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SOME BEST APPROXIMATION FORMULAS AND

INEQUALITIES FOR WALLIS RATIO

FENG QI AND CRISTINEL MORTICI

Abstract. In the paper, the authors establish some best approximation for-
mulas and inequalities for Wallis ratio. These formulas and inequalities im-
prove an approximation formula and a double inequality for Wallis ratio re-
cently presented in “S. Guo, J.-G. Xu, and F. Qi, Some exact constants for

the approximation of the quantity in the Wallis’ formula, J. Inequal. Appl.
2013, 2013:67, 7 pages; Available online at http://dx.doi.org/10.1186/

1029-242X-2013-67”.

1. Introduction

Wallis ratio is defined as

Wn =
(2n− 1)!!

(2n)!!
=

1√
π

Γ
(

n+ 1
2

)

Γ(n+ 1)
,

where Γ is the classical Euler gamma function which may be defined by

Γ(z) =

∫ ∞

0

uz−1e−u du, ℜ(z) > 0. (1.1)

The study and applications of Wn have a long history, a large amount of literature,
and a lot of new results. For detailed information, please refer to the papers [1, 4,
18, 21], related texts in the survey articles [17, 19, 20] and references cited therein.
Recently, Guo, Xu, and Qi proved in [5] that the double inequality

√

e

π

(

1− 1

2n

)n√
n− 1

n
< Wn ≤ 4

3

(

1− 1

2n

)n√
n− 1

n
(1.2)

for n ≥ 2 is valid and sharp in the sense that the constants
√

e
π and 4

3
in (1.2) are

best possible. They also proposed in [5] the approximation formula

Wn ∼ χn :=

√

e

π

(

1− 1

2n

)n√
n− 1

n
, n → ∞. (1.3)

The sharpness of the double inequality (1.2) was proved in [5] basing on the
variation of a function which decreases on [2,∞) from 4

3
to
√

e
π . As a consequence,

the right-hand side of (1.2) becomes weak for large values of n. Moreover, if we
are interested to estimating Wn when n approaches infinity, then the constant

√

e
π

should be chosen and inequalities using
√

e
π are welcome.

The aim of this paper is to improve the double inequality (1.2) and the approx-
imation formula (1.3).
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2. A lemma

For improving the double inequality (1.2) and the approximation formula (1.3),
we need the following lemma.

Lemma 2.1 ([12, Lemma 1.1]). If the sequence {ωn : n ∈ N} converges to 0 and

lim
n→∞

nk(ωn − ωn+1) = ℓ ∈ R (2.1)

for k > 1, then

lim
n→∞

nk−1ωn =
ℓ

k − 1
. (2.2)

Remark 2.1. Lemma 2.1 was first established in [15] and has been effectively applied
in many papers such as [2, 3, 6, 7, 8, 9, 10, 11, 13, 14, 16].

3. A best approximation formula

With the help of Lemma 2.1, we first provide a best approximation formula of
Wallis ratio Wn.

Theorem 3.1. The approximation formula

Wn ∼
√

e

π

(

1− 1

2n

)n
1√
n
, n → ∞ (3.1)

is the best approximation of the form

Wn ∼
√

e

π

(

1− 1

2n

)n√
n+ a

n
, n → ∞, (3.2)

where a is a real parameter.

Proof. Define zn(a) by

Wn =

√

e

π

(

1− 1

2n

)n√
n+ a

n
exp zn(a), n ≥ 1.

It is not difficult to see that zn(a) → 0 as n → ∞, A direct computation gives

zn(a)− zn+1(a) = − a

2n2
+

(

1

2
a+

1

2
a2 +

1

12

)

1

n3
+O

(

1

n4

)

and

lim
n→∞

{

n2[zn(a)− zn+1(a)]
}

= −a

2
.

Making use of Lemma 2.1, we immediately see that the sequence {zn(a) : n ∈ N}
converges fastest only when a = 0. The proof of Theorem 3.1 is complete. �

Remark 3.1. The approximation formula (3.1) is an improvement of (1.3), since
the approximation formula (1.3) is the special case a = −1 in (3.2).

