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Abstract

We apply the proper orthogonal decomposition (POD) to the nonlinear Schrö-
dinger (NLS) equation to derive a reduced order model. The NLS equation
is discretized in space by finite differences and is solved in time by structure
preserving symplectic mid-point rule. A priori error estimates are derived for
the POD reduced dynamical system. Numerical results for one and two dimen-
sional NLS equations, coupled NLS equation with soliton solutions show that
the low-dimensional approximations obtained by POD reproduce very well the
characteristic dynamics of the system, such as preservation of energy and the
solutions.
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1. Introduction

The nonlinear Schrödinger (NLS) equation arises as the model equation with
second order dispersion and cubic nonlinearity describing the dynamics of slowly
varying wave packets in nonlinear fiber optics, in water waves and in Bose-
Einstein condensate theory. We consider the NLS equation

iΨt + Ψxx + γ | Ψ |2 Ψ = 0 (1)

with the periodic boundary conditions Ψ(x+ L, t) = Ψ(x, t). Here Ψ = Ψ(x, t)
is a complex valued function, γ is a parameter and i =

√
−1. The NLS equation

is called ”focusing” if γ > 0 and ”defocusing” if γ < 0; for γ = 0, it reduces to
the linear Schrödinger equation. In last two decades, various numerical methods
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were applied for solving NLS equation, among them are the well-known sym-
plectic and multisymplectic integrators and discontinuous Galerkin methods.

There is a strong need for model order reduction techniques to reduce the
computational costs and storage requirements in large scale simulations, yield-
ing low-dimensional approximations for the full high-dimensional dynamical sys-
tem, which reproduce the characteristic dynamics of the system. Among the
model order reduction techniques, the proper orthogonal decomposition (POD)
is one of the most widely used method. It was first introduced for analyzing co-
horent structures and turbulent flow in numerical simulation of fluid dynamics
equations [6]. It has been successfully used in different fields including signal
processing, fluid dynamics, parameter estimation, control theory and optimal
control of partial differential equations. In this paper, we apply the POD to the
NLS equation. To the best of our knowledge, there is only one paper where POD
is applied to NLS equation [5], where only one and two modes approximations
of the NLS equation are used in the Fourier domain in connection with mode-
locking ultra short laser applications. In this paper, the NLS equation being a
semi-linear partial differential equation (PDE) is discretized in space and time
by preserving the symplectic structure and the energy (Hamiltonian). Then,
from the snapshots of the fully discretized dynamical system, the POD basis
functions are computed using the singular value decomposition (SVD). The re-
duced model consists of Hamiltonian ordinary differential equations (ODEs),
which indicates that the geometric structure of the original system is preserved
for the reduced model. The semi-disretized NLS equations and the reduced
equations are solved in time using Strang splitting and mid-point rule. A priori
error estimates are derived for POD reduced model, which is solved by mid-
point rule. It turns out that most of the energy of the system can be accurately
approximated by using few POD modes. Numerical results for a NLS equation
with soliton solutions confirm that the energy of the system is well preserved
by POD approximation and the solution of the reduced model are close to the
solution of the fully discretized system.
The paper is organized as follows. In Section 2, the POD method and its ap-
plication to semi-linear dynamical systems are reviewed. In Section 3, a priori
error estimators are derived for the mid-point time-discretization of semi-linear
PDEs. Numerical solution of the semi-discrete NLS equation and the POD
reduced form are described in Section 4. In the last section, Section 5, the
numerical results for the reduced order models of NLS equations are presented.

2. The POD approximation for semi-linear PDEs

In the following, we briefly describe the important features of the POD
reduced order modeling (ROM); more details can be found in [8]. In the first
step of the POD based model order reduction, the set of snapshots, the discrete
solutions of the nonlinear PDE, are collected. The snapshots are usually equally
spaced in time corresponding to the solution of PDE obtained by finite difference
or finite element method. The snapshots are then used to determine the POD
bases which are much smaller than the snapshot set. In the last step, the POD
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reduced order model is constructed to obtain approximate solutions of the PDE.
We mention that the choice of the snapshots representing the dynamics of the
underlying PDE is crucial for the effectiveness of POD based reduced model.
Let X be a real Hilbert space endowed with inner product 〈·, ·〉X and norm ‖·‖X .
For y1, . . . , yn ∈ X, we set V = span {y1, · · ·, yn} , as the ensemble consisting
of the snapshots {yj}nj=1. In the finite difference context, the snapshots can be
viewed as discrete solutions yj ∈ Rm at time instances tj , j = 1, . . . , n, and
[y1, . . . , yn] ∈ Rm×n denotes the snapshot matrix.

