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Abstract

Recently, Li et al. [1] have published a new family of iterative methods, without
memory, with order of convergence five or six, which are not optimal in the sense of Kung
and Traub’s conjecture. Therefore, we attempt to modify this suggested family in such
a way that it becomes optimal. To this end, we consider the same two first steps of the
mentioned family, and furthermore, we introduce a better approximation for f ′(z) in the
third step based on interpolation idea as opposed to the Taylor’s series used in the work
of Li et al. Theoretical, dynamical and numerical aspects of the new family are described
and investigated in details.
Keywords: Nonlinear equations, optimal iterative methods, efficiency index, parameter
space, basin of attraction, stability.

1 Introduction

Iterative methods for approximating simple zeros of a real-valued function is an active research
area which has progressed thanks to the advances in modern computers both in software and
hardware. The principal base for constructing these methods is the significant and substantial
works by Traub’s [2] and Kung and Traub’s [3]. In other words, Traub classified iterative
methods in some sense. Here, we are interested in iterative multi-point methods without
memory. Regarding the construction of these methods, we need and recall two basic criteria.
Traub says for constructing an one-point method, having convergence order p, we require p
functional evaluations. Designs and developments of one-point methods is not a considerable
task because of its less efficiency. On the other hand, Kung and Traub conjectured that
any multi-point iterative method, without memory, with d + 1 functional evaluations per
step, has an order of convergence at most 2d. When this bound is reached the method is
called optimal. Indeed, these methods overcome theoretical and practical issue of single point
methods regarding computational evaluations and convergence rate.
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Tecnoloǵıa MTM2011-28636-C02-02

†acordero@mat.upv.es
‡lotfi@iauh.ac.ir, lotfitaher@yahoo.com
§mahdianik@yahoo.com
¶Corresponding author: jrtorre@mat.upv.es

1



As far as we know, Ostrowski’s [4], Jarratt’s [5], and King’s [6] methods are the first optimal
two-point methods of fourth-order. Moreover, Neta [7] and Bi et al. [8, 9] are pioneers
in developing optimal eighth-order methods. Recently, new families of iterative methods of
optimal eighth-order have been published in [10, 11, 12]. A good review of optimal and no
optimal iterative schemes of different orders of convergence can be found in [13].

Recently, Li et al. [1] have developed a new family of three-point methods based on modifica-
tion of Chebyshev-Halley’s scheme. It is worth mentioning that the methods of this family are
not optimal in the sense of Kung-Traub’s conjecture, since it consumes four functional evalu-
ations per iteration having convergence order five, and a particular member of the family has
convergence order six. This family, denoted by LLK5, has the following iterative expression
(indices are dropped for simplicity).


y = x− f(x)

f ′(x) ,

z = x−
(
1 + f(y)

f(x)−2βf(y)

)
f(x)
f ′(x) ,

x̂ = z − f(z)

f ′(x)+f̃ ′′(x)(z−x)
,

(1.1)

where β is a real parameter and f̃ ′′(x) = 2f(y)f ′(x)2

f(x)2
. Moreover, its error equation is

ê = 2(β − 1)c22c3e
5 +

(
(4β2 − 14β + 9)c32c3 + (8β − 7)c2c

2
3

)
e6 +O(e7), (1.2)

being ck = 1
k!

f (k)(α)
f ′(α) , k = 2, 3, . . ., e = x− α and α a root of f(x) = 0.

It can easily be observed that for β = 1, the first two steps result Ostrowski’s method, and, in
addition, the convergence order becomes six. In this work, we attempt to derive an optimal
three-point method without memory from (1.1) by changing the denominator of the last step.
To this end, we suitably approximate f ′(z) in the third step instead of f ′(x) + f̃ ′′(x)(z − x)
which has been computed by Li et al. [1]. Our approximate is based on Newton-Hermite
interpolation at the given data f(x), f ′(x), f(y), and f(z). This optimal eighth-order scheme
is a particular case of a sixth-order iterative family, depending on parameter β.

Thereafter, we will analyze the stability of the elements of this class of iterative schemes on
quadratic polynomials, in terms of the asymptotic behavior of their fixed points and also by
using the associated parameter planes, that will allow us to find the most stable elements of
the family, under a numerical point of view.

