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The problem of recovering a lown-rank tensor is an extension of sparse recovery problem fromthe low
dimensional space (matrix space) to the high dimensional space (tensor space) and has many applications
in computer vision and graphics such as image inpainting andvideo inpainting. In this paper, we con-
sider a new tensor recovery model, named as minimumn-rank approximation (MnRA), and propose an
appropriate iterative hard thresholding algorithm with giving the upper bound of then-rank in advance.
The convergence analysis of the proposed algorithm is also presented. Particularly, we show that for
the noiseless case, the linear convergence with rate1

2 can be obtained for the proposed algorithm under
proper conditions. Additionally, combining an effective heuristic for determiningn-rank, we can also
apply the proposed algorithm to solve MnRA whenn-rank is unknown in advance. Some preliminary
numerical results on randomly generated and real lown-rank tensor completion problems are reported,
which show the efficiency of the proposed algorithms.

Keywords: iterative hard thresholding; low-n-rank tensor recovery; tensor completion; compressed sens-
ing

1. Introduction

The problem of recovering an unknown low-rank matrixX̂ ∈R
m×n from the linear constraintA (X̂) = bbb,

whereA : R
m×n → R

p is the linear transformation andbbb ∈ R
p is the measurement, has been an

active topic of recent research with a range of applicationsincluding collaborative filtering (the Net-
flix probolem) (Goldberget al., 1992), multi-task learning (Argyriouet al., 2008), system identification
(Liu & Vandenberghe, 2009), and sensor localization (Biswaset al., 2006). One method to solve this
inverse problem is to solve the matrix rank minimization problem:

min
X∈Rm×n

rank(X) s.t. A (X) = bbb, (1.1)

which becomes a mathematical task of minimizing the rank ofX such that it satisfies the linear con-
straint. With the application of nuclear norm which is the tightest convex approach to the rank function,
one can relax the non-convex NP-hard problem (1.1) to a tractable, convex one (see Rechtet al., 2010;
Candès & Recht, 2009). An alternative model of this inverseproblem is the minimum rank approxima-
tion problem:

min
X∈Rm×n

‖bbb−A (X)‖2 s.t. rank(X)6 r, (1.2)
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wherer = rank(X̂) is known in advance, and̂X is the true data to be reconstructed. The model in
(1.2) has been widely studied in the literature (see Haldar &Hernando, 2009; Keshavanet al., 2010;
Lee & Bresler, 2010; Keshavan & Oh, 2009; Daiet al. & Kerman, 2011; Bresler & Lee, 2009). In fact,
this formulation can not only work for the exact recovery case (A (X̂) = bbb), but also suit for the noisy
case (bbb= A (X̂)+ ε), whereε denotes the noise by which the measurements are corrupted. Although
the model (1.2) is based on a priori knowledge of the rank ofX̂, an incremental search overr, which
increases the complexity of the solution by at most factorr, can be applied when the minimum rankr is
unknown. Particularly, if an upper bound onr is available, we can use a bisection search overr since the
minimum of (1.2) is monotonously decreasing inr. Then the factor can reduce to logr. Several effective
algorithms based on (1.2) have been proposed, such as OPTSPACE (Keshavan & Oh, 2009), Space
Evolution and Transfer (SET) (Daiet al. & Kerman, 2011), Atomic Decomposition for Minimum Rank
Approximation (ADMiRA) (Lee & Bresler, 2010) and the Iterative Hard Thresholding (IHT) introduced
in (Goldfarb & Ma, 2011). Among these algorithms, iterativehard thresholding algorithm is an easy-to-
implement and fast method, which also shows the strong performance guarantees available with methods
based on convex relaxation.

Recently, many researchers focus on the recovery problem inthe high dimensional space, which has
many applications in computer vision and graphics such as image inpainting (Bertalmı́oet al., 2000)
and video inpainting. More specifically, by using then-rank as a sparsity measure of a tensor (or mul-
tidimensional array), this inverse problem can be transformed into the mathematical task of recovering
an unknown lown-rank tensorX̂ ∈ R

n1×···×nN from its linear measurementsA (X̂ ) = bbb via a given
linear transformationA : Rn1×n2×...×nN → R

p with p6 ∏N
i=1ni . Some related works can be found in

Gandyet al. (2011), Liuet al. (2009), Signorettoet al. (2010), Signorettoet al. (2013) and Yanget al.
(2013). In all these studies, the authors mainly discussed the following tensor recovery model:

min
X

N

∑
i=1

wirank(X<i>) s.t. A (X ) = bbb, (1.3)

whereX ∈R
n1×···×nN is the decision variable,X<i> is the mode-i unfolding (the notation will be given

in Section 2) ofX , wi ’s are the weighted parameters which satisfy 06 wi 6 1 and∑N
i=1wi = 1. Note

that (1.3) can be regarded as an extension of (1.1) in the highdimensional spaceRn1×n2×...×nN and it is
a difficult non-convex problem due to the combination natureof the function rank(·). In order to solve
it, the common method is replacing rank(·) by its convex envelope to get a convex tractable approx-
imation and developing effective algorithms to solve the convex approximation, including FP-LRTC
(fixed point continuation method for lown-rank tensor completion) (Yanget al., 2013), TENSOR-HC
(hard completion) (Signorettoet al., 2013), and ADM-TR(E) (alternative direction method algorithm
for low-n-rank tensor recovery) (Gandyet al., 2011). Additionally, Zhang & Huang (2012) investigated
the exact recovery conditions for the lown-rank tensor recovery problems via its convex relaxation.
And lately, (Goldfarb & Qin, 2014) studied the problem of robust lown-rank tensor recovery in a con-
vex optimization framework, drawing upon recent advances in robust Principal Component Analysis
and tensor completion.

In this paper, we consider a new alternative recovery model extended from problem (1.2), which is
called asminimum n-rank approximation(MnRA):

min
X ∈Rn1×···×nN

‖A (X )−bbb‖2
2 s.t. rank(X<i>)6 r i ∀ i, (1.4)

where(r1, r2, · · · , rN) is then-rank of the ture dataX̂ to be restored. Note that this formulation has not
been discussed in tensor space in the literature to our knowledge and it also includes both the noisy case
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(A (X̂ )+ ε = bbb) and noiseless case (A (X̂ ) = bbb). One of its special cases is thelow n-rank tensor
completion(LRTC) problem:

min
X ∈Rn1×···×nN

‖XΩ −MΩ‖2
F s.t. rank(X<i>)6 r i ∀ i, (1.5)

whereX , M are N-way tensors with identical size in each mode, andXΩ (or MΩ ) denotes the
tensor whose(i1, i2, · · · , iN)-th component equal toXi1i2···iN (or Mi1i2···iN) if (i1, i2, · · · , iN) ∈ Ω and
zero otherwise. To solve (1.4), we propose an iterative hardthresholding algorithm, which is easy
to implement and very fast. Particularly, we prove that for the noiseless case the iterative sequence
generated by the proposed algorithm is globally linearly convergent to the true datâX with the rate1

2
under some conditions, while for the noisy case the distancebetween the iterative sequence and the true
dataX̂ is decreased quickly associated with the noiseε. Additionally, combining an effective heuristic
for determiningn-rank, we can also apply the proposed algorithm to solve MnRAwhenn-rank ofX̂ is
unknown in advance. Some preliminary numerical results arereported and demonstrate the efficiency
of the proposed algorithms.

The rest of our paper is organized as follows. In Section 2, wefirst briefly introduce some pre-
liminary knowledge of tensor. Then, we propose an iterativehard thresholding algorithm to solve the
minimum n-rank approximation problem in Section 3 and the convergence analysis of the proposed
algorithm will be presented in Section 4. In Section 5 and Section 6, we give some implementation
details and report some preliminary numerical results for low n-rank tensor completion, respectively.
Conclusions are given in the last section.

