
ar
X

iv
:1

30
7.

80
21

v3
  [

nl
in

.C
D

] 
 1

4 
O

ct
 2

01
3

Detecting chaos in a complex system
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Abstract

The sequences, given by a 7D map have been analysed by means of the methods, widely used to detect chaos
in the real world in order to test their sensitivity to chaotic features of a non-linear system determined by
comparatively high number of parameters. The same diagnostic approaches have been applied to the 3D
Lorenz map for comparison. The results show that for some of the sequences yielded from the 7D map, the
adopted methods were not able to give as straightforward answer to the question if the system is chaotic as in
the 3D case. Since the sequences, subject of the analysis, were not contaminated by noise and were sufficiently
long, it could be assumed that such difficulties have arisen likely due to specific internal features of the more
complex system. It was found also that an increase from 0.01 to 0.5 of the sampling step determining the
sequences obtained from the 7D map, masks the chaos in some of them.

1. Introduction

Very often, the decision about chaotic origin of
a time series turns out to be a fundamental is-
sue for the study of the processes in the real
world (Lorenz, 1991; Marzocchi et al., 1997; Lai et al.,
2002; Voss et al., 2009). Such a judgement is usu-
ally made basing on the assessment of the attrac-
tor invariants – Housdorff dimension and Lyapunov
exponents (Marzocchi et al., 1997; Lai et al., 2002;
Grassberger et al., 1991; Kodba et al., 2005). Their
correct estimation provides important information
about the complexity of the system and its dynam-
ics that helps us to create an adequate model of the
phenomenon under study.
The reliability of the methods, developed for de-

tecting chaos in the real systems is usually tested on
time series yielded from well studied maps. A sim-
ilar test has been performed here by applying the
adopted methods to the sequences obtained from a 7-
dimensional (7D) map, defined by 7 parameters, all
connected through nonlinear relationships. Such a
map was assumed to imitate a comparatively more
complex system and, in order to highlight eventual
its specific features, the same test has been done with
the sequences given by a 3D map. Except for the in-
variants, the minimal dimension of the space, embed-
ding the reconstructed attractor has been also evalu-
ated, since this parameter gives the number of vari-
ables composing the system that is also an important
characteristic.
To study the sensitivity of the methods that com-

pute the invariants, the researchers usually take
one component of a map assuming that the others
should represent the same behaviour (Lorenz, 1991;
Grassberger and Procaccia, 1984; Zeng et al., 1991).
In the present study, these methods have been ap-
plied to each of the sequences, yielded from both 3D
and 7D maps. Such a performance was adopted in
order to check if each of the sequences generated by
the 7D map is able to depicter adequately the system
attractor. It was assumed also that the sampling step
determining the sequences under study is able to in-
fluence the topological properties of the reconstructed
attractor and hence, the assessment of the parameters
chosen to characterise the system. To analyse such an
assumption the evaluations of the corresponding pa-
rameters were made by varying the sampling steps of
the sequences under study.

2. Methods of nonlinear time series analysis

used in the present study

A starting point for the analysis of a nonlinear sys-
tem presented by a time series is the reconstruction
of the embedding phase space and the attractor. Fur-
thermore, an assessment of the Hausdorff dimension
D0 approximated by estimators allowing easy compu-
tation and Lyapunov exponents λl (l = 1, 2, ..,m) is
usually performed. Next subsections briefly present
some widely used algorithms for estimation of these
parameters, which have been applied in the present
analysis.
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2.1. Reconstruction of the system attractor

The reconstruction of the attractor using only one
scalar projection (Packard et al., 1980; Takens, 1981)
gave a powerful instrument to study the natural phe-
nomena. For a sequence (xi)i=1, 2, ..,N determined by
measuring of the variable x at uniquely sampled times
(ti)i=1, 2, ..,N the Takens’s theorem (Takens, 1981) af-
firms that the m−component vectors constructed as

Xi = (xi, xi+τ , xi+2τ , ..., xi+(m−1)τ ) , (1)

where τ is the so-called time delay, expressed in sam-
pling steps ∆t = ti+1 − ti, determine a manifold
that realistically represents the attractor of the sys-
tem, which generates the time series (xi). It should be
pointed out that there is no a unique optimal choice of
the time delay τ (Grassberger et al., 1991; Zeng et al.,
1992a). In the present study the parameter τ is taken
to be the time for which the autocorrelation function
drops to e−1 or to about 0.37.

2.2. Minimum dimension of the reconstructed embed-

ding space

According to Kennel et al. (1992) an acceptable
minimum embedding dimension mK of the attractor
can be assessed by looking at the behaviour of the
nearest neighbor X(b) of each vector Xi when the em-
bedding dimension m increases. Assuming Euclidean
metric in the phase space the authors found that each
X(b) can be considered as a false nearest neighbor if
either of the following two conditions:

|xi+mτ − x
(b)
i+mτ |

‖Xi −X(b)‖(E)
(m)

> Rtol (2)

and
‖Xi −X(b)‖(E)

(m+1)

RA

> Atol , (3)

is held. The expression ‖Xi − X(b)‖(E)
(m) =

√

∑m

k=1

(

xi+(k−1)τ − x
(b)
i+(k−1)τ

)2
denotes the

Euclidean distance between two vectors in
m−dimensional embedding spaces and according
to Kennel et al. (1992) Rtol can be considered higher
than 10 and Atol = 2. The parameter RA represents
the size of the attractor and was taken to be equal to
the standard deviation of (xi)i=1, 2, .., N . Kennel et al.
(1992) assumed that the minimum dimension of the
embedding space mK for which the false nearest
neighbors percentage (FNNP) drops to a value below
1%, allows unfolding of the attractor. Studding the
3D Lorenz system they found also that for a noise
free sequence the FNNP remains lower than 1%

for m > mK = 3, while a noise contaminated time
series shows a different behaviour. For low level of
the noise the approach gave mK = 4, whereas for
higher level FNNP falls to a value slightly exceeding
1% at m = mK and plateaus for higher embedding
dimension. In presence of strong noise the length of
such a plateau narrows to a few successive values of
m and after that FNNP increases. In case of sequence
presenting a stochastic process FNNP drops to a
comparatively high value (> 20%) and after that
rapidly increases.