Now, we are going to recall some dynamical concepts of complex dynamics (see [14]) that we
use in this work. Given a rational function R : Ĉ → Ĉ, where Ĉ is the Riemann sphere, the
orbit of a point z0 ∈ Ĉ is defined as:

{z0, R (z0) , R
2 (z0) , ..., R

n (z0) , ...}.

We analyze the phase plane of the map R by classifying the starting points from the asymptotic
behavior of their orbits. A zf ∈ Ĉ is called a fixed point if R (zf ) = zf . A periodic point z
of period p > 1 is a point such that Rp (z) = z and Rk (z) ̸= z, for k < p. A pre-periodic
point is a point z that is not periodic but there exists a k > 0 such that Rk (z) is periodic. A
critical point z∗ is a point where the derivative of the rational function vanishes, R′ (z∗) = 0.
Moreover, a fixed point zf is called attractor if |R′(zf )| < 1, superattractor if |R′(zf )| = 0,
repulsor if |R′(zf )| > 1 and parabolic if |R′(zf )| = 1. So, a superattracting fixed point is also
a critical point.

On the other hand, the basin of attraction of an attractor α ∈ Ĉ is defined as the set of
starting points whose orbits tend to α:

A (α) = {z0 ∈ Ĉ : Rn (z0)→α, n→∞}.
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The Fatou set of the rational function R, F (R) is the set of points z ∈ Ĉ whose orbits tend to
an attractor (fixed point, periodic orbit or infinity). Its complementary set in Ĉ is the Julia
set, J (R). That is, the basin of attraction of any fixed point belongs to the Fatou set and
the boundaries of these basins of attraction belong to the Julia set.

The rest of the paper is organized as follows. In Section 2 we present our family of iterative
methods, prove the rate of convergence and give the asymptotic error. A particular member
of the family is an optimal and very stable eighth-order scheme. In Section 3 we analyze
the dynamical behavior of the family, studying the fixed and critical points of the rational
function associated to the family on quadratic polynomials. This analysis allows us to obtain
some elements of the family with good stability properties. The numerical study presented
in Section 4 confirm the theoretical results and allows us to compare our methods with other
known ones. The paper finishes with some conclusions and the references used in it.

2 Improved methods and convergence analysis

The main object of this section is to modify method (1.1) so that it has optimal convergence
order eight: it must use only four function evaluations. We keep on the first two steps of (1.1),
which lead a parametric family of iterative schemes of order three for any value of parameter,
and we modify the third step. It is sufficient to find a suitable approximate for f ′(z) in the
denominator of the third step. Although there are some different and effective approaches
for this approximation, we prefer to use the Hermite-Newton interpolation method. Suppose
f(x), f ′(x), f(y), and f(z) are available. Then, the interpolation polynomial is given by

H3(t) = f(z) + (t− z)f [z, y] + (t− z)(t− y)f [z, y, x] + (t− z)(t− y)(t− x)f [z, y, x, x], (2.1)

where

f [x0, x1, . . . , xk−1, xk] =

{
f [x1,...,xk]−f [x0,...,xk−1]

xk−x0
, x0 ̸= xk,

f (k)(x)
k! , x0 = . . . = xk(= x),

is the generalized divided differences at x0 ≤ x1 ≤ · · · ≤ xk−1 ≤ xk. Hence,

H ′
3(t) = f [z, y] + (z − y)f [z, y, x] + (z − y)(z − x)f [z, y, x, x]

= f [z, y] + 2(z − y)f [z, y, x]− (z − y)f [y, x, x]. (2.2)

Now, we set f ′(z) ≈ H ′
3(z). Consequently, our modified family, denoted by F6, has the

following iterative expression:
y = x− f(x)

f ′(x) ,

z = x−
(
1 + f(y)

f(x)−2βf(y)

)
f(x)
f ′(x) ,

x̂ = z − f(z)
f [z,y]+2(z−y)f [z,y,x]−(z−y)f [y,x,x] .

(2.3)

We are going to analyze the convergence order of this family by means of the use of Taylor’s
expansions for the different expressions of the iterative formula. To do this, we show the
Mathematica code for obtaining the mentioned Taylor’s series.

Taylor’s expansion of f(x) and f ′(x) about α, taking into account that f(α) = 0, is

f(x) = f ′(α)(e+ c2e
2 + c3e

3 + c4e
4 + c5e

5 + c6e
6 + c7e

7 + c8e
8) +O(e9) (2.4)
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and

f ′(x) = f ′(α)(1 + 2c2e+ 3c3e
2 + 4c4e

3 + 5c5e
4 + 6c6e

5 + 7c7e
6 + 8c8e

7) +O(e8), (2.5)

where e = x− α and ck = f (k)(α)
f ′(α)k! , k = 2, 3, . . ..