Let {ψk}dk=1 denote an orthonormal basis of V of dimension d. Then, any yj ∈ V
can be expressed as

yj =

d∑
k=1

〈yj , ψk〉X ψk, j = 1, . . . , n. (2)

The POD is constructed by choosing the orthonormal basis such that for every
l ∈ {1, . . . , d}, the mean square error between the elements yj , 1 ≤ j ≤ n, and
the corresponding l − th partial sum of (2) is minimized on average:

min
ũ1,...,ũl∈X

n∑
j=1

αj

∥∥∥∥∥yj −
l∑

k=1

〈yj , ũk〉X ũk

∥∥∥∥∥
2

X

, 〈ũi, ũj〉X = δij , 1 ≤ i, j ≤ l.

(3)
where αj ’s are non-negative weights. Throughout this paper, we take the space
X = Rm endowed with the weighted inner product 〈u, v〉W = uTWv with the
diagonal elements of the diagonal matrix W , and also αj ’s are the trapezoidal
weights so that we obtain all the computations in L2-sense. Under these choices,
the solution of the above minimization problem is given by the following theo-
rem:

Teorem 1. [8]. Let Y = [y1, . . . , yn] ∈ Rm×n be a given matrix with rank
d ≤ min {m,n}. Further, let Y = UΣV T be the SVD of Y , where U =
[u1, . . . , um] ∈ Rm×m, V = [v1, . . . , vn] ∈ Rn×n are orthogonal matrices and
the matrix Σ ∈ Rm×n is all zero but first d diagonal elements are the nonzero
singular values, σ1 ≥ σ2 ≥ . . . ≥ σd, of Y. Then, for any l ∈ {1, . . . , d}, the
solution to

min
ũ1,...,ũl∈Rm

n∑
j=1

αj

∥∥∥∥∥yj −
l∑

k=1

〈yj , ũk〉W ũk

∥∥∥∥∥
2

W

, 〈ũi, ũj〉W = δij , 1 ≤ i, j ≤ l.

(4)

is given by the singular vectors {ui}li=1.

We consider the following initial value problem for POD approximation

ẏ(t) = Ay(t) + f(t, y(t)), t ∈ [0, T ], y(0) = y0, (5)

where f : [0, T ] × Rm → Rm is continuous in both arguments and locally
Lipschitz-continuous with respect to the second argument. The semi-discrete
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form of NLS equation (1) is a semi-linear equation as (5) where the cubic non-
linear part is locally Lipschitz continuous. Suppose that we have determined a
POD basis {ψj}lj=1 of rank l ∈ {1, . . . , d} in Rm, then we make the ansatz

yl(t) =

l∑
j=1

〈
yl(t), ψj

〉
W︸ ︷︷ ︸

=:yl
j(t)

ψj , t ∈ [0, T ]. (6)

Substituting (6) in (5), we obtain the reduced model

l∑
j=1

ẏl
j(t)ψj =

l∑
j=1

yl
j(t)Aψj + f(t, yl(t)), t ∈ [0, T ],

l∑
j=1

yl
j(0)ψj = y0. (7)

The POD approximation (7) holds after projection on the l dimensional sub-
space V l = span{ψ1, . . . , ψl}. From (7) and 〈ψj , ψi〉W = δij , we get

