear convection-diffusion

In problems where the convective term and the viscosity can be neglected we can takêF~v
n

j = ~̂v
n

j in Eq. (27).
Otherwise, an explicit cell-centered RKDG method [30] on the dual mesh is used in this paper for the discretization of
the nonlinear convective terms. The viscosity contribution is discretized implicitly using a fractional step method,in
order to avoid additional restrictions on the time step∆t. The semi-discrete DG scheme for the nonlinear convection-
diffusion terms on the dual mesh is given by

∫

R j

ψk
d
dt
~vh dxdy+

∫

∂R j

ψkGh · ~n ds−
∫

R j

∇ψk · F(~vh,∇~vh)dxdy= 0, (32)

and the numerical flux for both, the convective and the viscous contribution, is given by [65, 44, 36] as

Gh · ~n =
1
2

(
F(~v+h ,∇~v+h ) + F(~v−h ,∇~v−h )

)
· ~n− 1

2
smax

(
~v+h − ~v−h

)
, (33)

with

smax = 2 max(|~v−h · ~n|, |~v+h · ~n|) +
2ν

h+ + h−
2p+ 1√

π
2

, (34)

which contains the maximum eigenvalue of the Jacobian matrix of the purely convective transport operatorFc in
normal direction, see [37], and the stabilization term for the viscous flux, see [36, 44]. Furthermore, the~v±h and
∇~v±h denote the velocity vectors and their gradients, extrapolated to the boundary ofR j from within the elementR j

and from the neighbor element, respectively.h+ andh− are the maximum radii of the inscribed circle inR j and the
neighbor element, respectively. A classical third order accurate TVD Runge-Kutta method is used for time integration
of the nonlinear convective terms, see e.g. [68, 47, 30], since the explicit discretization of higher order DG schemes
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with a simple first order Euler method in time would lead to a linearly unstable scheme. The above method requires
that the time step size is restricted by a CFL-type restriction for DG schemes, namely:

∆t =
CFL

2p+ 1
· hmin

2|~vmax|
, (35)

wherehmin is the smallest incircle diameter; CFL< 0.5; and~vmax is the maximum convective speed. Furthermore, the
time step of the global semi-implicit scheme isnot affected by the local time step used for the time integration of the
convective terms if a local time stepping/ subcycling approach is employed, see [20, 70].

Implicit discretization of the viscous contribution∇~v in (32) with a fractional step method involves a block five-
diagonal system that can be efficiently solved using the GMRES algorithm [66]. The solutionof this system is not
necessary in problems where the viscous terms are small and can be integrated explicitly in time. The stability of the
method is linked to the nonlinear convective term, so the method is stable under condition (35).

2.6. Extension to curved elements

The maps used to switch between reference and physical spacecan be defined using a simple sub-parametric
vertex based approach or a fully isoparametric approach. Inthe first case only the vertices of the elementsTi and
R j are required to map the physical element into the reference one and vice versa. In this simple case an explicit
expression for the mapsTi , T−1

i andT−1
j can be computed while for the mapT j we use the Newton method (see e.g.

[69]). A simple extension to the complete isoparametric case requires to store more information about each element,
namely we need to know the coordinates of the nodes{(X,Y)i

k}k=1,Nφ
for each triangular elementi and{(X,Y) j

l }l=1,Nψ

for each quadrilateral elementj. The inverse mapsT−1
i andT−1

j are defined by using the same basis functionsφk and
ψk used for representing the discrete solution of the PDE, i.e.we have

x =
Nφ∑

k

φk Xi
k, y =

Nφ∑

k

φk Yi
k, (36)

and

x =
Nψ∑

k

ψk X j
k, y =

Nψ∑

k

ψk Y j
k, (37)

for triangles and quadrilateral elements, respectively. In this case the mapsTi andT j become nonlinear and so the
Newton method has to be used for both. Also the Jacobian and the normal vectors are not, in general, constant through
the element and the edges, respectively. The main advantageof this approach is that now the edges become curved and
so the computational domain can better approximate the physical one. It is important to observe how this approach
affects only the preprocessing step.

