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Abstract

This paper deals with the explicit solution of random mixed parabolic
equations in unbounded domains by using the random Laplace transform
to second order stochastic processes. The mean square random Laplace
operational calculus is stated and its application to the random parabolic
equation together with previous results of the underlying random ordi-
nary differential equations allow us to obtain an explicit solution of the
problem. A numerical example, which includes simulations, illustrates the
developed method.
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1 Introduction1

The integral transform method has proven its relevance to solve initial-boundary2

value problems for linear differential and integral equations. The essence of3

this success is based on its powerful operational calculus [1]–[9]. The required4

integral transform is closely related to the structure of the equation and the5

initial-boundary conditions of the problem. It is known that deterministic mod-6

els are often a simplification of real problems to make more approachable their7

mathematical treatment. However, uncertainty is being incorporated into the8

mathematical modelling in different ways and points of view. For instance,9

spatial variability of geologic media properties involves geostatistical random-10

ness and it has relevance in the analysis of fluid flows and solute transport,11

see [10]–[12]. In water resources problems there appear also random heteroge-12

neous domains in the search of the solution process, see [13]–[15]. In this paper,13

we assume known uncertainty in the sense that some input parameters are as-14

sumed to be random variables (r.v.’s) and stochastic processes (s.p.’s) instead15
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of numbers and classical functions, respectively. Apart from modelling, there16

are several operational approaches to deal with continuous time uncertainty17

problems, namely, stochastic differential equations whose solution requires Itô18

or Stratonovich calculus [16]–[18] and, random differential equations for which19

the mean square calculus constitutes an adequate framework to conduct their20

analysis [19]. Stochastic advection-dispersion problems subject to random ini-21

tial and boundary conditions have been studied in [20]–[22] using the moment22

method in the solution of nonreactive solute transport problems. Recently, the23

Fourier transform method has been applied to solve random partial differential24

problems, by introducing the random exponential Fourier transform and the25

random trigonometric Fourier transform, see [23, 24].26

Stochastic Laplace transform extensions related to the Brownian motion and27

the Itô calculus throughout stochastic differential equations have been treated28

in [25] and more recently in [26]. In this paper, we extend to the random29

framework, the random Laplace transform and its random operational calculus30

to solve random partial differential models. As in the case of the random Fourier31

transforms [23, 24], we obtain an explicit mean square solution s.p. of the32

problem, as well as the expectation and the variance of the solution s.p. Apart33

from the mean square approach, other different approach based on the random34

variable transformation method has been used in [27] to deal with the transport35

equation and the computation of the probability density function of the solution36

s.p.37

Throughout this paper, (Ω, F , P) will denote a common probabilistic space
where all r.v.’s and s.p.’s that appear in the problem under study are defined.
Specifically, this paper deals with the random heat problem

ut(x, t) = L uxx(x, t) , t > 0, x > 0 , (1)

u(x, 0) = 0 , x > 0, (2)

u(0, t) = f(t;A) , t > 0, (3)

u(x, t) is bounded as x→ +∞, t > 0 , (4)

where L is assumed to be a positive r.v., independent of r.v. A, whose realiza-38

tions have a positive lower bound `1 > 0, i.e,39

L(ω) ≥ `1 > 0 , ∀ω ∈ Ω , (5)

and f(t;A) is a s.p. which depends on one single r.v. A. The same results are40

available, but involving more complicated notation, by considering f(t; ·) a s.p.41

with a finite degree of randomness (see [19, p. 37] for comments in this regard).42

2 Preliminaries about Lp-calculus43

For the sake of clarity, in this section we summarize some important concepts44

and results related to the so-called Lp-calculus, mainly focusing on the mean45

square (m.s.) and the mean fourth (m.f.) calculus, which correspond to p = 246
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and p = 4, respectively (see [19, 28] for further details). Throughout this paper47

we will consider the set Lp, with p ≥ 1, of all real-valued r.v.’s, X, defined on a48

probabilistic space (Ω, F , P) such that E [ |X|p] < +∞, where E [·] denotes the49

expectation operator. For short, in the sequel these r.v.’s will be referred to as50

p-r.v.’s. It can be proven that the space Lp endowed with the following norm51

‖X‖p = (E [ |X|p])1/p
is a Banach space, [29, p.9]. Throughout this paper ‖ · ‖p52

will be termed p-norm.53

The definition of p-convergence of a sequence {Xn : n ≥ 0} of p-r.v.’s to the54

r.v. X ∈ Lp, is the one inferred by the p-norm, i.e., limn→+∞ ‖Xn −X‖p = 0.55

The particular cases p = 2 and p = 4 are referred to as mean square (m.s.)56

and mean fourth (m.f.) convergence, respectively, and they are ones to be used57

throughout this paper.58

It can be proven the following key inequality (see [30])59

‖X Y ‖2 ≤ ‖X‖4 ‖Y ‖4 , X, Y ∈ L4 , (6)

which permits to establish that m.f. convergence entails m.s. convergence by60

specializing it for Y = 1. Note that it also proves that L4 ⊆ L2. The role61

of functions in the space Lp are played by stochastic processes, which are de-62

fined by a family of p-r.v.’s indexed by a set of indexes t ∈ T ⊂ R, i.e., a63

family {X(t) : t ∈ T} of real r.v.’s such as E [ |X(t)|p] < +∞, ∀t ∈ T is called a64

p-stochastic process. The definitions of p-th mean continuity, p-th mean differ-65

entiability and p-th mean integrability follow straightforwardly from the ones66

inferred by the p-norm. For instance, in accordance with [19, p. 99], [31], we67

say that a s.p. {X(t) : t ∈ R} with X(t) ∈ Lp for all t, is Lp-locally integrable68

in R if, for all finite interval [t1, t2] ⊂ R, the integral
∫ t2
t1
X(t) dt exits in Lp.69

