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Abstract

This paper discusses exponential stability of solutions for highly nonlinear hybrid pantograph stochastic

differential equations(PSDEs). Two criteria are proposed to guarantee exponential stability of the so-

lution. The first criterion is a Khasminskii-type condition involving general Lyapunov functions. The

second is developed on coefficients of the equation in virtue of M-matrix techniques. Based on the second

criterion, robust stability of a perturbed hybrid PSDE is also investigated. The theory shows how much

an exponentially stable hybrid PSDE can tolerate to remain stable.

Key words: Brownian motion, Markov chain, hybrid pantograph stochastic differential equations,

exponential stability, generalized Itô formula, robust stability.

1. Introduction

Stochastic differential delay equations (SDDEs) are widely used to model those systems dependent

on the present and past states(see, e.g. [1]-[8]). When these systems experience abrupt changes in their

structures and parameters, continuous-time Markov chains are introduced to form SDDEs with Markovian

switching, also known as hybrid SDDEs.

One of the important issues in the study of hybrid SDDEs is the automatic control, with current

emphasis placed on asymptotic stability and boundedness arising from automatic control. There is an

intensive literature in this area and we mention, for example, [9]-[13]. In particular, [9] and [11] are two

of most cited papers while [12] is the first book in this area. In most of the above mentioned references,

coefficients of those systems are assumed to satisfy local Lipschitz condition and linear growth condition.

However, the linear growth condition is usually violated in many practical applications. There have

been some papers discussing existence, uniqueness and stability of solutions of highly nonlinear SDDEs,

for example, [14]-[17]. Recently, [18] discussed asymptotic stability and boundedness of solutions to

nonlinear hybrid SDDEs with constant delays or differentiable bounded variable delays. Also in [19],
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robust exponential stability and boundedness of highly nonlinear hybrid SDDEs with constant delays

were investigated.

Hybrid pantograph stochastic differential equations(PSDEs) are special SDDEs that have unbounded

delays (see e.g.[20],[21]). PSDEs have been frequently applied in many practical areas, such as mechanic,

biology, engineering and finance. The existence-uniqueness theorem of the solution for a linear PSDE

was established in [20]. On stability of a PSDE, [1] investigated the growth and decay rates of special

scalar PSDEs, where equations had linear drifts with unbounded delays and diffusions without delays.

[18] proposed a Khasminskii-type condition for a nonlinear hybrid PSDE, under which the polynomial

stability of the solution could be derived. [22] extended the condition of [18] to the case that different types

of functions or polynomials with different orders occured in the Lyapunov operator. [23] investigated the

exponential stability of a class of hybrid PSDE, where the coefficients were dominated by polynomials

with high orders. Almost sure exponential stability of both exact and numerical solutions could be derived

under such conditions. But we argue that the criteria proposed in [23] were independent on the transition

matrix, so that the system would be stable at any mode. This paper will apply the technique in [19] to get

exponential stability of a PSDE under suitable conditions. Compared to [23], in our result, the transition

matrix of Markovian switching will play an important rule in the criterion. Also M-matrix techniques

will be used to form an efficient criterion. We will show exponential stability in the pth moment and

almost sure exponential stability under the same condition.

When studying asymptotic properties, robust analyses on stability and boundedness have received

a great deal of attention. On SDDEs, [24] and [25] discussed robust stability of linear delay equations.

[26] studied robust stochastic stability of a linear system. In [27], robust stability of uncertain linear or

semilinear SDDEs had been discussed. The robust stability of a stochastic delay interval system with

Markovian switching was studied in [11]. Recently in [19], the robust stability and boundedness of hybrid

SDDEs with constant delay and high nonlinearity had been well treated. In this paper, after giving an

efficient criterion to evaluate the exponential stability of PSDEs, robust analysis on exponential stability

will also be discussed. Applying the theory, we can discuss how much the perturbation can be in order

for a perturbed system remaining stable.

This article is arranged as follows. A general criterion including Lyapunov functions is proposed

in section 2, under which the PSDE system will be asymptotically bounded or exponentially stable. In

section 3, an efficient criterion with the aid of M-matrices will be discussed. Robust analyses on bound-

edness and exponential stability are developed in section 4. Some examples are discussed to illustrate

the theory in section 5 and conclusions are made in section 6.

2. General results

Throughout this paper, we use following notations. Let (Ω,F , {Ft}t≥0, P ) be a complete probability

space with the filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is increasing and right continuous

with F0 containing all P -null sets). Let B(t) = (B1(t), · · · , Bm(t))T be an m-dimensional Brownian

motion defined on the probability space. Let | · | be the Euclidean norm in Rn. If A is a vector or matrix,
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its transpose is denoted by AT . If A is a matrix, its trace norm is denoted by |A| =
√

trace(ATA). Let

R+ = [0,∞).

Let r(t), t ≥ 0, be a right-continuous Markov chain on the probability space taking values in a finite

state space S = {1, 2, · · · , N} with generator Γ = (γij)N×N given by

P{r(t+ ∆) = j|r(t) = i} =

 γij∆ + o(∆) if i 6= j

1 + γii∆ + o(∆) if i = j

with ∆ > 0. γij ≥ 0 is the transition rate from i to j if i 6= j, while γii = −
∑
j 6=i

γij . Assume that the

Markov chain r(·) is independent of the Brownian motion B(·).