2.7. Remarks on the main system and further improvements

In this section we will show how the main system for the computation of the pressure, developed in Section 2.4
results symmetric and, in general, positive semi-definite.These results allows to use very fast methods to solve the
system such as the conjugate gradient method with a significant gain in terms of computational time. In order to do
this observe how, from the definitions (16) and (19), we can further generalize the action ofD in terms ofQ such as
D = −Q⊤ since

−Q⊤i, j = −



∫

Ωi, j

ψ
( j)
k ∇φ

(i)
l dxdy−

∫

Γ j

ψ
( j)
k φ

(i)
l σi, j~n jds



⊤

= −
∫

Ωi, j

ψ
( j)
l ∇φ

(i)
k dxdy+

∫

Γ j

ψ
( j)
l φ

(i)
k σi, j~n jds=Di, j (38)
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and if i = ℓ( j), ~ni j coincides with~n j , else, it is−~n j, ∀i, j ∈ Si . Consequently, the main system (26) can be written as

A : θ∆t
∑

j∈Si

Q
⊤
i, j

(
M j

)−1
Qi, j p̂n+1

i + θ∆t
∑

j∈Si

Q
⊤
i, j

(
M j

)−1
Q℘(i, j), j p̂n+1

℘(i, j) = bn
i ,

that we will call in the followingA. If we do not introduce any boundary conditions, we have the following

Lemma 1. Without any boundary conditions the systemA is singular.

Proof 1. Let ph ∈ Vm
h , in order to show thatA is singular we investigate the kernel of the linear operatorA. Since

detA , 0⇔ KerA = {0}, we would like to show that the kernel does not contain only the zero. A weak formulation
of∇ph overΩ j is given byQℓ( j), j pℓ( j) +Qr( j), j pr( j), then we have the identity

Qℓ( j), j p̂ℓ( j) +Qr( j), j p̂r( j) ≡ 0⇔ ∇p|Ω j = 0 (39)

We are looking for a ph , 0 such thatAph = 0. For a fixed i∈ [1,Ni],

− θ∆t
∑

j∈Si

Di, j

(
M j

)−1
Qi, j p̂n+1

i − θ∆t
∑

j∈Si

Di, j

(
M j

)−1
Q℘(i, j), j p̂n+1

℘(i, j) = 0

−θ∆t
∑

j∈Si

Di, j

(
M j

)−1 [
Qi, j p̂n+1

i +Q℘(i, j), j p̂n+1
℘(i, j)

]
= 0

−θ∆t
∑

j∈Si

Di, j

(
M j

)−1 [
Qℓ( j), j p̂n+1

ℓ( j) +Qr( j), j p̂n+1
r( j)

]
= 0 (40)

Hence, if p= constant, the left side of(40) vanishes and then{pi ≡ c ∀i, c ∈ R} ⊂ kerA.

This represents a natural result since the incompressible NS equations depend only on the gradient of the pressure
and not directly on the pressure. Once we have an exact solution for the pressurepe, then every solution of the kind
pe+c with c ∈ R is also a solution. If we introduce the boundary conditions and we specify the pressure in at least one
point (i.e. in at least one degree of freedom), this is equivalent to choose the constantc and the system becomes non-
singular. The following results state that the developed system has several important properties such as the symmetry
and, in general, positive semi-definiteness:

Lemma 2 (Symmetry). The system matrix ofA is symmetric.

Proof 2. In the following we denote with(i, k) the k− th degree of freedom of the i− th element. For the symmetry of

A we have to verify that(i, k) act on(ĩ, k̃) as(ĩ, k̃) act on(i, k). If i = ĩ, the action is described by
∑
j∈Si

Q
⊤
i, j

(
M j

)−1
Qi, j

that is trivially symmetric sinceM j = M⊤
j is symmetric. If̃i < ℘(i,Si) the two actions are zero so it is also trivially

verified. Remains the caseĩ ∈ ℘(i,Si). In this case, the actions of the right element on the left oneand vice versa are,
respectively,Q⊤ℓ( j), j M

−1
j Qr( j), j andQ⊤r( j), j M

−1
j Qℓ( j), j . A simple computation leads to

M−1
j Qr( j), j(k, l) =

Nψ∑

ξ=1

M−1
j (k, ξ)Qr( j), j(ξ, l) ∀k = 1 . . .Nψ , l = 1 . . .Nφ

9



and then∀k = 1 . . .Nφ , l = 1 . . .Nφ,

Q
⊤
ℓ( j), j M

−1
j Qr( j), j(k, l) =

Nψ∑

γ=1

Q
⊤
ℓ( j), j(k, γ)

