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equations (SDEs) driven by Lévy noise under non-Lipschitz condition which is a
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1. Introduction

In the real world, random fluctuations appear commonly in various natural and
synthetic systems, and stochastic differential equations (SDEs) with random
fluctuations and noises have been applied as the mathematical models of many
practical systems. Such models can describe a great deal of different scientific and
engineering problems, which appear in different fields including biology,
epidemiology, mechanic, economics, finance and so forth [1-5]. So it is natural and
necessary to investigate dynamical properties of the solutions to SDEs to find the
effects of random perturbations in the corresponding realistic systems.

The mathematical models obtained have been greatly developed for SDEs under a

random disturbance of the “Gaussian white noise”, namely, the investigations
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concerning SDEs driven by Brownian motion have been very abundant up to now [4,
27]. However, Gaussian noises just like Brownian motion are not always appropriate
while there exist large external and/or internal fluctuations with possible big jumps in
some practical situations and environments. Unlike Brownian motion with the
properties of no jump (the sample paths are continuous almost surely), normal
diffusion (the mean square displacement increases linearly in time), and light tail or
exponential relaxation (the probability density function decays exponentially in space)
[4], non-Gaussian Lévy noise has completely peculiar properties of anomalous
diffusion (mean square displacement is a nonlinear power law of time) [6] and heavy
tail distribution or non-exponential relaxation [7]. Given the above-mentioned
peculiar properties, non-Gaussian Lévy noise may be more appropriate to model the
stochastic disturbances especially with extremely large jumps [8-11, 28-30]. For
instance, recently, there has a growing interest in the use of Lévy process to model
market behaviors in finance; not only are these of great mathematical interest but also
there is growing evidence that they may be more realistic models than those that insist
on continuous samples paths [12-14]. Therefore, it is significant to investigate the
SDEs, properties of solutions and the applications with non-Gaussian Lévy noise.

A number of meritorious results concerning SDEs with non-Gaussian Lévy noise
has been presented in existing literatures [7, 8, 15-17]. Among them, conditions which
can guarantee the existence and uniqueness of the solutions to the SDEs with
non-Gaussian Lévy noise are to be assumed as the one of the most basic and
important Lipschitz condition. Generally, the Lipschitz case is a very common
condition which has been widely used, and the existence and uniqueness of solutions
to SDEs with non-Gaussian Lévy noise has been proved [16]. But, this condition is
seemed to be considerably trenchant when one discusses variable applications in real
world [7]. Thus, the importance to find some weaker and more generalized condition
under which the SDEs with non-Gaussian Lévy noise still exist unique solutions is
self-evident.

Fortunately, the so-called non-Lipschitz conditions have been proposed in [18-23],

and by the method of the successive approximation, we in this paper prove the
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existence and uniqueness of solutions to SDEs driven by Lévy noise under this kind
of non-Lipschitz condition with Lipschitz one as a special case. Furthermore, in order
to obtain the dynamic properties of the solutions to non-Lipschitz SDEs driven by
Lévy noise, we present the stability conditions and the theorem that the solutions are

stochastic stable in the sense of mean square.

2. Some preparations
2.1 Lévy motions
Definition 1. Let L(t) be a stochastic process defined on a probability

space(Q, 7 ,P), if

(i) L(0)=0 (as),

(if) L(t) hasindependent and stationary increments,

(iii) L(t)is stochastically continuous, i.e. forall a>0and foralls>0,

limP(|L(t)-L(s)>a)=0,

t—os

thenL(t) isa Lévy process.

A scalar Lévy process or motion is characterized by a drift parameterqeR?, a

covariance d xd matrix A and a nonnegative Borel measure v defined on

(Rd,B(Rd )) and concentrated on R* \ {0}, which satisfies

I (x2 Al)V(dX) < 0.

R%\{0}
This measure v is the so called Lévy jump measure of the Lévy process L(t),

and(A,v, q) is defined as the generating triplet of Lévy motion.

It is known to all that a scalar Lévy motion is completely determined by the
Lévy-Khintchine formula [8, 16, 24]. Now, we introduce the Lévy-I1td decomposition

theorem with no proof and we may refer to [16] for more details.