70

In dealing with random differential equations, it is exceptional to obtain71

closed solutions but reliable approximations from which the main statistical72

properties, such the mean and variance, are computed. The mean square con-73

vergence has the following desirable property regarding the computation of re-74

liable approximations to the exact mean and variance (see Theorems 4.2.1 and75

4.3.1. in [19]).76

Lemma 1 Let {Xn : n ≥ 0} and {Ym : m ≥ 0} be two sequences of 2-r.v.’s m.s.77

convergent to X ∈ L2 and Y ∈ L2, respectively, i.e.,78

lim
n→∞

‖Xn −X‖2 = 0 , lim
m→∞

‖Ym − Y ‖2 = 0 . (7)

Then,79

lim
n,m→∞

E[Xn Ym] = E[X Y ] . (8)

In particular,80

lim
n→∞

E[Xn] = E[X] , lim
n→∞

Var[Xn] = Var[X] . (9)
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The following result is a straightforward consequence of inequality (6) that81

will be required later.82

Lemma 2 Let D be a 4-r.v. and, let g(t) be a 4-s.p. verifying that83

limt→∞ ‖g(t)‖4 = 0. Then84

lim
t→∞

‖Dg(t)‖2 = 0 . (10)

We recall that the absolute moment of a real-valued r.v. X coincides with85

the absolute moment of r.v. iX, where i =
√
−1 denotes the imaginary unit,86

i.e.,87

E [|iX|n] = E [|X|n] , n ≥ 0. (11)

As usual, Re(s) and Im(s) will denote the real and imaginary parts, respectively,88

of a complex number s = x+ iy, x, y ∈ R.89

90

Finally, we remember that if X is an absolute r.v. defined on the domain91

D(X) whose p.d.f. is gX(x), and one considers a transformed r.v. by the92

mapping h, say Y = h(X), then the expectation of r.v. Y can be computed as93

follows94

E [Y ] =

∫
D(X)

h(x) gX(x) dx . (12)

3 Random Laplace transform and its operational95

calculus96

In this section, we introduce the random Laplace transform of a 2-s.p. and97

we show some s.p.’s which admit Laplace transform including the computation98

of its value. Finally, we give some operational rules to the random Laplace99

transform that will be required in the next section to solve the random heat100

problem (1)–(4).101

Definition 1 Let us introduce the class C of all the 2-s.p.’s f(t) defined in the102

real line such that:103

(i) f(t) is m.s. locally integrable,104

(ii) f(t) = 0, if t < 0,105

(iii) The 2-norm of f(t) is of exponential order, i.e., there exist constants a ≥ 0106

and M > 0 such that107

‖f(t)‖2 ≤M eat , t ≥ 0 . (13)

Then, the random Laplace transform of a 2-s.p. f(t) ∈ C is defined by the m.s.108

integral109

F (s) = L[f(t)](s) =

∫ ∞
0

f(t) e−st dt , s ∈ C , Re(s) > a ≥ 0 . (14)
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Note that the integral (14) is well-defined in the half-plane Re(s) > a because110

from (13) one gets111 ∥∥f(t) e−st
∥∥

2
= ‖f(t)‖2 e−Re(s) t ≤M e(a−Re(s)) t ,

and, consequently112 ∫ ∞
0

∥∥f(t) e−st
∥∥

2
dt ≤M

∫ ∞
0

e(a−Re(s)) t dt < +∞ .

For the sake of convenience, let us recall that the Heaviside function H(t) is113

defined as114

H(t) =

{
0, t < 0 ,

1, t ≥ 0 .
(15)

If f(t) is a 2-s.p. in the class C, then f(t)H(t) is in C, too.115

116

Next, we provide several examples with the aim to show that the random117

Laplace transform can be applied to a wide range of s.p.’s under certain con-118

ditions that will be determined later. Example 1 involves an exponential s.p.,119

Example 2 deals with a trigonometric s.p. and, finally Example 3 contains a120

s.p. that will be play an important role in the resolution of problem (1)–(4).121

Example 1 Let B be a real-valued r.v. satisfying that122

∃ α > 0 : E [ |B|n] = O(αn) , ∀n ≥ 0 , (16)

then, we shall show that the s.p.123

v1(t;B) = eBtH(t) , (17)

where H(t) is the Heaviside function defined by (15), admits a random Laplace124

transform for Re(s) > α.125

In fact, by (16) there exists c > 0, such that126

(∥∥eBt∥∥
4

)4
= E

[
e4Bt

]
= E

∑
n≥0

(4Bt)n

n!

 ≤∑
n≥0

4ntn

n!
E [ |B|n]

≤ c
∑
n≥0

(4tα)n

n!
= c e4α t . (18)

Then, using (6) one gets,127 ∥∥eBt∥∥
2
≤ ‖eBt‖4 ≤ 4

√
c eα t. (19)

Since the infinite series in (18) is m.f. convergent, and hence, m.s. conver-128

gent, the application of property (9) guarantees the commutation between the129

expectation operator and the infinite series in (18).130
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Thus, the s.p. v1(t;B) satisfies properties (i)–(iii) of Definition 1 with131

M = 4
√
c > 0 and a = α > 0, and its random Laplace transform, denoted132

by L[v1(t;B)](s), exists for Re(s) > α. Now, in order to compute it we first133

consider s ∈ R such that s > α and then applying the fundamental theorem of134

m.s. calculus, [19, p. 104], one gets135

L[v1(t;B)](s) =

∫ ∞
0

eBt e−st dt =

∫ ∞
0

e(B−s)t dt =

[
e(B−s)t

B − s

]t=∞
t=0

= − 1

B − s
.