ẏl
i(t) =

l∑
j=1

yl
j(t) 〈Aψj , ψi〉W +

〈
f(t, yl(t)), ψi

〉
W

(8)

for 1 ≤ i ≤ l and t ∈ (0, T ]. Let us introduce the matrix

B = {bij} ∈ Rl×l, bij = 〈Aψj , ψi〉W

the non-linearity F = (F1, · · · , Fl)
T : [0, T ]× Rl → Rl by

Fi(t, y) =

〈
f(t,

l∑
j=1

yjψj), ψi

〉
W

, t ∈ [0, T ], y = (y1, · · · , yl) ∈ Rl

and the vector yl = (yl
1, . . . , y

l
l)

T : [0, T ]→ Rl. Then, (8) can be expressed as

ẏl(t) = Byl(t) + F (t, yl(t)), t ∈ (0, T ]. (9)

The initial condition of the reduced system is given by yl(0) = y0 with

y0 = (〈y0, ψ1〉W , . . . , 〈y0, ψl〉W )
T ∈ Rl.

The system (9) is called the POD-Galerkin projection for (5). The ROM is
constructed with POD basis vectors {ψi}li=1 of rank l. In case of l << d, the
l−dimensional reduced system (9) is a low-dimensional approximation for (5).
The POD basis can also be computed using eigenvalues and eigenvectors. We
prefer singular value decomposition, because it is more accurate than the com-
putation of the eigenvalues. The singular values decay up to machine precision,
where the eigenvalues stagnate several orders above due the fact λi = σ2

i [3].
We notice that all singular values of the snapshot matrix Y are normalized, so
that

∑m
i=1 σ

2
i = 1 holds. . The choice of l is based on heuristic considerations

combined with observing the ratio of the modeled energy to the total energy
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contained in the system Y which is expressed by the relative information content
(RIC)

E(l) =

l∑
i=1

σ2
i · 100%.

The total energy of the system is contained in a small number of POD modes.
In practice, l is chosen by guaranteeing that E(l) capturing at least % 99 of total
energy of the system.

3. POD error analysis for the mid-point rule

A priori error estimates for POD method are obtained for linear and semi-
linear parabolic equations in [8], where the nonlinear part is assumed to be lo-
cally Lipschitz continuous as for the NLS equation. The error estimates derived
for the backward Euler and Crank-Nicholson (trapezoidal rule) time discretiza-
tion show that the error bounds depend on the number of POD basis functions.
Here, we derive the error estimates for the mid-point rule. We apply the im-
plicit midpoint rule for solving the reduced model (9). By Yj , we denote an
approximation for yl at the time tj . Then, the discrete system for the sequence
{Yj}nj=1 in V l

n = span{ψn
1 , ..., ψ

n
l } (l ≤ d) looks like〈

Yj − Yj−1

∆t
, ψn

i

〉
W

=

〈
1

2
A(Yj + Yj−1) + f(t,

Yj + Yj−1

2
), ψn

i

〉
W

(10)

〈Y1, ψ
n
i 〉W = 〈y0, ψ

n
i 〉W , i = 1, ..., l (11)

We are interested in estimating
∑n

j=1 αj ‖y(tj)− Yj‖2W . For u ∈ Rm, let us

introduce the projection P l
n : Rm → V l

n by

P l
nu =

l∑
i=1

〈u, ψn
i 〉Wψn

i ,
∥∥P l

n

∥∥
W

= 1.

We shall make use of the decomposition

y(tj)− Yj = y(tj)− P l
ny(tj) + P l

ny(tj)− Yj = %lj + ϑlj

where %lj = y(tj) − P l
ny(tj) and ϑlj = P l

ny(tj) − Yj . Using that {ψn
i }li=1 is the

POD basis of rank l, we have the estimate for the terms involving %lj

n∑
j=1

αj

∥∥∥∥∥y(tj)−
l∑

i=1

< y(tj), ψ
n
i > ψn

i

∥∥∥∥∥
2

W

=

n∑
j=1

αj

∥∥y(tj)− P l
ny(tj)

∥∥2

W
=

n∑
j=1

αj

∥∥%lj∥∥2

W
=

d∑
i=l+1

σ2
i .