Denote by C(Rn×R+;R+) the family of continuous functions from Rn×R+ to R+, also by C2,1(Rn×

R+ × S;R+) the family of continuous functions V (x, t, i) from Rn × R+ × S to R+, such that for each

i ∈ S, V (x, t, i) is continuously twice differentiable in x and once in t.

Consider a hybrid pantograph stochastic differential equation

dx(t) = f(x(t), x(θt), t, r(t))dt+ g(x(t), x(θt), t, r(t))dB(t), (1)

with 0 < θ < 1. Due to its special feature, we only need to know the initial data

x(0) = x0 ∈ Rn and r(0) = i0 ∈ S (2)

in order to solve the equation.

The well-known conditions imposed for the existence and uniqueness of the global solution are the

local Lipschitz condition and the linear growth condition (see e.g. [4]-[8]). Let us state the local Lipschitz

condition.

Assumption 2.1. For each integer h ≥ 1, there exists a constant Kh > 0 such that

|f(x, y, t, i)− f(x̄, ȳ, t, i)| ∨ |g(x, y, t, i)− g(x̄, ȳ, t, i)| ≤ Kh(|x− x̄|+ |y − ȳ|)

holds for those x, y, x̄, ȳ ∈ Rn with |x| ∨ |x̄| ∨ |y| ∨ |ȳ| ≤ h and any (t, i) ∈ R+ × S.

However we will replace the linear growth condition by a more general condition, a Khasminskii-

Type condition as applied in [18],[19],[22],[23], to guarantee the existence of a unique global solution.

Also this condition will lead to exponential stability of the solution. Before stating the general condition,

we give one more notation. Given V (x, t, r(t)) ∈ C2,1(Rn × R+ × S,R+), we define the function LV :

Rn × Rn × R+ × S → R by

LV (x, y, t, i) = Vt(x, t, i) + Vx(x, t, i)f(x, y, t, i)

+ 1
2 trace[gT (x, y, t, i)Vxx(x, t, i)g(x, y, t, i)] +

N∑
j=1

γijV (x, t, j),
(3)

where Vt(x, t, i) = ∂V (x,t,i)
∂t , Vx(x, t, i) = (∂V (x,t,i)

∂x1
, · · · , ∂V (x,t,i)

∂xn
)T and Vxx = (∂

2V (x,t,i)
∂xk∂xl

)n×n. Let us

emphasize that LV is defined on Rn × Rn × R+ × S while V on Rn × R+ × S.
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Assumption 2.2. There exist three functions V (x, t, r(t)) ∈ C2,1(Rn ×R+ × S,R+), U1(x, t), U2(x, t) ∈

C(Rn × R+,R+), and positive constants c1, c2, αi, i = 1, · · · , 5 such that

lim
|x|→∞

(
inf
t≥0

U1(x, t)
)

=∞,

c1U1(x, t) ≤ V (x, t, i) ≤ c2U1(x, t), for any (x, t, i) ∈ Rn × R+ × S, (4)

LV (x, y, t, i) ≤ α1−α2U1(x, t)+α3θ exp(−(1−θ)t)U1(y, θt)−α4U2(x, t)+α5θ exp(−(1−θ)t)U2(y, θt), (5)

where c1 > c2, α2 > α3, α4 > α5.

In above assumption, there are two auxiliary functions U1(x, t), U2(x, t) used to dominate LV . We

can see that if U2(x, t) has a lower order of infinity than U1(x, t) as |x| → ∞, LV will have the same order

as V . The main objective of this paper is to investigate the setting that LV may have higher order than

V or U1, due to high nonlinearity of the equation. So in this paper, we will focus on the situation that

U2(x, t) has a higher order of infinity than U1(x, t), for example U1(x, t) = |x|2 and U2(x, t) = |x|4. Also

the factor exp(−(1 − θ)t) is important for exponential stability of the solution under further conditions

as depicted in Theorem 2.4. Just as discussed in [18], if there is no exp(−(1− θ)t), we can only get the

polynomial stability of the system. Also it can be argued that if Û2 is set as Û2 = U1 +U2, equations (4)

and (5) can be rewritten as c1U1(x, t) ≤ V (x, t, i) ≤ c2Û2(x, t) and

LV (x, y, t, i) ≤ α1 − (α2 ∧ α4)Û2(x, t) + (α3 ∨ α5)θ exp(−(1− θ)t)Û2(y, θt),

which is a strong form of Assumption 2.2 in [18]. The reason why we separate Û2 into U1 and U2 is

for clarity of upcoming discussion in section 3, where U1(x, t) and U2(x, t) are chosen as |x|p and |x|q,

respectively.

Theorem 2.3. Under Assumption 2.1 and 2.2, following statements are true.

(1) For any initial data (2), there exists a unique global solution x(t) to the system (1) on [0,∞).

(2) For t > 0, ∫ t

0

EU2(x(s), s)ds ≤ c2
α4 − α5

U1(x(0), 0) +
α1t

α4 − α5
. (6)

(3) The solution is asymptotically bounded in the sense of

lim sup
t→∞

EU1(x(t), t) ≤ α1

εc1
, (7)

where ε is defined by

ε := min(1, (α2 − α3)/c2). (8)

Proof. (1) The existence and uniqueness of the solution can be got easily by the same method used in

Theorem 3.1 of [18] or in Theorem 2.5 of [19]. Here we omit its proof in order to concentrate exponential

stability of the solution.