(
M−1

j Qr( j), j

)
(γ, l)

=

Nψ∑

γ=1

Q
⊤
ℓ( j), j(k, γ)

Nψ∑

ξ=1

M−1
j (γ, ξ)Qr( j), j(ξ, l)

=

Nψ∑

γ,ξ=1

Q
⊤
ℓ( j), j(k, γ)M−1

j (γ, ξ)Qr( j), j(ξ, l)

=

Nψ∑

γ,ξ=1

Qℓ( j), j(γ, k)M−1
j (γ, ξ)Q⊤r( j), j(l, ξ)

=

Nψ∑

γ,ξ=1

Q
⊤
r( j), j(l, ξ)M−1

j (ξ, γ)Qℓ( j), j(γ, k)

= Q
⊤
r( j), j M

−1
j Qℓ( j), j(k, l) (41)

Lemma 3. The matrixA is positive semi-definite, i.e. x⊤Ax≥ 0 ∀x ∈ RNi ·Nφ

Proof 3. We do the computation directly. x⊤Ax=
∑

i (x⊤Ax)i and

(x⊤Ax)i = xi

∑

j∈Si

Q
⊤
i, j M

−1
j Qi, j xi + xi

∑

j∈Si

Q
⊤
i, j M

−1
j Q℘(i, j), j x℘(i, j)

=
∑

j∈Si

(
M
− 1

2
j Qi, j xi

)⊤ (
M
− 1

2
j Qi, j xi

)

+
∑

j∈Si

(
M
− 1

2
j Qi, j xi

)⊤ (
M
− 1

2
j Q℘(i, j), j x℘(i, j)

)

where we used that Mj is symmetric and positive definite, hence M−1
j is symmetric and positive definite and then exists

the so called square operator, namely∃M
− 1

2
j such that M−1

j =

(
M
− 1

2
j

)⊤ (
M
− 1

2
j

)
. By defining Ti, j := M

− 1
2

j Qi, j we obtain

(x⊤Ax)i =
∑

j∈Si

(
Ti, j xi

)⊤ (
Ti, j xi

)
+

∑

j∈Si

(
Ti, j xi

)⊤ (
T℘(i, j), j x℘(i, j)

)
(42)

and consequently

x⊤Ax=
Ni∑

i=1

∑

j∈Si

(
Ti, j xi

)⊤ (
Ti, j xi

)
+

Ni∑

i=1

∑

j∈Si

(
Ti, j xi

)⊤ (
T℘(i, j), j x℘(i, j)

)
(43)

Remark that the double summation
∑Ni

i=1

∑
j∈Si

sum every element i and edge j. From the edge point of view,
every edge gives two contributions, one given when i= ℓ( j) and one when i= r( j). The double summation can be

10



consequently inverted as follows:

Ni∑

i=1

∑

j∈Si

(
Ti, j xi

)⊤ (
Ti, j xi

)
=

N j∑

j=1

(
Tℓ( j), j xℓ( j)

)⊤ (
Tℓ( j), j xℓ( j)

)

+

N j∑

j=1

(
Tr( j), j xr( j)

)⊤ (
Tr( j), j xr( j)

)

Ni∑

i=1

∑

j∈Si

(
Ti, j xi

)⊤ (
T℘(i, j), j x℘(i, j)

)
=

N j∑

j=1

(
Tℓ( j), j xℓ( j)

)⊤ (
Tr( j), j xr( j)

)

+

N j∑

j=1

(
Tr( j), j xr( j)

)⊤ (
Tℓ( j), j xℓ( j)

)
(44)

and then, by recompose everything

x⊤Ax =

N j∑

j=1

[(
Tℓ( j), j xℓ( j)

)⊤ (
Tℓ( j), j xℓ( j)

)
+

(
Tr( j), j xr( j)

)⊤ (
Tr( j), j xr( j)

)

(
Tℓ( j), j xℓ( j)

)⊤ (
Tr( j), j xr( j)

)
+

(
Tr( j), j xr( j)

)⊤ (
Tℓ( j), j xℓ( j)

)]

=

N j∑

j=1

(
Tℓ( j), j xℓ( j) + Tr( j), j xr( j)

)⊤ (
Tℓ( j), j xℓ( j) + Tr( j), j xr( j)

)

=

N j∑

j=1

[(
Tℓ( j), j 0

0 Tr( j), j

)
·
(

xℓ( j)

xr( j)