2. Preliminary knowledge

In this section, we briefly introduce some essential nomenclatures and notations used in this paper;
and more details can be found in Kolda & Bader (2009). Scalarsare denoted by lowercase letters,
e.g.,a,b,c, · · · ; vectors by bold lowercase letters, e.g.,aaa,bbb,ccc, · · · ; and matrices by uppercase letters,
e.g., A,B,C, · · · . An N-way tensor is denoted asX ∈ R

n1×...×nN , whose elements are denoted as
x j1··· jk··· jN , where 16 jk 6 nk and 16 k 6 N. Let us denote tensor space byT for convenience, i.e.,
T := R

n1×n2×...×nN . Then, for anyX ,Y ∈ T, the inner product is defined as

〈X ,Y 〉=
n1

∑
j1=1

n2

∑
j2=1

· · ·
nN

∑
jN=1

X j1 j2... jNY j1 j2... jN .

Obviously, the tensor spaceT becomes a Hilbert space with the above definition of the innerproduct,
and the corresponding Frobenius-norm is‖X ‖F =

√
〈X ,X 〉.

The mode-i fibers are all vectorsx j1... j i−1: j i+1... jN obtained by fixing the indexes of{ j1, . . . jN}\ j i ,
which are analogue of matrix rows and columns. The mode-i unfolding ofX ∈ T, denoted byX<i>,
arranges the mode-i fibers to be the columns of the resulting matrix. The tensor element( j1, j2, . . . , jN)
is mapped to the matrix element( j i , l), where

l = 1+
N

∑
k=1, k6=i

( jk−1)Lk with Lk =
k−1

∏
j=1, j 6=i

n j ,

which infersX<i> ∈ R
ni×Ti , whereTi = ∏N

k=1,k6=i nk. We also follow Gandyet al. (2011) to define the
n-rank of a tensorX ∈ T by

n−rank(X ) = (rank(X<1>), rank(X<2>), · · · , rank(X<N>)).
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In the following parts of this paper, we sayX is an (r1, r2, ..., rN)-rank tensor, if for anyi, the rank of
mode-i unfolding ofX is not greater thanr i , i.e., rank(X<i>)6 r i for all i. It should be pointed out that
this definition is different from the notation of a “rank-(r1, r2, ..., rN) tensor” in Lathauweret al. (2000),
which represents a tensor with the rank of each mode-i unfolding is exactlyr i . The best (r1, r2, ..., rN)-
rank approximationX̃ of a tensorX is defined as the following:

X̃ = argmin{‖Y −X ‖F : Y is a (r1, r2, ..., rN)-rank tensor}.

The i-mode (matrix) product of a tensorX ∈ R
n1×···×nN with a matrixU ∈ R

L×ni is denoted by
X ×i U and is of sizen1× ·· · ×ni−1×L×ni+1× ·· · ×nN. It can be expressed in terms of unfolded
tensors:

Y = X ×i U ⇐⇒ Y<i> =UX<i>.

Additionally, for any transformationA , ‖A ‖ denotes the operator norm of the transformationA ;
and for any vectorx, we use Diag(x) to denote a diagonal matrix with itsi-th diagonal element beingxi .

3. Iterative hard thresholding for low n-rank tensor recovery

In this section, we will derive an iterative hard thresholding algorithm to solve problem (1.4). As a fast
and efficient algorithm, iterative hard thresholding algorithm has been widely applied in various fields.
Blumensath & Davies (2008) and Portilla (2009) first independently proposed the iterative hard thresh-
olding algorithm to solve the compressed sensing recovery problem. Later, Blumensath and Davies
presented a theoretical analysis of the iterative hard thresholding algorithm when applied to the com-
pressed sensing recovery problem in Blumensath & Davies (2009). Through the analysis, they showed
that the simple iterative hard thresholding algorithm has several good properties, including near-optimal
error guarantees, robustness to observation noise, short memory requirement and low computational
complexity. Also, it requires a fixed number of iterations and its performance guarantees are uniform.
Recently, Blumensath (2012) used acceleration methods of choosing the step-size appropriately to im-
prove the convergence speed of the iterative hard thresholding algorithm.

When it came to matrix space from vector space, Goldfarb & Ma (2011) studied the convergence/
recoverability properties of the fixed point continuation algorithm and its variants for matrix rank mini-
mization. Particularly, in Goldfarb & Ma (2011), the authors proposed an iterative hard thresholdinging
algorithm and discussed its convergence. At each iterationof their iterative hard thresholding algorithm,
the authors first performed a gradient step

Yk+1 := Xk−A
∗(A (Xk)−bbb),

whereXk denotes thek-th iteration ofX, Yk+1 denotes the (k+ 1)-th iteration ofY and A ∗ is the
adjoint operator ofA that is a linear transformation operating fromRp to T. Then, they applied hard
thresholding operator to the singular values ofYk+1, i.e., they only kept the largestr singular values of
Yk+1, to getXk+1. It is easy to see thatXk+1 is actually the bestr-rank approximation toYk+1. More
specifically, by usingRr(X) to denote the hard thresholding operator with thresholdr for X, the iterative
scheme of their algorithm is as follows:

{
Yk+1 = Xk−A ∗(A (Xk)−bbb),
Xk+1 = Rr(Yk+1).
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Lately, in Kyrillidis & Cevher (2014), they studied acceleration schemes via memory-based techniques
and randomized,ε-approximate matrix projections to decrease the computational costs in the recovery
process. In this paper, inspired by the work of Goldfarb & Ma (2011), we will develop an iterative hard
thresholding algorithm for minimumn-rank approximation (1.4). In the following, we will do some
theoretical analysis of problem (1.4) in order to derive theiterative scheme of our algorithm.

Firstly, we consider the objective functionf (X ) := ‖A (X )− bbb‖2
2 in (1.4). Similar to that in

Blumensath & Davies (2008), we introduce a surrogate objective functionF : T⊗T⊗ ·· · ⊗T → R

instead of functionf :

F(Z0,Z1,Z2, . . . ,ZN) = ‖A (Z0)−bbb‖2
2+

1
τ

N
∑

i=1
wi‖Z0−Zi‖2

F −
N
∑
i=1

wi‖A (Z0)−A (Zi)‖2
2, (3.1)

whereτ > 0, wi ∈ [0,1], ∑N
i=1wi = 1 andZ0,Z1, . . . ,ZN ∈ T are auxiliary variables in the domain of

functionF . It is obvious thatF(X ,X , . . . ,X ) = f (X ) and if‖A ‖2 6 1
τ , f (X )6 F(X ,Z1,Z2, . . .,

ZN) for all X ∈ T, where‖A ‖ denotes the operator norm of linear operatorA . So, functionF is said
to majorizef .

Let X k be thek-th iteration and the(k+1)-th iterationX k+1 be the minimum of the functionF
by setting its laterN variables toXk, i.e.,X k+1 = argmin

X

F(X ,X k,X k, . . . ,X k). If ‖A ‖2 6 1
τ , we

have

f (X k+1) = ‖A (X k+1)−bbb‖2
2

6 ‖A (X k+1)−bbb‖2
2+(

1
τ
‖X k+1−X

k‖2
F −‖A (X k+1)−A (X k)‖2

2)

= F(X k+1,X k,X k, ...,X k)

6 F(X k,X k,X k, ...,X k)

= f (X k),

where the first inequality follows from the assumption that‖A ‖2 6 1
τ , and the second inequality fol-

lows from thatX k+1 is the minimum ofF(X ,X k,X k, . . . ,X k). Thus, it can be clearly seen that if
‖A ‖2 6 1

τ , fixing the latterN variables in (3.1) and optimizing (3.1) with respect to the first variable will
then decrease the value of the original objective functionf . In other words, if‖A ‖2 6 1

τ , the iterative
scheme solving problem (1.4) could be:

X
k+1 = argmin

X ∈C

F(X ,X k, . . . ,X k),

whereC denotes the set{X |rank(X<i>)6 r i , i = 1,2, · · · ,N}.
Note that,F(X ,X k, . . . ,X k) can be written as:

F(X ,X k,X k, ...,X k) = 1
τ
(
‖X ‖2

F −2〈X ,X k− τA ∗(A (X k)−bbb)〉
)

+ ‖bbb‖2
2−‖A (X k)‖2

2− 1
τ ‖X k‖2

F .

