SOME BEST APPROXIMATION FORMULAS AND INEQUALITIES FOR WALLIS RATIO

FENG QI AND CRISTINEL MORTICI

Abstract

In the paper, the authors establish some best approximation formulas and inequalities for Wallis ratio. These formulas and inequalities improve an approximation formula and a double inequality for Wallis ratio recently presented in "S. Guo, J.-G. Xu, and F. Qi, Some exact constants for the approximation of the quantity in the Wallis' formula, J. Inequal. Appl. 2013, 2013:67, 7 pages; Available online at http://dx.doi.org/10.1186/ 1029-242X-2013-67".

1. Introduction

Wallis ratio is defined as

$$
W_{n}=\frac{(2 n-1)!!}{(2 n)!!}=\frac{1}{\sqrt{\pi}} \frac{\Gamma\left(n+\frac{1}{2}\right)}{\Gamma(n+1)}
$$

where Γ is the classical Euler gamma function which may be defined by

$$
\begin{equation*}
\Gamma(z)=\int_{0}^{\infty} u^{z-1} e^{-u} \mathrm{~d} u, \quad \Re(z)>0 \tag{1.1}
\end{equation*}
$$

The study and applications of W_{n} have a long history, a large amount of literature, and a lot of new results. For detailed information, please refer to the papers $[1,4$, $18,21]$, related texts in the survey articles $[17,19,20]$ and references cited therein. Recently, Guo, Xu, and Qi proved in [5] that the double inequality

$$
\begin{equation*}
\sqrt{\frac{e}{\pi}}\left(1-\frac{1}{2 n}\right)^{n} \frac{\sqrt{n-1}}{n}<W_{n} \leq \frac{4}{3}\left(1-\frac{1}{2 n}\right)^{n} \frac{\sqrt{n-1}}{n} \tag{1.2}
\end{equation*}
$$

for $n \geq 2$ is valid and sharp in the sense that the constants $\sqrt{\frac{e}{\pi}}$ and $\frac{4}{3}$ in (1.2) are best possible. They also proposed in [5] the approximation formula

$$
\begin{equation*}
W_{n} \sim \chi_{n}:=\sqrt{\frac{e}{\pi}}\left(1-\frac{1}{2 n}\right)^{n} \frac{\sqrt{n-1}}{n}, \quad n \rightarrow \infty \tag{1.3}
\end{equation*}
$$

The sharpness of the double inequality (1.2) was proved in [5] basing on the variation of a function which decreases on $[2, \infty)$ from $\frac{4}{3}$ to $\sqrt{\frac{e}{\pi}}$. As a consequence, the right-hand side of (1.2) becomes weak for large values of n. Moreover, if we are interested to estimating W_{n} when n approaches infinity, then the constant $\sqrt{\frac{e}{\pi}}$ should be chosen and inequalities using $\sqrt{\frac{e}{\pi}}$ are welcome.

The aim of this paper is to improve the double inequality (1.2) and the approximation formula (1.3).

[^0]
2. A Lemma

For improving the double inequality (1.2) and the approximation formula (1.3), we need the following lemma.

Lemma 2.1 ([12, Lemma 1.1]). If the sequence $\left\{\omega_{n}: n \in \mathbb{N}\right\}$ converges to 0 and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{k}\left(\omega_{n}-\omega_{n+1}\right)=\ell \in \mathbb{R} \tag{2.1}
\end{equation*}
$$

for $k>1$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{k-1} \omega_{n}=\frac{\ell}{k-1} \tag{2.2}
\end{equation*}
$$

Remark 2.1. Lemma 2.1 was first established in [15] and has been effectively applied in many papers such as $[2,3,6,7,8,9,10,11,13,14,16]$.

3. A BEST APPROXIMATION FORMULA

With the help of Lemma 2.1, we first provide a best approximation formula of Wallis ratio W_{n}.

