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Abstract A conformal mapping in a plane domain locally maps circles to cir-
cles. More generally, quasiconformal mappings locally map circles to ellipses
of bounded distortion. In this work, we study the corresponding situation for
solutions to Stein-Weiss systems in the (n + 1)D Euclidean space. This class
of solutions coincides with the subset of monogenic quasiconformal mappings
with nonvanishing hypercomplex derivatives (named M-conformal mappings).
In the theoretical part of this work, we prove that an M-conformal mapping
locally maps the unit sphere onto explicitly characterized ellipsoids and vice
versa. Together with the geometric interpretation of the hypercomplex deriva-
tive, dilatations and distortions of these mappings are estimated. This includes
a description of the interplay between the Jacobian determinant and the (hy-
percomplex) derivative of a monogenic function. Also, we look at this in the
context of functions valued in non-Euclidean Clifford algebras, in particular
the split complex numbers. Then we discuss quasiconformal radial mappings
and their relations with the Cauchy kernel and p-monogenic mappings. This
is followed by the consideration of quadratic M-conformal mappings. In the
applications part of this work, we provide the reader with some numerical
examples that demonstrate the effectiveness of our approach.
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1 Introduction

In the literature, quasiconformal mappings have applications in differential
geometry, mathematical physics, discrete group theory, and engineering. Qua-
siconformal mappings are an old subject, but due to their fundamental position
within mathematics they continue to play an important role for instance in
computer vision and graphics, surface classification, conformal field theory as
part of string theory, probability theory, and medical image analysis. In gen-
eral, the study of quasiconformal mappings is important for the construction of
analytic mappings with specified dynamics, mainly because they can be used
as coordinate system transformations in the treatment of partial differential
equations, see [4]. This applies in particular to 2D quasiconformal geometry,
where the powerful methods of complex analysis prove to be very helpful [27].
More recently, further progress has been made towards approximating the
recovery of boundary shapes of domains in which inverse problems are de-
fined, e.g. in scattering, diffraction problems and tomography [20–22]. These
applications have stimulated a surge of new techniques and have reawakened
interest among researchers in the past few years. A breakthrough in the theory
of quasiconformal mappings in the plane was made in the early 1930s by H.
Grötzsch [12], M.A. Lavrent’ev [25], L.V. Ahlfors [1], and O. Teichmüller [47].
Higher dimensional quasiconformal mappings were first introduced by M.A.
Lavrent’ev in 1938 [26], followed over a period of several years by a series
of famous works by L.V. Ahlfors [2], F.W. Gehring [10], and J. Väisälä [48,
49]. For a more extensive and detailed treatment of the subject, we refer the
interested reader to [42].

Clifford or Dirac analysis is the study of Dirac operators and the proper-
ties of the hypercomplex functions in the their kernels, so called monogenic
functions. Dirac operators studied here are generalizations of the Cauchy-
Riemann operators in the plane. Hence Dirac analysis is a generalization of
complex analysis and many phenomena in the plane have space extensions,
see [11]. The analytical theory of monogenic functions is an active area which
began some forty years ago. However, it is only recently that there has been
renewed interest in extending quasiconformal mappings to 3D (and higher di-
mensions) within the framework of Clifford (and quaternionic) analyses. Yet
a large number of investigations, see [9,13,24,28,46], have been carried out in
connection with studying monogenic functions by a corresponding differentia-
bility concept or by the existence of a well defined hypercomplex derivative.
All these approaches result in necessary and sufficient conditions for the hy-
percomplex derivability, generalizing different concepts from complex analysis.
Until now, further attempts to characterize monogenic functions via a gener-
alized conformality concept remain unresolved. A first result was shown in
the paper [29] based on a generalized aerolar derivative in the sense of Pom-
peiu. The relation between M-conformal mappings (M stands for monogenic)
and the geometric interpretation of the hypercomplex derivative complete the
theory of monogenic functions by providing an accounting for the still miss-
ing geometric characterization of those functions. The main tool in this paper
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is that M-conformal mappings preserve angles where angles must be under-
stood in terms of ”Clifford measures”. In [7] P. Cerejeiras et al. studied the
existence of local homeomorphims for quaternionic Beltrami-type equations,
and determined a necessary and sufficient criterion that relates the hypercom-
plex derivative of a quaternion monogenic function (from R4 to R4) and its
corresponding Jacobian determinant.

The understanding of monogenic functions as hypercomplex differentiable
functions leads to the question of which property generalizes the conformal-
ity of complex valued holomorphic functions. It is well known that in spaces
Rn+1 of dimension n ≥ 2 the set of conformal mappings is restricted to the
set of Möbius transformations and that the Möbius transformations are not
monogenic. Hence, one can only expect that monogenic functions represent
certain quasiconformal mappings. On the other hand, the class of all quasi-
conformal mappings is much bigger than the class of monogenic functions.
The question arises, do monogenic functions correspond to a special subclass
of quasiconformal mappings? The first general results were already shown by
H.G. Haefeli who proved in [18] that a monogenic function is related to cer-
tain hyperellipsoids. In the special case of M-conformal mappings from R3 to
R3, J. Morais et al., see [16], proved that a monogenic function valued in the
reduced quaternions (identified with R3) with nonvanishing Jacobian determi-
nant locally maps the unit sphere onto explicitly characterized ellipsoids and
vice versa; see also [33, Chap. IV] and [14,15]. Besides this, methods used in
[15] showed that these considerations also include the description of the inter-
play between the Jacobian determinant and the hypercomplex derivative of a
nonsingular monogenic function. Together with the geometric interpretation of
the (hypercomplex) derivative, dilatations and distortions of these mappings
could be estimated, see [15]. To progress in this direction, in [37] the coeffi-
cient of quasiconformality of those mappings was calculated explicitly. This is
particularly rewarding since the computation of this coefficient gives us the
information of the ratio of the major to minor axes of the aforementioned
ellipsoids. An important observation of [6] (cf. [5]) is that monogenic func-
tions can preserve some of the geometrical properties such as length, distance
or special angles, while mapping special domains onto the ball. Both papers
are mainly concerned with generalizations of the Bergman reproducing kernel
approach to numerical mapping problems analogous to the complex Bergman
kernel method of constructing the conformal mappings from a domain to the
disk; see also [36] for details about the geometric properties of a monogenic
Szegö kernel for 3D prolate spheroids. In this line of investigation, in [17] it
is proved that solid angles are not invariant under M-conformal mappings. It
is shown that the change of the solid angle depends on one real parameter
only. In particular, it is proved that a certain change of the solid angle is
necessary and sufficient for the property of the function to be monogenic and
orthogonal to the (infinite dimensional subspace) of paramonogenic constants
(i.e monogenic functions with identically vanishing hypercomplex derivative).
First global results were considered by H. Malonek et al. in [30,31]; see also [3,
8]. The authors studied the global behavior of higher dimensional analogues
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of the exponential function and the classical Joukowski transformation in the
quaternionic and Clifford analyses contexts.

