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Abstract

New explicit as well as manifestly symmetric three-term summation formulas are derived for the Clausenian
hypergeometric series 3F2(1) with negative integral parameter differences. Our results generalize and naturally
extend several similar relations published, in recent years, by many authors. An appropriate and useful connection
is established with the quite underestimated 1974 paper by P. W. Karlsson.
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1. Introduction

The main object of the present paper is to derive two elegant and manifestly symmetric summation formulas
(31) and (32) for Clausen’s series 3F2 with unit argument (see, e.g., [1, 2, 3, 4, 5, 6, 7])

3F2





a, b, c;

b+ 1 +m, c+ 1 + n;
1



 (m,n ∈ N0 := N ∪ {0}), (1)

and negative integral parameter differences given by the arbitrary non-negative integers m and n, N being (as
usual) the set of positive integers. We also aim at supporting interest in generalized hypergeometric functions

pFq(z) of p numerator and q denominator parameters (and with argument z) especially of the type exemplified
above.

Our summation formulas (31) and (32) match very well the recent trend of finding new relationships for
generalized hypergeometric functions. In fact, they are immediate and natural generalizations of more special
formulas suggested, a decade ago, by Milgram [8, 9, 10, 11], which were further proved and employed by Miller
and Paris [12] and Rathie and Paris [13] quite recently.

A substantial and wide-spread progress has been recently achieved in the classical field of investigating the
generalized hypergeometric functions pFq(z) and producing various relationships between them. Very often the
studied functions contain, in different ways, integers in their numerator and denominator parameters (see, for
example, [14, 15, 16, 17, 18, 19, 20, 21, 22, 23]).

∗Corresponding author
1http://researchgate.net/profile/Mykola Shpot
2http://www.math.uvic.ca/faculty/harimsri/

Preprint submitted to Applied Mathematics and Computation April 16, 2015

http://arxiv.org/abs/1411.2455v3
http://researchgate.net/profile/Mykola_Shpot
http://www.math.uvic.ca/faculty/harimsri/


2

More studied, however, are functions with positive integral parameter differences in pairs of their numerator
and denominator parameters [19, 20, 24, 22, 23] just in the spirit of very well-known early papers by Karlsson
[25] and Minton [26]. It may be of interest to recall here the following known reduction formula (see, for example,
[25], [27], and also [28, p. 1080] and the references to more general results on hypergeometric reduction formulas,
which are cited in [28]):

pFq





b1 +m1, · · · , br +mr, ar+1, · · · , ap;

b1, · · · , br, br+1, · · · , bq;
z





=

m1
∑

j1=0

· · ·

mr
∑

jr=0

Λ(j1, · · · , jr)z
Jr

p−rFq−r





ar+1 + Jr, · · · , ap + Jr;

br+1 + Jr, · · · , bq + Jr;
z



 (2)

(r ≦ min{p, q}; p, q ∈ N0; p < q + 1 when z ∈ C; p = q + 1 when |z| < 1),

where
Jr := j1 + · · ·+ jr

and

Λ(j1, · · · , jr) =

(

m1

j1

)

· · ·

(

mr

jr

)

(b2 +m2)J1
· · · (br +mr)Jr−1

(ar+1)Jr
· · · (ap)Jr

(b1)J1
· · · (br)Jr

(br+1)Jr
· · · (bq)Jr

.

The general hypergeometric identity (2) was proved by Karlsson [25] and (in two markedly different simpler

ways) by Srivastava [27]. More interestingly, various generalizations and basic (or q-) extensions of the hyperge-
ometric identity (2) can be found in several sequels to the works by Karlsson [25] and Srivastava [27] (see, for
example, [29]). Reference [30], on the other hand, contains further general results stemming from the hypergeo-
metric identity (2) including multivariable generalizations. Furthermore, Karlsson’s proof of the Karlsson-Minton
summation formula (see, for details, [25]; see also [26], [19] and [28, p. 1080, Equation (20)]) was based upon the
hypergeometric reduction formula (2).