Theorem 3.1. The approximation formula

$$
\begin{equation*}
W_{n} \sim \sqrt{\frac{e}{\pi}}\left(1-\frac{1}{2 n}\right)^{n} \frac{1}{\sqrt{n}}, \quad n \rightarrow \infty \tag{3.1}
\end{equation*}
$$

is the best approximation of the form

$$
\begin{equation*}
W_{n} \sim \sqrt{\frac{e}{\pi}}\left(1-\frac{1}{2 n}\right)^{n} \frac{\sqrt{n+a}}{n}, \quad n \rightarrow \infty \tag{3.2}
\end{equation*}
$$

where a is a real parameter.
Proof. Define $z_{n}(a)$ by

$$
W_{n}=\sqrt{\frac{e}{\pi}}\left(1-\frac{1}{2 n}\right)^{n} \frac{\sqrt{n+a}}{n} \exp z_{n}(a), \quad n \geq 1
$$

It is not difficult to see that $z_{n}(a) \rightarrow 0$ as $n \rightarrow \infty$, A direct computation gives

$$
z_{n}(a)-z_{n+1}(a)=-\frac{a}{2 n^{2}}+\left(\frac{1}{2} a+\frac{1}{2} a^{2}+\frac{1}{12}\right) \frac{1}{n^{3}}+O\left(\frac{1}{n^{4}}\right)
$$

and

$$
\lim _{n \rightarrow \infty}\left\{n^{2}\left[z_{n}(a)-z_{n+1}(a)\right]\right\}=-\frac{a}{2}
$$

Making use of Lemma 2.1, we immediately see that the sequence $\left\{z_{n}(a): n \in \mathbb{N}\right\}$ converges fastest only when $a=0$. The proof of Theorem 3.1 is complete.

Remark 3.1. The approximation formula (3.1) is an improvement of (1.3), since the approximation formula (1.3) is the special case $a=-1$ in (3.2).

4. An Asymptotic series associated to (3.1)

In this section, by discovering an asymptotic series and a single-sided inequality for Wallis ratio, we further generalize the approximation formula (3.1) and improve the left-hand side of the double inequality (1.2).

Theorem 4.1. As $n \rightarrow \infty$, we have

$$
W_{n} \sim \sqrt{\frac{e}{\pi}}\left(1-\frac{1}{2 n}\right)^{n} \frac{1}{\sqrt{n}} \exp \left(\frac{1}{24 n^{2}}+\frac{1}{48 n^{3}}+\frac{1}{160 n^{4}}+\frac{1}{960 n^{5}}+\cdots\right)
$$

Proof. Recall from [15] that, to an approximation formula $f(n) \sim g(n)$, the following asymptotic series is associated

$$
f(n) \sim g(n) \exp \left(\sum_{k=1}^{\infty} \frac{a_{k}}{n^{k}}\right)
$$

where a_{k} for $k \geq 2$ is a solution of the following infinite triangular system

$$
\begin{equation*}
a_{1}-\binom{k-1}{1} a_{2}+\cdots+(-1)^{k}\binom{k-1}{k-2} a_{k-1}=(-1)^{k} x_{k} \tag{4.1}
\end{equation*}
$$

and x_{k} are coefficients of the expansion

$$
\ln \frac{f(n) g(n+1)}{g(n) f(n+1)}=\sum_{k=2}^{\infty} \frac{x_{k}}{n^{k}}
$$

Replacing $f(n)$ and $g(n)$ by W_{n} and $\sqrt{\frac{e}{\pi}}\left(1-\frac{1}{2 n}\right)^{n} \frac{1}{\sqrt{n}}$ respectively yields

$$
\ln \frac{f(n) g(n+1)}{g(n) f(n+1)}=\sum_{k=2}^{\infty}(-1)^{k}\left[\frac{1+(-1)^{k}}{(k+1) 2^{k+1}}-\frac{1}{k+1}+\frac{1}{2 k}\right] \frac{1}{n^{k}}
$$