2.3. Correlation dimension of the attractor

Correlation dimensionD2 of the attractor, which is a
widely used estimator of the Hausdorff dimension D0,
can be assessed by calculating the correlation integral
Cm(ρ):

Cm(ρ) = lim
N→∞

2

(N + 1−W )(N −W )
×

×
N
∑

j=W

N−j
∑

i=1

θ(ρ− ‖Xi −Xi+j‖(Ch)
(m) ) , (4)

where θ(ξ) is the Heaviside function
(

θ(ξ <

0) = 0 and θ(ξ ≥ 0) = 1
)

and ‖Xp −
Xq‖(Ch)

(m) = max
1≤k≤m

{

|xp+(k−1)τ −xq+(k−1)τ |
}

is the dis-

tance between two vectors in m-dimensional embed-
ding space determined here by the Chebishev met-
ric. The correlation integral Cm(ρ) was defined by
Grassberger and Procaccia (1983) as Eq (4) gives it
for W = 1 and later, Theiler (1986) proposed the in-
troduction of the cutoff parameterW to avoid a spuri-
ous estimate of the correlation dimension resulted from
high autocorrelation in the time series under study.
The main point of the Grassberger and Procaccia

(1983) analysis was the affirmation that for small ρ
the correlation integral scales as a power of ρ:

Cm(ρ) ∼ ρDm . (5)

Determining the parameter Dm by averaging the local
slopes:

Dm(ρ) =
∆
[

lg
(

Cm(ρ)
)]

∆
(

lg(ρ)
) (6)

over
{

ρ : Dm(ρ) = const
}

, the correlation dimen-
sion can be assessed as D2 = lim

m→∞
Dm (Lorenz, 1991;

Lai and Lerner, 1998). In case of chaotic system the
sequence Dm rapidly increases to its limit and the
minimal value of the embedding dimension mGP for
which Dm reaches a plateau, presents another estima-
tor of the minimum embedding dimension for the at-
tractor (Cao, 1997; Lai and Lerner, 1998). The anal-
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ysed time series can be considered as being resulted
from a chaotic system if the correlation dimension D2

is a small fractal number, whereas for a stochastic se-
quence lim

m→∞
Dm = ∞ .

Various studies discussed the minimum sampling
size of a time series needed for the correct estima-
tion of the correlation dimension D2 (Ruelle, 1990;
Nerenberg and Essex, 1990; Theiler, 1990). However,
Grassberger et al. (1991) argued against the existence
of an optimal time series length, affirming that such a
claim could take place for other generalized dimensions
but not for D2.

2.4. Lyapunov spectrum and Kaplan-Yorke dimension

of the attractor

Lyapunov exponents characterise the divergence
of the orbits in the attractor and they were de-
termined here following the approach proposed by
Eckmann and Ruelle (1985) and further developed
by others (Eckmann et al., 1986; Zeng et al., 1991,
1992a,b). The method traces out the growth of the dis-
tances between a vector Xi and each of the vectors Xj

for which εmin < ‖Xj −Xi‖(E)
(m) < ε, where εmin and ε

are small numbers. The evolution of these differences,
over τ steps ahead on the fiducial trajectory can be de-
termined by a matrix Ti : Xj+τ−Xi+τ = Ti(Xj−Xi),
which is computed for all consecutive vectors Xi (i =
1, 1+τ, 1+2τ, ...,K), whereK ≤

(

N−(m−1)τ−1
)

/τ .
Furthermore, the matrices Ti (i = 1, 2, ...,K) are
successively reorthogonalized by means of a standard
QiRi decomposition (Eckmann and Ruelle, 1985) and
the Lyapunov exponents are given by (Eckmann et al.,
1986; Zeng et al., 1991)

λl =
1

τK

K
∑

i=1

ln(Ri)ll . (7)

Taking natural logarithm, the above equation gives the
Lyapunov exponents λl in

(

bits/(sampling step)
)

·ln2.
Finally, the exponents λl are evaluated as averages of
the corresponding values found by varying the param-
eters εmin, ε and m. The method determines the ex-
ponents λl in order λ1 > ... > λl > ... > λm and
one of them should be identified as zero. According
to Zeng et al. (1992b) the ability of the method to es-
timate correctly the negative exponents is limited. A
chaotic system is characterised by at least one posi-
tive λl and as higher the positive Lyapunov exponents
are as faster is the orbit divergence in the attractor
that makes the correct prediction of the future states
less reliable even in the case of negligible errors in the
initial conditions.

Kaplan and Yorke (1978) introduced another esti-
mator DKY of the Hausdorff dimension D0 defined as:

DKY = k +

∑k

l=1 λl
|λk+1|

, (8)

where k = max
1≤l≤m

(l :
∑k

l=1 λl ≥ 0) and both es-

timators D2 and DKY are related to D0 according
to (Grassberger and Procaccia, 1983; Farmer et al.,
1983):

D2 ≤ D0 ≤ DKY . (9)

Eckmann and Ruelle (1992) claimed that the corre-
lation dimension D2 and Lyapunov exponents can be
correctly estimated if the sampling size N of the time
series satisfy the inequality:

Q lgN ≥ D2 , (10)

where Q = 2 if we deal with the correlation dimension
D2 and Q = 1 when the Lyapunov exponents should
be evaluated.