There is another obscure and seemingly forgotten paper by Karlsson [31] in which similar results have been
obtained for generalized hypergeometric functions pFq(z) with negative integral parameter differences. The papers
[8, 11] and [12] mentioned at the beginning, as well as the present one, discuss the summation formulas for the
functions 3F2(1) that belong to the same category.

Our motivation in doing this work stems from calculations [32, 33, 34, 35, 36] in the field theory of Lifshitz
points [37], where 3F2 functions of the type indicated in (1) appear as a part of the expansion coefficients of
certain important functions (see, for explicit formulas, [35, Eqs. (5.69), (5.71)]). Such expansions appear as a
result of a term-by term integration of special [38] Appell functions [39, 1, 4, 6, 7]. Owing to global universal
features of mathematical description of the underlying systems with anisotropic scaling, similar expansions are
expected to inevitably appear in a very broad class of statistical physics and (Lorentz violating) high energy
theories as discussed in a review section of [36]. On the other side, a review and further references can be found in
[40]. Owing to numerous potential applications, both in theoretical physics and mathematics [12, 13], we believe
that functions (1) or the related ones, deserve to be studied in a best way.

In the following section, we explicitly write down the previous results of [31], [8, 11] and [12], which will be
needed for establishing the necessary contacts and connections with the present work.

2. Background results

In 1974, Karlsson [31] derived a quite general reduction formula for generalized hypergeometric functions

pFq(z) with generic negative integral parameter differences and for p ≦ q+1. In the case when p = q+1 = 3, his
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equation (6) in [31] may be written as follows:3

3F2





a, b, c;

b+ 1 +m, c+ 1 + n;
z





m!n!

(b)m+1(c)n+1
=

m
∑

i=0

n
∑

j=0

(−m)i(−n)j
i! j!

·





1

(c+ j)(b − c+ i− j)
2F1





a, c+ j;

c+ j + 1;
z



+
1

(b+ i)(c− b+ j − i)
2F1





a, b+ i;

b+ i+ 1;
z







 , (3)

provided that no denominator parameter equals zero or a negative integer and | arg(1 − z)| < π. Here, and
throughout this paper, m,n ∈ N0 are arbitrary non-negative integers. The Pochhammer symbol (λ)n is given by
(see, e.g., [6, Ch. 1] and [19])

(0)0 := 1 and (λ)n ≡ λ(λ+ 1) · · · (λ+ n− 1) (λ ∈ C; n ∈ N) (4)

and, in general, by

(λ)n =
Γ(λ+ n)

Γ(λ)
(n ∈ Z). (5)

Finally, 2F1(a, b; c; z) is a Gauss hypergeometric function and Γ(z) is the usual Euler Gamma function (see, e.g.,
[1, 4, 2, 6]).

At unit argument z = 1, the Gauss hypergeometric functions on the right-hand side of (3) are summed by
applying the celebrated Gauss summation theorem [1, Sec. 1.3]:

2F1





a, b;

c;
1



 =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

(

ℜ(c− a− b) > 0
)

. (6)

We thus find from (3) that

3F2





a, b, c;

b+ 1 +m, c+ 1 + n;
1





m!n!

(b)m+1(c)n+1
=

m
∑

i=0

n
∑

j=0

(−m)i(−n)j
i! j!

(

B(1− a, c+ j)

b− c+ i− j
+

B(1 − a, b+ i)

c− b+ j − i

)

. (7)

Here

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
(a, b 6= 0,−1,−2, · · · ) (8)

denotes the familiar Beta function.
In 2004, Milgram [8, Eq. (11)] suggested the following summation formula for Clausen’s 3F2(1) series:

3F2





a, b, c;

b+ n, c+ 1;
1



 =
(b)nΓ(c+ 1)Γ(1− a)

(b− c)nΓ(c+ 1− a)

+ cΓ(b+ n)Γ(c− b+ 1− n)

n−1
∑

ℓ=0

Γ(n− ℓ − a)(−1)ℓ

Γ(b+ n− a− ℓ)Γ(n− ℓ)Γ(c− b− n+ 2 + ℓ)
. (9)

He further reproduced the summation formula (9) in slightly different forms in [11, 9, 10].