Hence, the system (4.1) becomes

$$
a_{1}-\binom{k-1}{1} a_{2}+\cdots+(-1)^{k}\binom{k-1}{k-2} a_{k-1}=\frac{1+(-1)^{k}}{(k+1) 2^{k+1}}-\frac{1}{k+1}+\frac{1}{2 k}
$$

which has a solution

$$
a_{1}=0, \quad a_{2}=\frac{1}{24}, \quad a_{3}=\frac{1}{48}, \quad a_{4}=\frac{1}{160}, \quad a_{5}=\frac{1}{960}, \quad \ldots
$$

The proof of Theorem 4.1 is complete.
Theorem 4.2. For every integer $n \geq 1$, we have

$$
\begin{equation*}
W_{n}>\sqrt{\frac{e}{\pi}}\left(1-\frac{1}{2 n}\right)^{n} \frac{1}{\sqrt{n}} \exp \left(\frac{1}{24 n^{2}}+\frac{1}{48 n^{3}}+\frac{1}{160 n^{4}}+\frac{1}{960 n^{5}}\right) \tag{4.2}
\end{equation*}
$$

Proof. It suffices to prove

$$
\alpha_{n}=n \ln \left(1-\frac{1}{2 n}\right)-\frac{1}{2} \ln n-\ln \frac{(2 n-1)!!}{(2 n)!!}+\ln \sqrt{\frac{e}{\pi}}+h(n)<0
$$

where

$$
h(x)=\frac{1}{24 x^{2}}+\frac{1}{48 x^{3}}+\frac{1}{160 x^{4}}+\frac{1}{960 x^{5}} .
$$

Because α_{n} converges to 0 , it is sufficient to show that the sequence $\left\{\alpha_{n}: n \in \mathbb{N}\right\}$ is strictly increasing. It is not difficult to obtain $\alpha_{n+1}-\alpha_{n}=s(n)$, where

$$
\begin{aligned}
s(x)= & (x+1) \ln \left(1-\frac{1}{2 x+2}\right)-x \ln \left(1-\frac{1}{2 x}\right) \\
& -\frac{1}{2} \ln \left(1+\frac{1}{x}\right)-\ln \frac{2 x+1}{2 x+2}+h(x+1)-h(x), \\
s^{\prime \prime}(x)= & \frac{C(x-1)}{32 x^{7}(x+1)^{7}(2 x+1)^{2}(2 x-1)^{2}} \\
> & 0
\end{aligned}
$$

and

$$
\begin{aligned}
C(x)= & 4913+33387 x+98177 x^{2}+164799 x^{3}+174543 x^{4} \\
& +121173 x^{5}+55197 x^{6}+15920 x^{7}+2640 x^{8}+192 x^{9}
\end{aligned}
$$

Accordingly, the function $s(x)$ is strictly convex on $[1, \infty)$. Combing this with the fact that $\lim _{x \rightarrow \infty} s(x)=0$ reveals that the function $s(x)$ on $[1, \infty)$, and so the sequence $\{s(n): n \in \mathbb{N}\}$, is positive. The proof of Theorem 4.2 is complete.

5. A NEW APPROXIMATION FORMULA AND A DOUBLE INEQUALITY

Finally we will find a new approximation formula and a double inequality for Wallis ratio W_{n}.
Theorem 5.1. As $n \rightarrow \infty$, we have

$$
\begin{equation*}
W_{n} \sim \mu_{n}:=\sqrt{\frac{e}{\pi}}\left[1-\frac{1}{2(n+1 / 3)}\right]^{n+1 / 3} \frac{1}{\sqrt{n}} \tag{5.1}
\end{equation*}
$$