Proposition 1. If L(t) is a Lévy process inR", there exists b, € R’, a Brownian
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motion B(t) and independent Poisson random measure N on R+><(Rd—{0}),

such that foreach t>0,

L(t)=bt+B(t)+]

e XN (t, dx)+j

|x[=c

XN (t, dx), (1)
where N (dt,dx) is Poisson random measure, N (dt,dx)= N (dt,dx)—v(dx)dt is

the compensated Poisson random measure for L(t) andb, = E(L(l)—j XN (1, dx))

x|c

with the parameter ce[0,0) a constant.

2.2 SDEs driven by Lévy noise

We concern the SDEs with Lévy noise onR® :
dX (t)=f (t, X (t-))dt+g(t, X (t-))dL(t),t[0,T]. ()
Using the Lévy-1td decomposition (1), we can rewrite this as follows
dX (t)= fl(t,x(t—))dt+g(t,x(t—))dB(t)+jH g(t, X (t-))xN (dt, dx)
X|<C (3)
+I‘X‘ZC g (t, X (t—))xN (dt, dx),

where f, =b + f .

Hence Eq. (2) can be rewritten in the following more general form:

dX (t)=b(t, X (t=))dt+o(t, X (t=))dB(t)+| F(t, X (t=),x)N(dt,dx)

(4)

X<

- \X\ZCG(L X (t=),x)N (dt,dx).
The third and fourth terms in the right hand side of Eq. (4) represent small and large
jumps, and the term involving G (or F respectively) is absent when we take c=oo0.
The term in Eqg. (4) involving large jumps is controlled by G , which can be neglected
through the technique of interlacing [16]. So we only focus on the study of an
equation driven by continuous noise interspersed with small jumps, and then Eq. (4)
can be modified as

dX (t)=b(t, X (t-))dt+o(t, X (t-))dB(t)+ | F(t, X (t=),x)N(dt,dx). (5)

|x[<c

Then the integral form of Eq. (5) can be given



X (t)=X (0)+ ] b(s, X (s-))ds+ [ o (s, X (s-))dB(s)

t N (6)
+f [ F (s (5=) )N (ds, ),

with initial vaIueX(O):f, where & is a givend- dimensional random vector.
b(t.) and F(t,,x) are given d- dimensional random vector functions. o (t,) is

adxr matrix, cis a positive constant, and te[0,T], 0<T <+ . B(t) represents
r- dimensional Brownian motion. We define the components of these terms as follows.
For eachiand j, the mappings b':[0,T]xR‘ >R, o;:[0,T]xR* >R and
F':[0,T]xR*xR" > R areall assumed to be measurable for 1<i<d,l<j<r.

2.3 Non-Lipschitz condition

Now, consider the following assumption on the coefficients of Eq. (6):

Assumptionl. For each fixed te[0,T], letb(t,y),o(t,y) and F(t,y,x) be

continuousiny, and Vy,,y, eR",

b(t.y) bty )f #fo(ty) o (6 y,)f

, , (7)
o Py -F Py a@s(n-wf). ©

where

(1la) A(t):[0,0)—>R" is an integrable function, «(q) is monotone
non-decreasing, continuous and K(Q) or K(C])Z/q is a concave function with

respectto q for fixed t>0 with x(0)=0 such that
J —rda=co
0+ K(q)

(1b) lo(ty,)-o(ty,)[ :iil(a; (ty)-o! (ty,)),



‘F(t,yl,x)—F(t,yz,x)‘2 :i(Fi(t, yl,x)—F‘(t,yz,x))z,

i1
(1c) o(t,0),b(t,0),F(t,0,x)are integrable.

The Assumption 1 is the so-called non-Lipschitz conditions. In particular, if
x(q)=0,4(t)=K, then the Assumption 1 reduces to Lipschitz condition. In other
words, non-Lipschitz condition is weaker than Lipschitz condition.