In continuation of [35], we extend the results of [16] to the corresponding
situation in the (n + 1)D underlying Euclidean space. First, in Section 2 we
provide the relevant mathematical background of Clifford analysis and prove
some results for M-conformal mappings to be used throughout the paper. The
components of a monogenic function are harmonic. As such M-conformal map-
pings are then a subclass of harmonic mappings. Since we are interested in the
local distortion of monogenic functions it is natural to study linear mono-
genic spaces. We show that the Jacobi matrix associated with a nonsingular
monogenic function valued in a Clifford algebra is symmetric with identical
diagonal elements. The leading local distortion is then expressed by the corre-
sponding eigenvalues. Section 3 reviews 3D M-conformal mappings and some
of their properties. This is followed by the consideration of the local properties
of monogenic functions valued in a Clifford algebra. In the theoretical part of
this work, we prove that a monogenic function from Rn+1 to Rn+1 with non-
vanishing Jacobian determinant locally maps the unit sphere onto explicitly
characterized ellipsoids and vice versa (see Theorem 8 and Remark 7 below).
The relations of the semiaxes of the ellipsoids are then expressed through the
dimension of the underlying space. Together with the geometric interpretation
of the hypercomplex derivative, we deduce dilatations and distortions of these
mappings. This includes the description of the interplay between the Jacobian
determinant and the hypercomplex derivative of an M-conformal mapping (see
Theorem 11 below). Also, we look at this in the context of functions valued
in non-Euclidean Clifford algebras, in particular in C`1,0 (see Subsection 2.1
above) that is a projective space over the split complex numbers. This is a
natural space on which to develop a function theory. In Section 4 we discuss
quasiconformal radial mappings and their relations with the Cauchy kernel and
p-monogenic mappings. Then in Section 5 we discuss quadratic M-conformal
mappings. Finally, in Sections 6 and 7 we illustrate our approach using ex-
amples produced by Maple and show how these techniques extend to analytic
functions in non-Euclidean Clifford algebras.

The broader impacts of this study include the introduction of quasicon-
formal techniques into Clifford analysis. This will be fruitful both to enrich
the understanding of the geometrical properties of these analytic space map-
pings and as tools in such applications of Clifford analysis as image processing
and shape analysis. These connections will be revealed to mathematicians,
who are working now in what has been largely separate areas, through subse-
quent publications. The approach we take in deriving the local distortion of
M-conformal mappings is more involved that the one in [16], as is not dictated
by the dimension of the underlying space. The derivation of those properties
is also different than those suggested in [16], and is based on certain classical
algebraic manipulations using matrix representations. Of course it is expected
that the popularity of M-conformal mappings will grow in the future, due to
their promising applications in many areas such as in elliptic partial differential
equations and differential geometry.
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2 Mathematical Preliminaries

2.1 Notations and Terminology

The present subsection collects some definitions and summarizes several alge-
braic facts of a special Clifford algebra of signature (0, n) to be used in the
rest of the paper.

Let C`0,n be the real universal Clifford algebra over R. This Clifford algebra
is generated over R by the standard basis {e0, e1, e2, . . . , en} subject to the
following relations:

eiej + ejei = −2δije0, i, j = 1, . . . , n.

We write e0 for 1. The dimension of C`0,n is 2n. We have an increasing tower
R ⊂ C ⊂ H ⊂ C`0,3 ⊂ · · ·. Here H denotes the skew field of Hamiltonian
quaternions.

Remark 1 The Clifford algebra C`1,0 is spanned by 1 and j where j2 = 1.
Therefore C`1,0 is isomorphic, as an associative algebra, to the split complex
numbers. With the definitions j± = (1 ± j)/2, the set {j+, j−} is a basis
of C`1,0 with the properties: (j+)2 = j+, (j−)2 = j−, j+j− = j−j+ = 0,
j̄+ = j−, and j+ + j− = 1.

The Clifford algebra C`0,n is a graded algebra as C`0,n = ⊕l C`l0,n where

C`l0,n are those elements whose reduced Clifford products have length l. We

use the conjugation (ej1 . . . ejl) = (−1)lejl . . . ej1 .
For any A ∈ C`0,n, Sc(A) denotes the scalar part of A, that is the coefficient

of the element e0. The scalar part of a Clifford inner product, Sc(AB), is the
usual inner product in R2n when A and B are identified as vectors. We will
denote this usual inner product as 〈A,B〉. From now on we will identify Rn+1

with the paravector space

An := spanR{1, e1, e2, . . . , en} ≡ C`00,n ⊕ C`10,n ⊂ C`0,n.

The elements of An are usually called paravectors, and are of the form

x := x0 + x1e1 + · · ·+ xnen.

Let Ω denote an open subset of Rn+1 with a piecewise smooth boundary which
contains the origin. Throughout the paper, we consider functions An-valued
defined in Ω, i.e. functions of the form

f(x) := u0(x) +

n∑
i=1

ui(x)ei,

where each ul ∈ C∞(Ω) (l = 0, . . . , n) is a function real-valued defined in
Ω. The conjugate of f is given by f = u0 −

∑n
i=1 ui(x)ei, and the norm |f |

of f is defined by |f |2 = ff = ff =
∑n
l=0 u

2
l . Properties (like integrability,

continuity or differentiability) that are ascribed to f have to be fulfilled by all
components ul.



6 J. Morais, C.A. Nolder

We further introduce the linear Hilbert space of square integrable functions
An-valued defined in Ω, that we denote by L2(Ω;An). Now, let Bn+1 denote
the open unit ball in Rn+1. In this assignment, the scalar inner product is
defined by

< f, g >L2(Bn+1;An) :=

∫
Bn+1

Sc(f g) dV , (1)

where dV denotes the volume of Bn+1 normalized so that V (Bn+1) = 1.
We write M(n+1)(R) for the space of (n+1)×(n+1) real matrices. With ma-

trix addition M(n+1)(R) is a real vector space of dimension (n+ 1)2. We write
the (n+ 1)× (n+ 1) reflection matrix as Rn = diag(−1, 1, . . . , 1) throughout.
Notice that detRn = −1. Further we use the mapping

φ : M(n+1)(R) −→M(n+1)(R)

defined as φ(A) := RnA. The mapping φ is a linear automorphism ofM(n+1)(R).
We define the linear space of linear functions taking values in An, by

Ln := {f(x) = (1, e1, . . . , en)AxT |A ∈M(n+1)(R)}.