2.5. Surrogate data

Theiler et al. (1992) proposed a test for nonlinearity
in time series based on the construction of surrogate
data from the sequence under study. A widely used
approach to creating surrogates applies the Fourier
transform to the data and after the randomization of
the phases of the obtained spectral components, the
inverse Fourier transform returns the surrogate time
series, which has the same statistical properties as
the original one. Under the null hypothesis that the
analysed sequence is stochastic, the estimates of the
above parameters found for the surrogate data, con-
firm or reject this hypothesis if they coincide with or
differ from those obtained for the original time series
(Theiler et al., 1992).

3. Sequences used in the present analysis

The methods, shortly described in the previous sec-
tion are commonly used to judge whether a time series
represents one-dimensional projection of a chaotic sys-
tem or not. To test their sensitivity to detect chaos in
a complex system, they were applied to each of the
sequences obtained as solutions of a 7D map taken to
mimic a system characterised by a higher extent of
complexity. Simultaneously, a 3D map considered an
example of a less complex system was a subject of the
same studies for comparison. The well known Lorenz



4

Figure 1: Autocorrelation functions of the sequences under
study arbitrary assuming the sampling step ∆t as being ex-
pressed in seconds. The upper part exhibits the autocorrelation
in the three solutions of the Lorenz map, while the lower part
shows the autocorrelation in each of the seven sequences yielded
from the Chang-Shirer map in both r = 28 and r = 56 cases.

map (Lorenz, 1963) defined as:

Ẋ = σ(Y −X)

Ẏ = X(ρ− Z)− Y (11)

Ż = XY − βZ

where σ = 10, ρ = 28 and β = 8/3, has been chosen
to represent this case. The former system was pre-
sented by a map defined by Chang and Shirer (1984)
as (hereinafter referred to as the Chang-Shirer map or
system):

ψ̇m1 = aC5C7ψn1ψ(m−n)2/4C1

+PmaTm1/C1− PC1ψm1

ψ̇n1 = −aC5C6ψm1ψ(m−n)2/4C2

+PnaTn1/C2 − PC2ψn1

ψ̇(m−n)2 = −a3C4C
2
5ψm1ψn1/4C3

+PaC4T(m−n)2/C3 − PC3ψ(m−n)2

Ṫm1 = aC5[ψn1T(m−n)2 − ψ(m−n)2Tn1]/4 (12)

+maψm1To2 +maRψm1 − C1Tm1

Ṫn1 = aC5[ψm1T(m−n)2 + ψ(m−n)2Tm1]/4

+naψn1To2 + naRψn1 − C2Tn1

Ṫ(m−n)2 = −aC5[ψm1Tn1 + ψn1Tm1]/4

+aC4Rψ(m−n)2 − C3T(m−n)2

Ṫo2 = −a[mψm1Tm1 + nψn1Tn1]/2− 4To2 ,

Figure 2: Some projections of the Chang-Shirer attractors cor-
responding to r = 28 on the left and r = 56, on the right in case
of ∆t = 0.01.

where C1 = 1 +m2a2, C2 = 1 + n2a2, C3 = 4 + (m−
n)2a2, C4 = m−n, C5 = m+n, C6 = 3+C2

4a
2−m2a2

and C7 = 3 + C2
4a

2 − n2a2. Analysing this system,
Nese et al. (1984) found that for m = 2, n = 1, a =√
2/2, P = 10 and R = 6.75 r it provides chaotic solu-

tions.

The three sequences given by the Lorenz map and
two groups of sequences obtained from the Chang-
Shirer map (Nese et al., 1984) for (i) r = 28 and ini-
tial conditions (100, -150, -100, -1200, -2000, -5000,
-2500), and (ii) r = 56 with initial vector (-6, 20, -
15, 10, 5, 15, 16) were obtained with sampling steps
∆t = 0.01, 0.05, 0.1 and 0.5, respectively. All these
solutions have been found by using the “ode45” MAT-
LAB procedure for 20000 sampling steps, omitting the
first 10000 to avoid transitions. The sampling size of
N = 10000 was taken to satisfy inequality (10) (see
also Table 1) despite some objections to the claim
about the minimal sampling size (Grassberger et al.,
1991).

Figure 1 presents the autocorrelation functions for
these three groups of sequences adopted for the present
analysis. It is seen that the time series presented by
ψ11 in both r = 28 and r = 56 cases and, T11 for
r = 28 are characterised by comparatively high auto-
correlation.

Some 2D projections of the Chang-Shirer attractors
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Figure 3: The two columns on the left present the time series and 2D projections of the corresponding attractors reconstructed
from ψ12(r = 28) for different steps ∆t indicated in the central part of the figure. The right two columns exhibit the same for
ψ11(r = 56).

Table 1: The three Lyapunov exponents of the Lorenz map and
the largest five ones computed for the Chang-Shirer system for
r = 28 and r = 56, respectively together with the Kaplan-Yorke
(DKY ) and correlation (D2) dimensions of the attractors, all
evaluated by Nese et al. (1984) and considered reference values
in the present analysis. The Lyapunov exponents are given in
(

(bits/sec)·ln2
)

.