)]⊤ [(
Tℓ( j), j 0

0 Tr( j), j

)
·
(

xℓ( j)

xr( j)

)]

=

N j∑

j=1

(xℓ( j), xr( j))

(
Tℓ( j), j 0

0 Tr( j), j

)⊤ (
Tℓ( j), j 0

0 Tr( j), j

) (
xℓ( j)

xr( j)

)

=

N j∑

j=1

~x⊤j T ⊤T ~x j (45)

And, sinceT̃ := T ⊤T is a positive semi-definite matrix by construction,~x⊤j T̃ ~x j ≥ 0 and then x⊤Ax=
∑

j ~x
⊤
j T̃ ~x j ≥ 0

We introduce now the boundary elements and, in particular,

D
∂
i, j =

∫

Γ j

φ
(i)
k ψ

∂( j)
l ~ni jds−

∫

T i, j

∇φ(i)
k ψ

∂( j)
l dxdy

and

Q
∂
i, j =

∫

Ti, j

ψ
∂( j)
k ∇φ

(i)
l dxdy−

∫

Γ j

ψ
∂( j)
k φ(i)

l σi, j~n jds.

Then it is still true thatD∂
i, j = −

(
Q
∂
i, j

)⊤
and the complete system̃A can be written asÃ = A + B where

11



B : θ∆t
∑

j∈Si∩B(Ω)

(
Q
∂
i, j

)⊤
M−1

j Q
∂
i, j p̂

n+1
i

Ã : θ∆t


∑

j∈Si∩B(Ω)

(
Q
∂
i, j

)⊤
M−1

j Q
∂
i, j +

∑

j∈Si−B(Ω)

Q
⊤
i, j M

−1
j Qi, j

 p̂n+1
i

+θ∆t
∑

j∈Si−B(Ω)

Q
⊤
i, j M

−1
j Q℘(i, j), j p̂n+1

℘(i, j)

It is easy to check thatB is symmetric and at least positive semi-definite.
We have to introduce now some types of boundary conditions inorder to show that, if the pressure is specified on

the boundary, the complete system̃A is positive definite.
Let us rewritex⊤Bx by including the external contribution and in the form of theEq. (45), namely

x⊤Bx =
N j∑

j=1

(
T∂
ℓ( j), j xℓ( j) +

[
T∂x

]
ext, j

)⊤ (
T∂
ℓ( j), j xℓ( j) +

[
T∂x

]
ext, j

)

whereT∂
i, j = M

− 1
2

j Q
∂
i, j and

[
T∂x

]
ext, j

is a known external contribution that depends on the boundary conditions. In

particular, if the pressure is specified at the boundary, then T∂
ext, j = T∂

ℓ( j), j and
[
T∂x

]
ext, j

is a known quantity that in

general is part of the known right hand side vector. Since theexternal pressure is specified, thenT∂
ℓ( j), j xℓ( j)+

[
T∂x

]
ext, j
=

0⇔ xℓ( j) ≡ xext, j. We take nowx⊤Bx = 0 that implicitly fixesxext = 0. In this wayxℓ( j) = 0 ∀ j ∈ B(Ω). Using the
same reasoning on the matrixA we can conclude thatx ≡ 0, and henceÃ is positive definite in this case. A possible
way to specify the velocity at the boundary is to neglect the jump contribution for the pressure at the boundary or
equivalent, takenxext, j = xℓ( j) ∀ j ∈ B(Ω). It is easy to check that if we have only this type of boundaryconditions
thenx⊤Ãx = 0 for everyx constant, and then the matrix̃A is only positive semi-definite.

3. Numerical test problems

3.1. Convergence test

We consider a smooth steady state problem in order to measurethe order of accuracy of the proposed method. For
this purpose, the Navier-Stokes equations are first rewritten in cylindrical coordinates (r andϕ), with r2 = x2 + y2,
tanϕ = x/y, the radial velocity componentur and the angular velocity componentuϕ. In order to derive an analytical
solution we suppose a steady vortex-type flow with angular symmetry, i.e. ∂/∂t = 0, ∂/∂ϕ = 0 andur = 0. With
these assumptions, the continuity equation is automatically satisfied and the system of incompressible Navier-Stokes
equations reduces to 

∂p
∂r =

u2
ϕ

r ,

r
∂2uϕ
∂r2 +

∂uϕ
∂r −

uϕ
r = 0.