The map ψ : M(n+1)(R) −→ Ln defined as

ψ(A) := (1, e1, . . . , en)AxT

is a linear isomorphism. As such dim Ln = (n+ 1)2. Via ψ, the action of φ on
M(n+1)(R) lifts to Ln as negative Clifford conjugation.

For the sake of completeness, we now recall some more definitions and
notations which will be needed through the text. We will make use of the
generalized Cauchy-Riemann operator

Dn =
∂

∂x0
+

n∑
i=1

ei
∂

∂xi
,

with conjugate

Dn =
∂

∂x0
−

n∑
i=1

ei
∂

∂xi
.

The operators Dn and Dn correspond, respectively, to the generalization of

the classical Cauchy-Riemann operator ∂z = 1
2

(
∂
∂x + i ∂∂y

)
and its conjugate

∂z = 1
2

(
∂
∂x − i

∂
∂y

)
, z = x+ iy ∈ C.

For a real-differentiable function f : Ω ⊂ Rn+1 → An that has continuous
first partial derivatives, we define the linear paravector-valued monogenic and
anti-monogenic function spaces, respectively, by

Mn := {f ∈ Ln |Dnf = 0 in Ω},

and

Mn := {f ∈ Ln |Dnf = 0 in Ω}.
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More generally,

Definition 1 Let p 6= 1. A function f : Ω → An is p-monogenic in Ω when
Dn(|f |p−2f) = 0 in Ω.

The p-Cauchy-Riemann equation has interesting conformal invariance prop-
erties and was introduced in [38]. See also [39] and [40] for more general such
nonlinear equations.

An important observation shows that the equations

Dnf = fDn = 0

are equivalent to the system

(R)



n∑
l=0

∂ul
∂xl

= 0 ,

∂um
∂xl

− ∂ul
∂xm

= 0 (m 6= l, 0 ≤ m, l ≤ n),

or, equivalently, in a more compact form:{
div f = 0

rot f = 0
.

Recall that f is said to be a Riesz system of conjugate harmonic functions
in the sense of Stein-Weiß [44,45], and system (R) is called the Riesz system
[43]. It is a historical precursor that generalizes the classical Cauchy-Riemann
system in the plane.

Remark 2 In the case of split complex numbers we define the operators O =
∂x − j∂y, with conjugate O = ∂x + j∂y. Notice that they factor the wave
equation OO = ∂2x − ∂2y .

Definition 2 A function f : Ω ⊂ R2 → C`1,0 is split analytic in Ω when
Of = 0 in Ω.

Definition 3 A function f : Ω ⊂ R2 → C`1,0 is hyperharmonic in Ω if (∂2x −
∂2y)f = 0 in Ω.

Remark 3 It is clear that the components of a split analytic function are hy-
perharmonic.

A central property in the theory of monogenic functions is the hypercom-
plex derivability. This question was first studied by A. Sudbery [46] for mono-
genic functions from R4 to H and I. Mitelman and M. Shapiro in [32]. In 1999
it was shown in the paper [13] that 1

2Dnf defines the hypercomplex derivative
of a monogenic function in all dimensions.

Definition 4 Let f be a monogenic An-valued function. ( 1
2Dn)f is called

hypercomplex derivative of f .
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2.2 Influence of the Linear Part of a Monogenic Function

For brevity, assume in the sequel that f : Ω → An is such that f(0) = 0.
It is then clear that the invariance of the origin guarantees that the interior
of a ball will be mapped to the interior of the image domain. Furthermore,
let Jf (x) = det

(
∂xjui

)n
i,j=0

be the functional determinant (”Jacobian”) of f .

The Jacobian is positive for sense preserving and negative for sense reversing
mappings. Hence f − f(a) has the Taylor series near the point a ∈ Ω

f(x) = T1(x) +R(x).

Here T1 is the first order Taylor polynomial of f and R denotes the remaining
part. For simplicity of presentation, we assume that a = 0. We use this simpli-
fication because the displacement of center of the image domain will not add
anything essential. Notice that DnR(0) = 0. Hence

Dnf(0) = DnT1(0).

Moreover, f and T1 have the same Jacobi matrix and therefore the same Jaco-
bian at 0, Jf (x)|x=0, as mappings from Ω into Rn+1. Hence the linearization
T1 determines the local distortion of the mapping. Since the mappings we
consider here are smooth, they are quasiconformal in a domain when they are
homeomorphisms with bounded local dilatation throughout the domain. We
will calculate these dilatations by computing eigenvalues.

Definition 5 A function f : Ω → An realizes an M-conformal mapping if it
has a nonvanishing hypercomplex derivative.

Remark 4 Since we have the factorization DnDn = DnDn = 4n, the M-
conformal mappings are a subclass of the harmonic mappings.

Example 1 The function f(x) = (2x0, x1, x2) is an example of an M-conformal
mapping in R3 since 2x0 + x1e1 + x2e2 is monogenic. The reflection g(x) =
(x0, x1, x2,−x3) is a monogenic mapping in R4.

To proceed further we formulate the following auxiliary results.

Theorem 1 Assume that f ∈ Ln. Then f ∈Mn with matrix A if and only if
Ã = RnA is symmetric and traceless. Whereas f ∈ Mn with matrix B if and
only if B is symmetric and traceless.

Theorem 2 The mapping η :Mn →Mn given by

η(f) := ψ ◦ φ ◦ ψ−1(f) = ψ ◦ φ(A) = ψ ◦RnA

is a linear isomorphism.

Remark 5 We have that dim Mn = (n+1)(n+2)
2 − 1 = n(n+3)

2 .
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Definition 6 We define the space of paramonogenic mappings, as

Hn :=Mn

⋂
Mn.

Since Dn+Dn = 2 ∂
∂x0

, the paramonogenic maps are independent of x0. In
the plane this space contains only the zero map. The matrix representations
of functions in Hn are of the form A = diag(0, B) where B is symmetric and
traceless. For example when n = 2 they have the form

A =

0 0 0
0 a b
0 b −a

 (a, b ∈ R).

We have that dim Hn = (n−1)(n+2)
2 .

Theorem 3 Let f ∈Mn. The following conditions are equivalent:

1. f ∈ Hn;

2. RnA = A;

3. A = diag(0, B), Rn−1B ∈Mn−1.

With 〈f, g〉L2(Bn+1;An) defined as (1), Ln, and its subspaces Mn and Hn,
are inner product spaces.