Then, it is easy to see that the solution of the following problem (without the constraints rank(X<i>)6 r i

for anyi ∈ {1,2, · · · ,N}):

X
k+1 = argmin

X ∈T
F(X ,X k, . . . ,X k)
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is

X
k+1 = X

k− τA
∗(A (X k)−bbb),

and the value ofF at this time is equal to

−1
τ
‖X k+1‖2

F + ‖bbb‖2
2−‖A (X k)‖2

2−
1
τ
‖X k‖2

F .

Therefore, the minimum ofF(X ,X k,X k, . . . ,X k) with the constraints rank(X<i>) 6 r i for any i ∈
{1,2, · · · ,N} is then achieved at the best rank-(r1, r2, ..., rN) approximation ofX k+1, i.e.,

X
k+1 = arg min

X ∈C

F(X ,X k, . . . ,X k) = Hr

(
X

k− τA
∗(A (X k)−bbb)

)
,

whereHr(Y ) means the best rank-(r1, r2, ..., rN) approximation ofY . However, for a tensorY , its best
rank-(r1, r2, ..., rN) approximation is hard to be obtained in general. Thus, here we use another form to
replace the exact best(r1, r2, ..., rN)-rank approximation. Our method is first to compute the best rank-r i

approximation ofX k
<i> for eachi, then updateX k+1 by the convex combination of the refoldings of

these rank-r i matrices, i.e.,

X
k+1 =

N

∑
i=1

wiB
∗
i (Rr i (Bi(X

k− τA
∗(A (X k)−bbb)))), (3.2)

whereBi(X ) denotes the mode-i unfolding of a tensorX ∈ T for anyi ∈ {1,2, . . . ,N}:

Bi : T→R
ni×Ji with Bi(X ) := X<i>,

andB∗
i denotes the adjoint operator ofBi .

Now, we are ready to present the iterative hard thresholdingalgorithm for solving (1.4) as below and
its convergence analysis will be presented in the next section.

Algorithm 3.1 Iterative hard thresholding for MnRA
Input: A , b, X 0, r i , τ

while not converged,do
Y k = X k− τA ∗(A (X k)−bbb)
for i = 1 : N

Mk
i = Rr i (Bi(Y

k))
end
X k+1 = ∑N

i=1wiB
∗
i (M

k
i )

end while
Output: X

4. Convergence Results

In this section, we concentrate on the convergence of Algorithm 3.1. Letbbb = A (X ∗) with X ∗ ∈ T

being the true data to be restored, and it is known thatX ∗ is an(r1, r2, ..., rN)-rank tensor, i.e., the rank
of the mode-i unfolding ofX ∗ is not greater thanr i for eachi ∈ {1, . . . ,N}. Algorithm 3.1 is used to
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recover the true dataX ∗. Next, we will prove the following inequality to characterize the performance
of the proposed algorithm:

‖X ∗−X
k+1‖F 6 α‖X ∗−X

k‖F ,

whereX k denotes thek-th iteration generated by Algorithm 3.1 andα ∈ (0,1) denotes the rate at which
the sequence converges toX ∗. The analysis begins by giving the following concepts, including the
restricted isometry constant (RIC) of a linear transformation and singular value decomposition (SVD)
basis of a matrix.

DEFINITION 4.1 (Definition 1 in Shiet al.(2013)) Letr= (r1, . . . , rN). The restricted isometry constant
δr of a linear transformationA : T→ R

p with orderr is defined as the smallest constant such that

(1− δr)‖X ‖2
F 6 ‖A (X )‖2

2 6 (1+ δr)‖X ‖2
F (4.1)

holds for any(r1, . . . , rN)-rank tensorX , i.e., rank(X<i>)6 r i for all i ∈ {1, . . . ,N}.

DEFINITION 4.2 (Definition 2.5 in Goldfarb & Ma (2011)) Assume that ther-rank matrixXr has the
SVD Xr = ∑r

i=1 σiuuuivvv⊤i . Γ := {uuu1vvv⊤1 ,uuu2vvv⊤2 , · · · ,uuurvvv⊤r } is called an SVD basis for the matrixXr .

It’s easy to see that the elements in the subspace spanned by the SVD basis are allr-rank matrices.
Based on these definitions, we give the following important lemma, which paves the way towards the
convergence of Algorithm 3.1.

LEMMA 4.1 (Lemma 4.1 in Goldfarb & Ma (2011)) SupposeX := Rr(Y) is the bestr-rank approxima-
tion to the matrixY andΓ is an SVD basis ofX. Then, for anyr-rank matrixXr and SVD basisΓr of
Xr , we have

‖PH(X)−PH(Y)‖F 6 ‖PH(Xr)−PH(Y)‖F ,

whereH is any orthonormal set of matrices satisfying span(Γ ∪Γr) ⊆ span(H), andPH(X) is the
projection ofX onto the subspace spanned byH..

Now we prove the convergence of Algorithm 3.1 under proper conditions.

THEOREM 4.1 Let X ∗ ∈ T be the original data to be restored withbbb = A (X ∗), andX ∗ is an
(r1, r2, ..., rN)-rank tensor. SetJi = ⌈ni

r i
⌉ and J = max

16i6n
Ji , where⌈·⌉ means rounding up. Suppose

that 3
4 < τ < 5

4, and letδ3ri be the RIC ofA with order 3ri = (n1, . . . ,ni−1,3r i ,ni+1, . . . ,nN) and

δ = max
16i6N

δ3ri . If δ <
1
4−|1−τ|

τ(1+⌈log2 J⌉) , then the iterative sequence{X k} generated by Algorithm 3.1 is

linearly convergent to the original dataX ∗ with rate 1
2, i.e.,

‖X ∗−X
k+1‖F 6

1
2
‖X ∗−X

k‖F . (4.2)

Moreover, iterating the above inequality, we have

‖X ∗−X
k‖F 6 2−k‖X ∗−X

0‖F .

Proof. To facilitate, we denoteX∗
i := Bi(X

∗) andXk
i := Bi(X

k) for all i ∈ {1,2...,N} in the proof.
SinceX ∗ ∈ T is a (r1, r2, ..., rN)-rank tensor, we haveX∗

i is anr i -rank matrix, i.e., the rank ofX∗
i is
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not greater thanr i . Note that from Algorithm 3.1,Mk
i = Rr i (Bi(Y

k)) is also anr i -rank matrix for all
i ∈ {1,2, · · · ,N}. Thus, for eachi ∈ {1,2...,N}, there exist the SVD basises forX∗

i andMk
i , denoted by

Γ ∗
i andΓ k

i , respectively. And letHk
i denote an orthonormal basis of the subspace span(Γ ∗

i ∪Γ k
i ). Then

the subspace spanned byH
k
i , containingX∗

i andMk
i , is a set of 2r i-rank matrices. SettingP

H
k
i
(Z) to be

the projection ofZ onto the subspace spanned byH
k
i . Then, rank(P

Hk
i
(Z))6 2r i .