(2) Let k0 > 0 be large enough for |x0| < k0. For each integer k ≥ k0, define the stopping time

τk = inf{t||x(t)| ≤ k}, k = 1, 2, · · · , (9)
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where throughout this paper we set inf ∅ =∞(as usual ∅ denotes the empty set). By the generalized Itô

formula (see e.g. [12]), we obtain that for t ≥ 0,

E(V (x(t ∧ τk), t ∧ τk, r(t ∧ τk))) = V (x(0), 0, r(0)) + E

∫ t∧τk

0

LV (x(s), x(θs), s, r(s))ds.

Applying condition (4), (5) and exp(−(1− θ)t) < 1, it can be got that

c1E(U1(x(t ∧ τk), t ∧ τk))

≤ c2U1(x(0), 0) + α1t− α2E
∫ t∧τk
0

U1(x(s), s)ds+ α3θE
∫ t∧τk
0

U1(x(θs), θs)ds

−α4E
∫ t∧τk
0

U2(x(s), s)ds+ α5θE
∫ t∧τk
0

U2(x(θs), θs)ds.

(10)

Obviously, we have

α3θE

∫ t∧τk

0

U1(x(θs), θs)ds = α3E

∫ θ(t∧τk)

0

U1(x(s), s)ds ≤ α3E

∫ t∧τk

0

U1(x(s), s)ds,

and similarly

α5θE

∫ t∧τk

0

U2(x(θs), θs)ds ≤ α5E

∫ t∧τk

0

U2(x(s), s)ds.

Consequently, from α2 > α3 and α4 > α5, (10) gives c1E(U1(x(t∧ τk), t∧ τk)) ≤ c2U1(x(0), 0) +α1t. Let

k →∞ and then get c1E(U1(x(t), t)) ≤ c2U1(x(0), 0) + α1t. Meanwhile, we also have

0 ≤ c1E(U1(x(t ∧ τk), t ∧ τk)) ≤ c2U1(x(0), 0) + α1t− (α4 − α5)E

∫ t∧τk

0

U2(x(s), s)ds,

which can be arranged to

E

∫ t∧τk

0

U2(x(s), s)ds ≤ c2
α4 − α5

U1(x(0), 0) +
α1t

α4 − α5
. (11)

Now (6) is derived by letting k →∞ and using Fubini’s theorem.

(3) Let τk the same stopping time defined in (9). Applying the generalized Itô formula on function

exp(εt)V (x(t), t, r(t)), we obtain that for t ≥ 0,

c1E(exp(ε(t ∧ τk))U1(x(t ∧ τk), t ∧ τk))

≤ c2U1(x(0), 0) + E
∫ t∧τk
0

ε exp(εs)V (x(s), s)ds+ E
∫ t∧τk
0

exp(εs)LV (x(s), x(θs), s, r(s))ds.
(12)

It can be calculated that

E

∫ t∧τk

0

ε exp(εs)V (x(s), s)ds ≤ c2εE
∫ t∧τk

0

exp(εs)U1(x(s), s)ds,

and

E
∫ t∧τk
0

exp(εs)LV (x(s), x(θs), s, r(s))ds

≤ E
∫ t∧τk
0

exp(εs)
[
α1 − α2U1(x(s), s) + α3θ exp(−(1− θ)s)U1(x(θs), θs)

−α4U2(x(s), s) + α5θ exp(−(1− θ)s)U2(x(θs), θs)
]
ds

= α1E
∫ t∧τk
0

exp(εs)ds− α2E
∫ t∧τk
0

exp(εs)U1(x(s), s)ds+ α3θE
∫ t∧τk
0

exp
(
(ε− 1 + θ)s

)
U1(x(θs), θs)ds

−α4E
∫ t∧τk
0

exp(εs)U2(x(s), s)ds+ α5θE
∫ t∧τk
0

exp
(
(ε− 1 + θ)s

)
U2(x(θs), θs)ds.

(13)

But α1E
∫ t∧τk
0

exp(εs)ds ≤ (α1/ε) exp(εt), and

α3θE

∫ t∧τk

0

exp
(
(ε− 1 + θ)s

)
U1(x(θs), θs)ds = α3E

∫ θ(t∧τk)

0

exp
(ε− 1 + θ

θ
u
)
U1(x(u), u)du.
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By 0 < θ < 1 and ε ≤ 1, we can get (ε− 1 + θ)/θ ≤ ε easily, so that

α3θE

∫ t∧τk

0

exp
(
(ε− 1 + θ)s

)
U1(x(θs), θs)ds ≤ α3E

∫ t∧τk

0

exp(εs)U1(x(s), s)ds

and similarly,

α5θE

∫ t∧τk

0

exp
(
(ε− 1 + θ)s

)
U2(x(θs), θs)ds ≤ α5E

∫ t∧τk

0

exp(εs)U2(x(s), s)ds.

Substituting above inequalities into equations (12) and (13), We will have

c1E(exp(ε(t ∧ τk))U1(x(t ∧ τk), t ∧ τk))

≤ c2U1(x(0), 0) + α1

ε exp(εt)− (α2 − εc2 − α3)E
∫ t∧τk
0

exp(εs)U1(x(s), s)ds

−(α4 − α5)E
∫ t∧τk
0

exp(εs)U2(x(s), s)ds.