Definition 7 For a subspace H ⊂ Ln the orthogonal complement is

H⊥ := {f ∈ Ln | 〈f, g〉L2(Bn+1;An) = 0, ∀ g ∈ H}.

We further define the following linear function subspaces: Qn := H⊥n
⋂
Mn

and Qn := H⊥n
⋂
Mn. We are thus led to the following result.

Theorem 4 Assume that f ∈ Ln. Then

Qn = {f ∈ Ln |ψ−1(f) = diag(na, a, . . . , a), a ∈ R}.

We end this section by recalling some definitions and notations which will
be needed later in the text.

Definition 8 Let Ω1 and Ω2 be open subsets of Rn+1 and f : Ω1 → Ω2 a
diffeomorphism. When f ∈ Mn or Mn with matrix A so that detA 6= 0, we
define the inner and outer dilatations of f respectively by

dI(f) :=
|λ1 · · · λn+1|

(minj |λj |)n+1
, dO(f) :=

(maxj |λj |)n+1

|λ1 · · · λn+1|
,

where the λi’s are the eigenvalues of RnA. The maximum dilatation of f is
defined by d(f) := max{dI(f), dO(f)}. More generally, if f is monogenic, then
we define d(f) = d(T1).

Definition 9 Let Ω1 and Ω2 be open subsets of Rn+1 and f : Ω1 → Ω2 a
diffeomorphism. The mapping f ∈Mn or Mn is said to be quasiconformal if
d(f) is bounded in Ω1. It is K-quasiconformal if d(f) ≤ K <∞.

Theorem 5 If f ∈ Qn or Qn with Jf (x)|x=0 6= 0, then d(f) = nn.



10 J. Morais, C.A. Nolder

3 An Insight into M-Conformal Mappings

3.1 The Situation in R3 Revisited

One of the most interesting points of a holomorphic function is that it real-
izes in a domain Ω ⊂ R2 a conformal mapping providing that its complex
derivative exists and is not equal to zero in Ω. This usual treatment includes
the description of the connection between the Jacobian determinant and the
derivative of such a function.

Suppose that

f : Ω ⊂ R2 → C ∼= A1, f := a0x0 + a1x1 + (b0x0 + b1x1)e1,

with Jf (x)|x=0 6= 0. Here D1 = ∂
∂x0

+ e1
∂
∂x1

. Then D1f = 0 implies that

f = Ax, where A =

(
a0 a1
−a1 a0

)
. In this case we have

A =

(
−1 0
0 1

)
O
(
−
√
a20 + a21 0

0
√
a20 + a21

)
OT ,

where O is the orthogonal matrix of eigenvectors. Hence A is the composition
of a dilation with reflections and so maps circles to circles. If instead we have

D1f = 0, then f(x) = Ãx, where Ã =

(
−1 0
0 1

)
A.

The question that led to [16] was to check whether monogenic mappings
from R3 to R3 can also be characterized by some directly visible geometric
properties. As shown in [16] there is a great difference in the geometric prop-
erties of holomorphic 2D conformal mappings and 3D M-conformal Mappings;
see also [33, Chap. IV]).

Take a general linear function A2-valued

f(x0, x1, x2) = a0x0 + a1x1 + a2x2 + (b0x0 + b1x1 + b2x2)e1

+ (c0x0 + c1x1 + c2x2)e2

with Jf (x)|x=0 6= 0. Here D2 = ∂
∂x0

+ e1
∂
∂x1

+ e2
∂
∂x2

. The condition D2f = 0
implies that

A =

(b1 + c2) a1 a2
−a1 b1 b2
−a2 b2 c2

 =

−1 0 0
0 1 0
0 0 1

O
λ1 0 0

0 λ2 0
0 0 λ3

OT . (2)

We may assume that λ1 ≥ λ2 ≥ λ3. Hence A maps the unit sphere onto
a specific type of ellipsoids with the property that the length of one of the
semiaxes is equal to the sum of the other two.

If instead we have D2f = 0, then f(x) = Ãx, where

Ã =

−1 0 0
0 1 0
0 0 1

A.
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Collecting these ideas, in [16] it is shown that f : R3 → A2 realizes locally in
the neighborhood of a fixed point x = x∗ an M-conformal mapping if and only
if Jf (x)|x=x∗ 6= 0. More precisely,

Theorem 6 Let f be a real analytic mapping from R3 to A2 with Jf (x)|x=0

6= 0. Then, f is monogenic if and only if it locally maps small balls onto
ellipsoids with the property that the length of one of the semiaxes is equal to
the sum of the other two.

Besides this, Morais et al. in [37] computed the coefficient of quasiconfor-
mality of those mappings. From the point of view taken here, this is particu-
larly rewarding since the computation of this coefficient gives us the informa-
tion of the ratio of the major to minor axes of the aforementioned ellipsoids.
Further, dilatations and distortions of these mappings were estimated in [15].
In [17] it is proved that solid angles are not invariant under M-conformal
mappings. It is shown that the change of the solid angle depends on one real
parameter only. In particular, it is proved that M-conformal mappings orthog-
onal to all paramonogenic constants admit a certain change of solid angles and
vice versa; that change can characterize such mappings. In spite of the fact
that, M-conformal mappings are not conformal in the Gauss sense (i.e they do
not preserve angles between curves, in general) we could show that there exist
certain planes on R3 in which those mappings behave like conformal mappings
in the complex plane, see [17].

We can say a little more. As pointed out in [16], there is a special geometric
characterization of the subclass of monogenic mappings that are orthogonal
to the (infinite dimensional subspace) of paramonogenic constants. Next we
formulate the result.

Theorem 7 Let f be a real analytic mapping from R3 to A2 with Jf (x)|x=0

6= 0 and such that (1/2D2)f(x)
∣∣
x=0
∈ R \ {0}. Then, f is monogenic if and

only if it locally maps small balls onto prolate spheroids with the property that
the length of one of the semiaxes is the double of the other semiaxes.

It is well known that for holomorphic functions f , it is a classical result
that the condition f ′(z0) 6= 0 is both necessary and sufficient to ensure that
f realizes a local conformal mapping at the point z0. Since in this case the
Jacobian is Jf (z) = |f ′(z)|2, it says that the Jacobian of f cannot vanish at
any point and does not depend on the direction of f ′(z).

Remark 6 If f : R3 → A2 is monogenic and orthogonal to the paramonogenic
constants then it holds:

Jf (x)|x=0 6= 0 ⇐⇒ (
1

2
D2)f(x)

∣∣∣∣
x=0

6= 0.