In[1] := f[e ] = f1a(e+ c2e
2 + c3e

3 + c4e
4); (*f1a denotes f ′(α)*)

In[2] := ey = e− Series
[
f[e]
f′[e] , {e, 0, 8}

]
; (*First Step: Newton’s Iteration*)

In[3] := ez = e−
(
1+

f[ey]
f[e]−2βf[ey]

)
f[e]
f′[e] ; (*Second Step: Family of order three*)

In[4] := f[x , y ] = f[x]−f[y]
x−y

;

In[5] := f[x , y , z ] = f[x,y]−f[y,z]
x−z

;

In[6] := f[x , x , y ] = f′[x]−f[x,y]
x−y

;

In[7] := ê = ez − f[z]

f[ez,ey]+(ez−ey)

(
2f[ez,ey,e]−f[e,e,ey]

)//FullSimplify (*Third Step*)

Out[7] = ê = 4(−1+ β)2c52e
6 + 2(−1+ β)c32

(
2
(
9− 14α+ 4β2

)
c32 + 2(−7+ 8β)c2c3 − c4

)
e7

+c22
((
201− 636β + 692β2 − 304β3 + 48β4

)
c52

+2
(
−151+ 410β − 340β2 + 80β3

)
c32c3 +

(
23− 62β + 40β2

)
c22c4

+(11− 12β)c3c4 + c2
((
73− 168β + 96β2

)
c23

−4(−1+ β)c5)) e
8 + O(e9). (*Final error equation*)

We can observe that for β = 1 the final expression of the error equation is

ê = c22
(
c52 − 2c32c3 + c2c

2
3 + c22c4 − c3c4

)
e8 +O(e9).

As we have seen above, the following result can be stated.

Theorem 1. Let f : I ⊂ R → R be a real function sufficiently differentiable in an open
interval I and α ∈ I a simple root of f(x) = 0. Assume that x0 is an initial guess close
enough to α. Then, the modified three-point iterative family (2.3) has order of convergence
six, being the case of β = 1 an optimal scheme with convergence order eight.

3 Dynamical analysis

The application of iterative methods for solving nonlinear equations on an arbitrary polyno-
mial, gives rise to rational functions whose dynamics are not well-known.

From the numerical point of view, the dynamical properties of the rational function associated
with an iterative method give us important information about its stability and reliability. In
most of studies presented in the literature (see, for example, [15, 16, 17, 18, 19, 20, 21] for
multipoint iterative methods), interesting dynamical planes, including periodical behavior and
other anomalies, have been obtained. We are interested in the parameter planes associated
to a family of iterative methods, which allow us to understand the behavior of the different
elements of the family when they are applied to quadratic polynomials, helping us in the
election of particular ones with good numerical properties.

The graphical tools used to obtain the parameter planes and the different dynamical planes
have been designed by Chicharro et al. in [22] and are implemented in Matlab language.
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Let us consider p(z) = (z−a)(z−b), an arbitrary quadratic polynomial with roots a and b and
denote by M6(z, β, a, b) the fixed point operator corresponding to the family (2.3) applied to
p(z). P. Blanchard, in [23], by considering the conjugacy map

H(z) =
z − a

z − b
, H−1(z) =

zb− a

z − 1
, (3.1)

with the following properties:

H(∞) = 1, H(a) = 0, H(b) = ∞,

proved that, for quadratic polynomials, Newton’s operator is always conjugate to the rational
map z2. In an analogous way, M6(z, β, a, b) is conjugated to operator F (z, β),

F (z, β) = (H ◦M6 ◦H−1)(z) = z6
(2− 2β + z)2

(1− 2(−1 + β)z)2
. (3.2)

We observe that parameters a and b have been obviated in F (z, β), as a result of the Scaling
Theorem that is verified by this iterative scheme. The fixed points of rational function F (z, β)
that are not associated to the roots of the polynomial p(z) are called strange fixed points.

We will study the general convergence of methods (2.3) for quadratic polynomials. To be
more precise (see [24, 25]), a given method is generally convergent if the scheme converges to
a root for almost every starting point and for almost every polynomial of a given degree.