(46)

One can now recognize in the second equation of (46) a classical second order Cauchy Euler equation and so obtain
two solutions foruϕ, namely:

uϕ = c1r, (47)

uϕ =
c1

r
, (48)

for everyc1 ∈ R. The corresponding pressures read

p =
c2

1r2

2
+ c2, (49)

p = −2
c2

1

r2
+ c2. (50)
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respectively. In this section we set the boundary conditions in order to obtain the non-trivial solution (48)-(50). Due
to the singularity ofuϕ for r = 0, letΩ = C(5)−C(1) whereC(r) = {(x, y) ∈ R2 |

√
x2 + y2 ≤ r}. As initial condition

we impose Eqs. (48)-(50) withc1 = uϕ(1) = 2 andc2 = 0. The exact velocity is imposed at the internal boundary
while exact pressure is specified at the external circle. Theproposed algorithm is validated for several polynomial
degreesp using successively refined grids. The chosen parameters forthe numerical simulations aretend = 0.75;
θ = 1; ν = 10−5; the time step∆t is taken according to the CFL time restriction for the explicit discretization of the
nonlinear convective term (35). TheL2 error between the analytical and the numerical solution is computed as

ǫ(p) =

√√∫

Ω

(ph − pe)2dxdy, ǫ(~v) =

√√∫

Ω

(~vh − ~ve)2dxdy, (51)

for the pressure and for the velocity vector field, respectively, where the subscripth indicates the numerical solution
ande denotes the exact solution.

Ni p = 0 p = 1
ǫ(p) ǫ(~v) O(p) O(~v) ǫ(p) ǫ(~v) O(p) O(~v)

124 7.902E-01 1.095E-00 - - 3.944E-01 4.311E-01 - -
496 5.026E-01 7.086E-01 0.7 0.6 8.830E-02 1.221E-01 2.2 1.8
1984 2.982E-01 4.502E-01 0.8 0.7 2.325E-02 3.299E-02 1.9 1.9
7936 1.659E-01 2.797E-01 0.8 0.7 6.207E-03 8.725E-03 1.9 1.9
31744 8.797E-02 1.714E-01 0.9 0.7 1.615E-03 2.318E-03 1.9 1.9

Table 1: Numerical convergence results forp = 0 andp = 1.

Ni p = 2 p = 3
ǫ(p) ǫ(~v) O(p) O(~v) ǫ(p) ǫ(~v) O(p) O(~v)

124 9.366E-02 1.990E-01 - - 4.346E-02 9.317E-02 - -
496 1.054E-02 3.069E-02 3.2 2.7 2.966E-03 8.027E-03 3.9 3.5
1984 1.193E-03 3.686E-03 3.1 3.1 1.783E-04 7.153E-04 4.1 3.5
7936 1.438E-04 4.425E-04 3.1 3.1 1.313E-05 5.997E-05 3.8 3.6

Table 2: Numerical convergence results forp = 2 andp = 3.

Tables 1 and 2 show theL2 convergence rates for successive refinements of the grid, whereO(p) andO(~v) represent
the order of accuracy achieved for the pressure and the velocity field, respectively. The optimal convergence is reached
up to p = 2 while for p = 3 the observable order of accuracy for the velocity vector field is closer top+ 1

2 rather then
p+ 1.

3.2. Womersley profiles
In this section the proposed algorithm is verified against the exact solution for an oscillating flow in a rigid tube

of lengthL. The unsteady flow is driven by a sinusoidal pressure gradient on the boundaries

pout(t) − pinlet(t)
L

=
p̃
ρ

eiωt, (52)

wherep̃ is the amplitude of the pressure gradient;ρ is the fluid density;ω is the frequency of the oscillation;i indicates
the imaginary unit;pinlet andpout are the inlet and outlet pressures, respectively. The analytical solution was derived
by Womersley in [80]. According to [80, 39] no convective contribution is considered. By imposing Eq. (52) at the
tube ends, the resulting unsteady velocity field is uniform in the axial direction and is given by

ue(x, y, t) =
p̃
ρ

1
iω

1−
J0

(
αζi

3
2

)

J0

(
αi

3
2

)
 eiωt ; ve(x, y, t) = 0, (53)
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whereζ = 2y/D is the dimensionless radial coordinate;D is the diameter of the tube;α = D
2