Remark 1. For fixed t>0, if «(q) or «( q)z/q is concave function with respect

to gq,and Vy,Y, eR", the following inequality

Efp(ty,)-b(t.y, ) +Efo(ty) -0 (ty,)|

2 G
+E.[\x\<c F(t,yl,x)—F(t,yz,x)‘ v(dx)sl(t)x( E|y1—y2| )

holds.
The proof is given in [18, 23]. i

3. Existence and uniqueness of solutions to non-Lipschitz SDEs
with Lévy noise
We in this section consider the existence and uniqueness of solutions to SDEs
driven by Lévy noise under the above-mentioned non-Lipschitz condition. Hereafter,
we assume without losing generality that1<T <+, and K,,C,,i=1,2---6 are all
constants.

Define a sequence of stochastic process{X, (t)} with X, (t)=& a random

k=1,2.--

variable and E |&| < +o0 as follows:

X, (t)=¢ +_:[b(s, Xk_l(s—))ds+io—(s, X, (s—))dB(s)

+Iot I\X‘@ F (s, Xy (s—), x)N(ds,dx),k =1,2---

©)

3.1 Existence of solutions to SDEs



Theorem 1. Suppose thatb(t,y), F(t,y,x)ando (t,y) satisfy Assumption 1, then

lim E(sup

M=o 0<t<T

xn(t)_xi(t)\zj:o. (10)

By Theorem 1, we say {X, ()} is a Cauchy sequence with its

k=1,2:-
limit X () . Then letting n— o0in (9), we finally obtain that the solutions to Eqg.

(2) exist.
To prove the Theorem 1, several auxiliary assertions are required.

Lemma 1. (Doob’s martingale inequality) If (X(t),tzo) IS a positive

submartingale, then forany p >1,t >0,

p
Elsup X (s)° [<| 2= | E(X(t)).
x5 Elx07)
Refer to [16] to obtain the proof. m
Lemma 2. Under Assumption 1, there exists a positive number K, >0 such that
V(t,y)e[O,T]de,
2 2
bt y) +lo @yl +]

Proof: Since x(q) or K‘(Q)z/q is a concave and non-negative function, such

o F(t, y,x)‘zv(dx) <K, (1+|y|2). (11)
thatx (0) =0, we can choose two positive constants a>0andb >0 , so that [18]
x(q)<a+bg,q>0.

Then, using (7) to yields
bt.y) +loty)f +]
<2|b(t,y)~b(t,0)[ +2
+2j\x\<c Xi<c

<2{p() -0 sloy) o0 4],

- F(t, y,x)‘zv(dx)
b(t,0) +2[o (t,y)~o (t.0) +2[o (t,0)
F(t,y,x)—F(t,0, x)‘2 vdx + 2.[‘ F(t,0, x)‘2 v(dx)

F(t,y,x)—F (0, x)\zv(dx))



+2Jp(t,0)" +2[or (¢, 0)[] +2f F (t,0,%)[" v(dx)

|x|<c

32033133( t,0 ‘ +|e(t.0 H +‘|.X‘<C (t, O,x)‘zv(dx))+2/l (|y| )

<K, (1+]yf),
where
K, = rOTJE)T({ZOS:th(b t,0) ‘ +[e(t,0) H +IX‘<C (1,0, x)‘zv(dx)+/1(t)a),2b/1(t)}<+oo.
This completes the proof of Lemma 2. i

Lemma 3. Under Lemma 2, one can have
E|X, (1) <C,te[0,T] k=12 (12)

Proof : Here, for k=1,2---, we shall show

E|X, (1) <4Ele] Z (4K.T) t 2 (4K.T) t'. (13)
=0 1=1
Firstly, fork =1, it is easy to verify that
E[X, (1)
2
:E§+jb(s,xo( ds+ja (s Xo(s-))dB(s)+ . Jo.c F(5:Xo (=), %) N (ds, 0x)
0
s4E|§|2+4TEj(\b(s, Xo(s-))| +[o (s %o (s )| +L‘<C 5, X, (5-), )\Zv(dx))ds
0

<4E|ef +4K1Tj(1+ E|X, (s—)\z)ds
0

<AE|E[" +4KT @+ E|E[t.
So, (13) holds fork =1.
Secondly, assume that (13) holds fork , then, by induction, we have for k +1,

E\xk+l(t)\2

2

=E

§+i‘b(s,xk(s—))ds+j'a(s,xk(s IL\«F (s, X, (s=),x)N(ds,dx)

(s, X, (s-), )‘zv(dx))ds

s4E|§|2+4TEj'(\b(s,xk( - \ +o(s. X, ( H +j’x‘<c
0



4KT)

K (4K1T)

<4E|ef +4KTI 1+4E|¢[ Z

K+ K+
= 4E e[ +4KTt+4E|§|Zi 4KT) 1(4K“T
1=1 1=2

k+1 (4KT) N

4KT
g 3 e S

1=1

Therefore, (13) holds for all k. Now, from (13), we obtain
E[X, (1) <4(1+EJE[ Jexp{aKT?}.