Based on the aforementioned notations and the iterative scheme of Algorithm 3.1, we have

‖X ∗−X
k+1‖F = ‖X ∗−

N

∑
i=1

wiB
∗
i (M

k
i )‖F

6

N

∑
i=1

wi‖X∗
i −Mk

i ‖F =
N

∑
i=1

wi‖PHk
i
(X∗

i )−P
Hk

i
(Mk

i )‖F

6

N

∑
i=1

wi

(
‖P

H
k
i
(X∗

i )−P
H

k
i
(Bi(Y

k))‖F + ‖P
H

k
i
(Bi(Y

k))−P
H

k
i
(Mk

i )‖F

)

6 2
N

∑
i=1

wi‖PH
k
i
(X∗

i )−P
H

k
i
(Bi(Y

k))‖F , (4.3)

where the first and third inequality follow from the triangleinequality, the second equality follows
from X∗

i ,M
k
i ∈ span(Hk

i ), and the last inequality follows from Lemma 4.1. Furthermore, for each index
i ∈ {1,2...,N}, we have

‖P
H

k
i
(X∗

i )−P
H

k
i
(Bi(Y

k))‖F

= ‖P
Hk

i
(X∗

i )−P
Hk

i
(Xk

i − τBiA
∗(A (X k)−bbb))‖F

= ‖P
H

k
i
(X∗

i −Xk
i )− τP

H
k
i
BiA

∗
A B

∗
i (X

∗
i −Xk

i )‖F

6 |1− τ|‖P
H

k
i
(X∗

i −Xk
i )‖F + τ‖(I −P

H
k
i
BiA

∗
A B

∗
i P

H
k
i
)(X∗

i −Xk
i )‖F

+τ‖P
H

k
i
BiA

∗
A B

∗
i (I −P

H
k
i
)(X∗

i −Xk
i )‖F . (4.4)

Therefore, in order to prove (4.2), i.e.,‖X ∗ −X k+1‖F 6 1
2‖X ∗ −X k‖F , we need to estimate the

upper bounds of the three terms in the right-hand side of (4.4), respectively. The specifical analysis is
as follows:

(a) (Estimation on the upper bound of the term |1− τ|‖P
H

k
i
(X∗

i −Xk
i )‖F )

Utilizing the non-expansion of projection operator, it’s simple to estimate an upper bound of term
‖P

H
k
i
(X∗

i −Xk
i )‖F in the right-hand side of (4.4). This is given by

|1− τ|‖P
H

k
i
(X∗

i −Xk
i )‖F 6 |1− τ|‖X∗

i −Xk
i ‖F = |1− τ|‖X ∗−X

k‖F . (4.5)

(b) (Estimation on the upper bound of τ‖(I −P
Hk

i
BiA

∗A B∗
i P

Hk
i
)(X∗

i −Xk
i )‖F )

Note that, for any matrixZ∈ span(Hk
i )with appropriate size, rank(P

Hk
i
(Z))6 2r i . Thus,B∗

i P
Hk

i
(Z)

is a2ri-rank tensor, where2ri = (n1, . . . ,ni−1,2r i ,ni+1, . . . ,nN). Then, based on (4.1),

(1− δ2ri )‖B∗
i PH

k
i
(Z)‖2

F 6 ‖A B
∗
i PH

k
i
(Z)‖2

F 6 (1+ δ2ri )‖B∗
i P

H
k
i
(Z)‖2

F ,
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which implies that

(1− δ2ri )‖P
H

k
i
(Z)‖F 6 ‖P

H
k
i
(BiA

∗
A B

∗
i P

H
k
i
(Z))‖F 6 (1+ δ2ri )‖P

H
k
i
(Z)‖F .

Therefore, we can obtain that

τ‖(I −P
Hk

i
BiA

∗
A B

∗
i P

Hk
i
)(X∗

i −Xk
i )‖F 6 τδ2ri‖X∗

i −Xk
i ‖F = τδ2ri‖X ∗−X

k‖F . (4.6)

(c) (Estimation on the upper bound of τ‖P
H

k
i
(BiA

∗A B∗
i (I −P

H
k
i
)(X∗

i −Xk
i ))‖F )

Let the SVD ofX∗
i −Xk

i beX∗
i −Xk

i =UDiag(σ)V⊤, whereσ = (σ1, · · · ,σm−r i )
⊤ is the vector of

the singular values ofX∗
i −Xk

i with σ1 > · · ·> σm−r i > 0. We decomposeσ into a sum of vectors
σTl (l = 1,2, · · · ), where disjoint index setsT1∪T2∪·· ·∪TJ = {1,2, · · · ,m− r i} and the sparsity of
eachTl is r i (except possiblyTJ). Then,ZT1 is the part ofX∗

i −Xk
i corresponding to ther i largest

singular values,ZT2 is the part corresponding to the nextr i largest singular values, and so on.
Thus, we haveX∗

i −Xk
i = U(∑Ji

l=1Zk
Tl
)V⊤, whereZk

Tl
is anr i -rank matrix,‖Bi(X

∗−X k)‖2
F =

∑Ji
l=1‖Zk

Tl
‖2

F , andJi = ⌈ni
r i
⌉. Then, we have

τ‖P
H

k
i
(BiA

∗
A B

∗
i (I −P

H
k
i
)(X∗

i −Xk
i ))‖F

6 τ
Ji

∑
l=1

‖P
H

k
i
(BiA

∗
A B

∗
i (I −P

H
k
i
)(Zk

Tl
))‖F

6 τδ3ri

Ji

∑
l=1

‖(I −P
H

k
i
)Zk

Tl
‖F

6 τδ3ri⌈log2Ji⌉‖X ∗−X
k‖F , (4.7)

where the first inequality follows from the triangle inequality, and the second inequality follows
from the following facts:

‖P
H

k
i
(BiA

∗
A B

∗
i (I −P

H
k
i
)(Zk

Tl
))‖F

= max
‖W‖F=1

〈W,P
Hk

i
(BiA

∗
A B

∗
i (I −P

Hk
i
)(Zk

Tl
))〉

= max
‖W‖F=1

〈A B
∗
i P

H
k
i
(W),A B

∗
i (I −P

H
k
i
)(Zk

Tl
))〉

6 max
‖W‖F=1

δ3ri‖W‖F‖Zk
Tl
‖F

= δ3ri‖Zk
Tl
‖F ,

Therefore, by utilizing the results of items (a), (b), and (c), i.e., by combining (4.5), (4.6) and (4.7),
we can further obtain that for each indexi ∈ {1,2...,N}

‖P
H

k
i
(X∗

i )−P
H

k
i
(Bi(Y

k))‖F 6 (|1− τ|+ τδ2ri + τδ3ri⌈log2Ji⌉)‖X ∗−X
k‖F . (4.8)

Then, letJ = max
16i6n

Ji andδ = max
16i6N

δ3ri . Substituting (4.8) into (4.3), we have

‖X ∗−X
k+1‖F 6 2

N

∑
i=1

wi‖PHk
i
(X∗

i )−P
Hk

i
(Bi(Y

k))‖F

6 2(τδ + τδ⌈log2J⌉+ |1− τ|)‖X ∗−X
k‖F , (4.9)
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where the second inequality follows from that fact thatδ2ri 6 δ3ri for all i.

By the assumption thatδ <
1
4−|1−τ|

τ(1+⌈log2J⌉) , we have

‖X ∗−X
k+1‖F 6

1
2
‖X ∗−X

k‖F . (4.10)

Iterating this inequality, we obtain

‖X ∗−X
k‖F 6 2−k‖X ∗−X

0‖F .

The proof is complete. �

Remark: Note that we use a parameterτ > 0 as the step-size in Algorithm 3.1. Actually,τ is scoped.

In the conditions of Theorem 4.1, we assume3
4 < τ < 5

4 to ensure that
1
4−|1−τ|

τ(1+⌈log2 J⌉) > 0, sinceδ > 0.
Actually, observing (4.9) given in the proof of Theorem 4.1,in order to ensure the convergence of the

iterative sequence, we only need 2(τδ + τδ⌈log2J⌉+ ||1− τ|)< 1, which implies thatδ <
1
2−|1−τ|

τ(1+⌈log2 J⌉) .