(12)

5



Next, we estimate the terms involving ϑlj . Using the notation ∂̄ϑlj = (ϑlj −
ϑlj−1)/∆t, we obtain

〈∂̄ϑlj , ψn
i 〉W =

〈
P l
n

(
y(tj)− y(tj−1)

∆t

)
− Yj − Yj−1

∆t
, ψn

i

〉
W

=

〈
ẏ(tj −

∆t

2
)−

(
1

2
A(Yj + Yj−1) + f(

Yj + Yj−1

2
)

)
, ψn

i

〉
W

+

〈
P l
n

(
y(tj)− y(tj−1)

∆t

)
− ẏ(tj −

∆t

2
), ψn

i

〉
W

(13)

=

〈
A

(
y(tj −

∆t

2
)− Yj + Yj−1

2

)
+ f(y(tj −

∆t

2
))− f(

Yj + Yj−1

2
) + wl

j + zlj , ψ
n
i

〉
W

where

zlj = P l
n

(
y(tj)− y(tj−1)

∆t

)
−y(tj)− y(tj−1)

∆t
, wl

j =
y(tj)− y(tj−1)

∆t
−ẏ(tj−

∆t

2
)).

Choosing ψn
i = ϑlj + ϑlj−1 in (13), we arrive at

〈∂̄ϑlj , ϑlj + ϑlj−1〉W = 〈A
(
y(tj −

∆t

2
)− Yj + Yj−1

2

)
+ f(y(tj −

∆t

2
))− f(

Yj + Yj−1

2
)

+wl
j + zlj , ϑ

l
j + ϑlj−1〉W . (14)

Noting that

〈∂̄ϑlj , ϑlj + ϑlj−1〉W =
1

∆t

(∥∥ϑlj∥∥2

W
−
∥∥ϑlj−1

∥∥2

W

)
and using Lipschitz-continuity of f and the Cauchy-Schwartz inequality in (14),
we get∥∥ϑlj∥∥W ≤ ∥∥ϑlj−1

∥∥
W

+∆t

(
(‖A‖W + Lf )

∥∥∥∥y(tj −
∆t

2
)− Yj + Yj−1

2

∥∥∥∥
W

+
∥∥zlj∥∥W +

∥∥wl
j

∥∥
W

)
.

(15)
By Taylor series expansion

y(tj −
∆t

2
) =

y(tj) + y(tj−1)

2
+

∆t

2
(ẏ(ξj−1)− ẏ(ξj))

for some ξj ∈ (tj − ∆t
2 , tj) and ξj−1 ∈ (tj−1, tj − ∆t

2 ). Then, we get∥∥∥∥y(tj −
∆t

2
)− Yj + Yj−1

2

∥∥∥∥
W

≤ 1

2

(∥∥%lj∥∥W +
∥∥ϑlj∥∥W +

∥∥%lj−1

∥∥
W

+
∥∥ϑlj−1

∥∥
W

+ c0∆t
)

(16)

with c0 = ẏ(ξj−1) − ẏ(ξj). Inserting (16) in (15) and collecting the common
terms yields

(1−c1∆t)‖ϑlj‖W ≤ (1+c1∆t)‖ϑlj−1‖W +∆t
(
c1(
∥∥%lj∥∥W +

∥∥%lj−1

∥∥
W

) + c2∆t+ ‖zlj‖W + ‖wl
j‖W

)
(17)
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with c1 = max{‖A‖W , Lf}, c2 = c0c1. Moreover, for 0 < ∆t ≤ 1
2c1

, we have

1

1− c1∆t
≤ 1 + 2c1∆t

and using the fact that ∆tj ≤ T , we get

(1 + 2c1∆t)j ≤ e2c1T , (1 + c1∆t)j ≤ ec1T . (18)

Summation on j in (17) by using (18) and Cauchy-Schwarz inequality yields,

∥∥ϑlj∥∥2

W
≤ C∆t2

j∑
k=1

(∥∥%lk∥∥2

W
+
∥∥%lk−1

∥∥2

W
+ ∆t2 + ‖zlk‖2W + ‖wl

k‖2W
)

(19)

with C = 5e4c1T max{c21, c22, 1, j}. Next, we estimate the term involving wl
k:

∆t2
j∑

k=1

∥∥wl
k

∥∥2

W
= ∆t2

j∑
k=1

∥∥∥∥y(tk)− y(tk−1)

∆t
− ẏ(tk −

∆t

2
)

∥∥∥∥2

W

≤ C̃2∆t4
∫ T

0

‖yttt(t)‖2dt (20)

for a constant C̃ depending on y, but independent of n. Now, we estimate the
term involving zlk:

∥∥zlk∥∥2

W
=

∥∥∥∥P l
n

(
y(tk)− y(tk−1)

∆t

)
− y(tk)− y(tk−1)

∆t

∥∥∥∥2

W

≤ 2‖wl
k‖2W + 4‖P l

nẏ(tk)− ẏ(tk)‖2W + 4

∥∥∥∥ẏ(tk)− y(tk)− y(tk−1)

∆t

∥∥∥∥2

W

≤ 2‖wl
k‖2W + 4‖P l

nẏ(tk)− ẏ(tk)‖2W + 4

∥∥∥∥ẏ(tk −
∆t

2
)− y(tk)− y(tk−1)

∆t

∥∥∥∥2

W

+ CTay∆t2

≤ 4‖P l
nẏ(tk)− ẏ(tk)‖2W + 6‖wl

k‖2W + CTay∆t2 (21)

where CTay = ÿ(ξ) for some ξ ∈ (tk − ∆t
2 , tk).

For a sufficiently small ∆t satisfying ∆t ≤ 2αk for 1 ≤ k ≤ n, we have

∆t2 ≤ 2αk, ∆t4 ≤ 2αk, ∆t2
j∑

k=1

∆t2 ≤
n∑

k=1

2αk. (22)

Using (22) combining with (20) and (21), we arrive at

∆t2
j∑

k=1

(
‖zlk‖2W + ‖wl

k‖2W
)
≤ 8

n∑
k=1

αk‖P l
nẏ(tk)− ẏ(tk)‖2W + Ĉ∆t4 (23)
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with Ĉ = max{14C̃2‖yttt‖L2(0,T ;Rm), 2CTay}. Imposing the estimates (23) and
(22) in (19), we obtain

∥∥ϑlj∥∥2

W
≤ 4C

n∑
k=1

αk‖%lk‖2W + C

n∑
k=1

(
2αk + 8αk‖P l

nẏ(tk)− ẏ(tk)‖2W
)

+ CĈ∆t4.

(24)

In addition, we have that
∑n

k=1 αk = T and ‖P l
nẏ(tj)−ẏ(tj)‖2W =

∑d
i=l+1 | 〈ẏ(tj), ψ

n
i 〉W |

2.

Using these identities, we arrive at the estimate to the term involving ϑlj as

n∑
j=1

αj‖ϑlj‖2W ≤ C∗
∆t4 +

d∑
i=l+1

σ2
i +

n∑
j=1

αj | 〈ẏ(tj), ψ
n
i 〉W |

2

 (25)

where C∗ = 4CTmax{2T, 8, Ĉ} and is dependent on y, T , but independent of
n and l.
Now, combining the estimates (12) and (25), we obtain finally the error estimate

n∑
j=1

αj‖y(tj)− Yj‖2W =

n∑
j=1

αj‖ϑlj + %lj‖2W ≤ 2

n∑
j=1

αj‖ϑlj‖2W + 2

n∑
j=1

αj‖%lj‖2W

≤ 2C∗

∆t4 +

d∑
i=l+1

σ2
i +

n∑
j=1

αj | 〈ẏ(tj), ψ
n
i 〉W |

2

+ 2

d∑
i=l+1

σ2
i

≤ CE

 d∑
i=l+1

2σ2
i +

n∑
j=1

αj | 〈ẏ(tj), ψ
n
i 〉W |

2

+ ∆t4


where CE = max{2, 2C∗} and is dependent on y, T , but independent of n and l.
As for the backward Euler and Cranck-Nicholson method [8], the error between
the reduced and the unreduced solutions depend for the mid-point rule on the
time discretization and on the number of not modelled POD snapshots.