λ1 λ2 λ3 λ4 λ5 DKY D2

Lorenz map

0.93 0.0 −14.60 — — 2.063 2.05± 0.01

Chang-Shirer map, r = 28

0.84 0.07 0.00 −0.43 −18.60 4.03 2.9± 0.1

Chang-Shirer map, r = 56

2.51 1.12 0.00 −1.80 −16.30 4.11 3.8± 0.1

constructed for r = 28 and r = 56 respectively, are
shown in Fig. 2, while Fig. 3 exhibits the recon-
structed attractors from ψ12(r = 28) and ψ11(r = 56)
corresponding to different sampling steps ∆t. Each
of the sequences under study has been normalized by
(

max(xi) − min(xi)
)

1≤i≤N
that limits the differences

|xi−xj|1≤i,j≤N between 0 and 1, and facilitate the cal-
culation of the parameters used in the analysis. Fig-

ure 3 shows that the time series patterns found for
∆t = 0.05 and 0.1 do not differ significantly from
those at ∆t = 0.01 in both cases shown on the left
and right, while for ∆t = 0.5 the corresponding se-
quences look completely different. However, the corre-
sponding 2D phase portraits indicate that the recon-
structed attractors are more sensitive to the variations
in the sampling time ∆t. It is clearly seen that only for
∆t = 0.01 the projections of the reconstructed attrac-
tors are depicted by smooth curves like those presented
in Fig. 2. For lower resolution (higher ∆t) the attrac-
tors turn out to be represented by broken-line orbits
and for ∆t = 0.5 the fiducial trajectory is composed in
practice by long segments. A similar loss of the typ-
ical features of the attractor, resulted from enlarging
of the sampling time, was reported by Kim and Yoon
(2001) who analysed the Lorenz map. Thus, it can
be concluded that an attractor projection depicted by
broken-line orbits acts as an indicator for large sam-
pling step in the sequence under study. However, it
should be pointed out that the noise is able to pro-
duce a similar effect (Kawata et al., 1997).

Table 1 gives the Lyapunov spectra, Kaplan-Yorke
(DKY ) and correlation (D2) dimensions estimated by
Nese et al. (1984) for the attractors corresponding to
Lorenz and two cases of the Chang-Shirer systems,
which values have been used here as reference ones.
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Table 2: Minimum embedding dimension mK found for each of
the attractors reconstructed using the sequences under study,
determined as mK = min (m : FNNP < 1%). The values found
in case when FNNP follows the noise contaminated pattern (see
Fig. 4 and the text), determined as mK = min (m : FNNP <

n%) are signed by an asterisk together with the lowest value n%
of FNNP, if it exceeds 1%, given in parenthesis. The cases for
which FNNP behaves similarly to a stochastic sequence shown
in Fig. 4 are signed by “–”. The values of mGP are also given,
separated from mK by semicolons; “∞” indicates that the cor-
responding value can not be determined varying m from 1 to
20.

∆t = 0.01 0.05 0.1 0.5

Lorenz map

X 3; 3 3; 3 3; 3 3; 3
Y 3; 3 3; 3 3; 3 3; 3
Z 3; 3 3; 3 3; 3 4; 3

Chang–Shirer map, r=28

ψ21 4; 7 5; 7 4∗(2%); 7 –;∞
ψ11 4;∞ 5; 7 5; 4 –;∞
ψ12 4; 4 4; 5 4; 5 4; 7
T21 4; 7 4; 7 4; 7 4;∞
T11 6,∞ 11∗(2%);∞ 4; 6 4; 6
T12 4; 4 4∗; 4 4∗; 5 –; 6
To2 4; 4 4; 5 4; 5 4;∞

Chang–Shirer map, r=56

ψ21 5; 7 5∗(3%); 7 5∗(3%); 7 –;∞
ψ11 6;∞ 4;∞ –;∞ –;∞
ψ12 7; 5 4; 7 4; 6 4;∞
T21 4; 6 4; 6 4; 6 4;∞
T11 5; 7 4; 7 4; 7 4;∞
T12 4; 6 4; 7 4; 7 4;∞
To2 10; 7 4∗(5%); 6 4∗(5%); 6 4;∞

4. Results and discussion

Table 2 exhibits the minimum embedding dimen-
sions mK and mGP of the attractors, reconstructed
from the sequences under study. As can be seen, for
the Lorenz attractor the FNNP approach gave an esti-
mation of mK equal to the real embedding dimension
mL = 3, with one exception slightly exceeding this
value. Conversely, the estimates found for the two
groups of the time series obtained from Chang-Shirer
system in case of r = 28 and r = 56 respectively,
showed values varying between 4 and 11. Figure 4
represents the behaviour of FNNP as a function of
the embedding dimension for ψ21(r = 56) obtained
for different time resolutions. The curve correspond-
ing to the sequence with sampling time of 0.01 drops
to 0.73% at m = 5 and remains below this value until
embedding dimension increases up to 20. A similar
behaviour showed FNNP in all cases of the time series
X , Y and Z obtained from the Lorenz system. The

Figure 4: The false nearest neighbors percentage (FNNP) found
as a function of embedding dimension for ψ21(r = 56) in case
of three different sampling times ∆t equal to 0.01, 0.05 and
0.5, respectively. The FNNP determined for a sequens of ran-
dom values with Gaussian distribution, considered to represent
a stochastic process is also given for comparison. In all cases
the parameter Rtol was assumed to be equal to 30.