Thus,δ > 0 implies that12 < τ < 3
2, which is enough to guarantee the convergence of Algorithm 3.1.

Note that Theorem 4.1 considers the exact recovery case. However, it is possible to apply Algorithm
3.1 to recover the data corrupted by noise. Next, we will givethe recoverability result of Algorithm 3.1
for the noisy case.

THEOREM 4.2 LetX ∗ ∈ T be the original data to be restored withbbb = A (X ∗)+ ε, whereε ∈ R
p

denotes the noise, andX ∗ is an (r1, r2, ..., rN)-rank tensor. SetJi = ⌈ni
r i
⌉ and J = max

16i6n
Ji , where

⌈·⌉ means rounding up. Suppose that3
4 < τ < 5

4, and letδ3ri be the RIC ofA with order 3ri =

(n1, . . . ,ni−1,3r i ,ni+1, . . . ,nN) andδ = max
16i6N

δ3ri . If δ <
1
4−|1−τ|

τ(1+⌈log2 J⌉) , then Algorithm 3.1 will recover

an approximationX k satisfying

‖X ∗−X
k‖F 6 2−k‖X ∗−X

0‖F +2C‖ε‖2,

whereC= 2τ
√

1+
1
4−|1−τ|

τ(1+⌈log2 J⌉) is a constant, which only depends onτ, r i andni (i = 1,2, · · · ,N).

Proof. The proof is similar to the one of Theorem 4.1. The main difference is to add one term involving
the noiseε. First, we can also obtain (4.3), i.e.,

‖X ∗−X
k+1‖F 6 2

N

∑
i=1

wi‖PH
k
i
(X∗

i )−P
H

k
i
(Bi(Y

k))‖F . (4.11)

In the noisy case (bbb= A (X ∗)+ε), we have the following result with similar deduction to (4.4), which
only adds one term aboutε:

‖P
Hk

i
(X∗

i )−P
Hk

i
(Bi(Y

k))‖F

6 |1− τ|‖P
Hk

i
(X∗

i −Xk
i )‖F + τ‖(I −P

Hk
i
BiA

∗
A B

∗
i P

Hk
i
)(X∗

i −Xk
i )‖F

+τ‖P
H

k
i
BiA

∗
A B

∗
i (I −P

H
k
i
)(X∗

i −Xk
i )‖F + τ‖P

H
k
i
BiA

∗ε‖F . (4.12)
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The number of the right-hand terms increases 1, but the estimation of the remaining three terms are the
same with (a), (b), (c) in the proof of Theorem 4.1. Thus, we just need to estimate the additional term
τ‖P

H
k
i
BiA

∗ε‖F .

‖P
H

k
i
BiA

∗ε‖F = max
‖W‖F=1

〈W,P
H

k
i
BiA

∗ε〉= max
‖W‖F=1

〈A B
∗
i PH

k
i
(W),ε〉

6 max
‖W‖F=1

‖A B
∗
i PH

k
i
(W)‖F‖ε‖2

6 max
‖W‖F=1

√
1+ δ2ri‖B∗

i PH
k
i
(W)‖F‖ε‖2

6 max
‖W‖F=1

√
1+ δ2ri‖W‖F‖ε‖2 =

√
1+ δ2ri‖ε‖2, (4.13)

where the first inequality follows from the Cauchy-Schwarz inequality, the second inequality follows
Definition 4.1 and the fact thatB∗

i P
H

k
i
(W) is a2ri tensor, where2ri = (n1, . . . ,ni−1,2r i ,ni+1, . . . ,nN),

and the third inequality follows that‖B∗
i ‖ = 1 and‖P

Hk
i
(W)‖F 6 ‖W‖F , where‖B∗

i ‖ denotes the

operator norm ofB∗
i .

Then, by using (a), (b), (c) in the proof of Theorem 4.1 and (4.13), we have

‖P
H

k
i
(X∗

i )−P
H

k
i
(Bi(Y

k))‖F

6 (|1− τ|+ τδ2ri + τδ3ri⌈log2Ji⌉)‖X ∗−X
k‖F + τ

√
1+ δ2ri‖ε‖2. (4.14)

Substituting (4.14) into (4.11) and settingJ = max
16i6n

Ji , δ = max
16i6N

δ3ri , we can obtain

‖X ∗−X
k+1‖F 6 2(τδ + τδ⌈log2J⌉+ |1− τ|)‖X ∗−X

k‖F +2τ
√

1+ δ‖ε‖2, (4.15)

Then, by the assumption thatδ <
1
4−|1−τ|

τ(1+⌈log2 J⌉) , we can obtain

‖X ∗−X
k+1‖F 6

1
2
‖X ∗−X

k‖F +C‖ε‖2, (4.16)

whereC= 2τ
√

1+
1
4−|1−τ|

τ(1+⌈log2J⌉) is a constant which only depends onτ, r i andni (i ∈ {1, . . . ,N}). Iterat-

ing this inequality, we have

‖X ∗−X
k‖F 6 2−k‖X ∗−X

0‖F +2C‖ε‖2.

The proof is complete. �

5. Implementation Details

Problem settings. The random lown-rank tensor completion problems without noise we considered
in our numerical experiments are generated as in Gandyet al. (2011), Signorettoet al. (2013) and
Yanget al. (2013). For creating a tensorM ∈ R

n1×...×nN with n-rank (r1, r2, · · · , rN), we first gener-
ate a core tensorS ∈ R

r1×···×rN with i.i.d. Gaussian entries (∼ N (0,1)). Then, we generate matrixes
U1, · · · ,UN, with Ui ∈ R

ni×r i whose entries are i.i.d. fromN (0,1) and set

M := S ×1U1×2 · · ·×N UN.
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With this construction, then-rank ofM equals(r1, r2, · · · , rN) almost surely.
We also conduct numerical experiments on random lown-rank tensor completion problems with

noisy data. For the noisy random lown-rank tensor completion problems, the tensorM ∈ R
n1×...×nN is

corrupted by a noise tensorE ∈ R
n1×...×nN with independent normally distributed entries. Then,M is

taken to be

M := M̄ +σE = S ×1U1×2 · · ·×N UN +σE , (5.1)

whereσ is the noise level.
We usesr to denote the sampling ratio, i.e., a percentagesr of the entries to be known and choose the

support of the known entries uniformly at random among all supports of sizesr
(
∏N

i=1ni
)
. The values

and the locations of the known entries ofM are used as input for the algorithms.

Predicting n-rank. In practice, then-rank of the optimal solution is usually unknown. Thus, we need
to estimate then-rank appropriately during the iterations. Inspired by thework (Goldfarb & Ma, 2011),
we propose a heuristic for determiningn-rankrrr . We start withrrr := (⌈n1

2 ⌉,⌈
n2
2 ⌉, · · · ,⌈

nN
2 ⌉). In thek-th

iteration (k > 2), for eachi, we first chooser i as the number of singular values ofBi(Y
k−1) which

are greater thanξ σ̄k−1, whereσ̄k−1 is the largest singular value ofBi(Y
k−1) andξ ∈ (0,1) is a given

tolerance. Since the given tolerance sometimes truncates too many singular values, we need to increase
r i occasionally. Note that from the iterative scheme (3.2), wehave thatA ∗(A (X ∗)− bbb) = 0 at the
optimal pointX ∗. Thus, we increaser i by 1 whenever the Frobenius norm ofA ∗(A (X k)− bbb) in-
creased. Our numerical experience indicates the efficiencyof this heuristic for determiningrrr.