3The restriction µ 6= 1 appearing in (7) has to be read as µ 6= i.
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Quite recently, Miller and Paris [12] re-derived the summation formula (9) in further two equivalent forms.
Their equation (1.6) reads as follows:

3F2





a, b, c;

b+ n, c+ 1;
1



 =
cΓ(1− a)(b)n

(b − c)n

(

Γ(c)

Γ(1 + c− a)
−

Γ(b)

Γ(1 + b− a)

n−1
∑

k=0

(1− a)k(b− c)k
(1 + b− a)k k!

)

, (10)

where it is expressed in terms of the partial sum of a Gauss hypergeometric function 2F1 of unit argument,

2F1





a, b;

c;
1





n

≡

n
∑

k=0

(a)k(b)k
(c)k k!

.

By Lemma 2 of [12], which reads

2F1





a, b;

c;
1





n

=
(1 + b)n

n!
3F2





−n, b, c− a;

1 + b, c;
1



 , (11)

the equation (10) can be equivalently written in terms of the terminating Clausen’s series 3F2(−n, b, c; d, e; 1)
(see, for details, [12, Eq. (3.1)]).

In order to facilitate the comparison with our further results, we write down two variants of (10) for n 7→ n+1.
Following the choice a 7→ 1− a and b 7→ b− c with c 7→ 1 + b− a of [12] in applying (11) to (10), we obtain

3F2





a, b, c;

b+ 1 + n, c+ 1;
1



 = c (b)n+1





B(1 − a, c)

(b − c)n+1
−

B(1− a, b)

n!
3F2





−n, b, b− c;

1 + b− a, 1 + b− c;
1







 , (12)

which exactly matches [12, Eq. (3.1)] in view of (8). Alternatively, upon setting a 7→ b − c and b 7→ 1 − a with
the same c as above (that is, with c 7→ 1 + b− a), we arrive at the following result:

3F2





a, b, c;

b+ 1 + n, c+ 1;
1



 =
c(b)n+1

(b− c)n+1

·



B(1 − a, c)−B(1 − a, b)
(2− a)n

n!
3F2





−n, 1− a, 1− a+ c;

2− a, 1− a+ b;
1







 . (13)

In closing this section, let us only note that the 3F2 functions in the last two equations (12) and (13) are
related by means of the following two-term Thomae transformation (see, e.g., [41, Entry (7.4.4.1)]):

3F2





a, b, c;

d, e;
1



 =
Γ(d) Γ(p− c)

Γ(p) Γ(d− c)
3F2





e− a, e− b, c;

p, e;
1



 (p := d+ e− a− b), (14)

which leaves the last pair of the numerator and denominator parameters (that is, c and e) unaltered.

3. Summation theorems

In this section, we prove two theorems that generalize the results quoted in the Section 2. Theorem 1 gives
a symmetric variant of (12) and (13) in which the second denominator parameter c+ 1 is replaced by c+ 1 + n.
Our Theorem 2 will go a step further by allowing the negative integral differences in two pairs of parameters of

3F2 series to be independent.
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Theorem 1. For arbitrary non-negative integers n ∈ N0 and complex numbers a, b, c ∈ C,

3F2





a, b, c;

b+ 1 + n, c+ 1 + n;
1





(c− b)n+1 n!

(b)n+1(c)n+1

= B(1− a, b)
(1 − a)n

(1 + b− a)n
3F2





−n, b, 1 + n;

1 + b − c, a− n;
1





+ (−1)1+n B(1− a, c)
(2− a+ n)n
(1− a+ c)n

3F2





−n, 1− a+ b+ n, 1 + n;

1 + b− c, 2− a+ n;
1



 , (15)

provided that ℜ(2− a+ 2n) > 0.