(20)
In the last step we have used that136

lim
t→∞

∥∥∥∥e(B−s)t

B − s

∥∥∥∥
2

= 0 . (21)

Indeed, let us show (21) taking advantage of Lemma 2. On the one hand, note137

that by (18) g(t) = e(B−s)t is a 4-s.p. and, in addition, denoting M = 4
√
c and138

applying (19), one gets139

lim
t→∞

∥∥∥e(B−s)t
∥∥∥

4
= lim
t→∞

e−st
∥∥eBt∥∥

4
≤M lim

t→∞
e(α−s)t = 0 . (22)

On the other hand, we need to show that the r.v. D = 1/(B − s) ∈ L4. Note
that

1

B − s
= −

1
s

1− B
s

= −1

s

∑
n≥0

(
B

s

)n
,

and taking s > ‖B‖4, the above geometric series is m.f. convergent and then its140

limit, 1
B−s ∈ L4 because (L4, ‖·‖4) is a Banach space. Then, by Lemma 2, from141

(20) one gets142

L[eBtH(t)](s) =
1

s−B
, s > max {‖B‖4 , α} = γ. (23)

This results can be extended for s ∈ C. As the function h(s) = 1
s−B is an143

holomorphic function of the complex variable s that coincides with L[v1(t;B)](s)144

in the compact set K =]γ,∞[ which has accumulation points in Re(s) > γ, then145

by the analytic continuation principle [32, theorem 3.2.b., p.146]), expression146

(23) holds true for all s in the half-plane Re(s) > γ.147

Remark 1 Condition (16) involves the computation of absolute moments of148

r.v. B which can be difficult because of the lack of explicit formulas even for149

some well-known statistical distributions. Fortunately, the Truncation Method150

(see [33, ch.5]) permits to obtain accurate approximations to numerous r.v.’s151

and it can be proven that truncated r.v.’s satisfy condition (16) (see Remark152

1 in [23]). Notice that every r.v. that satisfies condition (16) has statistical153

moments of any order, so, in particular if B satisfies condition (16), then it is154

a 4-r.v. and hence a 2-r.v.155
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Example 2 Let B be a real-valued r.v. satisfying condition (16). Let us con-156

sider the s.p.157

v2(t;B) = sin(Bt)H(t) , (24)

where H(t) denotes the Heaviside function. Then, we shall show that158

L[v2(t;B)](s) =
B

s2 +B2
. (25)

In fact, note that as sin(Bt) = Im
(
eiBt

)
, we consider the s.p. eiBt. Since B159

satisfies (16), then iB also satisfies that property, see (11), and (19) holds true160

for eiBt, i.e, there exists c > 0 such that161 ∥∥eiBt∥∥
2
≤ deα t, where d = 4

√
c.

For s ∈ R, one gets162

L[v2(t;B)](s) =

∫ ∞
0

Im
(
eiBt

)
e−st dt =

∫ ∞
0

Im
(
eiBte−st

)
dt

= Im

(∫ ∞
0

eiBte−st dt

)
= Im

(∫ ∞
0

e(iB−s)t dt

)
,

and from (20) applied to iB instead of B, and using (21), one follows163

L[v2(t;B)](s) = Im

(
lim
t→∞

(
e(iB−s)t

iB − s

)
− 1

iB − s

)
= Im

(
1

s− iB

)
= Im

(
s+ iB

(s− iB)(s+ iB)

)
= Im

(
s+ iB

s2 +B2

)
=

B

s2 +B2
. (26)

Notice that the limit appearing in (26) is considered in the m.s. sense. This ex-164

pression can be extended for s ∈ C following an analogous reasoning we showed165

in the Example 1. In fact, note that the function h(s) = B
s2+B2 is an holomor-166

phic function of the complex variable s, that coincides with L[v2(t;B)](s) in the167

compact set K =]α,∞[ which has accumulation points in Re(s) > α. Then, by168

the analytic continuation principle, expression (26) holds true for all s in the169

half-plane Re(s) > α, where α > 0 is the constant which appears in condition170

(16).171

Example 3 Let L be a r.v. satisfying condition (5), s ∈ C such that Re(s) >172

a ≥ 0 and x > 0. Then,173

(i) J(s) =

∫ ∞
0

e
−
(
s
z2

+ x2

4L z
2
)
dz is m.s. convergent.174

(ii) J(s) =

√
πL

x
e−x
√

s
L .175
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(iii) It is verified that176

L
[
t−3/2e−

x2

4tL H(t)
]

(s) =
2
√
πL

x
e−x
√

s
L , (27)

i.e., an inverse random Laplace transform of (27) is given by177

L−1
[
e−x
√

s
L

]
(t) =

x

2
√
πL t3

e−
x2

4tL , x > 0 . (28)

Let us show each of the previous statements (i)-(iii).178

(i) Let s ∈ C such that Re(s) > a ≥ 0 and x > 0 fixed,179 ∫ ∞
0

∥∥∥∥e−( s
z2

+ x2

4L z
2
)∥∥∥∥

2

dz =

∫ ∞
0

∣∣∣e− s
z2

∣∣∣ ∥∥∥e− x24L z
2
∥∥∥

2
dz

=

∫ ∞
0

e−
Re(s)

z2

∥∥∥e− x24L z
2
∥∥∥

2
dz . (29)

From condition (5) one gets180

E

[
1

Ln

]
≤ 1

(`1)n
, n ≥ 0 ,

hence181 (∥∥∥e− x24L z
2
∥∥∥

2

)2

= E
[
e−

x2

2L z
2
]

=
∑
n≥0

1

n!