This completes the proof of Lemma 3.

(KT) 0§ (KT

|
t! ]ds

(14)

O

Lemma 4. Suppose thatb(t,y),F(t,y,x)ando (t,y)satisfy the Assumption 1, then

for te[0,T], n>1k=>1,

and

E (sup Xou (8)= X, (s)‘z) <C,t.
0<s<t

Proof: By Lemmas 1, 2 and Remark 1, we obtain

E(sup Xoue (8) =X, (s)‘zj
O<s<t

j.[b(sl’ Xn+k—l(sl _))_b(sl' anl(sl _))]dsl

<3E {sup
0<s<t 0

+3E{§<‘j£’t :[[G(Sl, Xniea (87)) =0 (8 X4 (5-)) J9B(s,)

+3E{§<l:g :[J.M[F(sl, Xouaa (8 =)X) = F (80 X0 (S, -) X

(15)

(16)



< 3TE.:Ub(s, Xoua (5=))—b(s, X, (s —))‘st

+12Ei”a(s, Xoua(5-)) =0 (s X4 (s —))H ds

F(s, X, a(5-).%)=F (s, XH(S—),X)‘2 v(dx)ds

t
+12E ! j‘ B

ngT(sup A(s))jr{E(sup

0<s<T 0 0<s,<s

X (81 -) = X,a (s, —)‘Zﬂds.

So, setC, =12T ( sup l(s)j , the inequality (15) holds.

0<s<T

Next, from Lemma 2, 3,

E(g(usg Xou (8)= X, (s)‘zj < Czj;K(E(OiliBs X (81)- Xn_l(sl)‘zn ds
<C,[ x(4K,)ds.
Thus
E ((iusg X ()X, (s)‘zj <Cit.
This completes the proof of Lemma 4. m

Now, we choose0<T, <T,te[0,T,], such that
K (Cit)<C,, (17)
where
K, (0)=C,x(q).

Then, for fixedk >1, we introduce two sequences of functions {¢,(t)j  and

{(5”* (t)}nzl,Z... , Where

¢ (t)=Cit,

t

b (t) = [ (44 (5))ds

O<s<t

B (1) = E[SUp X (8)- Xn(s)ﬂ,n =12...

10



Lemma 5. In terms of Assumption 1,

0<4,(1)<4, () <d.(t) << (1),te[0,T,], (18)
holds for each k >1and all positive integern>1.

Proof : Firstly, we shall show (18) forn=1. By Lemma 4, we have

b (t)= E(sup

0<s<t

X,.. () xl(s)\zj <Ct=4(t)te[oT].
Secondly, it is easy to verify

b, (1) =E (gig\xm (s)=X, (S)FJ

thus, for n=2,

b ()< (1) <4 (1), te[0OT].

At last, by what assumed for n, for n+1, it is easy to verify

s (0= €[ 50P[Xits (5) - X9 |

<[ 5 (B (5))ds < [ 1 (4, (5)) ds = . (1)
)

This completes the proof of Lemma 5. i

The proof of Theorem 1:

Step 1: Since ¢,(t) decreases monotonically when n—o and ¢, (t) is
non-negative function on te[O,Tl], according to Lemma 5, we can define the
function ¢(t) by ¢,(t)d¢(t). Obviously, ¢(0)=0 and ¢(t) is continuous

function on[0,T,]. Using the definition of ¢, (t) and ¢(t), we reach

11



p(t)=limg,., (t)=lim ["x, (4, (s))ds = [ x; (¢(s))os, t [0 T,].  (19)

k—o0 J0

Then, (19) implies¢(t)=0,t[0,T,], since ¢(0)=0 and

Therefore we obtain

0< lim E(i‘ﬂ!{ Xou ()= X, (t)\zj = Jim §,,(T,)<limg, (T,)=0,
namely,
nI'!anE((ilie ‘Xn(t)—Xi(t)‘zj:O. (20)
This completes the Step 1. m

Step 2: Define

T, :sup{f: T €[0,T]and lim E(sup‘xn(t)—xi(t)‘zjzo}.

n,i—e o<t<T
Immediately, we get O0<T,<T,<T.Let £>0 be an arbitrary positive number.