(14)

From α4 > α5 and ε ≤ (α2 − α3)/c2, we deduce

E(exp(ε(t ∧ τk))U1(x(t ∧ τk), t ∧ τk)) ≤ c2
c1
U1(x(0), 0) +

α1

c1ε
exp(εt). (15)

Letting k →∞, we have

exp(εt)EU1(x(t), t) ≤ c2
c1
U1(x(0), 0) +

α1

c1ε
exp(εt),

or equivalently,

EU1(x(t), t) ≤ c2
c1
U1(x(0), 0) exp(−εt) +

α1

c1ε
, (16)

which yields

lim sup
t→∞

EU1(x(t), t) ≤ α1

c1ε

as required.

This theorem gives asymptotic boundedness in terms of U1 and U2. If we know, for example,

U1(x, t) ≥ |x|p, the solution of equation (1) will be asymptotically bounded in the p-th moment. To get

exponential stability of the system, we need one additional condition, α1 = 0, as illustrated in following

theorem.

Theorem 2.4. Let Assumption 2.1 and 2.2 hold with α1 = 0 in (5), the solution is also exponential

stability as

lim sup
t→∞

1

t
logEU1(x(t), t) ≤ −ε, (17)

and

lim sup
t→∞

1

t
logU1(x(t), t) ≤ −ε, (18)

where ε is defined as in (8). Meanwhile, the solution satisfies∫ ∞
0

EU2(x(s), s)ds <∞. (19)

Proof. If α1 = 0, equation (16) turns to be EU1(x(t), t) ≤ (c2/c1)U1(x(0), 0) exp(−εt), which just means

the statement (17).
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From (11) with α1 = 0, we see E
∫ t∧τk
0

U2(x(s), s)ds ≤ c2
α4−α5

U1(x(0), 0). Taking k → ∞ and then

t→∞, Fubini’s theorem gives∫ ∞
0

EU2(x(s), s)ds ≤ c2
α4 − α5

U1(x(0), 0) <∞.

To show almost sure exponential stability, we apply the generalized Itô formula on exp(εt)V (x(t), t, r(t))

to get

exp(εt)V (x(t), t, r(t)) = V (x(0), 0, r(0))+

∫ t

0

exp(εs)[εV (x(s), s, r(s))+LV (x(s), x(θs), s, r(s))]ds+M(t),

(20)

where M(t) is a local martingale with the initial value M(0) = 0.

As α1 = 0, applying the same argument on deriving (14) and the definition of ε, we also have∫ t
0

exp(εs)[εV (x(s), s, r(s)) + LV (x(s), x(θs), s, r(s))]ds

≤ −(α2 − εc2 − α3)
∫ t
0

exp(εs)U1(x(s), s)ds− (α4 − α5)
∫ t
0

exp(εs)U2(x(s), s)ds

≤ 0.

Then applying condition (4) to equation (20), we get

c1 exp(εt)U1(x(t), t) ≤ c2U1(x(0), t) +M(t). (21)

Applying the nonnegative semi-martingale convergence theorem(see for example, [12]), we obtain

that lim sup
t→∞

c1 exp(εt)U1(x(t), t) < ∞, a.s. from the inequality (21). So there exists a finite positive

random variable η such that sup
0≤t<∞

c1 exp(εt)U1(x(t), t) ≤ η, a.s., which just implies (18) as required.

Just as discussed after Theorem 2.3, if U1(x, t) ≥ |x|p, (17) and (18) show the exponential stability

in the sense of the p-th moment and almost sure. While if U2(x, t) ≥ |x|q, the solution will be H∞-stable,

because
∫∞
0
E|x(t)|qdt <∞ is valid from (19).

3. Further Criteria in Terms of M-matrices

In this section, we will establish further criteria on exponential stability of equation (1) in terms

of M-matrices. We will choose V (x, t, i) = θi|x|p for suitable θi > 0, U1(x) = |x|p and U2(x) = |x|q

in Assumption 2.2. With these special functions, we can see direct requirements on the structure of

coefficients f, g in equation (1) in order to guarantee exponential stability of its solution. The technique

used here comes from [19], where M-matrices are used to check exponential stability of SDDEs with

constant delays. We are lucky to see that similar criteria can be used to guarantee the exponential

stability of PSDEs.

For the convenience of the reader, let us cite some useful results on M-matrices. For more detailed

information please see e.g.[12]. First we give some notations. If B is a vector or matrix, B � 0 means

that all elements of B are positive. If B1 and B2 are two vectors of matrices with same dimensions, we

write B1 � B2 if and only if B1 −B2 � 0. We adopt the traditional notation by letting

ZN×N = {A = (aij)N×N : aij ≤ 0, i 6= j}.
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Definition 3.1. A square matrix A = (aij)N×N is called a nonsingular M-matrix if A can be expressed

in the form A = sI − B with s > ρ(B) while all elements of B are nonnegative, where I is the identity

matrix and ρ(B) the spectral radius of B.

There are many conditions which are equivalent to the statement that A is a nonsingular M-matrix

and we cite some of them for the use of this paper(see e.g.[12]).

Lemma 3.2. If A ∈ ZN×N , then following statements are equivalent:

(1) A is a nonsingular M-matrix.

(2) A is semi-positive; that is, there exists x� 0 in RN such that Ax� 0.

(3) A−1 exists and its elements are all nonnegative.

(4) All the leading principal minors of A are positive; that is∣∣∣∣∣∣∣∣∣
a11 · · · aik

... · · ·
...

ak1 · · · akk

∣∣∣∣∣∣∣∣∣ > 0, for every k = 1, 2, · · · , N.