Singular value decomposition. Computing singular value decomposition is the main computational cost
even if we use a state-of-the-art code PROPACK (Larsen, 2004), especially when the rank is relatively
large. Therefore, for random lown-rank tensor completion problems without noise, we use the Monte
Carlo algorithm LinearTimeSVD developed by Drineaset al. (2006) to compute an approximate SVD,
which was also used in Goldfarb & Ma (2011), Maet al. (2011) and Yanget al. (2013) to reduce the
computational cost. This LinearTimeSVD algorithm returnsan approximation to the largestsvsingular
values and the corresponding left singular vectors of a matrix A∈ R

m×n in linearO(m+n) time. We
outline it below.

Linear Time Approximate SVD Algorithm (Goldfarb & Ma, 2011;Drineaset al., 2006; Maet al., 2011)

Input: A∈ R
m×n, cs,sv∈ Z

+ s.t. 16 sv6 cs 6 n, {p j}n
j=1 s.t. p j > 0, ∑n

j=1 p j = 1.
Output: Hk ∈ R

m×sv andσt(C), t = 1, . . . ,sv.
For t = 1 : cs

Pick it ∈ {1, . . . ,n} with Pr[it = α] = pα , α = 1, . . . ,n.
SetC(t) = A(it)/

√
cspit .

ComputeC⊤C and its SVD; sayC⊤C= ∑cs
t=1 σ2

t (C)yt(yt)⊤.
Computeht =Cyt/σt(C) for t = 1, . . . ,sv.

ReturnHsv, whereH(t)
sv = ht , andσt(C), t = 1, . . . ,sv.

Thus, the outputsσt(C), t = 1, . . . ,svare approximations to the largestsvsingular values andH(t)
sv ,

t = 1, . . . ,svare approximations to the corresponding left singular vectors of the matrixA. The parameter
settings we used in LinearTimeSVD algorithm are similar to those in Maet al. (2011). To balance
the computational time and accuracy of SVD ofC⊤C, we choose a suitablecs = ⌈min(ni ,Ti)/2⌉ with
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Ti =∏N
k=1,k6=i nk for each mode-i. All p j ’s are set to 1/Ti for simplicity. For the predetermined parameter

sv, in thek-th iteration, we letsvequal to the predeterminedr i for each mode-i.
On the other hand, for random lown-rank tensor completion problems with noisy data, to guarantee

the accuracy of the solution, we will use the matlab command[U,S,V] = svd(X,′econ′) to compute full
SVD in our algorithms although it may cost more time than the LinearTimeSVD algorithm does.

6. Numerical Experiments

In this section, we apply Algorithm 3.1 to solve the lown-rank tensor completion problem (1.5). We
use IHTr-LRTC to denote the algorithm in which then-rank is specified, and IHT-LRTC to denote the
algorithm in which then-rank is determined by the heuristic described in Section 5.We test IHTr-
LRTC and IHT-LRTC on both simulated and real world data with the missing data, and compare them
with the latest tensor completion algorithms, including FP-LRTC (Yanget al., 2013), TENSOR-HC
(Signorettoet al., 2013), ADM-TR(E) (Gandyet al., 2011) and HoRPCA (Higher-order Robust Prin-
cipal Component Analysis) (Goldfarb & Qin, 2014). The Tucker decomposition algorithm based on
the idea of alternating least squares from theN-way toolbox for Matlab(Andersson & Bro, 2000) is
also included, for which we use the correctn-rank (r1, · · · , rN) (“N-way-E”) and the highern-rank
(r1 + 1, · · · , rN + 1) (“N-way-IE”). All numerical experiments are run in Matlab 7.14 on a HP Z800
workstation with an Intel Xeon(R) 3.33GHz CPU and 48GB of RAM.

For random lown-rank tensor completion problems without noise, the relative error

rel.err :=
||Xsol−M ||F

||M ||F

is used to estimate the closeness ofXsol to M , whereXsol is the “optimal” solution produced by the
algorithms andM is the original tensor.

For random lown-rank tensor completion problems with noisy data, we followSignorettoet al.
(2013) to measure the performance by the normalized root mean square error (NRMSE) on the comple-
mentary setΩ c:

NRMSE(X sol,M̄ ) :=
||X sol

Ωc −M̄Ωc||F(
max(M̄Ωc)−min(M̄Ωc)

)√
|Ω c|

whereM̄ is as in (5.1) and|Ω c| denotes the cardinality ofΩ c.
The stopping criterion we used for IHTr-LRTC and IHT-LRTC inall our numerical experiments is

as follows:

‖X k+1−X k‖F

max{1,‖X k‖F}
< Tol,

where Tol is a moderately small number, since whenX k gets close to an optimal solutionX opt, the
distance betweenX k andX k+1 should become very small.

In IHTr-LRTC and IHT-LRTC, we choose the initial iteration to beX 0 = 0 and set Tol= 10−8. The
weighted parameterswi are set to1

N for simplicity. Additionally, the parameterξ in predictingn-rank is
set to 10−2 for noiseless cases and 0.3 for noisy cases. In FP-LRTC, we setµ1 = 1, τ = 10,θµ = 1−sr,
µ̄ = 1×10−8, ε = 10−2. In TENSOR-HC, we set the regularization parametersλi , i ∈ {1,2, · · · ,N} to
1 andτ to 10. In ADM-TR(E), the parameters are set tocβ = 5,cλ = 5,β = 1,λ = N. For HoRPCA,
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we follow Goldfarb & Qin (2014) to keepµ constant and setµ = 10std(vec(MΩ )). The regularization
parameter1 λ = 108. It is stopped when the maximum of the relative primal and dual residuals decreased
to below 10−8.

In FIG.1, we first numerically compare the recovery results with different values ofτ by testing
IHTr-LRTC and IHT-LRTC on random noiseless lown-rank tensor completion problems with the tensor
of size 20×20×30×30 andn-rank(4,4,4,4). The sampling ratio is set to 0.3 and 0.6, respectively.
It’s worth noting that though the assumption1

2 < τ < 3
2 is given for ensuring convergence by theoretical

analysis, we find that IHTr-LRTC and IHT-LRTC can be convergent with choosingτ in a more broad
interval, which can be seen in the figure (τ is chosen fromτ = 0.1 toτ = 1.5). Additionally, it is obvious
that the largerτ becomes, the less time it costs to recover a tensor with lowerrelative error. Therefore,
considering these situations, we can choose a largerτ to guarantee the low error and less iterations.
Specifically, we will setτ = 1.4 for the remaining tests in this paper.
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FIG. 1. Recovery results with different values ofτ by testing IHTr-LRTC and IHT-LRTC on random noiseless lown-rank tensor
completion problems with the tensor of size 20×20×30×30 andn-rank(4,4,4,4). (a) relative error; (b) CPU time in seconds.
All the results are average values of 10 independent trials.

Then, we compare IHTr-LRTC with IHT-LRTC on random noiseless low n-rank tensor completion
problems with the tensor of size 50× 50× 50 andn-rank (9,9,3). The sampling ratio is set to 0.3
and 0.6, respectively. We plot the logarithm of the relativeerror between theX k and the true tensor
M versus the iteration number for algorithms IHTr-LRTC and IHT-LRTC in FIG.2 for each problem
setting. From this figure, we can see that IHT-LRTC decreases‖X k−M ‖F/‖M ‖F slower than IHTr-
LRTC due to the heuristic of determiningr. Additionally, for IHTr-LRTC, log‖X k−M ‖F/‖M ‖F is
approximately a linear function of the iteration numberk; for IHT-LRTC, it also approximately a linear
function after several iterations. This implies that the theoretical results in Theorem 4.1 approximately
hold in practice.

1This regularization parameterλ is different from that in authors’ paper. It is given by authors in their Matlab code for tensor
completion, which can be downloaded from https://sites.google.com/site/tonyqin/research.
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FIG. 2. Relative error versus the iteration number for algorithms IHTr-LRTC and IHT-LRTC on random noiseless lown-rank
tensor completion problems with the tensor of size 50× 50× 50 andn-rank (9,9,3). The sampling ratio is set to 0.3 and 0.6,
respectively.