3.1 Study of the strange fixed and critical points

As we have seen, the sixth-order family of iterative methods (2.3), applied on the generic
quadratic polynomial p(z), and after Möbius transformation, gives rise to the rational function
(3.2), depending on parameter β. It is clear that this rational function has 0 and ∞ as
superattracting fixed points, but also different strange fixed points (that do not correspond to
the roots of p(z)): s1(β) = 1 and the roots of the following polynomial, that will be denoted
by si(β), i = 2, . . . , 7:

1+(5−4β)z+
(
9− 12β + 4β2

)
z2+

(
9− 12β + 4β2

)
z3+

(
9− 12β + 4β2

)
z4+(5−4β)z5+z6.

Nevertheless, the complexity of the operator can be lower depending on the value of the
parameter, as we can see in the following result.

Theorem 2. The number of strange fixed points of operator F (z, β) is seven (including
s1(β) = 1), except in the following cases:

• For β = 1, β = 1
2 and β = 3

2 , there not exist strange fixed points and the expression of
the operator is, respectively,

F (z, 1) = z8, F

(
z,

1

2

)
= z6 and F

(
z,

3

2

)
= z6.

• When β = 13
6 , there are five different strange fixed points (being the multiplicity of

s1(β) = 1 three), and

F

(
z,

13

6

)
= z6

(7− 3z)2

(3− 7z)2
.
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Let us remark that the schemes corresponding to β ∈ {1, 12 ,
3
2} satisfy Cayley’s Test (see [26]),

being the one of β = 1 the only element of the family (2.3) whose operator is conjugate to
the rational map z8.

In order to analyze the stability of each one of these strange fixed points, we define the stability
function of each fixed point as Sti(β) = |F ′(si(β), β)|, for each i = 1, 2, . . . , 7: if Sti(β) < 1,
then the strange fixed point si(β) is attractive, parabolic in case of Sti(β) = 1 and repulsive
in other case. As far it is possible, we analyze both analytically and graphically the character
of all these points in the complex plane, showing for complex values of β which is the value
of the corresponding stability function. It is found that s1(β) = 1 is attractive for values of β
in a circular region around β = 2; for this value, St1(2) = 0 and s1(2) = 1 is superattractive.
This is shown in the following result.

Theorem 3. The character of the strange fixed point s1(β) = 1 is:

i) If
∣∣β − 61

30

∣∣ < 2
15 , then s1(β) = 1 is an attractor and it is a superattractor if β = −2.

ii) When
∣∣β − 61

30

∣∣ = 2
15 , s1(β) = 1 is a parabolic point.

iii) If
∣∣β − 61

30

∣∣ > 2
15 , then s1(β) = 1 is a repulsor.

Proof. It can be easily checked that

St1 (β) =
8(−2 + β)

−3 + 2β
.

Then, ∣∣∣∣8(−2 + β)

−3 + 2β

∣∣∣∣ ≤ 1 is equivalent to 64 |−2 + β| ≤ |−3 + 2β| .

Now, let us consider β = a+ ib an arbitrary complex number. So,

64
(
4− 4a+ a2 + b2

)
≤ 9− 12a+ 4a2 + 4b2.

By simplifying
60a2 + 60b2 − 244a+ 247 ≤ 0,

that is, (
a− 61

30

)2

+ b2 ≤
(

2

15

)2

.

Therefore,

|St1 (β)| ≤ 1 if and only if

∣∣∣∣β − 61

30

∣∣∣∣ ≤ 2

15
.

It is clear that β = 2 makes s1(β) superattracting. Finally, if β satisfies
∣∣β − 61

30

∣∣ > 2
15 , then

|St1 (β)| > 1 and s1(β) = 1 is a repulsive point.

Therefore, following Theorem 3, it is stated that the stability region of s1(β), that is, the set
of values of β that makes the strange fixed point s1(β) = 1 attracting is defined by the area
of the complex plane where

∣∣β − 61
30

∣∣ < 2
15 . This region has also been obtained numerically

and can be seen in Figure 1.

On the other hand, we have stated numerically (by using Mathematica 8.0 software) the
stability of strange fixed points si(β) i = 2, . . . , 7 for values of β in the complex plane, by
analyzing the value of their associate stability functions. In Figures 2a and 2b we show
the stability region of both of them St4(β) and St5(β). Let us remark that they have as a
common region of stability a disk centered in the real axis. These results are summarized in
the following theorem.
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Figure 1: Stability function St1(α)
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(a) St4(α)
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(b) St5(α)

Figure 2: Stability functions of the strange fixed points s4(β) and s5(β).