(
−x2z2

2

)n
E

[
1

Ln

]

≤
∑
n≥0

1

n!

(
−x2z2

2`1

)n
= e−

x2z2

2`1 , ∀z > 0 .

Thus,182 ∥∥∥e− x24L z
2
∥∥∥

2
≤ e−

x2z2

4`1 , ∀z > 0 . (30)

From (29) and (30), and taking into account that Re(s) ≥ a > 0, one gets183 ∫ ∞
0

∥∥∥∥e−( s
z2

+ x2

4L z
2
)∥∥∥∥

2

dz ≤
∫ ∞

0

e−
Re(s)

z2 e−
x2z2

4`1 dz < +∞ ,

i.e., the integral J(s) is m.s. convergent.184

(ii) In part (i) we have proven that J(s) is m.s. convergent and now we find185

a closed form expression for the s.p. J(s).186

Let ω ∈ Ω fixed and let us consider the complex function of variable s,187

J(s)(ω) =

∫ ∞
0

e
−
(
s
z2

+ x2

4L(ω)
z2
)
dz , s ∈ C : Re(s) > a ≥ 0 . (31)
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Firstly, we show that J(·)(ω) is an analytic function of complex variable s188

by using Weierstrass convergence theorem for sequences of analytic func-189

tions [34, p. 116]. Let us consider the analytic functions190

Jn(s)(ω) =

∫ n

0

e
−
(
s
z2

+ x2

4L(ω)
z2
)
dz , Re(s) > a ≥ 0 . (32)

Let K be a compact set in the open half-plane Re(s) > a ≥ 0. We wish to191

show that sequence {Jn(·)(ω) : n ≥ 0} given by (32) converges uniformly192

in K. Let193

Re(s1) = min{Re(s) : s ∈ K} ,

then194 ∫ n

0

∣∣∣∣e−( s
z2

+ x2

4L(ω)
z2
)∣∣∣∣ dz =

∫ n

0

e
−
(

Re(s)

z2
+ x2

4L(ω)
z2
)
dz

≤
∫ n

0

e
−
(

Re(s1)

z2
+ x2

4L(ω)
z2
)
dz

≤
∫ ∞

0

e
−
(

Re(s1)

z2
+ x2

4L(ω)
z2
)
dz

=

√
πL(ω)

x
e
−x
√

Re(s1)

L(ω) ,

where we have computed the last integral by [35, formula 3.325, p. 355].195

Thus, J(·)(ω) is an analytic function in the open half-plane Re(s) > a ≥ 0.196

Taking the real half-line R ∩ {s ∈ C : Re(s) > a ≥ 0} that has accumula-197

tion points in Re(s) > a ≥ 0, and using the value of the integral J(s)(ω)198

for positive real values of s, by the analytic continuation principle [32,199

theorem 3.2.b., p.146] we have that200

J(s)(ω) =

√
πL(ω)

x
e
−x
√

s
L(ω) , Re(s) > a ≥ 0 . (33)

As (33) is true for all ω ∈ Ω, one gets that201

J(s) =

√
πL

x
e−x
√

s
L .

(iii) First, let us show that the s.p.202

v3(t;L) = t−3/2e−
x2

4tL H(t) , (34)
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is Laplace transformable. In fact, using (5)

‖v3(t;L)‖2 =
1√
t3

∥∥∥e− x2

4tL

∥∥∥
2

=
1√
t3

(
E
[
e−

x2

2tL

])1/2

=
1√
t3

E

∑
n≥0

(
−x2

2t

)n (
1
L

)n
n!

 =
1√
t3

∑
n≥0

(
−x2

2t

)n
E
[(

1
L

)n]
n!

≤ 1√
t3

∑
n≥0

(
−x2

2t

)n (
1
`1

)n
n!

=
1√
t3
e−

x2

2t `1 ,

and∫ ∞
0

‖v3(t;L)‖2 dt ≤
∫ ∞

0

1√
t3
e−

x2

2t `1 e−st dt <∞ , s ∈ C : Re(s) > 0 .

Using the definition of random Laplace transform, doing a suitable change203

of variable and using (ii) one gets204

L
[
t−3/2e−

x2

4tL H(t)
]

(s) =

∫ ∞
0

e−
x2

4tL

t3/2
e−st dt =

[
1√
t

= z

]
= 2

∫ ∞
0

e
−
(
s
z2

+ x2

4L z
2
)
dz

= 2J(s) =
2
√
πL

x
e−x
√

s
L , x > 0 .