The last remark relates the characterization of M-conformal mappings by
means of the Jacobian, as is usual in the general theory of quasiconformal map-
pings, with the hypercomplex derivative. These characterizations are equiva-
lent in the mentioned subclass but not ”identical” as in classical complex
analysis.
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3.2 The Nonsingular Case

In the present subsection we extend the above results to the corresponding
situation in Rn+1 when n > 2. More precisely, in Theorem 8 below we show
that every f ∈Mn with nonvanishing Jacobian determinant locally maps the
unit sphere onto explicitly characterized ellipsoids and vice versa. To do so,
we need the following technical lemma.

Lemma 1 Let ∆ = diag(λ1, . . . , λn+1). We assume that ∆ is traceless, λ1 ≥
· · · ≥ λn+1 and that det∆ < 0. We have the possibilities:

1. if n = 2m so that n+ 1 = 2m+ 1 then

λ1 + · · ·+ λ2p = −(λ2p+1 + · · ·+ λ2m+1),

for p = 1, . . . ,m, m = 1, 2, . . . ;

2. if n = 2m+ 1 so that n+ 1 = 2m+ 2 then

λ1 + · · ·+ λ2p−1 = −(λ2p + · · ·+ λ2m+2),

for p = 1, . . . ,m+ 1, m = 0, 1, . . . .

Similar results hold when det∆ > 0.

Proof Newton’s identities (Vieta’s formulae) relate the eigenvalues of ∆ in the
following way: det∆ = λ1 · · ·λn+1, and tr∆ = λ1 + · · ·+λn+1 = 0. Hereby tr∆
denotes the trace of ∆. Since det∆ < 0, we have an odd number of negative
eigenvalues and with ordered eigenvalues we must then have λn+1 < 0. Since
tr∆ = 0, we must have at least one positive eigenvalue. We then get the
conditions on the eigenvalues.

For convenience, in what follows, we will restrict ourselves to ellipsoids
centered at the origin. In fact, this assumption involves no loss of generality
if the center is known since, given a noncentered ellipsoid, we may always
translate our coordinate system and therefore recover the centered case. We
are thus led to the following result that generalizes the results in [16]:

Theorem 8 Suppose that f ∈ Mn with matrix A and detA > 0. Then f
maps the unit sphere onto an ellipsoid. If we assume that the semiaxes are
ordered as A1 ≥ A2 ≥ · · · ≥ An+1 > 0, then there is a permutation σ ∈ Sn+1

so that with Bk = σ(Ak) one of the following holds:

1. if n = 2m, so that n+ 1 = 2m+ 1 we have the possibilities

B1 + · · ·+B2p = B2p+1 + · · ·+B2m+1,

for p = 1, . . . ,m, m = 1, 2, . . . ;

2. if n = 2m+ 1, with n+ 1 = 2m+ 2, then

B1 + · · ·+B2p−1 = B2p + · · ·+B2m+2,

for p = 1, . . . ,m+ 1, m = 0, 1, . . . .
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Moreover, given numbers A1 ≥ A2 ≥ · · · ≥ An+1 > 0 and a permutation
σ ∈ Sn+1 with Bk = σ(Ak) such that {Bk} satisfies one of the conditions in 1.
or 2., there is a function f ∈ Mn, such that f maps the unit sphere onto an
ellipsoid whose axes satisfy the condition. Similar results hold when detA < 0.

Proof Suppose that Dnf = 0. Then Ã = RnA is symmetric and traceless.
Hence A = RnO∆OT where ∆ is diagonal. Notice that det∆ = det Ã =
−detA. The absolute value of the eigenvalues are the lengths of the semiaxes
of the image of the unit sphere. The converse results for example using diagonal
matrices.

Remark 7 It is interesting to note that in the cases n+1 = 4m+2 it is possible
for there to be an equal number of positive and negative eigenvalues and it is
then also possible for them to have equal absolute values. In this case ∆ is a
dilation with reflections.

Remark 8 This result allows us to describe M-conformal mappings as a special
class of quasiconformal mappings. If we visualize quasiconformal mappings in
Rn+1 by points, given by the lengths of the semiaxes of the associated ellip-
soids, then the monogenic functions (with nonvanishing Jacobian determinant)
can be seen as an nD manifold in Rn+1.

At this stage it seems natural to ask whether or not there exists another
formulation of Theorem 8 for M-conformal mappings, depending on properties
of the hypercomplex derivative. We begin with the preliminary result:

Lemma 2 Suppose that f ∈Mn. Then we have

Jf (x)|x=0 6= 0 =⇒ (
1

2
Dn)f(x)|x=0 6= 0.

Proof We can follow directly the ideas from [7]. If ( 1
2Dn)f(x)|x=0 = 0 then

we get immediately from the monogenicity that ∂f
∂x0

= 0 and this implies
Jf (x)|x=0 = 0.

We now estimate the distortions of an M-conformal mapping. For the es-
timation of the terms max|x|=r |f(x) − f(0)| and min|x|=r |f(x) − f(0)| it is
enough to consider only |

∑n
l=0 xl ∂xlf(x)|x=0| for the maximum and mini-

mum on the surface of the ball |x| = r. A direct computation shows that

(λ2)min ≤
∣∣( 1

2Dn)f
∣∣2 ≤ tr(JTf Jf ) =

∑n+1
i=1 λ

2
i . We remark that because of the

monogenicity
∑n+1
i=1 λi = 0 holds and, furthermore, the eigenvalues are related

to each other by Theorem 8. On the other hand, using the Rayleigh-quotient
it follows that

(λ2)min = min
|x|6=0

XT (JTf Jf )X

XTX
≤
Y T (JTf Jf )Y

Y TY
, Y ∈ Rn+1.

By choosing Y = (1, 0, . . . , 0)T we get finally√
(λ3)min∏n+1
i6=min λi

√
|Jf (0)| ≤

∣∣∣∣(1

2
Dn)f

∣∣∣∣2 ≤ ∑n+1
i=1 λ

2
i√∏n+1

i=1 λi

√
|Jf (0)|
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as well as√
(λ3)min∏n+1
i 6=min λi

∣∣∣∣(1

2
Dn)f

∣∣∣∣2 ≤√|Jf (0)| ≤
∑n+1
i=1 λ

2
i√∏n+1

i=1 λi

∣∣∣∣(1

2
Dn)f

∣∣∣∣2 .
These inequalities show the equivalence of the Jacobian determinant and the
hypercomplex derivative of a monogenic function.

Using the above results we summarize.