Table 1. Comparisons of different algorithms on random noiseless low n-rank tensor completion problems.

problem setting algorithm iter rel.err time(s) problem setting algorithm iter rel.err time(s)

IHTr-LRTC 30 7.90e-9 0.12 IHTr-LRTC 82 2.33e-8 2.32
IHT-LRTC 41 6.52e-9 0.17 IHT-LRTC 93 2.38e-8 2.99

T= R
20×30×40 FP-LRTC 105 1.92e-8 0.51 T= R

60×60×60 FP-LRTC 520 2.00e-8 21.61
rrr = (2,2,2) TENSOR-HC 66 2.09e-8 1.37 rrr = (9,9,6) TENSOR-HC 49 7.23e-8 7.95
sr= 0.6 ADM-TR(E) 216 1.02e-8 10.40 sr= 0.3 ADM-TR(E) 410 2.37e-7 112.10

HoRPCA 60 1.12e-8 1.53 HoRPCA 127 1.86e-8 18.09
N-way-E 31 1.40e-8 0.91 N-way-E 68 5.61e-8 8.25
N-way-IE 427 8.33e-2 14.38 N-way-IE 772 2.54e-2 102.57

IHTr-LRTC 31 7.62e-9 0.92 IHTr-LRTC 90 2.23e-8 4.90
IHT-LRTC 38 7.20e-9 1.26 IHT-LRTC 96 2.46e-8 5.28

T= R
60×60×60 FP-LRTC 105 6.80e-9 4.49 T= R

20×20×30×30 FP-LRTC 520 3.67e-8 135.17
rrr = (9,9,6) TENSOR-HC 35 3.33e-8 5.61 rrr = (4,4,4,4) TENSOR-HC 50 3.42e-7 17.13
sr= 0.6 ADM-TR(E) 206 1.08e-8 60.62 sr= 0.3 ADM-TR(E) 456 2.56e-7 181.87

HoRPCA 57 1.06e-8 8.22 HoRPCA 143 2.29e-8 34.11
N-way-E 26 9.97e-9 3.15 N-way-E 62 4.25e-8 27.75
N-way-IE 424 2.24e-2 55.42 N-way-IE 804 3.63e-2 380.94

IHTr-LRTC 37 9.62e-9 2.16 IHTr-LRTC 37 9.03e-9 21.55
IHT-LRTC 45 8.10e-9 2.71 IHT-LRTC 41 1.02e-8 24.40

T= R
20×20×30×30 FP-LRTC 210 5.89e-9 16.69 T= R

20×20×20×20×20 FP-LRTC 135 7.18e-9 103.83
rrr = (4,4,4,4) TENSOR-HC 36 3.74e-8 12.32 rrr = (2,2,2,2,2) TENSOR-HC 43 4.84e-8 198.59
sr= 0.6 ADM-TR(E) 219 1.88e-8 91.97 sr= 0.5 ADM-TR(E) 228 4.40e-8 728.66

HoRPCA 65 1.38e-8 15.84 HoRPCA 64 1.30e-8 207.10
N-way-E 24 7.11e-9 11.09 N-way-E 29 5.30e-9 98.81
N-way-IE 442 2.12e-2 207.52 N-way-IE 514 1.56e-2 1834.62

Table 1 presents the different settings for random noiseless low n-rank tensor completion problems
and the recovery performance of different algorithms. The order of the tensors varies from three to
five, and we also vary then-rank and the sampling ratiosr. For each problem setting, we solve 10
randomly created tensor completion problems. iter, rel.err and time(s) stands for the average iterations,
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the average relative error and the average time (seconds) for each problem setting, respectively. From
the results in Table 1, we can easily see that it costs less time with lowern-rank and higher sampling
ratio sr. By comparing the results of different algorithms, it is easy to see that IHTr-LRTC and IHT-
LRTC always perform better than other algorithms in both relative error and CPU time. Note that
though IHT-LRTC converges a little slower than IHTr-LRTC since it needs more iterations and time to
determinen-rank, the recoverability of IHT-LRTC can be comparable with that of IHTr-LRTC, which
indicates the efficiency of the heuristic for determiningn-rank. For the problem with relative large size
(e.g.,T=R

20×20×20×20×20, rrr = (2,2,2,2,2), sr= 0.5), we can see that IHTr-LRTC and IHT-LRTC can
save much more time to recover a tensor. Additionally, it’s worth noting that N-way-E also has a good
performance for all the problem settings, but N-way-IE performs poorly for these problems though we
just use a little highern-rank. This situation indicates that theN-way toolboxdepends strongly on the
knowledge of then-rank and the tensor may no longer be recovered with the inexact n-rank.

Then, we test the first seven different algorithms (N-way-IEis poorer than other algorithms obvi-
ously by Table 1) on random noiseless lown-rank tensor completion problems with the tensor of fixed
size 100×100×100 and differentn-ranks(r, r, r) (here we setr1 = r2 = r3 = r for convenience). FIG.3
depict the average results of 10 independent trials corresponding to differentn-rank(r, r, r) for randomly
created noiseless tensor completion problems. The sampling ratios is set to 0.5. As indicated in FIG.3,
IHTr-LRTC and IHT-LRTC are always faster and more robust than others, and provide the solutions
with lower relative error.
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FIG. 3. Recovery results by IHTr-LRTC, IHT-LRTC, FP-LRTC, TENSOR-HC, ADM-TR(E), HoRPCA and N-way-E on random
noiseless lown-rank tensor completion problems with the tensor of fixed size 100×100×100 and differentn-ranks. (a) relative
error; (b) CPU time in seconds. All the results are average values of 10 independent trials.

We further test the algorithms on random noisy lown-rank tensor completion problems. Table
2 presents the numerical performance. In the table, we reportthe mean of NRMSEs, iterations and
execution times over 10 independent trials. Then, we set thenoise levelσ = 0.02. From the results,
we can easily see that IHTr-LRTC and IHT-LRTC are comparablewith other algorithms in terms of
NRMSE and CPU time.
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Table 2. Comparisons of different algorithms on random noisy lown-rank tensor completion problems.

problem setting algorithm iter NRMSE time(s) problem setting algorithm iter NRMSE time(s)

IHTr-LRTC 31 2.16e-3 0.44 IHTr-LRTC 74 2.77e-3 7.70
IHT-LRTC 38 3.71e-3 0.55 IHT-LRTC 102 3.06e-3 10.64

T= R
20×30×40 FP-LRTC 105 5.33e-3 1.06 T= R

60×60×60 FP-LRTC 520 1.19e-2 23.59
rrr = (2,2,2) TENSOR-HC 45 9.22e-3 0.93 rrr = (9,9,6) TENSOR-HC 31 8.88e-3 5.02
sr= 0.6 ADM-TR(E) 142 5.24e-3 9.30 sr= 0.3 ADM-TR(E) 301 1.20e-2 105.56
σ = 0.02 HoRPCA 38 5.63e-3 0.97 σ = 0.02 HoRPCA 82 1.19e-2 12.05

N-way-E 32 1.24e-3 0.89 N-way-E 69 1.70e-3 8.23
N-way-IE 682 3.81e-3 19.29 N-way-IE 748 2.03e-3 88.88

IHTr-LRTC 30 2.89e-3 3.11 IHTr-LRTC 78 2.04e-3 13.50
IHT-LRTC 39 3.22e-3 4.14 IHT-LRTC 100 2.00e-3 17.35

T= R
60×60×60 FP-LRTC 105 7.26e-3 5.00 T= R

20×20×30×30 FP-LRTC 520 1.45e-2 40.37
rrr = (9,9,6) TENSOR-HC 23 9.64e-3 3.79 rrr = (4,4,4,4) TENSOR-HC 26 9.74e-3 8.84
sr= 0.6 ADM-TR(E) 125 6.82e-3 46.05 sr= 0.3 ADM-TR(E) 530 1.47e-2 186.29
σ = 0.02 HoRPCA 32 6.81e-2 4.69 σ = 0.02 HoRPCA 355 1.46e-2 87.08