FNNP curve found for ψ21(r = 56,∆t = 0.05) fol-
lows a comportment similar to that presented by noise
contaminated time series, while the curve characteris-
ing ψ21(r = 56,∆t = 0.5) shows a behaviour typical
for the attractor reconstructed from a stochastic time
series. Table 2 shows that both mK and mGP esti-
mators give in practice equal values for the attractors
of the Lorenz system, except for Z(∆t = 0.5) where a
slight difference between them is seen. However, the
application of the same approaches to the sequences
yielded from the Chang-Shirer system do not give such
an accordance between mK and mGP estimates. It is
seen that mK tends to be underestimated and only
in case of ψ12(r = 56,∆t = 0.01), mK represents the
actual embedding dimension mCS = 7. In contrast,
mGP = mCS for 32% of all the sequences obtained
from the Chang-Shirer map for the adopted values of
∆t but for 30% of them the corresponding approach
does not give an estimate, while such a percentage is
11 % for the FNNP method.

Figure 5 shows as an example the scaling behaviour
of the correlation integral C(ρ) as a function of ρ in
decimal logarithm scale and the corresponding varia-
tions in the local slop Dm(ρ) for ψ12(∆t = 0.01) ob-
tained assuming r = 28 and r = 56, respectively. The
lower part of Fig. 5 illustrates the behaviour of pa-
rameter Dm defined from the curves Dm(ρ)

(

see Eq.

(6)
)

. It can be seen that both cases presented in Fig. 5
exhibit different scaling patterns of the correlation in-
tegral. Panels (c) and (d) indicate that the linear part
is easy recognizable for r = 28, while for r = 56 it be-
comes shorter and less marked. Figure 6 illustrates the
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Figure 5: Behaviour of the correlation integral Cm(ρ) as a func-
tion of ρ presented in decimal logarithm scale (a, b) and the cor-
responding local slope Dm(ρ) (c, d) evaluated for the sequence
ψ12(r = 28, ∆t = 0.01) (left) and ψ12(r = 56, ∆t = 0.01)
(right). In both cases the embedding dimension m gradually in-
creased from 1 to 20. Panels (e, f) present the behaviour of the
parameter Dm as a function of m and the corresponding values
of mGP and D2 are also indicated.

comportment of the correlation integral evaluated for
ψ11(r = 28, ∆t = 0.05), one of the sequences charac-
terised by high autocorrelation (see Fig. 1). Assuming
W = 1, Eqs. (4) and (6) give the curves shown on the
left-hand side of Fig. 6, while the curves corresponding
to W = τ = 32 can be seen on the right. The figure
indicates that a linear segment of lg

(

C(ρ)
)

can not
be identified for W = 1, while taking W = 32 a very
short plateau in the local slope could be recognized for
−1.3 < lg(ρ) < −0.8. However, despite the use of the
cutoff parameter W the behaviour of the correlation
integral slightly changes that makes the estimation of
the correlation dimension to be on the edge of the re-
liability. In contrast, the three series yielded by the
Lorenz system for the adopted values of ∆t show a
comparatively long linear segment in the correspond-
ing curves similarly to the case given in Figs. 5 (a)
and (c).

The behaviour of the correlation integral presented
in the upper part of Fig. 5 reveals an interesting fea-
ture. The increasing slope at low ρ significantly more
pronounced for r = 28 lead to assume the presence of
noise in the corresponding attractors (Theiler, 1990;
Eckmann and Ruelle, 1985) even though such a com-
ponent was not added solving Eqs. (12). A similar

Table 3: Estimators of the Hausdorff dimension D0 of the at-
tractors under study presented by the corresponding correlation
dimension D2 with its standard deviation ∆D2 and the Kaplan-
Yorke dimension DKY both shown as “D2 ±∆D2; DKY ”. The
symbol “∞” indicates that a finite value of D2 has not been
found for embedding dimension increasing up to 20.

∆t = 0.01 0.05 0.1 0.5

Lorenz map

X 2.07±0.09; 2.3 2.06±0.04; 2.4 2.05±0.08; 2.5 2.05±0.08; 2.9
Y 2.08±0.09; 2.3 2.04±0.09; 2.3 2.05±0.05; 2.2 2.05±0.08; 2.9
Z 2.10±0.08; 2.1 2.08±0.06; 2.2 2.17±0.07; 2.4 2.10±0.08; 2.6

Chang–Shirer map, r=28

ψ21 2.7±0.2; 4.8 3.1±0.2; 4.6 3.2±0.1; 4.6 ∞; 5.1
ψ11 ∞; 4.8 3.3±0.6; 4.3 2.3±0.4; 5.3 ∞; 4.6
ψ12 2.6±0.2; 4.6 3.2±0.2; 4.3 3.3±0.2; 4.6 3.7±0.2; 4.6
T21 2.6±0.1; 4.6 3.2±0.2; 4.6 3.2±0.2; 4.9 ∞; 4.6
T11 ∞; 4.4 ∞; 4.3 3.5±0.5; 4.4 3.7±0.6; 4.6
T12 2.6±0.1; 4.6 3.0±0.3; 4.5 3.3±0.2; 4.5 3.7±0.2; 4.7
To2 2.8±0.1; 4.4 3.3±0.1; 4.8 3.3±0.1; 4.4 ∞; 4.4

Chang–Shirer map, r=56

ψ21 3.9±0.2; 4.4 3.7±0.2; 4.7 3.9±0.1;1,4.8 ∞; 4.1
ψ11 ∞; 5.1 ∞; 4.5 ∞; 3.0 ∞; 3.6
ψ12 3.8±0.3; 4.5 3.9±0.2; 4.5 3.9±0.1; 4.4 ∞; 3.4
T21 3.9±0.1; 4.6 3.8±0.3; 4.6 3.9±0.1; 4.6 ∞; 3.5
T11 3.7±0.1; 4.5 3.8±0.1; 4.6 4.0±0.1; 4.6 ∞; 3.7
T12 3.8±0.4; 4.7 3.8±0.1; 4.3 3.9±0.1; 4.3 ∞; 3.6
To2 3.9±0.2; 4.5 4.1±0.2; 4.5 4.0±0.1; 4.6 ∞; 3.5

conclusion can be made analysing the behaviour of
FNNP as a function of the embedding dimension m for
some of the sequences yielded from the Chang-Shirer
map as Fig. 4 and Table 2 show. It should be pointed
out that an analogous occurrence was not observed
studding the 3D Lorenz system.