4. An asymptotic series associated to (3.1)

In this section, by discovering an asymptotic series and a single-sided inequality
for Wallis ratio, we further generalize the approximation formula (3.1) and improve
the left-hand side of the double inequality (1.2).

Theorem 4.1. As n → ∞, we have

Wn ∼
√

e

π

(

1− 1

2n

)n
1√
n

exp

(

1

24n2
+

1

48n3
+

1

160n4
+

1

960n5
+ · · ·

)

.
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Proof. Recall from [15] that, to an approximation formula f(n) ∼ g(n), the follow-
ing asymptotic series is associated

f(n) ∼ g(n) exp

(

∞
∑

k=1

ak
nk

)

,

where ak for k ≥ 2 is a solution of the following infinite triangular system

a1 −
(

k − 1

1

)

a2 + · · ·+ (−1)k
(

k − 1

k − 2

)

ak−1 = (−1)kxk (4.1)

and xk are coefficients of the expansion

ln
f(n)g(n+ 1)

g(n)f(n+ 1)
=

∞
∑

k=2

xk

nk
.

Replacing f(n) and g(n) by Wn and
√

e
π

(

1− 1
2n

)n 1√
n

respectively yields

ln
f(n)g(n+ 1)

g(n)f(n+ 1)
=

∞
∑

k=2

(−1)k
[

1 + (−1)k

(k + 1)2k+1
− 1

k + 1
+

1

2k

]

1

nk
.

Hence, the system (4.1) becomes

a1 −
(

k − 1

1

)

a2 + · · ·+ (−1)k
(

k − 1

k − 2

)

ak−1 =
1 + (−1)k

(k + 1)2k+1
− 1

k + 1
+

1

2k

which has a solution

a1 = 0, a2 =
1

24
, a3 =

1

48
, a4 =

1

160
, a5 =

1

960
, . . . .

The proof of Theorem 4.1 is complete. �

Theorem 4.2. For every integer n ≥ 1, we have

Wn >

√

e

π

(

1− 1

2n

)n
1√
n

exp

(

1

24n2
+

1

48n3
+

1

160n4
+

1

960n5

)

. (4.2)

Proof. It suffices to prove

αn = n ln

(

1− 1

2n

)

− 1

2
lnn− ln

(2n− 1)!!

(2n)!!
+ ln

√

e

π
+ h(n) < 0,

where

h(x) =
1

24x2
+

1

48x3
+

1

160x4
+

1

960x5
.

Because αn converges to 0, it is sufficient to show that the sequence {αn : n ∈ N}
is strictly increasing. It is not difficult to obtain αn+1 − αn = s(n), where

s(x) = (x + 1) ln

(

1− 1

2x+ 2

)

− x ln

(

1− 1

2x

)

− 1

2
ln

(

1 +
1

x

)

− ln
2x+ 1

2x+ 2
+ h(x+ 1)− h(x),

s′′(x) =
C(x− 1)

32x7(x+ 1)7(2x+ 1)2(2x− 1)2

> 0,

and

C(x) = 4913 + 33387x+ 98177x2 + 164799x3 + 174543x4

+ 121173x5 + 55197x6 + 15920x7 + 2640x8 + 192x9.
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Accordingly, the function s(x) is strictly convex on [1,∞). Combing this with the
fact that limx→∞ s(x) = 0 reveals that the function s(x) on [1,∞), and so the
sequence {s(n) : n ∈ N}, is positive. The proof of Theorem 4.2 is complete. �

5. A new approximation formula and a double inequality

Finally we will find a new approximation formula and a double inequality for
Wallis ratio Wn.