3.1 Operational rules for random Laplace transform205

Let u(t) be a 2-s.p. m.s. differentiable such as that u′(t) is m.s. continuous and206

both, u(t) and u′(t), belong to the class C. Assume that the 2-s.p. u(t) exists207

at the right of zero, that is, exists u(0+) = limt→0+ u(t). Then from definition208

(14) and using the fundamental theorem of m.s. calculus, [19, p. 104], one gets209

L[u′(t)](s) =

∫ ∞
0

u′(t)e−st dt =
[
u(t)e−st

]t=∞
t=0

+ s

∫ ∞
0

u(t)e−st dt

=
[
u(t)e−st

]t=∞
t=0

+ sL[u(t)](s) . (35)

Now, by applying condition (13) to u(t) and taking Re(s) > a, it is verified210

‖u(t)e−st‖2 = |e−st| ‖u(t)‖2 ≤Me−t Re(s)eat = Met(a−Re(s)) t→+∞−→ 0 . (36)

Then, from (35)–(36) it is obtained the following operational rule which relates211

the random Laplace transform of a 2-s.p. with the random Laplace transform212

of its first m.s. derivative213

L[u′(t)](s) = sL[u(t)](s)− u(0+) . (37)
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The next operational rule is the convolution for 2-s.p.’s f(t) and g(t) of class214

C, denoted by f ∗ g and defined by the m.s. integral215

(f ∗ g)(t) =

∫ t

0

f(t− ν)g(ν) dν , t ≥ 0 . (38)

As it occurs for the deterministic case, see [36, p. 259] by writing L[f ∗ g] as a216

double m.s. integral and reversing the order of integration, one gets a random217

convolution formula for the random Laplace transform218

L[f ∗ g](s) = L[f ](s) L[g](s) = F (s)G(s) , f, g ∈ C . (39)

4 Random heat problem219

This section deals with the construction of the solution s.p. of the problem (1)–220

(4) as well as the determination of its expectation and variance. Let us assume221

that L is a positive r.v. that satisfies condition (5), and let f(t;A) be a s.p. in222

the class C. Assume that the problem (1)–(4) admits a Laplace transformable223

solution s.p. u(x, t) which will be denoted by224

L[u(x, ·)](s) = U(x)(s) , s ∈ C : Re(s) > a ≥ 0 , (40)

what means that u(x, t) is regarded as a s.p. of the active variable t > 0, for225

fixed x > 0. Now, we apply the random Laplace transform to both members226

of equation (1). For the left-hand side, we use property (37) and the initial227

condition (2), this yields228

L[ut(x, ·)](s) = s U(x)(s)− u(x, 0+) = s U(x)(s) ,

and, for the right-hand side, we apply twice Lemma 2 of [23]229

L[uxx(x, ·)](s) =

∫ ∞
0

uxx(x, ·)e−st dt =
d2U(x)(s)

dx2
.

By applying the random Laplace transform to conditions (3) and (4), it follows230

that231

U(0)(s) = L[u(0, ·)](s) = L[f(· ;A)](s) = F (s;A) ,

and232

U(x)(s) = L[u(x, ·)](s) is bounded if x→ +∞ .

Hence, the problem (1)–(4) has been transformed into the following random233

initial value problem based on a second-order differential equation234

d2

dx2
U(x)(s)− s

L
U(x)(s) = 0 , x > 0 , (41)

U(0)(s) = F (s;A) , (42)

U(x)(s) = L[u(x, ·)](s) is bounded if x→ +∞ . (43)

11



In accordance with Proposition 9 of [37], the set {ex
√
s/L, e−x

√
s/L} is a fun-235

damental system of solutions of the problem (41)–(43), since as Re(s) > 0 and236

L satisfies condition (5), its Wronskian, −2
√

s
L , is well-defined and different237

from zero for all ω ∈ Ω. Then, a general solution s.p. of the random ordinary238

differential equation (41) is given by239

U(x)(s) = C1(s) ex
√
s/L + C2(s) e−x

√
s/L . (44)

Taking into account condition (43), we put C1(s) = 0, thus from (44) we seek a240

solution s.p. of the form241

U(x)(s) = C2(s) e−x
√
s/L , (45)

which applying condition (42) takes the form242

U(x)(s) = F (s;A) e−x
√
s/L = F (s;A)L[g(t;L)](s) , (46)

where, by (iii) of Example 3, the s.p. g(t;L) takes the form243

g(t;L) = L−1
[
e−x
√
s/L
]

(t) =
x

2
√
πL t3

e−x
2/4tL . (47)

Then, by taking the random inverse Laplace transform in (46), considering the244

convolution property (39) and using (38) and (47), one gets a solution 2-s.p. of245

problem (1)–(4):246

u(x, t) = L−1 [U(x)(s)] (t) = L−1
[
F (s;A) e−x

√
s/L
]

(t)

= L−1 [L [(f ∗ g)(t;A,L)] (s)] (t)

= (f ∗ g)(t;A,L) =

∫ t

0

f(t− ν;A)g(ν;L) dν

=
x

2
√
πL

∫ t

0

e−x
2/4νL

√
ν3

f(t− ν;A) dν , x > 0, t > 0 . (48)

Summarizing, the following result has been established247

Theorem 1 Let us consider the random heat problem (1)–(4) where L is a248

positive r.v. satisfying condition (5), and let f(t;A) be a s.p. in the class C249

which depends on r.v. A. Then, the m.s. solution s.p. u(x, t) of problem250

(1)–(4) is given by (48).251

Assuming independence of r.v.’s L and A the expectation and the variance252

functions of the solution s.p. u(x, t), given by (47), can be computed by the253

following closed expressions:254

E [u(x, t)] =
x

2
√
π

∫ t

0

E

[
1√
Lν3

e−x
2/4νL

]
E [f(t− ν;A)] dν , (49)
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255

Var [u(x, t)] = E[(u(x, t))2]− (E[u(x, t)])
2
, (50)

where

E
[
(u(x, t))2

]
=
x2

4π

∫ t

0

∫ t

0

E

[
1

L
√

(ν1)3 (ν2)3
e−

x2(ν1+ν2)
4ν1 ν2 L

]
E [f(t− ν1;A)f(t− ν2;A)] dν1 dν2 .