Proof. Motivated by (3.1), we now ask for the best approximation of the form

$$
W_{n} \sim \sqrt{\frac{e}{\pi}}\left[1-\frac{1}{2(n+b)}\right]^{n+c} \frac{1}{\sqrt{n}}, \quad n \rightarrow \infty
$$

where b and c are real parameters. For this, let

$$
W_{n}=\sqrt{\frac{e}{\pi}}\left[1-\frac{1}{2(n+b)}\right]^{n+c} \frac{1}{\sqrt{n}} \exp \beta_{n}(b, c)
$$

Then an easy calculation leads to

$$
\begin{aligned}
\beta_{n}(b, c)-\beta_{n+1}(b, & c)
\end{aligned} \begin{aligned}
2 & (c-b) \frac{1}{n^{2}}+\left(b^{2}-b c-\frac{1}{4} c+\frac{1}{12}\right) \frac{1}{n^{3}} \\
+ & \left(\frac{1}{4} c-\frac{1}{8} b+\frac{3}{4} b c-\frac{3}{8} b^{2}-\frac{3}{2} b^{3}+\frac{3}{2} b^{2} c-\frac{1}{16}\right) \frac{1}{n^{4}}+O\left(\frac{1}{n^{5}}\right) .
\end{aligned}
$$

This implies that

$$
\lim _{n \rightarrow \infty}\left\{n^{2}\left[\beta_{n}(b, c)-\beta_{n+1}(b, c)\right]\right\}=\frac{c-b}{2}
$$

and

$$
\lim _{n \rightarrow \infty}\left\{n^{2}\left[\beta_{n}(b, b)-\beta_{n+1}(b, b)\right]\right\}=\frac{3 b-1}{12}
$$

By Lemma 2.1, it follows that the sequence $\left\{\beta_{n}(b, c): n \in \mathbb{N}\right\}$ converges fastest only when $b=c=\frac{1}{3}$. The proof of Theorem 5.1 is complete.

Remark 5.1. We note that the approximation formula (5.1) is the most accurate possible among a class of approximation formulas mentioned above. The numerical computation in Table 1 shows the superiority of (5.1) over (1.3).

Table 1. Numerical computation

n	$W_{n}-\chi_{n}$	$W_{n}-\mu_{n}$
50	8.0124×10^{-4}	4.4198×10^{-9}
100	2.8269×10^{-4}	3.9124×10^{-10}
250	7.1425×10^{-5}	1.5850×10^{-11}
1000	8.9225×10^{-6}	1.2388×10^{-13}

Theorem 5.2. For every integer $n \geq 1$, we have

$$
\begin{align*}
\sqrt{\frac{e}{\pi}}\left[1-\frac{1}{2(n+1 / 3)}\right]^{n+1 / 3} & \frac{1}{\sqrt{n}}
\end{align*}<W_{n} .
$$

Proof. It is sufficient to prove

$$
b_{n}=\left(n+\frac{1}{3}\right) \ln \left(1-\frac{1}{2(n+1 / 3)}\right)-\frac{1}{2} \ln n-\ln \frac{(2 n-1)!!}{(2 n)!!}+\ln \sqrt{\frac{e}{\pi}}<0
$$

and

$$
c_{n}=b_{n}+\frac{1}{144 n^{3}}>0
$$

Because b_{n} and c_{n} converge to 0 , it suffices to show that b_{n} is strictly increasing and c_{n} is strictly decreasing. For this, we discuss the differences $b_{n+1}-b_{n}=p(n)$ and $c_{n+1}-c_{n}=q(n)$, where

$$
\begin{aligned}
p(x)= & \left(x+\frac{4}{3}\right) \ln \left(1-\frac{1}{2(x+4 / 3)}\right)-\left(x+\frac{1}{3}\right) \ln \left(1-\frac{1}{2(x+1 / 3)}\right) \\
& -\frac{1}{2} \ln \left(1+\frac{1}{x}\right)-\ln \frac{2 x+1}{2 x+2}
\end{aligned}
$$