Proof. In transforming the left-hand side of the assertion (15), we use the following Thomae three-term relation
for 3F2 at unit argument quoted by Bailey [1, p. 21, Eq. (1)], which can be also found in [41, Entry (7.4.4.4)]: 4

3F2





a, b, c;

e, f ;
1



 =
Γ(e)Γ(e− a− b)

Γ(e− a)Γ(e− b)
3F2





a, b, f − c;

a+ b− e+ 1, f ;
1





+
Γ(e)Γ(f)Γ(a+ b− e)Γ(e+ f − a− b− c)

Γ(a)Γ(b)Γ(f − c)Γ(e + f − a− b)
3F2





e− a, e− b, e+ f − a− b− c;

e− a− b+ 1, e+ f − a− b;
1



 , (16)

where we have ℜ(e+f−a−b−c) > 0 for convergence of the 3F2(1) series on the left-hand side and ℜ(1+c−e) > 0
for convergence of both of the 3F2(1) series on the right-hand side. Up to their coefficients, the two resulting

3F2(1) functions are given by

3F2





a, b, 1 + n;

a− n, 1 + c+ n;
1



 and 3F2





1− a+ b+ n, 1 + n, 2− a+ 2n;

2− a+ n, 2− a+ c+ 2n;
1



 , (17)

which converge when ℜ(c− b) > n.
The crucial property of the applied transformation (16) is that the first of the functions in (17) has a pair

of the upper and lower parameters (a, a − n) and the second one has (2 − a + 2n, 2 − a + n). In both cases
the denominator parameter differs from the numerator parameter by a negative integer −n. Thus, for any non-
negative finite integer n < ℜ(c− b), each of the new 3F2 functions is reducible to a finite sum of products of Euler
Gamma functions in light of the following relation [41, Entry (7.4.1.2)]:

3F2





a, b, c;

a− n, d;
z



 =
1

(1 − a)n

n
∑

p=0

(−z)p
(

n

p

)

(1− a)n−p

(b)p(c)p
(d)p

2F1





b+ p, c+ p;

d+ p;
z



 (18)

with z = 1 as well as the Gauss summation theorem (6).
Expressing the binomial coefficients in (18) via (see, e.g., [6, p. 22, Eq. (16)])

(

n

p

)

=
(−1)p(−n)p

p!

4In this reference [41], this is the next entry to that employed by Miller and Paris [12] in their proof of the summation formula
(10).



6

and after some algebra, we obtain a linear combination of finite sums as follows:

n
∑

p=0

(−n)p(1 + n)p
(a− n)p p!

(b)p
(1 + b− c)p

and

n
∑

p=0

(−n)p(1 + n)p(1− a+ b+ n)p
(2− a+ n)p p!

1

(1 + b − c)p
.

Identifying each of these finite sums with terminating Clausen’s series 3F2(1), we derive

3F2





a, b, c;

b+ 1 + n, c+ 1 + n;
1





(c− b)n+1 n!

(b)n+1(c)n+1

= Γ(b)
Γ(1− a+ n)

Γ(1− a+ b+ n)
3F2





−n, b, 1 + n;

1 + b− c, a− n;
1





+Γ(c)
Γ(−1 + a− n)Γ(2 − a+ 2n)

Γ(a)Γ(1− a+ c+ n)
3F2





−n, 1− a+ b+ n, 1 + n;

1 + b− c, 2− a+ n;
1



 . (19)

Finally, upon using the reflection formula (34) to transform Γ(−1+ a−n) in the second term, if we rearrange
the involved Gamma functions, we obtain the summation formula recorded in (15).

Remark 1. By changing the numerator parameter a 7→ a+ 2n in (19), we are led easily to Corollary 1 below.