Choose & sothat 0<& <min(T,,1) and

&

C,o<—. 21
© <1 (21)
On one hand, from the definition of T,, we have
lim E( sup | X, ()= X; (t)\zjzo.
1= 0<t<T,—§
Thus, for large enough N , we observe
E( sup ‘Xn(t)—xi(t)‘2j<i,n,i2N. (22)
0<t<T,~5 10

On the other hand, we obtain

E( sup |X, (t)- xi(t)\zjgsll+3|2+3|3,

T,—5<t<T,

where

12



I, = E( sup [, (t)- X, (T, —5)\2}

T,—5<t<T,

xn(TZ—a)—xi(TZ—5)\2),
IS:E(TZSELQEZTZ‘X‘ (T,-6)-X, (t)f]'

Using Schwarz’s inequality and Lemmal, we get

T, T
|, <35E I ‘b(sl,xnfl(s,1 _))‘2d31+12E J' HG(SI’Xn—l(Sl_))HZdSl
T,-6 Tp=0

F (s Xoa(8)s x)‘2 v(dx)ds,

+12E ]’ j‘ .
T,-5

T2
<125 | Kl(1+E
)

T,-

X n-1 (31 _)‘2 )dsl
<6C,,

whereC, =125K (1+C,).

Therefore, by (21) we obtain
and

In addition, (22) implies
1, = E[X, (T, ~6)- X (T,-5) <gkN.

Now, it is easy to verify

E( sup | X, (t)- X (t)‘ZJ

0s<t<T,
SE( sup Xn(t)—Xi(t)‘2]+E( sup Xn(t)—Xi(t)‘zj
0<t<T, -6 T, —0st<T,

&
SE+3|1+3|2+3|3 <eg,

namely

lim E(sup X, (t)-X, (t)\zjzo.

n,i—o0 0<t<T,

This completes the Step 2.

13



Step 3:In this step we shall use the method of reduction to absurdity to showT, =T .

Firstly, we give two lemmas:

Lemma 6. AssumeT,<T and choose a sequence of number {a | __so that

a4 0(i > +),
ELSJtJfT) ‘Xn(t)—Xi(t)ani, (23)
then, forn >1i>1we have
EL sup t\xn (s)- X, (s)ﬂ <4a_ +CtT,+t<T. (24)

Proof: First

E( sup [X,(s)-X, (s)‘zj_

T, <s<T, +t

2

n-1 (Tz ) - Xi—l (Tz )‘

2
S

+4E| sup j[b(sl, X (s:-))—=b(s, X (s, —))] ds,

T, <s<T,+t T
2

2
S

+4E| sup I[a(sl, X,a(s: —))—a(sl, Xi. (s —))}dB(sl)

Tss<Tetg
+4E Tziligq“m[ S5 X (80-) %) = F (8, X5 (8, —) X )}NN(dsl,dx)2
<da_, + 4TETTt‘b(sl, X (s-))=b(s, X4 (s, —))rds1
T2
+16ET2T.[+t Hcr(sl, X, (8-)) =0 (s Xy (s —))szs1
T,

F (s X (8-) %)= F (50, Xy (s, —),x)‘2 v(dx)ds,

+16E j j »
TZ

T, +
£4ai1+16T(sup /l(s)) I K{E(sup

0<s<T T, T,<5<s

T, +t
<4a_, +C, I K[E(sup

T, T,<s;<s

X, 1 (5=)= X4 (s, —)‘Zﬂds

X, 1 (5=)= X4 (s, —)\Zﬂds, (25)

then
14



T,<s<T,+t T,<s,<s

T, +
E( sup ‘Xn(s)_xi(s)‘2]S4am+Ce | K{E(sup ‘an(sl—)—xil(sl_)‘zﬂds
TZ
T, +t
<da +C, [ x(4C,)ds,
TZ
<4a,_, +C.t