and

$$
q(x)=p(x)+\frac{1}{144(x+1)^{3}}-\frac{1}{144 x^{3}}
$$

Since

$$
p^{\prime \prime}(x)=\frac{A(x-1)}{2 x^{2}(3 x+1)(3 x+4)(x+1)^{2}(2 x+1)^{2}(6 x-1)^{2}(6 x+5)^{2}}>0
$$

and

$$
q^{\prime \prime}(x)=-\frac{B(x-1)}{12 x^{5}(3 x+1)(3 x+4)(2 x+1)^{2}(6 x-1)^{2}(x+1)^{5}(6 x+5)^{2}}<0
$$

where

$$
\begin{aligned}
A(x)= & 351068+1516131 x+2684091 x^{2}+2495340 x^{3} \\
& +1285956 x^{4}+348624 x^{5}+38880 x^{6}
\end{aligned}
$$

and

$$
\begin{aligned}
B(x)= & 6780036+50421819 x+166596550 x^{2}+322415601 x^{3} \\
& +405307306 x^{4}+346439295 x^{5}+204449525 x^{6}+82629900 x^{7} \\
& +22094730 x^{8}+3618864 x^{9}+305208 x^{10}+7776 x^{11}
\end{aligned}
$$

it follows that $p(x)$ is strictly convex and $q(x)$ is strictly concave on $[1, \infty)$. As a result, considering the fact that $\lim _{x \rightarrow \infty} p(x)=\lim _{x \rightarrow \infty} q(x)=0$, we derive that $p(x)>0$ and $q(x)<0$ on $[1, \infty)$. Consequently, the sequences $\{p(n): n \in \mathbb{N}\}$ and $\{q(n): n \in \mathbb{N}\}$ are positive. The proof of Theorem 5.2 is complete.

Acknowledgements. The work of the second author was supported in part by the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, under Grant No. PN-II-ID-PCE-2011-3-0087.

