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We prove complete monotonicity of sums of squares of generalized Baskakov
basis functions by deriving the corresponding results for hypergeometric func-
tions. Moreover, in the central Baskakov case we study the distribution of
the complex zeros for large values of a parameter. We finally discuss the
extension of some results for sums of higher powers.
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1 Introduction

Recently, there has been an increasing interest in monotonicity and convexity properties
of sums of squared basis functions arising in approximation theory (see, e.g., [10], [12],
[8], [14]). Among the classical approximation operators usually studied in this context
we find operators constructed using the basis of Bernstein polynomials, the Mirakjan-
Favard-Szász basis, the Meyer-König and Zeller basis, the Lagrange basis, the Bleimann-
Butzer-Hahn basis and the Baskakov basis. As there is a huge amount of literature on
this subject we only refer to [3] for a general introduction. Apart from being of general
interest, one motivation for the study of analytic properties of sums of squares of such
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basis functions is that this proves crucial in a novel approach of Chebyshev-Grüss-type
inequalities via discrete oscillations introduced by Gonska, Raşa and Rusu in [10] (see also
[9]). These types of inequalities provide estimates for generalized Chebyshev functionals
of the form

|L(fg)− L(f)L(g)| ≤ E (L, f, g) ,

where L is a linear functional and E is an expression in terms of properties of L and some
kind of oscillations of f and g. More precisely, for an arbitrary set X let L : B(X) → R,
Lf =

∑∞
k=0 akf(xk), be a positive linear functional defined on the real-valued bounded

functions B(X), where (xk) is a sequence of distinct points of X and ak ≥ 0 such that
∑∞

k=0 ak = 1. Then we have [10, Thm. 9]

|L(fg)− L(f)L(g)| ≤ 1

2

(

1−
∞
∑

k=0

a2k

)

osc(f)osc(g), (1.1)

where we define
osc(f) = sup {|f(xk)− f(xl)| : 0 ≤ k < l <∞}

and similarly for osc(g). Hence, the study of classical approximation operators in the
light of the inequality (1.1) requires a good control of the sums of squares

∑∞
k=0 a

2
k.

For instance, the investigation of the Bernstein operator lead Gonska, Raşa and Rusu to
state three interesting conjectures on sums of squared Bernstein functions which recently
have been solved and extended using different approaches (see [10], [12], [8]).

One purpose of this paper is the study of corresponding results for generalized Baskakov
bases in the following sense. For n ∈ N, k ∈ N ∪ {0} and a real number c > 0 we define
the basis functions of Baskakov type (initially introduced in [5], see also [1], [6])

p
[c]
n,k(x) =

(−n/c
k

)

(−cx)k (1 + cx)−n/c−k , x ≥ 0.

The generalized Baskakov operators defined by

L[c]
n f(x) =

∞
∑

k=0

p
[c]
n,k(x)f

(

k

n

)

, x ≥ 0, (1.2)

form a family of positive operators approximating continuous functions satisfying certain
growth conditions. Hence, in this paper we are concerned mainly with the functions

ψn,c(x) =

∞
∑

k=0

(

p
[c]
n,k(x)

)2
, x ≥ 0. (1.3)

The paper is structured as follows. In Section 2 our first aim is to show the following
theorem (see Theorem 2.2).

Theorem. The function ψn,c defined in (1.3) is completely monotonic in the sense of
Bernstein’s theorem.
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This is derived by proving a slightly more general result on a class of generalized
hypergeometric functions in Theorem 2.1. A suitable representation as a generalized
multivariate Laplace transform turns out to be a crucial tool for the proof. We provide
three applications of this. The first one gives a monotonicity result on the complete
elliptic integral of the first kind. Next, we deal with the a recent conjecture of I. Raşa
stating the following (see Conjecture 7.1 in [14]):

Conjecture 1.1. The function ψn,c is logarithmically convex.