Now we state the hypothesis on coefficients f, g, in term of an M-matrix.

Assumption 3.3. Given q > p ≥ 2, assume that for any i ∈ S, there exists non-negative constants

βi1, βi3, βi4, βi5 and a real number βi2, such that

xT f(x, y, t, i) + p−1
2 |g(x, y, t, i)|2

≤ βi1 + βi2|x|2 + βi3θ exp
(
− 2

p (1− θ)t
)
|y|2 − βi4|x|q−p+2 + βi5θ exp

(
− q−p+2

q (1− θ)t
)
|y|q−p+2,

(22)

for all (x, y, t) ∈ Rn × Rn × R+, and

A := −diag(pβ12, · · · , pβN2)− Γ (23)

is a nonsingular M-matrix.

We remark that there is a similar condition as (22) in [19]:

xT f(x, y, t, i) +
p− 1

2
|g(x, y, t, i)|2 ≤ βi1 + βi2|x|2 + βi3|y|2 − βi4|x|q−p+2 + βi5|y|q−p+2,

which leads to exponential stability of a SDDE with constant delay. If we impose this assumption on a

PSDE, we can only get polynomial stability of its solution, just as discussed in [18]. We will see that two

terms involving exponential decay are necessary to get the exponential stability of a PSDE.

By properties of M-matrices as in 3.2, we have a vector with all positive entries defined by the

nonsingular M-matrix A:

(θ1, · · · , θN )T := A−1~1� 0, (24)

where ~1 = (1, · · · , 1)T .

Theorem 3.4. Let Assumption 2.1 and 3.3 hold. θi, i ∈ S is defined from (24). Set c1 = min
i∈S

θi,

c2 = max
i∈S

θi. δ1 = max
i∈S

pθiβi1, δ3 = max
i∈S

pθiβi3, δ4 = min
i∈S

pθiβi4, δ5 = max
i∈S

pθiβi5, and δ = (1− δ3)/2.
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Assume that

δ3 ≤ 1 and δ4 ≥ δ5. (25)

Then for any given initial data (2), there is a unique global solution x(t) to the hybrid PSDE (1) on

[0,∞). Moreover, the solution is asymptotically bounded in the pth moment, that is, the solution satisfies

lim sup
t→∞

E|x(t)|p ≤ α1

εc1
, (26)

and ∫ t

0

E|x(s)|qds ≤ c2
α4 − α5

|x(0)|p +
α1t

α4 − α5
, (27)

where ε = min
(
1, (α2 − α3)/c2

)
.

In above results, α1 ∼ α5 are defined as

α1 =
2

p
δ−

p−2
2 δ

p
2
1 , α2 = 1− p− 2

p
(δ + δ3θ), α3 =

2

p
δ3, α4 = δ4 − δ5θ

p− 2

q
, and α5 = δ5

q − p+ 2

q
. (28)

Proof. The proof is an application of Theorem 2.3. We will use U1(x, t) = |x|p and U2(x, t) = |x|q in

equation (5). The function V : Rn × R+ × S → R+ is defined by V (x, t, r(t)) = θr(t)|x|p. We recall that

from the definition of θ, Aθ = ~1, or equivalently, for any i ∈ S, pβi2θi +
N∑
j=1

γijθj = −1.

We see for any i ∈ S, c1|x|p ≤ V (x, t, i) ≤ c2|x|p. Now we compute LV (x, y, t, i). For any i ∈ S,

LV (x, y, t, i)

= pθi|x|p−2xT f(x, y, t, i) + p(p−2)
2 θi|x|p−4|xT g(x, y, t, i)|2 + 1

2pθi|x|
p−2|g|2 +

N∑
j=1

γijθj |x|p

≤ pθi|x|p−2[xT f(x, y, t, i) + p−1
2 |g(x, y, t, i)|2] +

N∑
j=1

γijθj |x|p

≤ pθiβi1|x|p−2 + (pθiβi2 +
N∑
j=1

γijθj)|x|p + pθiβi3θ exp
(
− 2

p (1− θ)t
)
|x|p−2|y|2

−pθiβi4|x|q + pθiβi5θ exp
(
− q−p+2

q (1− θ)t
)
|x|p−2|y|q−p+2.

(29)

By the fundamental inequality aαb1−α ≤ αa+ (1− α)b, for a, b ≥ 0, and α ∈ [0, 1], we have

exp
(
− 2

p
(1− θ)t

)
|x|p−2|y|2 ≤ p− 2

p
|x|p +

2

p
exp(−(1− θ)t)|y|p,

and

exp
(
− q − p+ 2

q
(1− θ)t

)
|x|p−2|y|q−p+2 ≤ p− 2

q
|x|q +

q − p+ 2

q
exp(−(1− θ)t)|y|q.

Also for any i ∈ S,

pθiβi1|x|p−2 ≤ δ1|x|p−2 = (δ−
p−2
2 δ

p
2
1 )

2
p (δ|x|p)

p−2
p ≤ 2

p
δ−

p−2
2 δ

p
2
1 +

δ(p− 2)

p
|x|p.

Substituting above inequalities into (29), we obtain

LV (x, y, t, i) ≤ α1 − α2|x|p + α3θ exp(−(1− θ)t)|y|p − α4|x|q + α5θ exp(−(1− θ)t)|y|q,

with the definition of α1 ∼ α5 given in (28).