Theorem 4. The stability of the strange fixed points of F (z, β) is as follows:

i) Four of the strange fixed points are repulsive for any value of β ∈ C.

ii) Two strange fixed points, s4(β) and s5(β) are simultaneously attractive for β ∈ (13/6, 2.2752)
and simultaneously superattractive for β ≈ 0.4304.

iii) If β = 0.2722+1.4912i or β = 0.2722−1.4912i, then s5(β) is superattracting, meanwhile
s4(β) is not superattractive.

By combining the pictures of the stability regions of these fixed points, we obtain an overview
of the stability of the family, depending on the value of the parameter. This will be analyzed
in deep in the following, by means of the parameter plane.

3.2 Analysis of critical points

A classical result in complex dynamics (see [27]) establishes that there is at least one critical
point associated with each invariant Fatou component. It is clear that z = 0 and z = ∞ (the
image by the Möbius transformation of the roots of the polynomial), are critical points and
give rise to their respective Fatou components, but there exist in the family some free critical
points, that is, critical points not associated to the roots, all of them depending on the value
of the parameter.

In order to calculate the critical points, we get the first derivative of F (z, β),

F ′ (z, β) =
4z5(2 + z − 2β)

(
−3(1 + z)2 + (3 + z(8 + 3z))β − 4zβ2

)
(−1 + 2z(−1 + β))3
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and solving the equation F ′ (z, β) = 0, we obtain the following result.

Theorem 5. The set of critical points of operator F (z, β) includes 0 and ∞. Moreover, some
specific cases must be described:

a) If β = 1
2 , β = 1 or β = 3

2 there not exist free critical points.

b) When β = 0, then −1 is the only free critical point, which is a preimage of the repulsive
strange fixed point s1(0) = 1.

c) For β = 2, then 1 = s1(2) is the only free critical point, which is a superattracting
strange fixed point.

In any other case, the number of free critical points is three: cr1(β) = 2(−1 + β), which is a
preimage of z = 0 by F (z, β),

cr2(β) =
3− 4β + 2β2 −

√
−6β + 19β2 − 16β3 + 4β4

3(−1 + β)

and

cr3(β) =
3− 4β + 2β2 +

√
−6β + 19β2 − 16β3 + 4β4

3(−1 + β)
.

Re{β}

Im
{β

}

−0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 3: Parameter plane associated to the free critical point cr2(β).

Let us note that cr2(β) =
1

cr3(β)
so there is only one independent free critical point, that we

will use to define the parameter plane. This task is developed by means of associating each
point of the parameter plane with a complex value of parameter β, i.e., with an element of
family. Specifically, we want to find regions of the parameter plane as much stable as possible,
because in that regions we find the best members of the family under numerical point of view.

In Figure 3 the parameter plane associated to cr2(β) is shown. Each value of the parameter
β is selected in a mesh of 1000 × 1000 points. Each of them corresponds to one element of
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the family of iterative schemes, that is executed using cr2(β) as a starting point. Then, we
paint a point in red if the iteration of the method converges to the fixed point 0 (related to
the root a) or if it converges to ∞ (related to the root b) and in white in any other case, with
a maximum of 200 iterations. In Figure 4a we can observe a detail of this parameter plane
where the biggest white regions are found.
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(a) Detail of F (cr2(β), β)
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(b) β = 2, s1(β) = 1 superattractive
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0

0.5
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(d) β = 1.85, 2-periodic orbit

Figure 4: Details of the parameter plane and associated dynamical planes.

In Figure 3, we can observe that the behavior of the family is stable as there is convergence to
0 or ∞ for the most of complex values of β. The main problem resides in the zone where the
parameter is close to 2 (see Figure 4a). In this region (that we will denote by ”the cat set”,
see [28]), the strange fixed points s1(β) = 1 (white disk on the left, denoted by D1), s4(β)
and s5(β) (white disk on the right, denoted by D2) can be attractive or even superattractive
(see Theorems 3 and 4). Moreover, the white disks that represent the stability region of these
points are surrounded for tangent bulbs, of different sizes; they correspond to values of β for
which the iteration of cr2(β) converges to periodic orbits. This kind of behavior can also be
observed in the small white Mandelbrot-type sets that surround this region of the parameter
plane.