We point out that our result on the complete monotonicity of ψn,c verifies the state-
ment of this conjecture in the case c > 0. As a third application we obtain a new
Chebyshev-Grüss-type inequality for the generalized Baskakov operator defined in (1.2)
again for arbitrary c > 0. Next, in the central Baskakov case c = 1, we study the behav-
ior of all complex zeros of the rational function ψn,1 for large values of n. This involves
some logarithmic potential theory (as introduced in [15]) and it is based on a specific
representation as a finite hypergeometric sum derived in Theorem 2.3. The main result
we will state here is the following (see Theorem 2.5):

Theorem. All complex zeros of ψn,1 follow the equilibrium measure on D 1

2

(

−1
2

)

, as

n → ∞. In particular, for large values of n, all the zeros approach the boundary of
D 1

2

(

−1
2

)

and they are uniformly distributed in the limit.

Here, D 1

2

(

−1
2

)

denotes the disk around −1/2 with radius 1/2. A small third section

will be devoted to sums of higher powers of the form

ψ[r]
n,c(x) =

∞
∑

k=0

(

p
[c]
n,k(x)

)r
, x ≥ 0,

where r > 1 is an arbitrary integer. In Theorem 3.1 we will generalize the integral
representation as a multivariate Laplace type transform (see Remark 2.1) to arbitrary
powers r. Although this representation seems to reveal the complete monotonicity of

ψ
[r]
n,c (for even positive integers r) without additional effort only in the case r = 2, we

use it to derive the decay at infinity of the derivatives of all orders (see Remark 3.1).

Finally, we state a conjecture about the complete monotonicity of ψ
[r]
n,c (and of a related

generalized hypergeometric function) in the case r is a positive even integer.

2 Sums of squared Baskakov functions

The first aim in this section is to show that ψn,c defined in (1.3) is a completely monotonic
function in the sense of Bernstein’s theorem. To this end, we first prove the following
theorem.

Theorem 2.1. For α > 0 we define

fα(x) = (1 + x)−2α
∞
∑

k=0

(−α
k

)2( x

1 + x

)2k

, x ≥ 0.

3



Then fα is a completely monotonic function.

Proof. The proof can be based on a representation of fα by means of a triple integral of
Laplace type. Using the notion of generalized hypergeometric functions we can write

fα(x) = (1 + x)−2α
2F1

(

α, α
1

∣

∣

∣

∣

(

x

1 + x

)2
)

= (1 + x)−2α
∞
∑

k=0

(α)2k
k!2

(

x

1 + x

)2k

.

Substituting the two Pochhammer symbols by integrals of the form

(α)k =
1

Γ(α)

∞
∫

0

e−ttα+k−1dt,

we obtain after some algebra

fα(x) =
(1 + x)−2α

Γ(α)2

∫

(0,∞)2

e−(s+t)(st)α−1
∞
∑

k=0

1

k!2

(

st

(

x

1 + x

)2
)k

d(s, t)

=
(1 + x)−2α

Γ(α)2

∫

(0,∞)2

e−(s+t)(st)α−1I0

(

2
√
st

x

1 + x

)

d(s, t),

where I0 denotes the modified Bessel function of order 0. Now, using the well-known
integral representation

I0(y) =
1

π

π
∫

0

e−y cos(θ)dθ (2.1)

we get

fα(x) =
(1 + x)−2α

πΓ(α)2

∫

(0,∞)2

π
∫

0

e−(s+t)(st)α−1 exp

(

−2
√
st

x

1 + x
cos(θ)

)

d(s, t)dθ

=
1

πΓ(α)2

∫

(0,∞)2

π
∫

0

e−(s+t+2
√
st cos θ)xe−(s+t)(st)α−1d(s, t)dθ, (2.2)

where the last equality results from a simple change of the variables s and t. Observing
that we have s+t+2

√
st cos θ ≥ 0, by differentiation of (2.2) with respect to x we obtain

for every m ∈ N ∪ {0}
(−1)m

(

d

dx

)m

fα(x) > 0, x ≥ 0.