Also from 0 < θ < 1, δ3 ≤ 1 and δ4 ≥ δ5, we can see that

α2 − α3 =
1

p
[
p+ 2

2
− (

6− p
2

+ (p− 2)θ)δ3] >
p+ 2

2p
(1− δ3) ≥ 0

9



and

α4 − α5 = (δ4 − δ5) +
p− 2

q
δ5(1− θ) > 0.

It is now clear that Assumption 3.3 and condition (25) produce a special case as in Assumption 2.2

with U1(x, t) = |x|p, U2(x, t) = |x|q and all coefficients defined as in the premise of this theorem. And

then (26) and (27) can be obtained from (6) and (7) in Theorem 2.3, respectively.

The following theorem gives a criterion on both exponential stability and H∞-stability.

Theorem 3.5. Let Assumptions 2.1 and 3.3 hold with βi1 = 0 for all i ∈ S. For any given initial data

(2), the unique global solution x(t) has the properties that

lim sup
t→∞

1

t
log(E|x(t)|p) ≤ −ε (30)

and

lim sup
t→∞

1

t
log(|x(t)|) ≤ −ε

p
, a.s. (31)

where ε is defined as in Theorem 3.4. Moreover, x(t) is H∞-stable:∫ ∞
0

E|x(t)|qdt <∞. (32)

Proof. If for all i ∈ S, βi1 = 0, α1 should be 0. The results in Theorem 2.4 are valid for U1(x, t) =

|x|p, U2(x, t) = |x|q and ε = (α2 − α3)/c2, where c2, α2 and α3 are defined as in Theorem 3.4. And then

(30)-(32) come from (17)-(19), respectively.

4. Robust Exponential Stability Analysis of PSDEs

In this section, we discuss two robust exponential stability problems in PSDEs. The first problem

is based on following n-dimensional nonlinear hybrid differential equation

dx(t) = f(x(t), t, r(t))dt, (33)

where f : Rn ×R× S → R satisfies the local Lipschitz condition and similar condition as in Assumption

3.3. Let us make it clear.

Assumption 4.1. Let q > p ≥ 2 and assume that for each i ∈ S, there are nonnegative numbers β̄i1, β̄i4

and a real number β̄i2 such that for all (x, t) ∈ Rn × R+,

xT f(x, t, i) ≤ β̄i1 + β̄i2|x|2 − β̄i4|x|q−p+2, (34)

and Ā := −diag(pβ̄12, · · · , pβ̄N2)− Γ is a nonsingular M-matrix.

Under above assumption, equation (33) is asymptotically bounded in the p-th moment according to

Theorem 3.4. Now if there is a stochastic delay perturbation in the diffusion part as

dx(t) = f(x(t), t, r(t))dt+G(x(θt), t, r(t))dB(t), (35)

will the system remain stable under suitable conditions on G? In order that equation (35) has a solution,

we assume that G satisfies the local Lipschitz condition. Furthermore, we need another condition on G.

10



Assumption 4.2. Let q > p ≥ 2 be the same as in Assumption 4.1 and assume that for each i ∈ S,

there are nonnegative functions β̄i3(t), β̄i5(t) and number β̄i6 ≥ 0, such that for any (y, t),

|G(y, t, i)|2 ≤ β̄i6 + β̄i3(t)|y|2 + β̄i5(t)|y|q−p+2. (36)

Now we want to discuss the requirements on β̄i6, β̄i3(t) and β̄i5(t) such that the perturbed system

is asymptotically bounded or exponentially stable. Answers are just applications of Theorem 3.4 and 3.5

as stated in following two theorems.

Theorem 4.3. Let Assumption 4.1 and 4.2 hold. Define

(θ̄1, · · · , θ̄N )T = Ā−1~1� 0. (37)

If for any i ∈ S,

β̄i3(t) ≤ 2θ

p(p− 1)θ̄i
exp

(
− 2

p
(1− θ)t

)
(38)

and

β̄i5(t) ≤ 2θ

(p− 1)θ̄i

(
min
j
θ̄j β̄j4

)
exp

(
− q − p+ 2

q
(1− θ)t

)
, (39)

then the perturbed system (35) is asymptotically bounded in the pth moment.

Proof. Combining (34) and (36) together, we can easily obtain

xT f +
p− 1

2
|g|2 ≤

(
β̄i1 +

p− 1

2
β̄i6

)
+ β̄i2|x|2 +

p− 1

2
β̄i3(t)|y|2 − β̄i4|x|q−p+2 +

p− 1

2
β̄i5(t)|y|q−p+2.

Then by (38) and (39), it is just

xT f +
p− 1

2
|g|2 ≤

(
β̄i1 +

p− 1

2
β̄i6

)
+ β̄i2|x|2 +

θ

pθ̄i
exp

(
− 2

p
(1− θ)t

)
|y|2

−β̄i4|x|q−p+2 +
θ

θ̄i

(
min
j
θ̄j β̄j4

)
exp

(
− q − p+ 2

q
(1− θ)t

)
|y|q−p+2.

Now it is easy to check that condition (25) in Theorem 3.4 is satisfied with δ3 = 1, δ4 = δ5 =

min
j
θ̄j β̄j4. The perturbed system (35) is proved to be asymptotically bounded in the pth moment as

required.

Just as differences between Theorem 3.4 and 3.5, we also have the similar result.