Table 3 exhibits the correlation dimension D2 of the
attractors reconstructed from the time series under
study. It can be seen that the values of D2 found
for the sequences of the Lorenz system for all adopted
sampling steps are very close to the reference ones
given in Table 1 . A similar behaviour shows the cor-
relation dimensions D2 of the Chang-Shirer attractors
reconstructed for r = 56 and ∆t = 0.01, 0.05 and 0.1.
For r = 28 Table 3 exhibits a slight increase of D2

when ∆t increases. Surprisingly, Table 3 indicates
also that some of the series provided by the Chang-
Shirer system determine an attractor for which a fi-
nite correlation dimension cannot be found. In case
of r = 56 the parameter D2 is infinite for ψ11 found
at all adopted ∆t, while for ∆t = 0.5 such an oc-
currence characterises all the sequences. In case of
r = 28 the attractors with undefined correlation di-
mension are those constructed from ψ11 for ∆t = 0.01
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Figure 6: Scaling behaviour of the correlation integral Cm(ρ) as
a function of ρ in decimal logarithm scale (upper panels) and
the corresponding local slope Dm(ρ) (lower panels) assessed for
the time-series ψ11(r = 28, ∆t = 0.05) for two different values
of parameter W (see Eq. 4).

and 0.5, and T11 for ∆t = 0.01 and 0.05. For ∆t = 0.5
such features show also ψ21, T21 and T02. It should
be pointed out that the assessment of the correla-
tion dimension D2 for ψ11(r = 28, ∆t = 0.1) and
T11(r = 28, ∆t = 0.1, and 0.5) was very difficult to
make, like in the case of ψ11(r = 28, ∆t = 0.05) shown
in Fig. 6.

Table 4: Lyapunov exponents of the Lorenz system obtained
from the analysis of the corresponding sequences, arbitrary as-
suming ∆t in seconds.

λ1 λ2 λ3

∆t = 0.01 s

X 0.98±0.07 0.0 -3.30±0.60
Y 1.09±0.04 0.0 -3.20±0.10
Z 0.94±0.09 0.0 -6.10±0.20

∆t = 0.5 s

X 1.00±0.10 0.0 -1.10±0.70
Y 1.12±0.02 0.0 -1.26±0.09
Z 0.89±0.09 0.0 -1.50±0.60

Tables 4 and 5 represent the Lyapunov spectra of
the sequences obtained from the Lorenz and Chang-
Shirer sistems, respectively. As can be seen the posi-
tive Lyapunov exponents evaluated for the attractors
of the Lorenz system in case of ∆t = 0.01 and 0.5 are
in good agreement with the reference values given in
Table 1. Similar results, not shown in Table 4, were
found for 0.05 and 0.1 sampling steps, as well. Table
5 exhibits the five largest Lyapunov exponents found

for all the seven sequences yielded from the Chang-
Shirer system at ∆t = 0.01 and 0.5 for both r = 28
and r = 56 values. In case of r = 28 and ∆t = 0.01
the positive exponents turn out to be overestimated
except for the sequences ψ11 and T11. The same fea-
tures present the time series found for 0.05 and 0.1
sampling times (not shown in Table 5). In contrary,
for ∆t = 0.5 the exponent λ1 turned out to be underes-
timated. Except for ψ11, the positive values of λl have
been correctly estimated for all the sequences obtained
for r = 56 at sampling times ∆t = 0.01, 0.05 and 0.1
(the last two cases are not shown in Table 5), while for
∆t = 0.5 the assessments of the Lyapunov exponents
give completely different results characterised by one,
appreciably underestimated positive exponent.

Table 5: The first five Lyapunov exponents evaluated from the
Chang-Shirer sequences for both adopted values of parameter r
and sampling steps of 0.01 and 0.5, arbitrary assuming ∆t in
seconds.