Remark 2.1. The identity (2.2) in the proof of Theorem 2.1 can be considered as a
representation of fα as a generalized multivariate Laplace transform. Moreover, by
Bernstein’s theorem, it follows from the statement of Theorem 2.1 that there exists a
representation of fα as a univariate Laplace transform in the usual sense.
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Remark 2.2. An application of Theorem 2.1 in the case α = 1/2 shows the complete
monotonicity of the function

1

1 + x
K

(

x

1 + x

)

, x ≥ 0,

where K denotes the complete elliptic integral of the first kind (for the definition see,
e.g., [13, p. 487]). This follows from identity

K(x) =
π

2
2F1

(

1/2, 1/2
1

∣

∣

∣

∣

x2
)

, x ∈ [0, 1).

An application of Bernstein’s theorem then provides an integral representation of the
form

K(x) =
1

1− x

∞
∫

0

e−
x

1−x
tdµ(t), x ∈ [0, 1),

for a finite positive Borel measure µ. This representation may prove useful in the study
of the function K. There is a serious amount of literature on elliptic integrals, for
monotonicity properties see, e.g., [4].

In regards to Baskakov functions, from Theorem 2.1 we now obtain the following
theorem.

Theorem 2.2. For n ∈ N and c > 0 the function ψn,c defined in (1.3) is completely
monotonic.

Proof. We have

ψn,c(x) = (1 + cx)−2n/c
∞
∑

k=0

(−n/c
k

)2( cx

1 + cx

)2k

.

Putting α = n/c in Theorem 2.1 we know that the function ψn,c

(

x
c

)

is completely
monotonic. Hence, the same is true for the function ψn,c as well.

Remark 2.3. The limiting case c→ 0 corresponds to the sum of the squared Mirakjan-
Favard-Szász basis functions. The statement of Theorem 2.2 remains true in this case
as was shown by Gavrea and Ivan in [8]. This follows from the representation

ψn,0(x) =

∞
∑

k=0

(

e−nx(nx)k

k!

)2

=
2

π

π/2
∫

0

e−4nx sin2 tdt.

In the case c = −1 the functions ψn,c can be interpreted as sums of squares of the
Bernstein basis. For a related result in this case see Theorem 3 together with Remark 1
in [8].
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From the general fact that completely monotonic functions are logarithmically convex
(see, e.g., Theorem. 1 in [7]) we immediately obtain the following corollary.

Corollary 2.1. For n ∈ N and c > 0 the function ψn,c is logarithmically convex.

This was conjectured recently (but not necessarily only for c > 0) by I. Raşa in
Conjecture 7.1 in [14].

As a further application of Theorem 2.2 we obtain an inequality of Chebyshev-Grüss-

type for the positive linear operator L
[c]
n defined in (1.2). We point out that this provides

an extension of Theorem 16 in [10] from the special case c = 1 to arbitrary c > 0.

Corollary 2.2. We have for bounded functions f, g : [0,∞) → R

∣

∣

∣
L[c]
n fg(x)− L[c]

n f(x)L
[c]
n g(x)

∣

∣

∣
≤ 1

2
osc(f)osc(g), x ≥ 0,

where

osc(f) = sup

{∣

∣

∣

∣

f

(

k

n

)

− f

(

l

n

)∣

∣

∣

∣

: 0 ≤ k < l <∞
}

and similarly for osc(g).

Proof. For n ∈ N and c > 0 we have

inf
x∈[0,∞)

ψn,c(x) = lim
x→∞

ψn,c(x) = 0.

This easily follows from the representation of ψn,c as a Laplace transform, which exists
according to Bernstein’s theorem in connection with Theorem 2.2. Thus, the statement
follows from the inequality (1.1).

Next, we will study the behavior of the (complex) zeros of the function ψn,c in the
central case c = 1 for large values of n. To this end, we use a specific representation by
means of hypergeometric functions.