Theorem 9 Let A be an (n+ 1)× (n+ 1) nonsingular matrix with detA > 0
so that RnA is symmetric and traceless and define f(x) = Ax. Then f ∈Mn

and f is an M-conformal mapping of Rn+1 to itself. If further A is orthogonal,
then RnA is also orthogonal, and since it is also symmetric, f is a reflection
and so is conformal. Notice in this case f maps the unit ball to itself. Similar
results hold when detA < 0.

Theorem 9 is not only true for linear mappings, but hold for general mono-
genic mappings as well because their local behaviors are completely determined
by their linear parts. From the point of view taken here, this result provides a
novel and promising way to a deeper understanding of M-conformal mappings
as tools for quasiconformal mappings in higher dimensions. Just as impor-
tantly, it can be used later to describe the global behavior of these mappings.

3.3 Orthogonal Spaces

In our point of view there are several arguments to accept the class of mono-
genic An-valued functions orthogonal to the subspace of paramonogenic map-
pings, Hn, as very well-adapted to the class of holomorphic functions in the
plane (for an account of such an argument, see [14,15] and [33, Chap. III]).
The question arises as to whether there is a special geometric characterization
of this subclass of M-conformal mappings. The answer is given in the following
theorem.

Theorem 10 Suppose that f ∈Mn so that (1/2Dn)f(x)
∣∣
x=0
∈ R\{0}. Then

f is orthogonal to the subspace of paramonogenic mappings if and only if it
assymptotically maps the unit sphere onto a prolate spheroid with the property
that the length of one of the semiaxes is an n-multiple of the other semiaxes.

Proof The proof follows from Theorems 4 and 8.

In the sequel, we describe the interplay between the Jacobian determinant
and the hypercomplex derivative of this subclass of M-conformal mappings.

Theorem 11 Suppose that f ∈ Mn. If f is orthogonal to the subspace of
paramonogenic mappings then we have

Jf (x)|x=0 6= 0 ⇐⇒ (
1

2
Dn)f(x)

∣∣∣∣
x=0

6= 0.
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Proof For the reverse we manage it by indirect proof. As in the complex case,
we assume the initial condition (1/2Dn)f(x)

∣∣
x=0
∈ R \ {0}. From Theorem 4

we know that a general linear monogenic An-valued function orthogonal to the
subspace of paramonogenic mappings has the form a(nx0 +

∑n
i=1 xiei), with

a ∈ R. Hence it is clear that for the first step in the approximation process

Jf (x)|x=0 = 0 implies
∣∣( 1

2Dn)f
∣∣2 = 0, hence Jf (x)|x=0 = 0 does not depend

on the direction of ( 1
2Dn)f (compare for the R4 case with [7]).

4 Radial Mappings and the Cauchy Kernel

This section discusses quasiconformal radial mappings and their relations with
the Cauchy kernel and p-monogenic mappings.

The radial mappings, for α 6= 1, given by

ρ(x) =
x

|x|α
,

where |x|2 = x20 + x21 + · · ·+ x2n, are diffeomorphisms from Rn+1\{0} to itself.
It is the conformal inversion when α = 2. Otherwise it is quasiconformal. It
shall be noted that this map can be realized as a p-monogenic mapping (see
[21]), namely if

Cα(x) = Φ(ρ(x)) =
x̄

|x|α
,

then we have Dn|Cα(x)|(p−2)Cα(x) = 0, where p = (α+n−1)
(α−1) . When α = n +

1, so that p = 2, then the conjugated radial map is the classical Cauchy
kernel and is monogenic outside the origin. If α = 2, then p = n + 1 and the
reflected conformal inversion satisfies the (n+1)− Cauchy-Riemann equation;
when 0 < α < 1, Cα(x) is a p-monogenic quasiconformal mapping of the unit
ball B(n+1) onto itself. The dilatations of Cα(x) can be explicitly calculated
from its eigenvalues. Notice that these dilations depend only on α and n. The
eigenvectors determine the directions of the distortions.

Theorem 12 The dilatation of Cα(x) is nn at each point of Rn+1\{0}. Hence
Cα(x) is nn-quasiconformal. Moreover, the distortion is in the radial direction.

Proof It is clear that Cα(x) is injective. A straightforward calculation shows
that for |y| = 1 and c > 0,

RnC′α(cy) = (y, u1, . . . un)M (y, u1, . . . , un)T ,

where

M :=


(α− 1)c−α 0 · · · 0

0 −cα · · · 0
...

...
. . .

...
0 0 . . . −cα


and {u1, . . . , un} is any orthonormal basis of the −cα eigenspace.
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Next we describe the 3D-case in some detail. For x ∈ R3, a direct compu-
tation shows that

C′α(x) =
1

r(α+2)

r2 − αx20 −αx0x1 −αx0x2
αx1x0 −r2 + αx21 αx1x2
αx2x0 αx2x1 −r2 + αx22

 ,

and so

C′α(1, 0, 0) = R2

α− 1 0 0
0 −1 0
0 0 −1

 ,

C′α(
1√
3
,

1√
3
,

1√
3

) = R2

α
3 − 1 α

3
α
3

α
3

α
3 − 1 α

3
α
3

α
3

α
3 − 1


The eigenvalues are again α − 1,−1,−1. It is notable that the distortion is
in the radial direction. A special case for Dirac analysis is the Cauchy kernel
when α = n+ 1.

For example when α = 3, we find

Example 2 For x ∈ R3, let

C′3(x) =


1
|x|5 0 0

0 1
|x|5 0

0 0 1
|x|5


|x|2 − 3x20 −3x0x1 −3x0x2

3x1x0 −|x|2 + 3x21 3x1x2
3x2x0 3x2x1 −|x|2 + 3x22

 .

Moreover, the Jacobian is given by JC3(x) = − 2
|x|9 . For example, we find

C′3(1, 0, 0) = R2

2 0 0
0 −1 0
0 0 −1

 ,

and

C′3(
1√
3
,

1√
3
,

1√
3

) =

0 −1 −1
1 0 1
1 1 0

 = R2

0 1 1
1 0 1
1 1 0


= R2O

2 0 0
0 −1 0
0 0 −1

OT
where

O =


1√
3

1√
2

√
2

2
√
3

1√
3
− 1√

2

√
2

2
√
3

1√
3

0 −
√
2√
3

 .

Hence the Cauchy kernel in R3 has dilatation 4 at each point in R3\{0}.
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5 Numerical Examples

In this section we present a few numerical examples, produced by Maple, for
computing the image of spheres of a given radius under a special subclass of
nonlinear M-conformal mappings.