For the representation of the convergence basins of every iterative procedure (dynamical
planes) we have also used the software described in [22]. We draw a mesh with eight hundred
points per axis; each point of the mesh is a different initial estimation which we introduce
in the method. If the scheme reaches one of the attracting fixed points in less than eighty
iterations, this point is drawn in different colors, depending on the fixed point that the iterative
process converges to (orange and blue for 0 and ∞, respectively, and green, red, ... for strange
fixed points). These attracting points are marked in the figures by white stars. The color will
be more intense when the number of iterations is lower. Otherwise, if the method arrives at
the maximum of iterations, the point will be drawn in black.
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In Figure 4a, a detail of the parameter plane associated to the family (2.3) is shown corre-
sponding to the most unstable region, the cat set. Moreover, in Figure 4b we observe the
dynamical plane corresponding to β = 2 ∈ D1, being s1(β) = 1 superattracting with a big
green basin of attraction. In Figure 4c a detail of D1 is showed with a big bulb which is part
of the loci of periodic orbits of period 2, as can be seen in the associated dynamical plane
shown in Figure 4d.
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Figure 5: Stability of strange fixed points s4(β) and s5(β).

If we represent the dynamical plane associated to a β in the central body of the Mandelbrot set
that appears in Figure 5a, β = 0.25 + 1.5i, or in the white disk D2 (Figure 5c), β = 2.3 there
exist two attracting strange fixed points, whose respective basins of attraction are presented
in green and red, respectively, as can be seen at Figures 5b and 5d.

Moreover, in Figure 6a a detail of Figure 3 can be seen, where a Mandelbrot set in the collar
of the cat set appear (see [28]). As it can be seen in Figure 6b, the core (points inside of the
cardioid) of this set correspond to values of the parameter whose dynamical planes include
2-periodic orbits. We have plotted in yellow the orbit of a point in this basin of attraction.

Figure 7 corresponds to iterative schemes without stability problems. In it, we found the
dynamical plane of the iterative methods for β = 0 (Figure 7a), β = 1, β = 1

2 , and β = 3
2

(Figure 7b). Also cases where Cayley Test is not verified appear in Figures 7c and 7d, where a
very stable behavior can be observed. All of them correspond to values of parameter β inside
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Figure 6: Stability of strange fixed points s4(β) and s5(β).
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Figure 7: Dynamical planes for values of β in which there are not stability problems.

the collar of the cat set and not belonging to any antenna. Schemes corresponding to values
of β out of the collar are also stable. Some of this values will be included in the test made
in the numerical section, in order to check the behavior of the methods on more complicated
problems.
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4 Numerical reports

In this section we report some numerical examples to justify the applicability and accuracy of
some elements of the developed family (2.3). Specifically, we are going to test the members
of our family corresponding to β = 3/2, β = 3/4 (order six) and β = 1 (order eight). We
compare our methods of order six with LLK5 for β = 1 and the scheme of order eighth with
the following optimal eighth-order iterative methods without memory, designed by Kung and
Traub in [3], denoted by KT8,

yk = xk − f(xk)
f ′(xk)

,

zk = yk − f(xk)
2

(f(xk)−f(yk))2
f(yk)
f ′(xk)

,

xk+1 = zk −
(

1
f(xk)−f(zk)

(
1

f [xk,zk]
− 1

f ′(xk)

)
− f(yk)

(f(xk)−f(yk))2 f ′(xk)

)
f2(xk)f(yk)
f(yk)−f(zk)

,

(4.1)

and with the derivative-free optimal eighth-order scheme, also constructed by Kung and Traub
in [3], that is denoted by KT8b,

yk = xk − f(xk)
f [xk,wk]

, wk = xk + γf(xn), γ ∈ R, k = 0, , 1, 2, . . . ,

zk = yk − f(wk)
f(wk)−f(yk)

f(yk)
f [xk,yk]

,

xk+1 = zk −
f(yk)f(wk)

(
yk−xk+

f(xk)

f [xk,zk]

)
(f(yk)−f(zk))(f(wk)−f(zk))

+ f(yk)
f [yk,zk]

.

(4.2)

The errors |xk − α| denote approximations to the sought zeros, and a(−b) stands for a ×
10−b. To show the convergence order in action, modified computational order of convergence
(MCOC) introduced in [29] is used:

p ≈= MCOC =
log(|f(xk)/f(xk−1)|)
log(|f(xk−1)/f(xk−2)|)

.