4. Discretization of NLS equation

One dimensional NLS equation (1) can be written by decomposing Ψ = p+iq
in real and imaginary components

pt = −qxx − γ(p2 + q2)q, qt = pxx + γ(p2 + q2)p (26)

as an infinite dimensional Hamiltonian PDE in the phase space u = (p, q)T

u̇ = D δH
δu

, H =

∫
1

2

(
p2
x + q2

x −
γ

2
(p2 + q2)2

)
dx, D =

(
0 1
−1 0

)
.
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After discretizing the Hamiltonian in space by finite differences

H = ∆x

n∑
j=1

1

2

((
pj+1 − pj

∆x

)2

+

(
qj+1 − qj

∆x

)2

− γ

2
(p2

j + q2
j )2

)
. (27)

we obtain the semi-discretized Hamiltonian ode’s

pt = −Aq − γq(p2 + q2), qt = Ap+ γp(p2 + q2), (28)

where A is the circulant matrix

A =


−2 1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 1 −2

 .

4.1. Reduced order model for NLS equation

Suppose that we have determined POD bases {ψj}lj=1 and {φj}lj=1 of rank

l = {1, . . . , d} in Rm. Then we make the ansatz

pl =

l∑
j=1

pj(t)ψj(x), ql =

l∑
j=1

qj(t)φj(x) (29)

where pj = 〈pl, ψj〉W , qj = 〈ql, φj〉W . Inserting (29) into (28), and using the

orthogonality of the POD bases {ψj}lj=1 and {φj}lj=1, we obtain for i = 1, · · · , l
the systems

ṗi = −
l∑

j=1

qj 〈Aφj , ψi〉W − γ

〈 l∑
j=1

qjφj

 l∑
j=1

pjψj

2

, ψi

〉
W

− γ

〈 l∑
j=1

qjφj

3

, ψi

〉
W

q̇i =

l∑
j=1

pj 〈Aψj , φi〉W + γ

〈 l∑
j=1

pjψj

 l∑
j=1

qjφj

2

, φi

〉
W

+ γ

〈 l∑
j=1

pjψj

3

, φi

〉
W

.

After defining Φ = [φ1, φ2, · · · , φl] ∈ Rm×l, Ψ = [ψ1, ψ2, · · · , ψl] ∈ Rm×l, (B)ij =
〈Aφj , ψi〉W , we obtain

ṗ = −Bq− γΨT
(
(Φq) · (Ψp)2

)
− γΨT

(
(Φq)3

)
q̇ = BT p + γΦT

(
(Ψp) · (Φq)2

)
+ γΦT

(
(Ψp)3

) (30)

with both ’·’ operation and the powers are hold elementwise. The reduced
NLS equation (30) is also Hamiltonian and is solved, as the unreduced semi-
discretized NLS equation (1), with the symplectic midpoint method applying
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linear-nonlinear Strang splitting [7]: In order to solve (28) efficiently, we apply
the second order linear, non-linear Strang splitting [7]

iut = Nu+ Lu, Lu = −uxx, Nu = −γ|u|2u.

The nonlinear parts of the equations are solved by Newton-Raphson method.
In the numerical examples, the boundary conditions are periodic, so that the
resulting discretized matrices are circulant. For solving the linear system of
equations, we have used the Matlab toolbox smt [9], which is designed for
solving linear systems with a structured coefficient matrix like the circulant and
Toepltiz matrices. It reduces the number of floating point operations for matrix
factorization to O (n log n).

5. Numerical results

All weights in the POD approximation are taken equally as αi = 1/n and
W = I. Then the average ROM error, difference between the numerical solu-
tions of NLS equation and ROM is measured in the form of the error between
the fully discrete NLS solution

ROM error =

 1

n

n∑
j=1

|| yh(tj)− yl(tj) ||

1/2

.