Theorem 4.4. Let conditions (34) and (36) hold, with θ̄i defined in (37). If Assumption 4.1 and 4.2

hold with β̄i1 = β̄i6 = 0 for all i ∈ S, the perturbed system (35) is not only exponentially stable in the pth

moment, but also almost sure exponentially stable. Moreover, the solution of the perturbed system is H∞

stable in the sense ∫ ∞
0

E|x(t)|qdt <∞.

In the second problem, we consider the case that a general SDE

dx(t) = f(x(t), t, r(t))dt+ g(x(t), t, r(t))dB(t) (40)

has a delay perturbation in the drift part, which takes the form of

dx(t) = [f(x(t), t, r(t)) + F (x(t), x(θt), t, r(t))]dt+ g(x(t), t, r(t))dB(t). (41)
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As a standing hypothesis, we assume that both f, g and F satisfy the local Lipschitz condition. Also

in order that the original system (40) is bounded or stable, we should impose some conditions on f and

g. For the ease of further discussion, we impose two assumptions on f, g and F .

Assumption 4.5. Let q > p ≥ 2. Assume that for each i ∈ S, there exists nonnegative numbers β̂i1, β̂i4,

a real number β̂i2 and a positive number β̃i2, such that for all (x, t),

xT f(x, t, i) +
p− 1

2
|g(x, t, i)|2 ≤ β̂i1 + (β̂i2 − β̃i2)|x|2 − β̂i4|x|q−p+2 (42)

and Â := −diag(pβ̂12, · · · , pβ̂N2)− Γ is a nonsingular M-matrix.

Obviously, the original system (40) is asymptotically bounded, or exponentially stable as β̂i1 = 0, i ∈

S under Assumption 4.5.

Assumption 4.6. Assume that for each i ∈ S, there are nonnegative functions ηi3(t), ηi5(t) and non-

negative numbers ηi1, ηi2, ηi4, such that for any (x, y, t, i),

|F (x, y, t, i)|2 ≤ ηi1 + ηi2|x|2 + ηi3(t)|y|2 + ηi4|x|q−p+2 + ηi5(t)|y|q−p+2. (43)

Theorem 4.7. Let Assumption 4.5 and 4.6 hold. Define

(θ̂1, · · · , θ̂N )T = Â−1~1� 0. (44)

If for every i ∈ S,

ηi2 ≤ β̃2
i2 (45)

ηi3(t) ≤ 2β̃i2θ

θ̂i
exp

(
− 2

p
(1− θ)t

)
, (46)

ηi4 ≤ 2β̃i2β̂i4, (47)

and

ηi5(t) ≤ 2β̃i2θ

θ̂i

(
min
j∈S

θ̂j(β̂j4 −
ηj4

2β̃j2
)
)

exp
(
− q − p+ 2

q
(1− θ)t

)
, (48)

then the perturbed system (41) is asymptotically bounded in the pth moment.

Proof. We only need to show that under conditions (45)-(48), the coefficients f, g, F satisfy the require-

ment in Theorem 3.4.

Firstly, we can compute that

xTF (x, y, t, i) ≤ |x||F (x, y, t, i)| ≤ β̃i2

2 |x|
2 + 1

2β̃i2
|F (x, y, t, i)|2

≤ ηi1
2β̃i2

+
(
β̃i2

2 + ηi2
2β̃i2

)
|x|2 + ηi3(t)

2β̃i2
|y|2 + ηi4

2β̃i2
|x|q−p+2 + ηi5(t)

2β̃i2
|y|q−p+2.

Applying (45)-(48), coefficients in perturbed system (41) satisfy

xT (f + F ) + p−1
2 |g|

2

≤ (β̂i1 + ηi1
2β̃i2

) +
(
β̂i2 − β̃i2

2 + ηi2
2β̃i2

)
|x|2 + ηi3(t)

2β̃i2
|y|2 −

(
β̂i4 − ηi4

2β̃i2

)
|x|q−p+2 + ηi5(t)

2β̃i2
|y|q−p+2

≤ ai1 + ai2|x|2 + ai3θ exp
(
− 2

p (1− θ)t
)
|y|2 − ai4|x|q−p+2 + ai5θ exp

(
− q−p+2

q (1− θ)t
)
|y|q−p+2

where

ai1 = β̂i1 +
ηi1

2β̃i2
, ai2 = β̂i2, ai3 =

1

θ̂i
, ai4 = β̂i4 −

ηi4

2β̃i2
, ai5 =

1

θ̂i

(
min
j∈S

θ̂jaj4

)
.

Now we can see that all requirements in Theorem 3.4 are obtained, so that the solution of perturbed

system (41) is asymptotically bounded in the pth moment.
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Moreover, we can also get following result on robust exponential stability by virtue of Theorem 3.5.

Theorem 4.8. Let conditions (45)-(48) hold with θ̂i defined in (44). If Assumption 4.5 and 4.6 hold

with β̂i1 = ηi1 = 0 for all i ∈ S, the perturbed system (41) is not only exponentially stable in the pth

moment, but also almost sure exponentially stable. Moreover, the solution of the perturbed system is H∞

stable:
∫∞
0
E|x(t)|qdt <∞.

5. Examples

In this section, we will give two examples to illustrate our theory. The first example is to check the

stability of a given PSDE, while the second one will cover robust analysis. In two examples, B(t) is fixed

as a scalar Brownian motion, which is independent on the Markov chain appeared in two systems. We

only give the one dimensional hybrid PSDEs in order to avoid complicate calculations.