√
ω
ν

is a constant; andJ0

is the zero-th order Bessel function of the first kind. For thepresent test we takeΩ = [−0.5, 1]× [−0.2, 0.2]; p̃ = 1000;
ρ = 1000;ω = 2π; θ = 0.6; andν = 8.94× 10−4. The computational domainΩ is covered with a total number of
Ni = 98 triangles and the time step size is chosen as∆t = 0.01. The numerical results forp = 3 are shown in Fig. 3
for several times atx = 0.1. A good agreement between exact and numerical solution canbe observed.

u

y

-0.2 -0.1 0 0.1 0.2
-0.2

-0.1

0

0.1

0.2

Exact solution
Numerical solution (p=3)

Figure 3: Comparison between the exact and the numerical solution for the Womersley profiles at timest = 1.7, t = 1.9, t = 2.0, t = 1.2,
respectively, from left to right.

3.3. Blasius boundary layer

Another classical test problem concerns the Blasius boundary layer. For the particular case of laminar stationary
flow over a flat plate, a solution of Prandtl’s boundary layer equations was found by Blasius in [9] and is determined
by the solution of a third-order non-linear ODE, namely:



f ′′′ + f f ′′ = 0
f (0) = 0
f ′(0) = 0
limξ→∞ f ′(ξ) = 1

(54)

whereξ = y
√

u∞
2νx is the Blasius coordinate;f ′ = u

u∞
; and u∞ is the farfield velocity. The reference solution is

computed here using a tenth-order DG ODE solver, see e.g. [36], together with a classical shooting method. In
order to obtain the Blasius velocity profile in our simulations we consider a steady flow over a a wedge-shaped
object. As a result of the viscosity, a boundary layer appears along the obstacle. For the present test, we consider
Ω = [0, 1] × [−0.25, 0.25] and a wedge shape object with upper edge corresponding tothe segmentx = [0, 1]. An
initially uniform flow u(x, y, 0) = u∞ = 1 , v(x, y, 0) = 0 andp(x, y, 0) = 1 is imposed as initial condition, while an
inflow boundary is imposed on the left and outflow boundary conditions are imposed on the other edges of the external
box. Finally, no-slip wall boundary conditions are considered over the wedge shape object. We coverΩ with a total
amount ofNi = 278 triangles and useθ = 1 andp = 3. The resulting Blasius velocity profile is shown in Figure 4
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while the profile with respect to the Blasius coordinateξ is shown in Figure 5 in order to verify whether the obtained
solution is self-similar with respect toξ. A comparison between the numerical results presented hereand the reference
solution is depicted in Figure 6 forx = 0.4 andx = 0.6. A good agreement between the reference solution and the

x

y

0 0.5 1

-0.2

0

0.2

Figure 4: Computational domain used for the simulation of the Blasius boundary layer. The colors represent the horizontal velocityu.

x

xi

0.2 0.4 0.6 0.8 1
0

5

10

15

20

Figure 5: Velocity profile with respect to the Blasius coordinateξ.

numerical results obtained with the staggered semi-implicit DG scheme is obtained, despite the use of a very coarse
grid. Note that the solution in terms of the Blasius coordinateξ is independent fromx. The numerical solution is also
verified to maintain the self-similar Blasius profile in the (x, ξ) plane, see Fig. 5.

3.4. Lid-driven cavity flow
We consider here another classical benchmark problem for the incompressible Navier-Stokes equations, namely

the lid-driven cavity problem. This test problem is solved numerically with the new staggered DG scheme on very
coarse grids using a polynomial degree ofp = 3. LetΩ = [−0.5, 0.5] × [−0.5, 0.5], set velocity boundary conditions
u = 1 andv = 0 on the top boundary (i.e.y = 0.5) and impose no-slip wall boundary conditions on the other edges.
As initial condition we takeu(x, y, 0) = v(x, y, 0) = 0. We use a grid withNi = 73 triangles forRe= 100, 400, 1000
andNi = 359 triangles forRe= 3200. A sketch of the main and dual grid is shown in Fig. 7.

For the present testθ = 1; ∆t is taken according to condition (35); andtend = 150. According to [54, 45], primary
and corner vortices appear fromRe= 100 toRe= 3200, a comparison of the velocities against the data presented in
[45], as well as the streamline plots are shown in Figure 8. A very good agreement is obtained in all cases, even if a
very coarse grid has been used.
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Figure 6: Numerical and reference solution for the Blasius boundary layer atx = 0.4 andx = 0.6.