λ1 λ2 λ3 λ4 λ5

r=28

∆t = 0.01 s

ψ21 1.27±0.06 0.43±0.06 0.0 -0.60±0.20 -1.40±0.40

ψ11 0.51±0.03 0.15±0.02 0.0 -0.15±0.01 -0.62±0.05

ψ12 1.40±0.10 0.60±0.10 0.0 -0.65±0.02 -2.40±0.10

T21 1.30±0.09 0.55±0.03 0.0 -0.70±0.10 -2.00±0.20

T11 0.36±0.07 0.22±0.06 0.0 -0.31±0.02 -0.71±0.03

T12 1.40±0.10 0.70±0.10 0.0 -0.75±0.09 -2.10±0.10

To2 1.22±0.06 0.60±0.10 0.0 -0.80±0.10 -2.81±0.03

∆t = 0.5 s

ψ21 0.19±0.06 0.06±0.02 0.0 -0.07±0.01 -0.14±0.02

ψ11 0.18±0.03 0.07±0.02 0.0 -0.12±0.02 -0.23±0.01

ψ12 0.26±0.05 0.11±0.02 0.0 -0.16±0.02 -0.35±0.01

T21 0.13±0.03 0.03±0.01 0.0 -0.07±0.01 -0.15±0.01

T11 0.18±0.03 0.07±0.01 0.0 -0.11±0.02 -0.21±0.02

T12 0.26±0.09 0.12±0.06 0.0 -0.13±0.02 -0.33±0.03

To2 0.16±0.04 0.05±0.02 0.0 -0.13±0.02 -0.22±0.01

r=56

∆t = 0.01 s

ψ21 2.60±0.20 1.70±0.10 0.0 -2.30±0.50 -4.50±0.30

ψ11 0.59±0.07 0.33±0.04 0.0 -0.24±0.04 -0.55±0.08

ψ12 2.60±0.20 1.51±0.04 0.0 -2.10±0.10 -4.30±0.10

T21 2.70±0.30 1.40±0.30 0.0 -1.26±0.09 -4.50±0.50

T11 2.60±0.20 1.50±0.10 0.0 -2.00±0.50 -4.00±0.30

T12 2.20±0.40 1.10±0.30 0.0 -1.20±0.20 -2.90±0.20

To2 2.70±0.30 1.20±0.10 0.0 -1.60±0.10 -4.50±0.30

∆t = 0.5 s

ψ21 0.60±0.20 0.0 -0.17±0.01 -0.38±0.05 -1.00±0.40

ψ11 0.58±0.09 0.0 -0.21±0.04 -0.60±0.04 -1.43±0.01

ψ12 0.50±0.10 0.0 -0.24±0.01 -0.64±0.03 -1.39±0.07

T21 0.54±0.07 0.0 -0.24±0.02 -0.55±0.09 -1.42±0.03

T11 0.50±0.10 0.0 -0.15±0.02 -0.48±0.03 -1.38±0.06

T12 0.24±0.01 0.0 -0.09±0.01 -0.26±0.02 -0.67±0.05

To2 0.49±0.08 0.0 -0.22±0.03 -0.59±0.04 -1.37±0.03

In all cases the last component of the Lyapunov
spectra turned out to be significantly overestimated
due to the limited ability of the method to estimate
correctly the negative exponents (Zeng et al., 1992b).
Such an overestimation caused a corresponding over-
estimation of the Kaplan-Yorke dimension DKY (see
Table 1 and Table 3). For the Lorenz system, the pa-
rameter DKY was found to be higher by 2%–40% with
respect to the reference values given in Table 1, while
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Figure 7: As in Fig. 6 but for surrogates of ψ12(r = 56, ∆t =
0.01) (left) and ψ11(r = 28, ∆t = 0.05) (right).

such an amount for the Chang-Shirer system varied
from 9% to 20% for r = 28 and from 5% to 14% for
r = 56, respectively. On the other hand, the dimen-
sion DKY has been determined in practice for each
of the attractors and, when the correlation dimension
D2 exists, the relationship between them, expressed by
inequalities (9) is always held. In case of the Chang-
Shirer system, except for the sequences at r = 56 and
∆t = 0.5, and for ψ11(r = 56, ∆t = 0.1), all the esti-
mates of DKY are very similar to each other even in
the cases when the Lyapunov exponents were not cor-
rectly evaluated. Thus, it can be concluded that DKY

is slightly sensitive to the internal features of the sys-
tem that could impact the other estimators analysed
here, on the one hand, and to the variations in the
sampling step, on the other.

To have more clear idea about the characteristics of
the attractors reconstructed from the time series un-
der study, the corresponding surrogate sequences were
created as was described in Section 2.5. Figure 7 illus-
trates the behaviour of the correlation integral calcu-
lated for surrogates corresponding to ψ12(r = 56, ∆t =
0.01) and ψ11(r = 28, ∆t = 0.05). Comparing the
curves of Fig. 7 with those presented in Fig. 5 (up-
per right part) and Fig. 6 (right) respectively, that
concern the original sequences, it can be seen that the
surrogates exhibit quite different patterns. Hence, de-
spite of the hardly recognizable linear segment in the
curves Cm(ρ) corresponding to the original sequences
ψ12(r = 56, ∆t = 0.01) and ψ11(r = 28, ∆t = 0.05) it
can be conclude that we deal with time series provided
by a chaotic system.

The results presented in Tables 2, 3 and 5 identify
some of the sequences under study as particular cases.
To understand better the behaviour of these sequences,
except for the correlation dimension D2, the Lyapunov

spectrum λl and minimum embedding dimension mK

of the corresponding surrogate attractors have been
also evaluated. While the parameter D2 showed fea-
tures similar to those given in Fig. 7 (not shown here),
the results for λl and mK presented some particular-
ities. Figures 8 and 9 demonstrate the estimates of
these parameters for some cases of ψ11 and ψ21 to-
gether with the Y component of the Lorenz system.
For the latter, it is seen that the surrogate data present
different patterns of λl and mK respectively, for both
∆t = 0.01 and ∆t = 0.1 (see Figs. 8 and 9). Similarly,
the Lyapunov spectra for ψ21 sequences and the corre-
sponding surrogates are different. Despite of the same
embedding dimension, identified as 5 for both orig-
inal and surrogate sequences ψ21(∆t = 0.05 and 0.1)
as Fig. 9 shows, the surrogate FNNP behaves similarly
to a noise-free time series, while it follows the noise-
contaminated comportment for the original sequences
(see Fig. 4). Only the first positive component of the
Lyapunov spectra for ψ11(r = 28) and the correspond-
ing surrogates in both ∆t = 0.01 and ∆t = 0.05 cases
are different (Fig. 8), while the FNNP approach shows
no differences between ψ11(r = 28) sequences and their
surrogates (Fig. 9). The Lyapunov spectra of ψ11(r =
56, ∆t = 0.05 and 0.1) for both original and surrogate
sequences are almost equal to each other (Fig. 8). For
surrogate of ψ11(r = 56, ∆t = 0.05), FNNP behaves
similarly to the original sequence as Fig. 9 indicates,
while the surrogate of ψ11(r = 56, ∆t = 0.1) exhibits a
behaviour quite different from the corresponding origi-
nal sequence. In fact, while for the original data FNNP
shows a typical for stochastic time series comportment,
the corresponding surrogate data present a FNNP be-
haviour characterising a noise-free chaotic time series.