All the numerical results have been obtained by using software Mathematica 8.0 and working
with 1000 significant digits. Among many test problems, the following four examples are
considered [1]

f1(x) = (x+ 2)ex − 1, α = −0.4428..., x0 = −0.5,
f2(x) = x2 − (2− x)3, α = 1, x0 = 1.1,

f3(x) = 10xe−x2 − 1, α = 1.6796..., x0 = 1.7,
f4(x) = sin2(x)− x2 + 1, α = 1.4044..., x0 = 1.5.

Method |x1 − α| |x2 − α| |x3 − α| MCOC

LLK5, β = 1 0.1238(-8) 0.1391(-54) 0.2799(-330) 6.00
F6, β = 3/2 0.5706(-8) 0.5618(-50) 0.5117(-302) 6.00
F6, β = 3/4 0.1413(-8) 0.3236(-54) 0.4669(-328) 6.00
F6, β = 1 0.2414(-11) 0.2298(-94) 0.1551(-758) 8.00
KT8b, γ = −1 0.3166(-11) 0.4117(-93) 0.3369(-748) 8.00
KT8 0.3214(-10) 0.2736(-84) 0.7542(-677) 8.00

Table 1: Numerical results with f1(x)

As we can see in Tables 1-4, the numerical tests confirm the theoretical results of our methods
and method F6 (β = 1) produces slightly better results than optimal eighth-order Kung-
Traub’s schemes. In relation to the no optimal methods of order six, the numerical results
are very similar, obtaining better results with F6 (β = 3/4) in some cases.
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Method |x1 − α| |x2 − α| |x3 − α| MCOC

LLK5, β = 1 0.4289(-8) 0.1993(-52) 0.2007(-318) 6.00
F6, β = 3/2 0.7627(-8) 0.2015(-50) 0.6862(-306) 6.00
F6, β = 3/4 0.2343(-8) 0.4238(-54) 0.1484(-328) 6.00
F6, β = 1 0.2154(-11) 0.4737(-97) 0.2597(-782) 8.00
KT8b, γ = −1 0.2164(-8) 0.1894(-69) 0.6515(-558) 8.00
KT8 0.1569(-10) 0.5646(-89) 0.1585(-716) 8.00

Table 2: Numerical results with f2(x)

Method |x1 − α| |x2 − α| |x3 − α| MCOC

LLK5, β = 1 0.5380(-11) 0.1378(-68) 0.3895(-344) 6.00
F6, β = 3/2 0.6221(-10) 0.4630(-61) 0.7865(-368) 6.00
F6, β = 3/4 0.1538(-10) 0.2637(-65) 0.6712(-394) 6.00
F6, β = 1 0.6224(-14) 0.3961(-114) 0.1067(-915) 8.00
KT8b, γ = −1 0.4546(-10) 0.2030(-79) 0.3206(-634) 8.00
KT8 01932(-12) 0.1077(-100) 0.1000(-806) 8.00

Table 3: Numerical results with f3(x)

Method |x1 − α| |x2 − α| |x3 − α| MCOC

LLK5, β = 1 0.1752(-7) 0.1044(-47) 0.4695(-289) 6.00
F6, β = 3/2 0.1612(-6) 0.5177(-41) 0.5684(-248) 6.00
F6, β = 3/4 0.4403(-7) 0.5380(-45) 0.1790(-272) 6.00
F6, β = 1 0.2027(-9) 0.6381(-76) 0.2535(-610) 8.00
KT8b, γ = −1 0.4108(-6) 0.1615(-48) 0.9199(-388) 8.00
KT8 0.5000(-8) 0.5296(-66) 0.8382(-530) 8.00

Table 4: Numerical results with f4(x)

5 Conclusion

In this study, based on using a better approximation for f ′(z) in the third step of family
(1.1), we transform this fifth-order family (with a particular case of order six), into a new
sixth-order family with an optimal eighth-order member, without increasing the number of
functional evaluations per step. So the efficiency index is improved.

A dynamical analysis of the sixth-order family on quadratic polynomials has been made,
identifying some elements of the family that are specially stable, several of them satisfying
Cayley’s test. This has been checked in the numerical section for different test functions.

Acknowledgments: The authors thank to the anonymous referees for their valuable com-
ments and for the suggestions to improve the readability of the paper.
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