Theorem 2.3. We have for all n ∈ N

∞
∑

k=0

(

p
[1]
n,k(x)

)2
=

1

1 + 2x

(

n− 3/2

n− 1

)

2F1

(

−n+ 1, 1
2

−n+ 3
2

∣

∣

∣

∣

(1 + 2x)−2

)

. (2.3)

Proof. Starting from the identity

∞
∑

k=0

p
[1]
n,k(x)e

ikt =
(

1 + x− xeit
)−n

, t ∈ R,

an application of Parseval’s identity yields

∞
∑

k=0

(

p
[1]
n,k(x)

)2
=

1

2π

π
∫

−π

∣

∣1 + x− xeit
∣

∣

−2n
dt =

1

2π

π
∫

−π

(1 + 2x(1 + x)(1− cos t))−n dt.

6



Now, the change of variable u = tan (t/2) gives us

∞
∑

k=0

(

p
[1]
n,k(x)

)2
=
1

π

∞
∫

−∞

(

1 + 2x(1 + x)
2u2

1 + u2

)−n
du

1 + u2

=
2

π

∞
∫

0

(1 + u2)n−1

(1 + (1 + 2x)2u2)n
du.

A further simple change of variables and an application of the binomial theorem yields

∞
∑

k=0

(

p
[1]
n,k(x)

)2
=

n−1
∑

j=0

cn,j (1 + 2x)−2j−1 ,

where the coefficients are given by

cn,j =
2

π

(

n− 1

j

)

∞
∫

0

u2j

(1 + u2)n
du.

Finally, we will compute the coefficients explicitly by using the Beta function B. From

∞
∫

0

u2j

(1 + u2)n
du =

1

2
B

(

j +
1

2
, n− j − 1

2

)

=
π(2j)!(2n − 2j − 2)!

22n−1(n− 1)!j!(n − 1− j)!

we obtain

cn,j =
(2j)!(2n − 2j − 2)!

22n−2 (j!(n − 1− j)!)2
,

which implies

∞
∑

k=0

(

p
[1]
n,k(x)

)2
=

1

22n−2

(

2n− 2

n− 1

) n−1
∑

j=0

(

n− 1

j

)2(2n− 2

2j

)−1

(1 + 2x)−2j−1 .

This latter expression can easily be rewritten in terms of hypergeometric functions which
yields the representation (2.3).

Remark 2.4. The idea to apply Parseval’s identity to obtain a suitable hypergeometric
representation is used by Gavrea and Ivan in [8]. In fact, in Theorem 5 they derive
a representation for the sums of squares of the classical Meyer-König and Zeller basis
bn,k(x) =

(

n+k
k

)

xk(1− x)n+1, which is connected to the central Baskakov case by

p
[1]
n+1,k(x) = bn,k

(

x

1 + x

)

, x ∈ [0,∞).

Remark 2.5. The identity (2.3) in Theorem 2.3 provides an alternative proof of the
complete monotonicity of ψn,c in the case c = 1 as it expresses ψn,1 as a sum of odd
powers of (1 + 2x)−1 with positive coefficients.
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Let the sequence of hypergeometric polynomials (Pn) be defined by

Pn(z) = 2F1

(

−n, 1
2

−n+ 1
2

∣

∣

∣

∣

z

)

, n ∈ N.

It is known [16] that the zeros of Pn approach the unit circle as n tends to infinity.
In addition to that, we are going to show that in the limit, the zeros are distributed
uniformly on the unit circle. To this end, we use techniques from logarithmic potential
theory (cf. [2] and [11]).

Theorem 2.4. The zeros of the polynomials Pn follow the equilibrium measure on the
unit disk. More precisely, if (µn) denotes the sequence of normalized zero counting
measures associated to Pn, then the sequence (µn) converges in the weak-star sense to
the uniform distribution on the unit circle (normalized arc measure).

Proof. We begin by recapitulating the asymptotic behavior of Pn from the proof of
Theorem 1 in [16]. For every 0 < ǫ < 1 we have

lim
n→∞

Pn(z) = (1− z)−
1

2

and

lim
n→∞

znPn

(

1

z

)

= (1− z)−
1

2 (2.4)

uniformly on |z| ≤ ǫ. From the fact that the limits are free from any zeros we infer that,
if the sequence (µn) has a weak-star limit, then it will be supported on the unit circle.
Now, if we start with an arbitrary subsequence of (µn), then by Helly’s selection principle
[15] we can choose a further subsequence, denoted by (µnk

), which has a weak-star limit
µ. For the logarithmic potentials we know

Uµn(z) = − 1

n
log |Pn(z)| = − log |z| − 1

n
log |z−nPn(z)|.