N-way-E 26 1.34e-3 3.11 N-way-E 60 8.06e-4 26.04
N-way-IE 444 1.49e-3 51.43 N-way-IE 925 1.21e-3 417.96

IHTr-LRTC 35 2.68e-3 6.29 IHTr-LRTC 34 1.52e-3 83.79
IHT-LRTC 42 2.26e-3 7.54 IHT-LRTC 45 1.21e-3 111.25

T= R
20×20×30×30 FP-LRTC 210 8.31e-3 17.46 T= R

20×20×20×20×20 FP-LRTC 135 6.06e-3 117.55
rrr = (4,4,4,4) TENSOR-HC 21 9.81e-3 7.04 rrr = (2,2,2,2,2) TENSOR-HC 15 8.50e-3 73.24
sr= 0.6 ADM-TR(E) 204 8.01e-3 75.99 sr= 0.5 ADM-TR(E) 422 5.76e-3 1278.79
σ = 0.02 HoRPCA 128 7.98e-3 32.32 σ = 0.02 HoRPCA 662 5.99e-3 2214.99

N-way-E 24 5.80e-4 11.17 N-way-E 28 1.20e-4 95.27
N-way-IE 450 9.20e-4 206.41 N-way-IE 441 2.32e-4 1520.44

Inpainting of color Images via low n-rank tensor completion. Next, we further evaluate the perfor-
mance of IHTr-LRTC and IHT-LRTC on image inpainting (Bertalmı́oet al., 2000). Color images can
be expressed as third-order tensors. If the image is of lown-rank, or numerical lown-rank, we can solve
the image inpainting problem as a lown-rank tensor recovery problem. In our test, we first compute the
best rank-(r1, r2, r3) approximation of a color image to obtain an numerical lown-rank image. Then, we
randomly remove the values of some of the pixels of the numerical lown-rank image, and want to fill in
these missing values.

Remark: The best rank-(r1, r2, · · · , rN) approximation is used as a tool for dimensionality reduction
and signal subspace estimation. Several algorithms for this purpose have been proposed in the literature,
e.g., the higher-order orthogonal iteration (HOOI) (Lathauweret al., 2000). More details can be seen
in Ishteva (2009). Note that theN-way toolbox for Matlabis also an effective and convenient tool of
computing the best rank-(r1, r2, · · · , rN) approximation. However, considering to be fair and reasonable,
we here use theMATLAB Tensor Toolboxby Baderet al. (2012), which is an another famous tool for
tensor computation, to compute the best rank-(r1, r2, · · · , rN) approximation. Using Matlab notation,
for a tensorX ∈ R

n1×n2×···×nN , X̄ = tuckerals(X , [r1 r2 · · · rN]) returns the best rank-(r1, r2, · · · , rN)
approximation ofX . Additionally, the parameterξ in predictingn-rank is set to 10−4 to guarantee the
better prediction ofn-rank for the practical problems.

FIG.4 and FIG.5 respectively present the recovered images for the best rank-(30,30,3) and rank-
(100,100,3) approximation of the original 512×512 image by different algorithms (Here, ADM-TR(E)
and N-way-IE perform poorer than others obviously, so theirresults are no longer reported). The sam-
pling ratio is set to 0.3. We also report the numerical results in Table 3. Although the recovered images
of these five algorithms are similar visually to each other, the results in Table 3 show that IHTr-LRTC
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and IHT-LRTC are more effective than others, especially forthe problem with highn-rank. More specif-
ically, for the best rank-(30,30,3) approximation of the original image, all the algorithms canrecover
the image well by using only 30% of pixels and IHTr-LRTC is much faster than others. For the best
rank-(100,100,3) approximation of the original image, we can see that the relative errors of recov-
ered images by FP-LRTC, TENSOR-HC and HoRPCA are very large due to the relatively highn-rank.
However, IHTr-LRTC and IHT-LRTC can also perform well.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 4. Comparisons of different algorithms for image inpaiting. The right two columns are recovery results of different algo-
rithms. Specifically, (a) Original 512×512 image; (d) The best rank-(30,30,3) approximation of original image; (g) Input to the
algorithm (30% known entries); (b) Recovered image by IHTr-LRTC; (e) Recovered image by IHT-LRTC; (h) Recovered image
by FP-LRTC; (c) Recovered image by TENSOR-HC; (f) Recoveredimage by HoRPCA; (i) Recovered image by N-way-E.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 5. Comparisons of different algorithms for image inpaiting. The right two columns are recovery results of different algo-
rithms. Specifically, (a) Original 512× 512 image; (d) The best rank-(100,100,3) approximation of original image; (g) Input
to the algorithm (30% known entries); (b) Recovered image byIHTr-LRTC; (e) Recovered image by IHT-LRTC; (h) Recovered
image by FP-LRTC; (c) Recovered image by TENSOR-HC; (f) Recovered image by HoRPCA; (i) Recovered image by N-way-E.
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Table 3. Numerical results of different algorithms for image inpainting

Algorithm iter rel.err time(s) Algorithm iter rel.err time(s)
size= 512×512×3, sr= 0.3

rrr = (30,30,3) rrr = (100,100,3)

IHTr-LRTC 187 1.06e-7 32.46 IHTr-LRTC 1733 5.02e-7 332.05
IHT-LRTC 665 6.40e-8 128.68 IHT-LRTC 5000 7.24e-4 998.69
FP-LRTC 1040 5.17e-7 454.13 FP-LRTC 1040 5.40e-2 629.40
TENSOR-HC 144 1.81e-7 246.65 TENSOR-HC 775 4.58e-2 1337.67
HoRPCA 138 3.33e-7 93.69 HoRPCA 1000 4.55e-2 1198.55
N-way-E 107 4.72e-7 121.64 N-way-E 618 1.34e-4 1336.11

7. Conclusions

In this paper, we considered a new alternative recovery model ‘MnRA’ and proposed an appropriate
iterative hard thresholding algorithm to solve it with giving upper bound ofn-rank in advance. The
convergence analysis of the proposed algorithm was also presented. By using an effective heuristic of
determiningn-rank, we can also apply the proposed algorithm to solve MnRAwith unknownn-rank in
advance. Some preliminary numerical results on LRTC were reported. Through the theoretical analysis
and numerical experiments, we can draw some encouraging conclusions:

• The model of MnRA in this paper is creative in lown-rank tensor recovery. MnRA includes both
noiseless and noisy case. And although the model needs then-rank of the original data as prior
information, we have proposed a heuristic for determiningn-rank and this method turned to be
efficient.

• The iterative hard thresholding algorithm proposed in thispaper is easy to implement. It has a very
simple iterative scheme and only one parameterτ, which can be easily estimated from theoretical
analysis and can be chosen broadly in practice.

• The iterative hard thresholding algorithm is extremely fast. Actually, the iterative sequence gen-
erated by the proposed algorithm is globally linearly convergent with the rate12 for the noiseless
case. In our numerical experiments, these theoretical results can be confirmed.

• IHTr-LRTC and IHT-LRTC are still effective for the tensor with high n-rank. Thus, they may
have wider applications in practice.

It is interesting to investigate how to determinen-rank more effectively in practice. We believe
that the iterative hard thresholding algorithm combining with the appropriate method for predictingn-
rank can be used to solve more general tensor optimization problems. Moreover, the nonconvex sparse
optimization problems and the related algorithms in vectoror matrix space have been widely discussed
in the literature (Zhanget al., 2013; Liet al., 2014). It is worth investigating how to apply the iterative
hard thresholding algorithm to solve the nonconvex model inthe tensor space.
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