It would seem natural to begin the investigation of mappings built up from
two simple types of functions such as were discussed in Sections 3 and 4. We
shall take up the sum of a linear monogenic mapping and the classical Cauchy
kernel, whose study will require us to master a new situation. We define the
new subclass of nonlinear M-conformal mappings in R3 as follows:

Definition 10 Let P be a monogenic linear mapping whose Jacobian is given
by (2), and C3(x), the Cauchy kernel. Then

w : Ω ⊂ R3\{0} → A2, w(x) := P (x) + C3(x), (3)

is called MR-conformal mapping in R3 (R stands for radial); w(x) is monogenic
outside the origin.

Let x ∈ R3\{0}. A direct computation shows that

w′(x) =


b1 + c2 +

|x|2−3x2
0

|x|5 a1 − 3x0x1 a2 − 3x0x2

−a1 + 3x1x0 b1 − |x|
2−3x2

1

|x|5 b2 + 3x1x2

−a2 + 3x2x0 b2 + 3x2x1 c2 − |x|
2−3x2

2

|x|5

 ,

for ai, bi, c2 ∈ R (i = 1, 2). To facilitate our description, three distinct cases
now present themselves:

(i) if P is a paramonogenic mapping then b1 + c2 = 0, and ai = 0 (i = 1, 2).
A direct computation shows that

w′(1, 0, 0) = R2O

−2 0 0

0 −1 +
√
b21 + b22 0

0 0 −1−
√
b21 + b22

OT .
where O denotes the orthogonal matrix of eigenvectors. The eigenvalues
are −2, and −1±

√
b21 + b22. It is notable that the distortion is in the radial

direction;

(ii) if P is orthogonal to the subspace of paramonogenic mappings then b1 = c2,
and b2 = 0. It follows that

w′(1, 0, 0)

= R2O

b1 − 1 0 0

0 3(b1−1)
2 +

√
(b1 − 1)2 + 4(a21 − a22) 0

0 0 3(b1−1)
2 −

√
(b1 − 1)2 + 4(a21 − a22)

OT ;
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(iii) if P is orthogonal to the subspace of paramonogenic mappings and such
that (1/2D2)P (x)

∣∣
x=0
∈ R \ {0} then

w(x0, x1, x2) =

(
2b1 +

1

|x|3

)
x0 +

(
b1 −

1

|x|3

)
(x1e1 + x2e2) ,

with b1 ∈ R. In this case we have

w′(1, 0, 0) = R2

2b1 − 2 0 0
0 b1 − 1 0
0 0 b1 − 1

 .

We shall find it useful to introduce spherical coordinates (ρ, θ, ϕ), by setting
x0 = ρ sinϕ, x1 = ρ cosϕ cos θ, and x2 = ρ cosϕ sin θ, with ρ = |x| > 0, the
radius of the sphere, θ the longitude so that −π ≤ θ ≤ π, and ϕ the latitude
(not, like usually, the polar angle α = π

2 −ϕ or co-latitude), −π/2 ≤ ϕ ≤ π/2.
Let w = w0 + w1e1 + w2e2; the mapping inferred from (3) by implementing
the above coordinates, can be expressed by

w0 =

[
(b1 + c2)ρ+

1

ρ2

]
sinϕ+ a1ρ cosϕ cos θ + a2ρ cosϕ sin θ,

w1 = −a1ρ sinϕ+

(
b1ρ−

1

ρ2

)
cosϕ cos θ + b2ρ cosϕ sin θ,

w2 = −a2ρ sinϕ+ b2ρ cosϕ cos θ +

(
c2ρ−

1

ρ2

)
cosϕ sin θ.

This will give us a geometric picture of the mapping. From the geometrical
and practical point of view, we are interested to map spheres to a domain in
R3 (not necessarily a sphere). We can directly see that, in general, spheres
are transformed onto ellipsoids. With a suitable choice of parameters and de-
pending on the value of ρ, 0 < ρ < ∞, we obtain oblate spheroids or prolate
spheroids and for special limit cases even a sphere and the twofold-mapped S1,
including its interior, in the hyperplane w0 = 0. We shall not carry through
the details of such mappings, as this would lead us too far afield here. We
shall, however, give a few examples that give us an insight into their geomet-
ric properties. Further investigations on this topic are now under investigation
and will be reported in a forthcoming paper.

Remark 9 One fact that should be stressed here is that for a suitable choice
of inputs to the Jacobian (2) the function (3) coincides (up to a real con-
stant) with the 3D Joukowski monogenic transformation introduced in [31]
(see Property (iii) above and Example 5 below).

We use this insight to motivate our numerical procedures for computing
the image of spheres under w(x). Let us take up a first example.
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Example 3 Take a mapping w(1) : Ω ⊂ R3\{0} → A2, which satisfies Property
(i) above:

w(1)(ρ, θ, ϕ) =
sinϕ

ρ2
+

[(
ρ− 1

ρ2

)
cosϕ cos θ + ρ cosϕ sin θ

]
e1

+

[
ρ cosϕ cos θ −

(
ρ+

1

ρ2

)
cosϕ sin θ

]
e2.

The next three figures visualize the image of a sphere whose radii are 1, 1
2 ,

and 3
√

4 under the mapping function w(1). Notice that a sphere of radius ρ = 1
is mapped onto an oblate spheroid; a sphere of radius ρ = 1

2 is mapped onto

an ellipsoid, and a sphere of radius ρ = 3
√

4 is mapped onto a tri-axial ellipsoid.
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Example 4 Take a mapping w(2) : Ω ⊂ R3\{0} → A2, which satisfies Property
(ii) above:

w(2)(ρ, θ, ϕ) =

(
−2ρ+

1

ρ2

)
sinϕ+ ρ cosϕ cos θ −

(
ρ+

1

ρ2

)
cosϕ sin θe2

−
[
ρ sinϕ+

(
ρ+

1

ρ2

)
cosϕ cos θ

]
e1.

The next three figures visualize the image of a sphere whose radii are 1, 1
2 ,

and 3
√

4 under w(2). All spheres are mapped onto an ellipsoid.
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We now consider a mapping w(3) : Ω ⊂ R3\{0} → A2, which satisfies
Property (iii) above. Notice that this function coincides (up to a real constant)
exactly with the aforementioned Joukowski transformation. For more details
the interested reader is suggested to check some of the existing pioneering
works, see [3,31].

Example 5 Take

w(3)(ρ, θ, ϕ) =

[
ρ− 1

ρ2

]
sinϕ+

(
ρ

2
+

1

ρ2

)
cosϕ (cos θe1 + sin θe2) .