Example 1. Consider following hybrid PSDE

dx(t) = f(x(t), t, r(t))dt+ g(x(0.1t), t, r(t))dB(t), (49)

where r(t) is a right-continuous Markov chain taking value in S = {1, 2} with the generator Γ = −1 1

4 −4

 . The coefficients are f(x, t, 1) = −x−2x3, g(y, t, 1) = 0.5y2 exp(−0.45t), f(x, t, 2) = x−x3,

and g(y, t, 2) = 0.1y exp(−0.45t).

Set p = 2, q = 4. It is easy to see xf(x, t, 1) + 1
2g

2(y, t, 1) = −x2 − 2x4 + 1
8y

4 exp(−0.9t), and

xf(x, t, 2) + 1
2g

2(y, t, 2) = x2 − x4 + 1
200y

2 exp(−0.9t).

The quantities appeared in (22) are β11 = 0, β12 = −1, β13 = 0, β14 = 2, β15 = 1.25; β21 = 0, β22 =

1, β23 = 1/20, β24 = 1, and β25 = 0.

We see that the matrix A in (23) is A =

 3 −1

−4 2

 with the inverse A−1 =

 1 0.5

2 1.5

 , which

shows that A is a nonsingular M-matrix.

By the definition in (24), θ1 = 1.5, θ2 = 3.5. Direct calculation gives the quantities involved in

Theorem 3.4: c1 = 1.5, c2 = 3.5, δ1 = 0, δ3 = 0.35 < 1, δ4 = 6, δ5 = 3.75, α2 = 1 and α3 = 0.35. So

from the result in Theorem 3.5, the solution of system (49) is exponentially stable in the second moment

with the moment Lyapunov index ε = min(1, (1 − 0.35)/3.5) = 0.1857. Also the solution is almost sure

exponentially stable lim sup
t→∞

1
t log(|x(t)|) ≤ −0.0929 and H∞ stable

∫∞
0
E|x(t)|4dt <∞.

Example 2. Consider a hybrid differential equation

dx(t) = f(x(t), t, r(t))dt, (50)

where r(t) is a right-continuous Markov chain taking values in S = {1, 2} with generator Γ =

 −1 1

6 −6

 ,

and f(x, t, 1) = −x − 4x7, f(x, t, 2) = x − x7. As a special equation of (1) without delay and diffusion

terms, it can be easily checked by Theorem 3.5 that (50) is exponentially stable in the second and third

moments.
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Now if the system has a perturbation in the diffusion term as

dx(t) = f(x(t), t, r(t))dt+ g(x(t), x(0.1t), t, r(t))dB(t), (51)

where g(x, y, t, 1) = a1y exp(−bt) and g(x, y, t, 2) = a2xy
2 exp(−bt). We now want to discuss how much

the unknown quantities a1, a2 and b can be such that the perturbed system (51) is also exponentially

stable in the second or third moment.

Case 1: p = 2, q = 8

Let p = 2, q = 8. It can be estimated that

xf(x, t, 1) +
1

2
g2(x, y, t, 1) = −x2 − 4x8 +

1

2
a21y

2 exp(−2bt),

and

xf(x, t, 2) + 1
2g

2(x, y, t, 2) = x2 − x8 +
a22
2 x

2y4 exp(−2bt)

≤ x2 − x8 + 1
8x

4 +
a42
2 exp(−4bt)y8 ≤ 13

12x
2 − 23

24x
8 +

a42
2 exp(−4bt)y8,

where the inequality x4 ≤ 2/3x2 + 1/3x8 has been used.

The matrix A will be A =

 3 −1

−6 23/6

 with its inverse A−1 =

 0.6970 0.1818

1.0909 0.5455

. A is a

nonsingular M-matrix.

Now careful calculation leads to following conditions on a1, a2 and b which will guarantee the mo-

ment and almost sure exponential stability of the solution to perturbed system (51): a21 exp(−2bt) ≤

0.1138 exp(−0.9t) and a42 exp(−4bt) ≤ 0.1917 exp(−0.9t). So it will be clear that b ≥ 0.225, |a1| ≤ 0.3373

and |a2| ≤ 0.6617 are enough for the perturbed system to be exponentially stable in the second moment.

Case 2: p = 3, q = 9

In this case, we could estimate xf(x, t, 1) + g2(x, y, t, 1) = −x2 − 4x8 + a21y
2 exp(−2bt), and

xf(x, t, 2) + g2(x, y, t, 2) = x2 − x8 + a22x
2y4 exp(−2bt) ≤ 4

3
x2 − 5

6
x8 +

a42
2

exp(−4bt)y8.

The matrix A will be A =

 4 −1

−6 2

 with the inverse A−1 =

 1 0.5

3 2

.

Following the same argument, we will have a21 exp(−2bt) ≤ 0.02222 exp(−0.6t) and a42 exp(−4bt) ≤

0.1667 exp(−0.8889t), giving |a1| ≤ 0.1491, |a2| ≤ 0.6389 and b ≥ 0.3. Under these conditions on a1, a2

and b, the perturbed system will be exponentially stable in the third moment.

6. Conclusion

In this article, we have discussed asymptotic boundedness and exponential stability of hybrid PSDEs

with higher nonlinearity. We have established two criteria, one on general Lyaponov functions and the

other on coefficients of the equation. In virtue of M-matrices, the criterion can be verified easily. Also

our theory is used to investigate robust boundedness and exponential stability of perturbed systems.
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