The average Hamiltonian ROM error is given by 1

n

n∑
j=1

(Hh(tj)−Hl(tj))
2

1/2

.

where Hh(tj) and Hl(tj) refer to the discrete Hamiltonian errors at the time
instance tj corresponding to the full-order and ROM solutions, respectively. The
energy of the Hamiltonian PDEs is usually expressed by the Hamiltonian. It is
well known that symplectic integrators like the midpoint rule can preserve the
only quadratic Hamiltonians exactly. Higher order polynomials and nonlinear
Hamiltonians are preserved by the symplectic integration approximately, i.e. the
approximate Hamiltonians do not show any drift in long term integration. For
large matrices, the SVD is very time consuming. Recently several randomized
methods are developed [10], which are very efficient when the rank is very small,
i.e, d << min(m,n). We compare the efficiency of MATLAB programs svd and
fsvd (based on the algorithm in [10]) for computation of singular values for
the NLS equations in this section, on a PC with AMD FX(tm)-8150 Eight-
Core Processor and 32Gb RAM. The accuracy of the SVD is measured by L2

norm, ||Y − UΣV T ||W . The randomized version of SVD, the fast SVD fsvd,
requires the rank of the matrix as input parameter, which can be determined by
MATLAB’s rank routine. When the singular values decay rapidly and the size
of the matrices is very large, then randomized methods [10] are more efficient

10



than MATLAB’s svd. Computation of the rank with rank and singular values
with fsvd requires much less time than the svd for one and two dimensional NLS
equations (Table 1).

Problem size of the matrix rank rank fsvd accuracy svd accuracy
1D NLS 32 x 50001 15 0.14 0.73 6.4e-14 194.48 1.3e-16
2D NLS 6400 x 30001 25 279.74 3.81 2.01e-13 1300.42 2.47e-15
CNLS 128 x 2001 122 0.05 0.10 2.7e-14 1.19 1.5e-16

Table 1: Comparison of svd and fsvd

5.1. One-dimensional NLS equation

For the one-dimensional NLS equation (1), we have taken the example in [2]
with γ = 2 and the periodic boundary conditions in the interval [−L/2, L/2]
with L = 2

√
2π. The initial conditions are given as p(x, 0) = 0.5(1+0.01 cos(2πx/L)),

q(x, 0) = 0. As mesh sizes in space and time, ∆x = L/32 and ∆t = 0.01 are
used, respectively. Time steps are bounded by the stability condition for the

splitting method [7]; ∆t < 2∆x2

L where L is the period of the problem. The
discretized Hamiltonion is given by (27) with γ = 2.
The singular values of the snapshot matrix are rapidly decaying (Figure 1) so
that only few POD modes would be sufficient to approximate the fully dis-
cretized NLS equation. In Figure 2, the relative errors are plotted. As expected
with increasing number of POD basis functions l, the errors in the energy and
the errors between the discrete solutions of the fully discretized NLS equation
and the reduced order model decreases which confirm the error analysis given
in Section 3. In Figure 3 and 4, the evolution of the Hamiltonian error and the
numerical solution at time t = 500 are shown for the POD basis with l = 4,
where 99.99 % of the energy of the system is well preserved. These figures con-
firm that the reduced model well preserves the Hamiltonian, and the numerical
solution is close to the fully discrete solution.
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Figure 1: 1D NLS, Decay of the singular values
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Figure 2: 1D NLS, Decay of the ROM errors : solution (left), Hamiltonian (right)
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Figure 3: 1D NLS, Energy error: full-order model (left), ROM with 4 POD modes (right)

Figure 4: 1D NLS, Envelope of the approximate solution | ψ |: full-order model (left), ROM
with 4 POD modes (right)

5.2. Two-dimensional NLS equation

We consider the following two-dimensional NLS equation [11]

iΨt + Ψxx + Ψyy + |Ψ|2Ψ = 0 on [0, 2π]× [0, 2π]

with the exact solution, Ψ(x, y, t) = exp(i(x+ y − t)).
The mesh size for spatial discretization and time step size are taken as ∆x =
∆y = 2π/80 and ∆t = 0.001, respectively. The discrete Hamiltonian is given

12



by

H = ∆x∆y

m∑
i,j=1

1

2

((
pi+1,j − pi,j

∆x

)2

+

(
qi+1,j − qi,j

∆x

)2

+

(
pi,j+1 − pi,j

∆y

)2

+

(
qi,j+1 − qi,j

∆y

)2
)

−1

4

(
p2
i,j + q2

i,j

)2
Only 3 POD modes were sufficient to capture almost all of the energy of the
system (Table 2). A comparison of the Hamiltonian errors in long term com-
putation shows that the reduced order model with a few POD modes preserve
the energy of the system very well (Figure 6). The singular values of 2D NLS
are decreasing not continuously as for 1D NLS equation (Figure 5).