The discussion of this function offers no particular difficulty. As the next three
figures illustrate, the unit sphere ρ = 1 is mapped into cosϕ(cos θe1 + sin θe2),
i.e. the twofold-mapped S1, including its interior, in the hyperplane w0 = 0;
a sphere of radius ρ = 1

2 is mapped onto an oblate spheroid, and a sphere of

radius ρ = 3
√

4 is mapped onto a sphere of radius 4
3 .
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6 Quadratic M-Conformal Mappings

This section discusses the concept of quadratic M-conformal mapping and
presents some numerical examples showing the image of the unit sphere under
special quadratic monogenic functions.

We begin with the following definition.

Definition 11 A mapping g : Rn+1 → An is quadratic M-conformal when it
is of the form

g(x) :=
(
xA0x

t, . . . , xAnx
t
)

(4)

where Ai (i = 0, . . . , n) are symmetric (n + 1) × (n + 1) real matrices. The

Jacobi matrix is then Jg(x) = 2 (xA0, xA1, . . . , xAn)
T

.

Theorem 13 (see [41]) A quadratic mapping is a harmonic mapping if and
only if each matrix Ai (i = 0, . . . , n) is traceless.

Remark 10 It is easy to see that for a quadratic M-conformal mapping in a
planar domain, the symmetric traceless matrices A0 and A1 also satisfy the
relations A0A1 = −A1A0, and A2

0 = A2
1 = −cI, where c = detA0 = detA1.

We formulate the main result of this section.

Lemma 3 The mapping g : Rn+1 → An given by (4) is quadratic M-conformal

if and only if Rng
′(x) = 2 (−xA0, xA1, . . . , xAn)

T
is symmetric and traceless

for all x ∈ R(n+1). Moreover Rng
′(ui) = −2Ai.

Proof The proof follows from previous results.

Now consider the following examples that illustrate two cases of 3D quadratic
M-conformal mappings.

Example 6 The quadratic monogenic function

g(x) = (−2x20 + x21 + x22)− 2x0x1e1 − 2x0x2e2

is given by the matrices

A0 =

−2 0 0
0 1 0
0 0 1

 , A1 =

 0 −1 0
−1 0 0
0 0 0

 , A2 =

 0 0 −1
0 0 0
−1 0 0

 .

In particular

R2g
′(1, 0, 0) =

4 0 0
0 −2 0
0 0 −2

 = −2A0, R2g
′(1, 1, 0) =

 4 −2 0
−2 −2 0
0 0 −2

 ,

R2g
′(1, 2, 3) =

 4 −4 −3
−4 −2 0
−3 0 −2

 .
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Example 7 The quadratic monogenic function

h(x) = (2x0x1 + 2x0x2 + 2x1x2)− (x20 + 2x0x2 − x21)e1 − (x20 + 2x0x1 − x22)e2

is determined by

A0 =

0 1 1
1 0 1
1 1 0

 , A1 =

−1 0 −1
0 1 0
−1 0 0

 , A2 =

−1 −1 0
−1 0 0
0 0 1

 .

The next figures visualize the image of the unit sphere centered at the ori-
gin under the mappings g and h, and lead to qualitatively very good numerical
results.

We are thus led to the following conjecture:

Conjecture 1 If g : Rn+1 → An is a quadratic M-conformal mapping with sym-
metric traceless matrices (A0, . . . , An), then the row matrix Rn (A0, . . . , An)
is symmetric and traceless.

7 Split Complex Case

We show in this section how the techniques above extend to other Clifford
algebras.

Let f : Ω ⊂ R2 → C`1,0 and z = x + jy. To begin with, we note that if
Of = 0 then

f ′(z) = B =

(
a b
b a

)
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where a = ux and b = uy. Also, Jf = a2 − b2 is the Jacobian. We have the
diagonalization(

a b
b a

)
=

(√
2
√

2√
2 −
√

2

)(
a+ b 0

0 a− b

)(√
2
√

2√
2 −
√

2

)
.

It is expected that the distortion is in the x = ±y directions as the calculations
below show. Also when a 6= ±b the distortion is

max(|a+ b

a− b
|, |a− b
a+ b

|).

On account of Remark 1 we have the decomposition

z = x+ jy = (x+ y)j+ + (x− y)j− = Xj+ + Y j−.

Also zn = Xnj+ + Y nj−. We define N(z) = x2 − y2.
Consider the matrix groups

GL2(C`1,0) = {A =

(
a b
c d

)
| a, b, c, d ∈ C`1,0, N(detA) 6= 0}.

Writing

A =

(
a1 b1
c1 d1

)
j+ +

(
a2 b2
c2 d2

)
j− = A1j

+ +A2j
−,

we have detA = detA1j
++detA2j

−, and N(detA) = detA1 detA2. It follows
that

GL2(C`1,0) = GL2(R)×GL2(R).

Moreover detA = 1 if and only if detA1 = detA2 = 1, so that

SL2(C`1,0) = SL2(R)× SL2(R).

We also have that trA = trA1j
+ + trA2j

−. Hence the Möbius transformations
act on the subspaces generated by j±.

With X = x+ y, and Y = x− y, operators transform coordinates as

O = j+∂Y + j−∂X , O = ∂Xj
+ + ∂Y j

−.

Analytic functions also decompose

Theorem 14 Let f = F1 + F2j : Ω ⊂ R2 → C`1,0. The following are equiva-
lent:

1. Of = 0;

2. f(X,Y ) = G1(X)j+G2(Y )j− for real-valued functions G1, G2;

3. ∂xF1 = ∂uF2, ∂uF1 = ∂xF2.
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Recent studies have shown that our methods also allow a generalization of
the distortion theory for Euclidean Clifford analytic functions, and for analytic
functions in hyperbolic Clifford algebras. Besides their obvious importance
these results will not be discussed in the present article. The authors are
currently attempting to do this and at the same time exploring a class of
periodic monogenic mappings. These period mappings are sums of the classical
Cauchy kernel and its partial derivatives on qD lattices. There are analogues
of periodic analytic functions to periodic monogenic functions on qD lattices
in space, see [23].
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des Sciences de Liège, Vol. 70, No. 4-6, 231-249 (2001).

10. F.W. Gehring. Quasiconformal mappings in space. Bull. Amer. Math. Soc., Vol. 69, No.
2, 146-164 (1963).

11. J. Gilbert and M. Murray. Clifford Algebras and Dirac Operators in Harmonic Analysis.
Cambridge University Press, 1991.



26 J. Morais, C.A. Nolder
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70, No. 1, 35-49 (2001).

25. M. A. Lavrent’ev. Sur une cIasse de representatations continues. Mat. Sb. 42, 407-427
(1935).

26. M. A. Lavrent’ev. Sur un critère differentiel des transformations homéomorphes des
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