3.5. Backward-facing step.

In this section, the numerical solution for the fluid flow overa backward-facing step is considered. For this test
problem, both experimental and numerical results are available at several Reynolds numbers (see e.g. [1, 38]). The
computational domainΩ and the main notation are reported in Figure 9. The fluid flow isdriven by a pressure
gradient imposed at the left and the right ends of the computational domain. On all the other boundaries, no-slip wall
boundary conditions are imposed. According to [1], we takeRe= DU

ν
whereD = 2hin; U is the mean inlet velocity;

ν is the kinematic viscosity. The computational domain is covered with a total number ofNi = 260 triangles with
characteristic sizeh = 0.2 for x ≤ 5 andh = 0.48 for x > 5 (see Figure 9). Finally we usep = 3; θ = 1 and∆t is the
one given by the CFL condition for the nonlinear convective term;tend = 80s. Figure 11 shows the vortices generated
at different Reynolds numbers, while in Figure 10 the main recirculation pointX1 is compared with experimental
data given by Armaly in [1], and the explicit second-order upwind finite difference scheme introduced in [8]. A good
agreement with the experimental data is shown up toRe= 316 but, according to [1], the experiment becomes three
dimensional forRe> 400, so the comparison can be done only up toRe= 400. Indeed, one can see in Fig. 11 how
the secondary vortex occurs forRe= 426, while in the experiments it appears at higher Reynolds numbers (see e.g.
[1]).

3.6. Rotational flow past a circular half-cylinder

Here we consider a rotational flow past a circular half-cylinder. A comparison between numerical and exact
analytical solution is possible for incompressible and inviscid fluid, i.e. here we setν = 0. We use the computational
setup of Feistauer and Kucera [40], henceΩ = [−5, 5]× [0, 5]− {

√
x2 + y2 ≤ 0.5}; as boundary conditions we impose

the velocity at the left boundary; homogeneous Neumann boundary conditions on the top and right boundaries and
inviscid wall at the bottom and the surface of the half-cylinder. The farfield velocity field is given byu = y andv = 0.
The exact analytical solution to this problem was found by Fraenkel in [43]. For the present test we choosep = 3; ∆t
is set according to (35) and we coverΩ with Ni = 800 triangles, using only 6 triangles to describe the half-cylinder.
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Figure 7: Main and dual grid used for the lid-driven cavity problem forRe= 100, 400, 1000.

Curved isoparametric elements are considered in order to represent the geometry of the half-cylinder properly. As
initial conditions we imposep(x, y, 0) = 1; u(x, y, 0)= y andv(x, y, 0) = 0. Two vortices appear near the half-cylinder
(see Fig. 12 left), while a comparison between analytical and numerical velocity magnitude on the cylinder surface
(i.e. r = 0.5) is shown on the right of Fig. 12. A good agreement between analytical and numerical results is obtained
also with a very coarse grid. An important remark is that for this test problem the use of isoparametric elements is
crucial, as previously shown for inviscid flow past a circular cylinder by Bassi and Rebay in [4].

3.7. Flow over a circular cylinder

In this section we consider the flow over a circular cylinder.Also in this case, the use of the isoparametric approach
is mandatory to represent the geometry of the cylinder wall,see [4, 69]. In particular, two cases are considered: first,
an inviscid flow around the cylinder is assumed in order to obtain a steady potential flow; finally, the complete viscous
case is considered in order to get the unsteady von Karman vortex street. For the first case a sufficiently large domain
Ω = [−8, 8] × [−8, 8] − {

√
x2 + y2 ≤ 1} is employed. The exact solution for this case is known and reads:

ur (r, ϕ) = ū

(
1− R2

c

r2

)
cos(ϕ), uϕ(r, ϕ) = −ū

(
1+

R2
c

r2

)
sin(ϕ),

p =
1
2

ū2

(
2R2

c

r2
cos(2ϕ) − R4

c

r4

)
, (55)