Corollary 1. The following summation formula:

3F2





a+ 2n, b, c;

b+ 1 + n, c+ 1 + n;
1





(c− b)n+1 n!

(b)n+1(c)n+1

= Γ(b)
Γ(1− a− n)

Γ(1− a+ b − n)
3F2





−n, b, 1 + n;

1 + b− c, a+ n;
1





+Γ(c)
Γ(2− a)Γ(a+ n− 1)

Γ(a+ 2n)Γ(1− a+ c− n)
3F2





−n, 1− a+ b− n, 1 + n;

1 + b− c, 2− a− n;
1



 (20)

holds true when ℜ(2 − a) > 0.

As already mentioned in Section 1, there are physical applications (see, for example, [35, Eqs. (5.69)–(5.73)]
and [36, 44]), where reduction relations of this form are relevant and potentially useful.

The following Theorem 2 extends the result (15) of Theorem 1.

Theorem 2. For arbitrary non-negative integers m ∈ N0 and n ∈ N0, and for complex parameters a, b, c ∈ C,

3F2





a, b, c;

b+ 1 +m, c+ 1 + n;
1





(c− b)n+1

(b)m+1(c)n+1
= T (1)

m,n + T (2)
m,n

(

ℜ(2− a+m+ n) > 0
)

, (21)

where

T (1)
m,n = B(1− a, b)

(1− a)m
(1 + b− a)m m!

3F2





−m, b, 1 + n;

1 + b− c, a−m;
1



 (22)
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and

T (2)
m,n = (−1)1+m B(1− a, c)

(2− a+m)n
(1− a+ c)n n!

(c− b)n−m 3F2





−n, 1− a+ b+m, 1 +m;

2− a+m, 1 + b− c+m− n;
1



 , (23)

provided that ℜ(2− a+m+ n) > 0.

The proof of Theorem 2 proceeds precisely along the same lines as those of Theorem 1.

It is fairly straightforward to see that, in its special case when m = n, the summation formula (21) reduces
rather trivially to (15).

4. Special cases and consequences

For n = 0, the equation (15) coincides with that of Milgram (9) and Miller and Paris (10) in the special case
when n = 1 and yields the following known result [41, Entry (7.4.4.16)] with a and c interchanged:

3F2





a, b, c;

b+ 1, c+ 1;
1



 =
bc

c− b
Γ(1− a)

[

Γ(b)

Γ(1− a+ b)
−

Γ(c)

Γ(1− a+ c)

]

.

Another known result [41, Entry (7.4.4.17)] with a ↔ c is the special case of (15) when n = 1. The summation
formula (15) gives access to simple generalizations of [41, Entries (7.4.4.16) and (7.4.4.17)] with arbitrary equal
integral enhancements of the denominator parameters.

As n ≧ 1, the formula (15) cannot directly match the equations (12) and (13) for symmetry reasons: In this
case, the parameter differences in 3F2(1) become asymmetric therein. We next show that these formulas, and
hence (9) and (10), follow from the result (21) both for m = 0 and n = 0.

Let us first put m = 0 in (21) to (23). In this case, we have to deal with the Clausenian hypergeometric
function

3F2





a, b, c;

b+ 1, c+ 1 + n;
1





on the left-hand side. In order to compare it with (9) and (10) or with (12) and (13), the parameters b and c
have to be interchanged.