# POD Info (% ) ROM Hamiltonian error ROM error

1 51.65 8.181e-002 2.770e+001
2 99.995 6.116e-007 1.040e-003
3 99.998 4.164e-007 1.134e-003

Table 2: 2D NLS, RIC and errors for the real part of the solution
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Figure 5: 2D NLS, Decay of the singular values

0 5 10 15 20 25 30
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−7

time

E
ne

rg
y 

E
rr

or

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−4

time

E
ne

rg
y 

E
rr

or
 b

y 
R

om

Figure 6: 2D NLS, Energy error: full-order model (left), ROM with 3 POD modes (right)
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5.3. Coupled NLS equation

We consider two coupled NLS equations (CNLS) with elliptic polarization
with plane wave solutions [1]

i
∂Ψ1

∂t
+
∂2Ψ1

∂x2
+ (|Ψ1|2 + |Ψ2|2)Ψ1 = 0, i

∂Ψ2

∂t
+
∂2Ψ2

∂x2
+ (|Ψ2|2 + |Ψ1|2)Ψ2 = 0

(31)
using the initial conditions

Ψ1(x, 0) = (0.5)(1− 0.1 cos(0.5x)), Ψ2(x, 0) = (0.5)(1− 0.1 cos(0.5x)).

The equations are solved over the space [0, 8π] and time interval [0, 100], respec-
tively, with the mesh size and time steps dx = 8π/128, ∆t = 0.05. The discrete
Hamiltonian is given as [1]

H = ∆x

m∑
j=1

−1

2

(p1
j+1 − p1

j

∆x

)2

+

(
q1
j+1 − q1

j

∆x

)2

+

(
p2
j+1 − p2

j

∆x

)2

+

(
q2
j+1 − q2

j

∆x

)2


+
1

4

(
((p1

j )2 + (p2
j )2)2 + ((q1

j )2 + (q2
j )2)2

)
+

1

2

(
((p1

j )2 + (p2
j )2)((q1

j )2 + (q2
j )2)

)
where p1, q1 and p2, q2 denote the real and imaginary parts of ψ1 and ψ2, re-
spectively.
Figure 8 & 9 and Table 3 show that only few POD modes are necessary to
capture the dynamics of the CNLS equation. The singular values are decreasing
not so rapidly (Figure 7) as in case of single 1D and 2D NLS equations.

#POD RIC(%) ROM Hamilton error ROM error

2 99.58 1.879e-004 5.060e-001
3 99.98 1.865e-004 3.761e-001
4 99.99 1.213e-004 6.491e-002
5 99.99 2.825e-005 3.919e-003

Table 3: Coupled NLS, RIC and errors for the real part of Ψ1
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Figure 7: Coupled NLS, Decay of the singular values for the real part of Ψ1
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Figure 8: Coupled NLS, Hamiltonian error: full-order model (left) and ROM with 5 POD
modes (right)

Figure 9: Coupled NLS, Interaction of solitons |Ψ1| and |Ψ2|: full-order model (left) and ROM
with 5 POD modes (right)

6. Conclusions

A reduced model is derived for the NLS equation by preserving the Hamil-
tonian structure. A priori error estimates are obtained for the mid-point rule as
time integrator for the reduced dynamical system. Numerical results show that
the energy and the phase space structure of the three different NLS equations
are well preserved by using few POD modes. The number of the POD modes
containing most of the energy depends on the decay of the singular values of the
snapshot matrix, reflecting the dynamics of the underlying systems. In a future
work, we will investigate the dependence of the ROM solutions on parameters
for the CNLS equation by performing a sensitivity analysis.
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