Theorem 5.1. As n → ∞, we have

Wn ∼ µn :=

√

e

π

[

1− 1

2(n+ 1/3)

]n+1/3
1√
n
. (5.1)

Proof. Motivated by (3.1), we now ask for the best approximation of the form

Wn ∼
√

e

π

[

1− 1

2(n+ b)

]n+c
1√
n
, n → ∞,

where b and c are real parameters. For this, let

Wn =

√

e

π

[

1− 1

2(n+ b)

]n+c
1√
n

expβn(b, c).

Then an easy calculation leads to

βn(b, c)− βn+1(b, c) =
1

2
(c− b)

1

n2
+

(

b2 − bc− 1

4
c+

1

12

)

1

n3

+

(

1

4
c− 1

8
b+

3

4
bc− 3

8
b2 − 3

2
b3 +

3

2
b2c− 1

16

)

1

n4
+O

(

1

n5

)

.

This implies that

lim
n→∞

{

n2[βn(b, c)− βn+1(b, c)]
}

=
c− b

2
and

lim
n→∞

{

n2[βn(b, b)− βn+1(b, b)]
}

=
3b− 1

12
.

By Lemma 2.1, it follows that the sequence {βn(b, c) : n ∈ N} converges fastest
only when b = c = 1

3
. The proof of Theorem 5.1 is complete. �

Remark 5.1. We note that the approximation formula (5.1) is the most accurate
possible among a class of approximation formulas mentioned above. The numerical
computation in Table 1 shows the superiority of (5.1) over (1.3).

Table 1. Numerical computation

n Wn − χn Wn − µn

50 8.0124× 10−4 4.4198× 10−9

100 2.8269× 10−4 3.9124× 10−10

250 7.1425× 10−5 1.5850× 10−11

1000 8.9225× 10−6 1.2388× 10−13

Theorem 5.2. For every integer n ≥ 1, we have

√

e

π

[

1− 1

2(n+ 1/3)

]n+1/3
1√
n

< Wn

<

√

e

π

[

1− 1

2(n+ 1/3)

]n+1/3
1√
n

exp

(

1

144n3

)

. (5.2)
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Proof. It is sufficient to prove

bn =

(

n+
1

3

)

ln

(

1− 1

2(n+ 1/3)

)

− 1

2
lnn− ln

(2n− 1)!!

(2n)!!
+ ln

√

e

π
< 0

and

cn = bn +
1

144n3
> 0.

Because bn and cn converge to 0, it suffices to show that bn is strictly increasing
and cn is strictly decreasing. For this, we discuss the differences bn+1 − bn = p(n)
and cn+1 − cn = q(n), where

p(x) =

(

x+
4

3

)

ln

(

1− 1

2(x+ 4/3)

)

−
(

x+
1

3

)

ln

(

1− 1

2(x+ 1/3)

)

− 1

2
ln

(

1 +
1

x

)

− ln
2x+ 1

2x+ 2

and

q(x) = p(x) +
1

144(x+ 1)3
− 1

144x3
.

Since

p′′(x) =
A(x− 1)

2x2(3x+ 1)(3x+ 4)(x+ 1)2(2x+ 1)2(6x− 1)2(6x+ 5)2
> 0

and

q′′(x) = − B(x − 1)

12x5(3x+ 1)(3x+ 4)(2x+ 1)2(6x− 1)2(x+ 1)5(6x+ 5)2
< 0,

where

A(x) = 351068+ 1516131x+ 2684091x2 + 2495340x3

+ 1285956x4 + 348624x5 + 38880x6

and

B(x) = 6780036+ 50421819x+ 166596550x2 + 322415601x3

+ 405307306x4 + 346439295x5 + 204449525x6 + 82629900x7

+ 22094730x8 + 3618864x9 + 305208x10 + 7776x11,

it follows that p(x) is strictly convex and q(x) is strictly concave on [1,∞). As a
result, considering the fact that limx→∞ p(x) = limx→∞ q(x) = 0, we derive that
p(x) > 0 and q(x) < 0 on [1,∞). Consequently, the sequences {p(n) : n ∈ N} and
{q(n) : n ∈ N} are positive. The proof of Theorem 5.2 is complete. �
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