(51)

If gL(l) and gA(a) denote the p.d.f.’s of the random inputs L and A, and256

D(L) and D(A) denote their domains, respectively, then taking into account257

(12) the expectations that appear in the above integrals can be computed as258

follows259

E

[
1√
Lν3

e−x
2/4νL

]
=

∫
D(L)

1√
Lν3

e−x
2/4νL gL(l) dl , (52)

260

E [f(t− ν;A)] =

∫
D(A)

f(t− ν; a) gA(a) da , (53)

261

E

[
1

L
√

(ν1)3 (ν2)3
e−

x2(ν1+ν2)
4ν1 ν2 L

]
=

∫
D(L)

1

L
√

(ν1)3 (ν2)3
e−

x2(ν1+ν2)
4ν1 ν2 l gL(l) d l ,

(54)262

E [f(t− ν1;A)f(t− ν2;A)] =

∫
D(A)

f(t− ν1; a)f(t− ν2; a) gA(a) da . (55)

These expressions permit to understand that the expectation and the variance263

of the solution s.p. u(x, t) get modified by different choice of p.d.f.’s of random264

input parameters L and A in practice.265

5 Numerical examples266

In this section, we illustrate the theorical results previously developed by means267

of a numerical example where the expectation and the variance to the solution268

s.p. u(x, t), given by (49)–(55) are computed. Computations have been carried269

out using the software Mathematicar.270

Example 4 Let us consider the mixed random parabolic problem (1)–(4) where271

the random diffusion coefficient L is assumed to be a positive r.v. which has272

a truncated gamma distribution of parameters α = 3 and β = 2, i.e., L ∼273

Ga (3; 2), on the interval [0.1, 3]. Hence, L satisfies condition (5). Let f(t;A) =274

eAtH(t) be a s.p. depending on r.v. A which is assumed to have a beta distri-275

bution of parameters α = 2 and β = 1, i.e. A ∼ Be (2; 1). Since A is by its own276

definition truncated, then condition (16) is satisfied and according to Example277

1, f(t;A) is in the class C. Therefore, hypotheses of Theorem (1) hold true and278

the m.s. solution stochastic process, u(x, t), to problem (1)–(4) is given by (48).279
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Assuming that L and A are independent r.v.’s, the expectation and the variance280

of u(x, t) can be exactly computed by expressions (49)–(55). Figure 1 shows the281

evolution of average temperature (plot (a)) on a bar of length 0 ≤ x ≤ 5 at282

different time instants as well as its variation measured through the standard283

deviation (plot (b)). Since average temperature tends to increase (decrease) at284

the left-end (right-end) of the bar as times goes on, the variability behaves in285

the same manner. For the sake of clarity, in Figure 2 we show this behaviour286

in 3-D over a longer time interval.287

In Figures 3 and 4, we compare the exact values of the expectation and the288

standard deviation, respectively, against the ones obtained by Monte Carlo sam-289

pling using 100, 500 and 1000 simulations at the time instants t ∈ {0.4, 0.6, 0.8, 1}290

on the piece ]0, 3] of the spatial domain, x ∈ ]0, 5]. In order to complete291

this analysis, in Tables 1–2 we have collected the exact values of the mean,292

E[u(xi, t)], and, standard deviation,
√

Var[u(xi, t)], at different spatial values293

xi ∈ {0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5} at the times instants t = 0.5 and t = 2,294

respectively. The corresponding values obtained by Monte Carlo method using295

r = 102, r = 5 × 102, r = 103 and r = 104 have been included too. In order296

to account for the quality of Monte Carlo results, the values of the relative er-297

rors for the mean, RelErrµrMC, and the standard deviation, RelErrσrMC, using298

r Monte Carlo simulations have been also computed according to the following299

expressions300

RelErrµrMC =

∣∣∣∣E[u(xi, t)]− µrMC(xi, t)

E[u(xi, t)]

∣∣∣∣ ,
RelErrσrMC =

∣∣∣∣∣
√

Var[u(xi, t)]− σrMC(xi, t)√
Var[u(xi, t)]

∣∣∣∣∣ .
(56)

The consistency of the estimation of the moments is clearly manifested since301

the numerical results via Monte Carlo are closer to the exact ones obtained by the302

proposed random mean square approach by (49)–(55), as the number r of sim-303

ulations increases. Monte Carlo simulations were carried out by Mathematicar
304

software version 10 for Linux x86 (64-bit) using 32 Xeon-double-processors with305

half-terabyte capacity. Regarding computational time, figures collected in Table306

1 for r = 104 simulations by Monte Carlo required 86 minutes and 17 seconds.307

Timing was similar for the same computations shown in Table 2. Whereas 15308

hours, 28 minutes and 16 seconds were needed to compute analogous approx-309

imations with spatial 50 points xi instead of 11 spatial points. These timings310

are higher than the ones needed using our random mean square approach, whose311

execution time was a few seconds. Parallelization was used to carry out compu-312

tations using both approaches.313
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Figure 1: Evolution of the expectation E [u(x, t)] (plot (a)), and the standard
deviation

√
Var [w(x, t)] (plot (b)) on the spatial domain x ∈ ]0, 5] at different

time instants in the context of Example 4.
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Figure 2: Three-dimensional approximations for the evolution of the expectation
E [u(x, t)] (plot (a)), and, the standard deviation

√
Var [w(x, t)] (plot (b)) on

the spatial domain x ∈ ]0, 5] throughout the time interval t ∈ ]0, 10] in the
context of Example 4.
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Figure 3: Comparison between the exact values of the expectation of the so-
lution, E[u(x, t)], given by (49), (52)–(53), and Monte Carlo (µMC) using 100,
500 and 1000 simulations at the time instants t = 0.4, t = 0.6, t = 0.8 and t = 1
on the piece ]0, 3] of spatial domain, x ∈ ]0, 5].
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Figure 4: Comparison between the exact values of the standard deviation of the
solution,