Now, for |z| > 1 we obtain using (2.4) that

lim
n→∞

1

n
log |z−nPn(z)| = 0,

which gives

Uµ(z) = lim
k→∞

Uµnk (z) = log
1

|z| .

Observing that this coincides with the logarithmic potential of the uniform distribution
(equilibrium measure) of the unit disk, using Carleson’s unicity theorem [15] we can
conclude that µ coincides with the uniform distribution. Moreover, this shows that the
whole sequence (µn) converges in the weak-star sense to the uniform distribution, which
completes the proof.
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Next, using the representation from Theorem 2.3

∞
∑

k=0

(

p
[1]
n,k(x)

)2
=

1

1 + 2x

(

n− 3/2

n− 1

)

Pn−1

(

1

(1 + 2x)2

)

we immediately can translate Theorem 2.4 into a statement for the squared Baskakov
functions. By D 1

2

(

−1
2

)

we denote the disk around −1
2 with radius 1

2 .

Theorem 2.5. All complex zeros of the rational functions

ψn,1(x) =
∞
∑

k=0

(

p
[1]
n,k(x)

)2

follow the equilibrium measure on D 1

2

(

−1
2

)

, as n → ∞. In particular, for large values

of n, all the zeros approach the boundary of D 1

2

(

−1
2

)

and they are uniformly distributed

in the limit.

Remark 2.6. The associated Legendre differential equation is defined by the expression

(1− x)2y′′ − 2xy +

(

v(v + 1)− u2

1− x2

)

y = 0,

where u, v are (real) parameters. The solutions are called associated Legendre functions
of the first kind (or second kind respectively). If we denote the solutions of the first kind
by y(v, u;x), then it turns out that we can connect the squared Baskakov functions to the
associated Legendre functions by the identity

∞
∑

k=0

(

p
[1]
n,k(x)

)2
=

(−1)n+1√π(2x+ 1)−n+1/2

2(n − 1)!
√

x(x+ 1)
y

(

−1

2
, n − 1

2
;
2x2 + 2x+ 1

2x(x+ 1)

)

.

This can be considered as an analogue to the appearence of the Legendre polynomials in
the Bernstein case (see [12]).

3 Sums of higher powers

This section is devoted to more general sums of powers of the form

ψ[r]
n,c(x) = ψ[r]

n,c(x) =

∞
∑

k=0

(

p
[c]
n,k(x)

)r
, x ≥ 0,

where r > 1 is an arbitrary integer. Numerical simulations suggest that the functions

ψ
[r]
n,c are completely monotonic if r is an even integer. Trying to prove this by the

approach used in the case r = 2 would lead to an analogue of Theorem 2.1, especially
of the integral representation (2.2).
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Theorem 3.1. For an integer r > 1 and real α > 0 we define

f [r]α (x) = (1 + x)−rα
∞
∑

k=0

(−α
k

)r ( x

1 + x

)rk

, x ≥ 0.

Then the following representation as a generalized multivariate Laplace transform holds

f [r]α (x) =
1

(2π)r−1 Γ(α)r

∫

(0,∞)r

∫

(−π,π)r−1

e−xg(t,ϕ) exp







−
r
∑

j=1

tj







r
∏

j=1

tα−1
j dtdϕ, (3.1)

where dt = d(t1, . . . , tr), dϕ = d(ϕ1, . . . , ϕr−1) and

g(t, ϕ) =
r
∑

j=1

tj +
r
∏

j=1

t
1/r
j







r−1
∑

j=1

eiϕj + exp



−i
r−1
∑

j=1

ϕj











. (3.2)

Proof. We have

f [r]α (x) = (1+x)−rα
rFr−1

(

α, . . . , α
1, . . . , 1

∣

∣

∣

∣

( −x
1 + x

)r)

= (1+x)−rα
∞
∑

k=0

(α)rk
(k!)r

( −x
1 + x

)rk

.