At m = 0, the 3F2 function in T
(1)
m,n given by (22) reduces to 1, and its factor, together with the one of (21),

trivially combine to the first term on the right-hand side in (12) or (13) with b ↔ c. The remaining non-trivial

3F2 function from T
(2)
m,n given by (23) simplifies to the following form:

3F2





−n, 1− a+ b, 1;

1 + b− c− n, 2− a;
1



 . (24)

It does not match directly any of the 3F2 functions from (12) or (13) because of a subtraction −n in one of the
denominator parameters. To get rid of this term, we use the relation [41, Entry (7.4.4.85)]. When read in the
reverse direction, it can be written as follows:

3F2





−n, a, b;

c− n, d;
1



 =
(1 + a− c)n
(1− c)n

3F2





−n, a, d− b;

1 + a− c, d;
1



 . (25)
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The evident choice a 7→ 1− a+ b and b 7→ 1 transforms the 3F2 function from (24) via

3F2





−n, 1− a+ b, 1;

1 + b− c− n, 2− a;
1



 =
(1− a+ c)n
(c− b)n

3F2





−n, 1− a, 1− a+ b;

2− a, 1− a+ c;
1



 . (26)

With b ↔ c, the last hypergeometric function in (26) matches that in the second term of (13). Collecting its
factors from (26), (23), and (21), it is a matter of simple algebra to bring them to the form required by (13).

If we now take n = 0 in the Eqs. (21)–(23), the connection with (12) is established with the same set of
parameters a, b, and c. This time we have to care only about a simple exchange of m and n.

Again, at n = 0, the 3F2 function from T
(1)
m,n given by (22) transforms to a “correct” one from (13) on applying

(25) with a 7→ 1, b 7→ b, c 7→ a, and d 7→ 1+ b− c, while the one from T
(2)
m,n given by (23) reduces to 1. Matching

the factor at the transformed function is again simple. Reducing T
(2)
m,0 to the first term in (13) requires the use of

the following transformation formula (see, e.g., [6, p. 22, Eq. (19)]):

(λ)−m =
(−1)m

(1− λ)m
, n ∈ N, λ /∈ Z

for Pochhammer symbols in (5) with λ 7→ c− b.

Remark 2. We note in passing that the relation [41, Entry (7.4.4.86)] rewritten similarly as (25),

3F2





−n, a, b− n;

c− n, d− n;
1



 =
(1 + a− c)n(1− b)n
(1− c)n(1− d)n

3F2





−n, d− b, 1− c;

1 + a− c, 1− b;
1



 , (27)

may be also useful in practical calculations.
For instance, the function Gm,k(t) appearing in [23, Eq. (6)] can be reduced with the help of (27) via

3F2





−m+ k, t+ k, c− a− b−m;

c− a−m+ k, c− b−m+ k;
1



 −→ 3F2





−m+ k, 1 + a− c, c− b− t−m;

1− b−m, 1− t−m;
1





to a form where the summation index k appears only once in a numerator parameter.

5. Results in the final form

In the preceding sections, we learned that the standard identities (14) and (25) are useful in dealing with the
involved functions. With this in mind, we use first (25) to transform the 3F2 functions appearing in (22) and
(23). For the first of them, with the choice a 7→ b and b 7→ 1 + n, we obtain

3F2





−m, b, 1 + n;

1 + b− c, a−m;
1



 =
(1− a+ b)m
(1 − a)m

3F2





−m, b, b− c− n;

1 + b− a, 1 + b− c;
1



 . (28)

Similarly, for the second one, we have

3F2





−n, 1− a+ b+m, 1 +m;

2− a+m, 1 + b− c+m− n;
1



 =
(1− a+ c)n
(c− b−m)n

3F2





−n, 1− a, 1− a+ b+m;

1 + c− a, 2− a+m;
1



 . (29)
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The 3F2 function in (28) looks very good: It is a natural generalization of that in (12). In our hope to obtain a
more symmetric expression for the function appearing in (29), we transform it via (14):

3F2





−n, 1− a, 1− a+ b+m;

1 + c− a, 2− a+m;
1



 =
(1 + c− b)n
(2− a+m)n

3F2





−n, c, c− b−m;

1 + c− a, 1 + c− b;
1



 . (30)

Now the 3F2 functions in (29) and (30) are symmetric with respect to the interchange b ↔ c and m ↔ n, which
is quite satisfactory. Using the last three equations in (21)–(23) we obtain the final result:

3F2





a, b, c;

b+ 1 +m, c+ 1+ n;
1





1

(b)m+1(c)n+1

=
B(1− a, b)

(c− b)n+1 m!
3F2





−m, b, b− c− n;

1 + b− a, 1 + b − c;
1



+
B(1− a, c)

(b− c)m+1 n!
3F2





−n, c, c− b−m;

1 + c− a, 1 + c− b;
1



 . (31)

Upon setting m = n in (31), we are led to the following

Corollary 2. The summation formula (32) follows from (31) for m 7→ n:

3F2





a, b, c;

b+ 1 + n, c+ 1 + n;
1





n!

(b)n+1(c)n+1

=
B(1 − a, b)

(c− b)n+1
3F2





−n, b, b − c− n;

1 + b− a, 1 + b− c;
1



+
B(1− a, c)

(b− c)n+1
3F2





−n, c, c− b− n;

1 + c− a, 1 + c− b;
1



 . (32)

The Clausenian series on the left-hand side of (31) and (32) converge when

ℜ(2− a+m+ n) > 0 and ℜ(2− a+ 2n) > 0,

respectively. This implies that both of the summation formulas make sense for generic m ∈ N0 and n ∈ N0,
provided that ℜ(a) < 2. Under these conditions, all functions at both sides are well defined, and, by the principle
of analytic continuation, the restriction n < ℜ(c − b) imposed in intermediate calculations (see (17)) can be
removed.

Remark 3. Additional restrictions (for example, a 6= 1) imposed by (8) on the Beta functions in the right-
hand sides of (31) and (32) do not shrink the applicability region of both equations. Singularities, which arise
when the arguments of these Beta functions approach negative integers mutually cancel in the whole two-term
combinations. Each of such dangerous cases has to be treated separately, in a manner similar to that of [16, 11]:
In these references, the special case when m = 0 and b → c has been considered for arbitrary non-negative integer
n. It is not complicated to see that, when a = 1, the 3F2 functions on the right-hand sides of (31) and (32) reduce
to the Gauss functions 2F1, which can be summed via the Gauss summation theorem (6), and the whole resulting
combinations at singular B(1 − a) vanish as they should. Proceeding similarly as in [16, 11] would lead us to a
finite limit as a → 1 for the relations (31) and (32).

Let us proceed with a proposition, which gives a simple demonstration of Karlsson’s result (7), followed by
several remarks.
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Proposition 1. The double-sum representation of (7) can be expressed as a three-term summation formula (31)
for the Clausenian hypergeometric function 3F2.

Proof. In both of Karlsson’s formulas (3) and (7), the summations over i in the first terms and over j in the
second terms are the same up to notations and they are given by

m
∑

k=0

(−m)k
(a+ k) k!

=
1

a

m
∑

k=0

(−m)k(a)k
(a+ 1)k k!

=
1

a
2F1





−m, a;

a+ 1;
1



 =
Γ(a)m!

Γ(a+ 1 +m)
, (33)

where we have used the following simple property of the Pochhammer symbol in (4):

(a)n+1 = a(a+ 1)n = (a)n(a+ n)

as well as the Gauss summation theorem (6). We take here a = b− c− j and use the familiar reflection formula
(see, for example, [3, Ch. 2.17] and [6, Ch. 1])

Γ(a− j)Γ(1 − a+ j) =
π

sinπ(a− j)
=

π (−1)j

sinπa
= (−1)j Γ(a)Γ(1 − a) (a /∈ Z). (34)

It gives an analytic continuation for the Euler Gamma function and implies that

Γ(a− j) =
(−1)j Γ(a)

(1 − a)j
(a /∈ Z).

Hence we obtain
m
∑

k=0

(−m)k
(b− c− j + k) k!

=
m!