√
Var[u(x, t)], given by (49)–(55), and Monte Carlo (σMC) using 100,

500 and 1000 simulations at the time instants t = 0.4, t = 0.6, t = 0.8 and t = 1
on the piece ]0, 3] of spatial domain, x ∈ ]0, 5].
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t = 0.5 xi

r 0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

E[u(xi, t)] 1.2982e+00 9.2504e-01 5.7356e-01 3.3380e-01 1.8207e-01 9.2991e-02 4.4432e-02 1.9843e-02 8.2747e-03 3.2188e-03 1.1667e-03

102 1.2994e+00 9.3381e-01 5.8637e-01 3.4654e-01 1.9237e-01 1.0004e-01 4.8597e-02 2.2009e-02 9.2819e-03 3.6425e-03 1.3296e-03
µrMC(xi, t) 5×102 1.2917e+00 9.2575e-01 5.8005e-01 3.4211e-01 1.8934e-01 9.8128e-02 4.7564e-02 2.1542e-02 9.1075e-03 3.5911e-03 1.3193e-03

103 1.2943e+00 9.2603e-01 5.7726e-01 3.3776e-01 1.8520e-01 9.5090e-02 4.5682e-02 2.0515e-02 8.6027e-03 3.3646e-03 1.2260e-03
104 1.2969e+00 9.2494e-01 5.7378e-01 3.3391e-01 1.8210e-01 9.3003e-02 4.4455e-02 1.9869e-02 8.2953e-03 3.2313e-03 1.1732e-03

102 9.2009e-04 9.4735e-03 2.2345e-02 3.8161e-02 5.6582e-02 7.5781e-02 9.3725e-02 1.0916e-01 1.2172e-01 1.3166e-01 1.3961e-01
RelErrµrMC 5×102 4.9847e-03 7.6350e-04 1.1322e-02 2.4912e-02 3.9923e-02 5.5251e-02 7.0487e-02 8.5598e-02 1.0064e-01 1.1569e-01 1.3077e-01

103 2.9926e-03 1.0602e-03 6.4636e-03 1.1884e-02 1.7207e-02 2.2572e-02 2.8120e-02 3.3854e-02 3.9636e-02 4.5320e-02 5.0799e-02
104 1.0166e-03 1.1824e-04 3.8882e-04 3.4693e-04 1.4106e-04 1.3129e-04 5.1466e-04 1.3262e-03 2.4844e-03 3.9047e-03 5.5091e-03√

Var[u(xi, t)] 1.4371e-01 1.2577e-01 1.2666e-01 1.0741e-01 7.7609e-02 4.9405e-02 2.8263e-02 1.4694e-02 6.9892e-03 3.0533e-03 1.2280e-03

102 1.4819e-01 1.2238e-01 1.2327e-01 1.0531e-01 7.5940e-02 4.8260e-02 2.7695e-02 1.4513e-02 6.9804e-03 3.0891e-03 1.2594e-03
σrMC(xi, t) 5×102 1.4688e-01 1.2882e-01 1.2761e-01 1.0659e-01 7.6854e-02 4.9242e-02 2.8459e-02 1.4964e-02 7.1971e-03 3.1770e-03 1.2900e-03

103 1.3886e-01 1.1906e-01 1.2125e-01 1.0444e-01 7.6457e-02 4.9148e-02 2.8309e-02 1.4791e-02 7.0622e-03 3.0955e-03 1.2488e-03
104 1.4371e-01 1.2359e-01 1.2462e-01 1.0653e-01 7.7413e-02 4.9434e-02 2.8319e-02 1.4730e-02 7.0073e-03 3.0615e-03 1.2316e-03

102 3.1170e-02 2.6951e-02 2.6796e-02 1.9534e-02 2.1514e-02 2.3178e-02 2.0086e-02 1.2316e-02 1.2544e-03 1.1750e-02 2.5612e-02
RelErrσrMC 5×102 2.2010e-02 2.4316e-02 7.5127e-03 7.6383e-03 9.7360e-03 3.3188e-03 6.9199e-03 1.8356e-02 2.9750e-02 4.0547e-02 5.0529e-02

103 3.3774e-02 5.3328e-02 4.2744e-02 2.7632e-02 1.4849e-02 5.2154e-03 1.6261e-03 6.5554e-03 1.0444e-02 1.3838e-02 1.6921e-02
104 2.8036e-06 1.7344e-02 1.6073e-02 8.1444e-03 2.5332e-03 5.6927e-04 1.9644e-03 2.4453e-03 2.5864e-03 2.7164e-03 2.9593e-03

Table 1: Values of the exact expectation, E[u(xi, t)], and standard deviation,
√

Var[u(xi, t)], given by (49)–(55), at some spatial
points xi ∈ ]0, 5] at the time instant t = 0.5 for Example 4. The values of the mean and the standard deviation obtained by
Monte Carlo, µrMC(xi, t), and σrMC(xi, t), respectively, using r = 102, r = 5 × 102, r = 103 and r = 104 simulations are
shown too. The comparison between the values of the mean and the standard deviation obtained using both methods are made
by considering the relative errors in each xi for each number r of simulations according to (56).
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t = 2 xi

r 0.1 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

E[u(xi, t)] 3.9298e+00 3.0314e+00 2.1926e+00 1.5834e+00 1.1392e+00 8.1515e-01 5.7923e-01 4.0816e-01 2.8489e-01 1.9676e-01 1.3435e-01