whereū is the inflow velocity;Rc is the cylinder radius;ur anduϕ are the radial and angular components of the
velocity, respectively. An initial condition~v(x, y, 0) = (ū, 0) is used, while the exact velocity distribution is taken as
the external boundary condition. An inviscid wall boundarycondition is imposed on the cylinder. For the present
testū = 0.01; Rc = 1; ν = 0; p = 3; θ = 0.6; ∆t is the one taken according to the CFL restriction (35);tend = 10.
The domainΩ is covered with a total number ofNi = 1464 triangles and an isoparametric approach is consideredto
represent the cylinder wall properly. Figure 13 shows the streamlines and the pressure contours obtained att = 10
as well as the comparison between exact and numerical solution at several radii. A very good agreement between
exact and numerical solution is observed. We consider now the fully viscous case in order to show the formation
of the von Karman vortex street. Two domains are considered here: Ω1 = [−20, 80] × [−20, 20] covered with a
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Ni = 1702 triangles; andΩ2 = [−5, 30] × [−10, 10] covered with aNi = 1706 triangles. As initial condition we
set~v(x, y, 0) = (ū, 0); θ = 0.6; andū = 0.5. Different viscosity coefficients are used in order to obtain different
Reynolds numbers. For the present test we use∆t according to (35);p = 3; θ = 1. The velocity (ū, 0) is prescribed
at the left boundary while homogeneous Neumann boundary conditions are imposed on the other external edge of the
domains. Finally viscous wall boundary condition is imposed on the cylinder surface. Figure 14 shows the obtained
relationship between the Strouhal number, computed asS t = 2r f

u∞
, the numerical results given by Qu et al (see [62])

and the experimental law given in [79]. The simulations are performed on the domainΩ1. The numerical results fit
well the experimental data and the numerical reference solution up toRe= 150. Better results can be obtained by
further enlarging the computational domain. The velocity field and the vorticity show different structures when low
and high Reynolds numbers are considered. The vorticity contours are shown in Figure 15 forRe= 50 andRe= 125
at time t = 500. In the case ofRe= 125 the von Karman vortex street is fully developed while, for Re= 50, the
two initial vortices remain present behind the cylinder fora longer time. This is due to the low value of the Reynolds
number, taken close to the limit ofRe= 40 for the generation of the vortex street.

The time evolution of the generation of the von Karman vortexstreet is presented at several times forRe= 200 on
Ω2 in Figure 16.

Finally, in Figure 17 we report a comparison between the computational time needed per time step for the main
parts of the algorithm presented in this paper up to the timet = 10s usingRe= 100 onΩ1 if we employ a GMRES
method or the cheaper CG method for the solution of the linearsystem. Note that since our particular semi-implicit
DG discretization of the incompressible Navier-Stokes equations on staggered grids leads to a symmetric and positive-
definite linear system, we can employ the CG method. This is not always the case for DG schemes applied to the
incompressible Navier-Stokes equations since some formulations may also lead to non-symmetric linear systems.

The time required to compute the convective-viscous term represents in the second case the main computational
effort. Using the GMRES algorithm the computational time needed to solve the linear system increases a lot compared
to the CG method and becomes the main cost of the algorithm. Inparticular, the mean time to solve the system using
the GMRES algorithm is, for this test, 6.2swhile using the CG method is only about 1.0s. For all tests, the tolerance
for solving the linear system was set totol = 10−12. We underline that for a fair comparison of the two methods, no
preconditioners have been used and that faster convergencecan be obtained by using a proper preconditioner for each
iterative solver.

4. Conclusions

A new, spatially high order accurate semi-implicit DG scheme for the solution of the incompressible Navier-Stokes
equations on staggered unstructured non-orthogonal curved meshes has been proposed. The high order of accuracy
in space was verified and compared with reference solutions for polynomial degrees up top = 3. The numerical
results agree very well with the reference data for all test cases considered in this paper. The proposed numerical
method reduces to a classical semi-implicit finite-volume and finite-difference scheme on staggered meshes forp = 0.
Furthermore, the use of matrices that depend only on the geometry and on the polynomial degree and hence can
be precomputed before runtime, leads to a computationally efficient scheme. In addition, the resulting main matrix
results symmetric and positive definite for appropriate boundary conditions. This allows to use fast iterative methods
for the solution of the sparse linear system with a significant gain in terms of computational time.

Future research will concern the extension of the scheme to high order of accuracy also in time using a space-time
DG approach as well as the extension to the fully three-dimensional case on unstructured tetrahedral meshes.
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Figure 8: Velocity profiles (left) and streamlines (right) at several Reynolds numbers for the lid-driven cavity problem.
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