(b − c)m+1

(c− b−m)j
(1 + c− b)j

(35)

for the inner sums in the first terms of (3) and (7). Moreover, just as we mentioned above, in the second terms
of (3) and (7), we have the same thing up to such replacements as b ↔ c and i ↔ j. Inserting (35) into (7), and
after some algebra, we obtain its compact and elegant representation (31) in terms of the 3F2 functions, which
result from summations over the remaining indices.

Remark 4. Proceeding in the same fashion in the case of a z-dependent 3F2 function (3) and using the following
linear transformation of the Gauss hypergeometric function (see, e.g., [6, p. 33, Eq. (19)]):

2F1(a, b; c; z) = (1− z)−a
2F1

(

a, c− b; c;
z

z − 1

)

(

c 6= 0,−1,−2, · · · ; | arg(1− z)| < π
)

, (36)

we could simplify the second summation there and this procedure could also lead to some interesting and useful
results.

Remark 5. Since the parameters of 2F1 functions in (3) are of the form a, b, b+1, they are just hypergeometric
representations, via [41, Entry (7.3.1.28)], of the incomplete Beta function Bz(a, b) given by (see, e.g., [6, Ch. 1])

Bz(a, b) =

∫ z

0

ta−1(1− t)b−1 dt.

Indeed we have

Bz(a, b) = a−1za 2F1(a, 1− b, a+ 1; z) = a−1za(1− z)b−1
2F1

(

1− b, 1, a+ 1;
z

z − 1

)

,
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where the first equality is given by [42, p. 263, Entry (6.6.8)] and the second one is a result of the linear
transformation (36).

Remark 6. Our summation formula (31) gives an equivalent alternative representation of (7) by Karlsson [31].
Both (31) and its special case (32) are direct generalizations of several results by other authors quoted in Section
2. Their equations (9), (10), (12) and (13) are immediate consequences of (31).

In concluding this section, we note that, in a private communication, Christian Krattenthaler suggested an
alternative derivation of the summation formula (31), which employs the equation (3.3.3) in its limit case when
q → 1 along with the equation (3.1.1) of the book [43].

6. Concluding remarks

In our present investigation, we have proposed the summation formulas (31) and (32) for the Clausenian
hypergeometric function 3F2 with unit argument and arbitrary negative integral parameter differences in two
pairs of the upper and lower parameters. Our formulas are alternative representations of two special cases of more
general reduction formulas derived in 1974 by Karlsson [31] in a form of multiple finite sums. The manifestly
symmetric three-term relations for 3F2 functions with unit argument recorded in (31) and (32) are evidently more
advantageous than some double-sum representations quoted in (7). They can be easily transformed, by using
standard relations for 3F2 functions, according to the specific needs of certain calculations.

As discussed already in Section 1, the present summation formulas are of interest from the point of view of
practical applications in field theories in d-dimensional spaces Rd = RD ⊕ Rm, where a global rotational O(d)
symmetry no more exists (see, for details, [32, 33, 34, 35, 36, 44]) or in relativistic field theories with broken
Lorentz invariance of the space-time, the so-called Lorentz violating theories. A short review of both statistical
and high-energy physics realizations of such theories can be found in the introduction of [36].

Some implications from the purely mathematical side are mentioned in our Remarks 1 to 6.
Of course, it would be of great interest to derive representations of similar kind for the z-dependent functions

3F2 starting from (3) or by some other means. A specimen of such relations is given in [41, Entry (7.4.1.5)], it is
obtained by trivially applying the result (3) for the case when m = n = 0:

3F2





a, b, c;

b+ 1, c+ 1;
z



 =
1

c− b



c 2F1





a, b;

b + 1;
z



− b 2F1





a, c;

c+ 1;
z







 .

Also, it should be interesting to write down relations analogous to (31) involving both positive and negative
integers m and n and to derive counterparts of equations (31) and (32) for bilateral hypergeometric series [45].

Finally, as suggested by the anonymous referee, similar problems might be considered for certain special cases
of Kampé de Fériet functions, which would be related to earlier works of Srivastava [46] and Karlsson [47].
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