102 3.9392e+00 3.0521e+00 2.2200e+00 1.6126e+00 1.1676e+00 8.4120e-01 6.0212e-01 4.2760e-01 3.0087e-01 2.0950e-01 1.4421e-01
µrMC(xi, t) 5×102 3.8583e+00 2.9864e+00 2.1714e+00 1.5774e+00 1.1423e+00 8.2309e-01 5.8912e-01 4.1823e-01 2.9412e-01 2.0466e-01 1.4079e-01

103 3.8609e+00 2.9874e+00 2.1686e+00 1.5715e+00 1.1346e+00 8.1467e-01 5.8085e-01 4.1069e-01 2.8761e-01 1.9930e-01 1.3654e-01
104 3.9211e+00 3.0239e+00 2.1862e+00 1.5778e+00 1.1345e+00 8.1137e-01 5.7622e-01 4.0582e-01 2.8311e-01 1.9544e-01 1.3339e-01

102 2.3962e-03 6.8032e-03 1.2459e-02 1.8465e-02 2.4932e-02 3.1949e-02 3.9529e-02 4.7617e-02 5.6083e-02 6.4751e-02 7.3413e-02
RelErrµrMC 5×102 1.8199e-02 1.4845e-02 9.6972e-03 3.7759e-03 2.7441e-03 9.7427e-03 1.7088e-02 2.4664e-02 3.2374e-02 4.0150e-02 4.7936e-02

103 1.7540e-02 1.4537e-02 1.0957e-02 7.4597e-03 4.0101e-03 5.8707e-04 2.8063e-03 6.1782e-03 9.5418e-03 1.2914e-02 1.6295e-02
104 2.2138e-03 2.4708e-03 2.9439e-03 3.4894e-03 4.0646e-03 4.6357e-03 5.1975e-03 5.7399e-03 6.2499e-03 6.7110e-03 7.1215e-03√

Var[u(xi, t)] 1.5979e+00 1.1726e+00 8.2488e-01 5.9913e-01 4.4552e-01 3.3609e-01 2.5499e-01 1.9320e-01 1.4540e-01 1.0830e-01 7.9632e-02

102 1.6390e+00 1.1987e+00 8.3688e-01 6.0264e-01 4.4446e-01 3.3288e-01 2.5105e-01 1.8934e-01 1.4208e-01 1.0569e-01 7.7749e-02
σrMC(xi, t) 5×102 1.6313e+00 1.1978e+00 8.4058e-01 6.0655e-01 4.4718e-01 3.3455e-01 2.5222e-01 1.9041e-01 1.4317e-01 1.0677e-01 7.8734e-02

103 1.5491e+00 1.1320e+00 7.9225e-01 5.7395e-01 4.2718e-01 3.2352e-01 2.4689e-01 1.8831e-01 1.4266e-01 1.0690e-01 7.9026e-02
104 1.6135e+00 1.1818e+00 8.2807e-01 5.9909e-01 4.4419e-01 3.3449e-01 2.5358e-01 1.9210e-01 1.4460e-01 1.0773e-01 7.9233e-02

102 2.5737e-02 2.2256e-02 1.4545e-02 5.8526e-03 2.3766e-03 9.5433e-03 1.5448e-02 1.9949e-02 2.2871e-02 2.4109e-02 2.3651e-02
RelErrσrMC 5×102 2.0918e-02 2.1516e-02 1.9027e-02 1.2393e-02 3.7117e-03 4.5850e-03 1.0853e-02 1.4438e-02 1.5395e-02 1.4167e-02 1.1283e-02

103 3.0523e-02 3.4575e-02 3.9556e-02 4.2033e-02 4.1174e-02 3.7399e-02 3.1755e-02 2.5321e-02 1.8882e-02 1.2913e-02 7.6115e-03
104 9.7713e-03 7.8990e-03 3.8702e-03 6.8112e-05 2.9949e-03 4.7436e-03 5.5308e-03 5.6911e-03 5.5192e-03 5.2475e-03 5.0055e-03

Table 2: Values of the exact expectation, E[u(xi, t)], and standard deviation,
√

Var[u(xi, t)], given by (49)–(55), at some spatial
points xi ∈ ]0, 5] at the time instant t = 2 for Example 4. The values of the mean and the standard deviation obtained by
Monte Carlo, µrMC(xi, t), and σrMC(xi, t), respectively, using r = 102, r = 5 × 102, r = 103 and r = 104 simulations are
shown too. The comparison between the values of the mean and the standard deviation obtained using both methods are made
by considering the relative errors in each xi for each number r of simulations according to (56).
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6 Conclusions314

In this paper, we have first introduced the random Laplace transform of an315

stochastic process in the mean square probabilistic sense including several illus-316

trative examples where the Laplace transform is computed. The classical defi-317

nition of original function is extended for original stochastic processes and the318

hypothesis of growth not greater than an exponential is replaced by the growth319

of the mean square norm of the stochastic process. Secondly, after introduc-320

ing some operational calculus for the random Laplace transform, we show the321

capability of this random transform to obtain a closed-form solution stochastic322

process of the mixed partial differential problem (1)–(4). The obtained theoret-323

ical results are illustrated by means of an example where the expectation and324

the variance of the solution s.p. are computed. We emphasize that the proposed325

approach can be applied to deal with other problems based on mixed partial326

differential equations which often appear in physical models as well as to extend327

to the random scenario further classical transforms that have demonstrated to328

be useful tools to solve partial differential problems.329
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