References

[1] C.-P. Chen and F. Qi, The best bounds in Wallis' inequality, Proc. Amer. Math. Soc. 133 (2005), no. 2, 397-401; Available online at http://dx.doi.org/10.1090/ S0002-9939-04-07499-4. 1
[2] C.-P. Chen and H. M. Srivastava, New representations for the Lugo and Euler-Mascheroni constants, II, Appl. Math. Lett. 25 (2012), no. 3, 333-338; Available online at http://dx. doi.org/10.1016/j.aml.2011.09.010. 2
[3] O. Furdui, A class of fractional part integrals and zeta function values, Integral Transforms Spec. Funct. 24 (2013), no. 6, 485-490; Available online at http://dx.doi.org/10.1080/ 10652469.2012.708869. 2
[4] B.-N. Guo and F. Qi, A class of completely monotonic functions involving divided differences of the psi and tri-gamma functions and some applications, J. Korean Math. Soc. 48 (2011), no. 3, 655-667; Available online at http://dx.doi.org/10.4134/JKMS.2011.48.3.655. 1
[5] S. Guo, J.-G. Xu, and F. Qi, Some exact constants for the approximation of the quantity in the Wallis' formula, J. Inequal. Appl. 2013, 2013:67, 7 pages; Available online at http: //dx.doi.org/10.1186/1029-242X-2013-67. 1
[6] A. Laforgia and P. Natalini, On the asymptotic expansion of a ratio of gamma functions, J. Math. Anal. Appl. 389 (2012), no. 2, 833-837; Available online at http://dx.doi.org/10. 1016/j.jmaa.2011.12.025. 2
[7] L. Lin, Further refinements of Gurland's formula for π, J. Inequal. Appl. 2013, 2013:48, 11 pages; Available online at http://dx.doi.org/10.1186/1029-242X-2013-48. 2
[8] D.-W. Lu and X.-G. Wang, A generated approximation related to Gosper's formula and Ramanujan's formula, J. Math. Anal. Appl. 406 (2013), no. 1, 287-292; Available online at http://dx.doi.org/10.1016/j.jmaa.2013.04.073. 2
[9] M. Mahmoud, M. A. Alghamdi, and R. P. Agarwal, New upper bounds of n!, J. Inequal. Appl. 2012, 2012:27, 9 pages; Available online at http://dx.doi.org/10.1186/ 1029-242X-2012-27. 2
[10] M. Mansour and M. A. Obaid, On a new Stirling's series, Ars Combin. 107 (2012), 411-418. 2
[11] C. Mortici, A new Stirling series as continued fraction, Numer. Algorithms 56 (2011), no. 1, 17-26; Available online at http://dx.doi.org/10.1007/s11075-010-9370-4. 2
[12] C. Mortici, A quicker convergence toward the γ constant with the logarithm term involving the constant e, Carpathian J. Math. 26 (2010), no. 1, 86-91. 2
[13] C. Mortici, Fast convergences towards Euler-Mascheroni constant, Comput. Appl. Math. 29 (2010), no. 3, 479-491; Available online at http://dx.doi.org/10.1590/ S1807-03022010000300009. 2
[14] C. Mortici, New improvements of the Stirling formula, Appl. Math. Comput. 217 (2010), no. 2, 699-704; Available online at http://dx.doi.org/10.1016/j.amc.2010.06.007. 2
[15] C. Mortici, Product approximations via asymptotic integration, Amer. Math. Monthly 117 (2010), no. 5, 434-441; Available online at http://dx.doi.org/10.4169/000298910X485950. 2, 3
[16] C. Mortici, Very accurate estimates of the polygamma functions, Asymptot. Anal. 68 (2010), no. 3, 125-134. 2
[17] F. Qi, Bounds for the ratio of two gamma functions, J. Inequal. Appl. 2010 (2010), Article ID 493058, 84 pages; Available online at http://dx.doi.org/10.1155/2010/493058. 1
[18] F. Qi, L.-H. Cui, and S.-L. Xu, Some inequalities constructed by Tchebysheff's integral inequality, Math. Inequal. Appl. 2 (1999), no. 4, 517-528; Available online at http: //dx.doi.org/10.7153/mia-02-42. 1
[19] F. Qi and Q.-M. Luo, Bounds for the ratio of two gamma functions: from Wendel's asymptotic relation to Elezović-Giordano-Pečarić's theorem, J. Inequal. Appl. 2013, 2013:542, 20 pages; Available online at http://dx.doi.org/10.1186/1029-242X-2013-542. 1
[20] F. Qi and Q.-M. Luo, Bounds for the ratio of two gamma functions-From Wendel's and related inequalities to logarithmically completely monotonic functions, Banach J. Math. Anal. 6 (2012), no. 2, 132-158. 1
[21] F. Qi and Q.-M. Luo, Complete monotonicity of a function involving the gamma function and applications, Period. Math. Hungar. ?? (2014), in press; Available online at http: //dx.doi.org/10.1007/???. 1
(Qi) College of Mathematics, Inner Mongolia University for Nationalities, Tongliao
City, Inner Mongolia Autonomous Region, 028043, China; Institute of Mathematics,
Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China
E-mail address: qifeng618@gmail.com, qifeng618@hotmail.com, qifeng618@qq.com
URL: http://qifeng618.wordpress.com
(Mortici) Department of Mathematics, Valahia University of Târgovişte, Bd. Unirii
18, 130082 TÂRgovişte, Romania
E-mail address: cmortici@valahia.ro
URL: http://www.cristinelmortici.ro

[^0]: 2010 Mathematics Subject Classification. 05A10, 11B65, 33B15, 41A10, 42A16.
 Key words and phrases. Wallis ratio; best approximation formula; double inequality; asymptotic series.
 This paper was typeset using $\mathcal{A}_{\mathcal{M}} \mathcal{S}$-LAT T_{E}.