We begin like in the proof of Theorem 2.1 by substituting all the Pochhammer symbols
by integrals of the form

(α)k =
1

Γ(α)

∞
∫

0

e−tj tα+k−1
j dtj

giving

f [r]α (x) =
(1 + x)−rα

Γ(α)r

∫

(0,∞)r

e−(t1+...+tr)(t1 · · · tr)α−1
∞
∑

k=0

1

(k!)r

(

t1 · · · tr
( −x
1 + x

)r)k

dt

=
1

Γ(α)r

∫

(0,∞)r

e−(1+x)(t1+...+tr)(t1 · · · tr)α−1I [r] (t1 · · · tr(−x)r) dt, (3.3)

where the last equality results from a simple change of variables and the function I [r] is
a generalization of the Bessel (and the exponential) function defined by

I [r](x) =
∞
∑

k=0

xk

(k!)r
.

Next, we use an analogue of (2.1) for I [r] which we derive by introducing Hankel’s integral
representation

1

k!
=

1

2πi

∫

γ

ezz−k−1dz,

10



where the integration is extended over a closed positively oriented contour in the complex
plane around the origin γ. This way, we can replace the factor 1/(k!)r by means of an
(r − 1)-fold complex contour integral and obtain

I [r] (t1 · · · tr(−x)r) =
1

(2πi)r−1

∫

γ×...×γ

ez1+...+zr−1 exp

{

t1 · · · tr(−x)r
z1 · · · zr−1

}

dz

z1 · · · zr−1
,

where dz = d(z1 · · · zr−1). Now, using the parameterizations

zj = −(t1 · · · tr)1/rxeiϕj , j = 1, . . . , r − 1,

we obtain for I [r] (t1 · · · tr(−x)r) the (r − 1)-fold integral representation

1

(2π)r−1

∫

(−π,π)r−1

exp







−x(t1 · · · tr)1/r




r−1
∑

j=1

eiϕj + exp



−i
r−1
∑

j=1

ϕj















dϕ, (3.4)

where dϕ = d(ϕ1, . . . , ϕr−1). Using (3.4) in (3.3) we immediately obtain (3.1).

Remark 3.1. While numerical simulations suggest that the functions f
[r]
α are completely

monotonic if r is an even positive integer, the integral representation in Theorem 3.1
seems to reveal this property without additional effort only in the case r = 2 (reducing
to the tripel integral (2.2)) as shown in Theorem 2.1. However, as an immediate conse-
quence of the inequality of arithmetic and geometric means, we know that the real part
of the function g defined in (3.2) satisfies

ℜ{g(t, ϕ)} ≥ 0

with equality attained only on a set of measure zero. Hence, as an application of (3.1)
and using Lebesgue’s dominated convergence theorem we get the limiting behavior of all

the derivatives of f
[r]
α , i.e., for every m ∈ N ∪ {0} (and every integer r > 1 and real

α > 0) we have

lim
x→∞

(

d

dx

)m

f [r]α (x) = 0.

This remark immediately can be reformulated for the functions ψ
[r]
n,c(x). If c is a positive

real number and n, r are positive integers, then for every m ∈ N ∪ {0} we have

lim
x→∞

(

d

dx

)m

ψ[r]
n,c(x) = 0.

We close this section by stating a conjecture.

Conjecture 3.1. Let r > 1 be an even integer and let α be a real positive number. Then

f [r]α (x) = (1 + x)−rα
∞
∑

k=0

(−α
k

)r ( x

1 + x

)rk

, x ≥ 0,

11



is a completely monotonic function on [0,∞). In particular, if r > 1 is an even integer,
c is a positive real number and n ∈ N, then

ψ[r]
n,c(x) =

∞
∑

k=0

(

p
[c]
n,k(x)

)r
, x ≥ 0,

is a completely monotonic function on [0,∞).
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