Thus, while for the 3D Lorenz map the conclu-
sion about chaotic character of the system was quite
straightforward, for the Chang-Shirer map some of the
sequences ran into difficulties. In fact, let we assume
that a blind test using the sequences yielded from the
second map should be performed. If we make a conclu-
sion about chaotic origin just on the basis of the esti-
mated correlation dimensionD2 we will take the wrong
decision attributing stochastic features to considerable
number of the sequences. In addition for instance, if
ψ11(r = 28, ∆t = 0.01) is the subject of the analysis,
the adopted methods give mK = 4, undefined mGP ,
D2 = ∞, DKY = 4.8, and two positive Lyapunov ex-
ponents λ1 = 0.51 ± 0.03 and λ2 = 0.15 ± 0.02. The
surrogate test shows differences just in the first Lya-
punov exponent and, as a result in DKY , which are
0.29± 0.03 and 5.1, respectively. Thus, if a researcher
had at his/her disposal these estimates, he/she would
likely conclude that the system, which generated this
series is stochastic. In case of ψ11(r = 56, ∆t = 0.05)
such a decision would seem more grounded. Since a



10

Figure 8: Lyapunov exponents for some of the time series deter-
mined by the Lorenz and Chang-Shirer systems together with
the values found for the corresponding surrogate data.

noise component was not added solving the analysed
maps and the sampling size of the sequences was cho-
sen to satisfy the conditions assumed to assure a cor-
rect estimation of the invariants, it could be concluded
that the difficulties in detecting chaos have arisen likely
due to specific internal features of the 7D system. It
should be pointed out that the last two examples show-
ing that the chaotic origin of the corresponding se-
quences is hardly recognizable concerned the system
components, characterised by high autocorrelation as
Fig. 1 shows.

The results reported by Zeng et al. (1992a) illus-
trate behaviour similar to that described in this sec-
tion. The authors examined the sequences yielded
from surface temperature and pressure measurements.
The analysis showed infinite or unreliably high corre-
lation dimension of the reconstructed attractors. On
the other hand, it was found that these attractors were
characterised by two positive Lyapunov exponenets
and despite that the Kaplan-Yorke dimension was not
evaluated, it is easy to conclude that DKY varies be-
tween 4 and 5. Although the question about chaotic
origin of the sequences was not raised by Zeng et al.

Figure 9: Variations in the false nearest neighbors percentage
(FNNP) for the same as in Fig. (8) sequences.

(1992a), the results of the present study allow the con-
clusion that the time series analysed by them had been
likely generated by chaotic processes.

5. Conclusions

The parameters, most commonly used to judge
whether a time series represents one-dimensional pro-
jection of a chaotic system have been estimated for
each of the sequences generated by both 3D Lorenz
and 7D Chang-Shirer maps considering the second as
a more complex system. The sequences were not con-
taminated by additional noise and their sampling sizes
were assumed to assure a correct estimation of the cor-
relation dimension and Lyapunov exponents. In addi-
tion, the impact of the sampling step on the assessed
parameters was investigated.
Performed analysis highlighted some important fea-

tures of the reconstructed attractors. First of all, the
adopted methods gave an unambiguous answer to the
question if each of the sequences provided by the 3D
Lorenz map has a chaotic origin. Moreover, the esti-
mated parameters showed very similar values for all
sampling times, assumed here. In contrary, not each
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of the sequences yielded from the 7D map represented
correctly the attractor properties as in the case of the
3D system. For some of the sequences of the 7D map
the false nearest neighbors approach together with the
correlation integral behaviour characterised the system
as stochastic especially in the case of larger sampling
steps. When these approaches gave an assessment, the
minimum embedding dimension turned out to be gen-
erally underestimated, while the correlation dimension
D2 was predominantly correctly evaluated. For the 7D
sequences characterised by high autocorrelation, a fi-
nite value of D2 was impossible to find in the most
of the cases and the corresponding positive Lyapunov
exponents λ+l turned out to be underestimated. A sim-
ilar estimates of D2 and λ+l were obtained for the time
series with large sampling step. Among all the evalu-
ated parameters just the Kaplan-Yorke estimatorDKY

of the Housdorff dimension of the attractor gave reli-
able values for the major part of the sequences yielded
from the 7D map. The surrogate data test applied
to some time series did not show differences between
certain parameters evaluated for the original and the
corresponding surrogate sequences, that usually char-
acterises a stochastic system.
The present study shows that the widely used meth-

ods for detecting chaos in systems of the real world
could run into difficulties with a sequence generated
by a high-dimensional process even in case when it is
yielded from a theoretical map without noise contami-
nation and presenting a sufficient sampling size. Thus,
it can be concluded that the decision about chaotic
origin of a time series provided by an experiment or
field observations should be taken with a special cau-
tion, taking into account the estimations of several pa-
rameters that characterise the corresponding attrac-
tor. Even if only one or two of these parameters give
a positive answer, the hypothesis about chaotic origin
of the time series should not be excluded.
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