This completes the proof of Lemma 6. m

Next, choose a positive number 0<n <T —T, and a positive integer p so that
Cexc(4a, , +Cit) <Cq,x, (u) = Coc (u) t €[0,77]. (26)

Introduce the sequence of functions{y, (t)} _and {17, (t)] _ . defined by

k=1,2---

w, (t)=4a, +C4,

t
Vin (t) =4da,,, + IKz (V/k (S)) ds,
0
~ 2
Pua=E[ 30 [, (5) X, (5
Lemma 7. By Assumption 1,
Vin (t) <y, (t) v, (t) <Ly, (t),t € [O,n], (27)
holds for all positive integer k.

Proof: We use Assumption 1, Eq. (25) and Lemma 6 to show it fork =1,2,

X, (s,=)=X, (s, —)‘zﬂ ds

T,+t
., (t)<4a, +C; I K{E( sup

T, T,<8,<s
T,+t
<da,+ [ x,(4a,,+Cqs)ds, =y, (1),

T2

and

15



T,+t
,,(t)<4a,,, +C; j z{E( sup

2
X, (s,=)= X, (s, —)‘ ﬂds
T, T,<3<s

T,+t T,+t

<da,,+ J. K> (V71,n (t))dsl <da,, + _[ K> (l//l (51)) ds,
T, T,
T,+t
=y, (t)<4a,+ j K, (42, ,+C,s, ) ds,

T,
<4a +Ct=y,(t),te[0,n].
Then we have proved
Vo (1) <y, (1) <y (1).
Now assume that the assertion holds for k > 2. Then, by analogous argument, one

obtains

X (8.7) = X (51 —)‘Zﬂ ds

T,+t
Vi (t)<4a,, +C; I K‘|:E( sup

T, T,<s,<s
T, +t

<da,, + .[ K, (¥, 0 (1)) ds,
T2
T, +t

= 4ap+k + J. K, (l//k (31)) ds, =y, (t) (28)
TZ
T, +t

< 4ap+k—l + J. K, (l//k—l (31)) ds,

TZ
=y, (t),t IS [0,17].
Therefore, we obtain (27) for all k.

This completes the proof of Lemma 7. m

In terms of (27), we can define the function w(t) by w, (t)dw(t),(k > x)and
yield that
l// (0) = I!ml//k+l (0) = l!erolap-+—k = O

Sincey (t)is a continuous function on[0,n], by the definition of v, (t)andy (t),

we have

y () =limy,, (t)=lim {4ap+k +iK2 (v (S))dS} =[x (w(s))ds.  (29)

16



Thenby w(0)=0and

dg 1 dg
=—| ——=+om,
J.O+ Kz(q) CG J.O+ K(q

(29) impliesy (t) =0,t €[0,n].

Therefore, we obtain

. B 2
;!I_[gl//k” —IImE( sup Xn+k Xp+k (S)‘ j

0<t<T,+n

<I|mE(

0< t<T2

+lim E( sup Xn+k Xp+k(s)‘2]

koo | T, <t<T, 49

<limy, (n)=w(n)=0,

k—o0

namely

lim E( sup ‘Xn(t)—Xi(t)‘zjzo.

M1=c0 0<t<T,+n
But, this conclusion is contradictory to the definition of T, .

In other words, we have already shown that

lim E(sup Xn(t)—Xi(t)‘zj:O. (30)
n,i—ew 0<t<T
The proof of the existence of solutions to Eq. (2) is complete. o

3.2 Uniqueness of solutions to SDES
Theorem 2. Let X(t) and X(t) be two solutions to Eg. (2) on the same
probability space such that X (0)= X (0), then, under Assumption 1, the pathwise

unigueness holds for Eq. (2), te[0,T].

Proof: By Cauchy-Schwarz inequality and Doob’s martingale inequality, we observe

that

17



2

+£IX<C[F (s, X (s=),x)-F(s, X (s—),x)} N (ds, dx)

2

ds

< 3TE_:Ub(s, X (s—))—b(s, X (s—))rds+3_:[Ha(s, X (s—))—a(s, X (s—))
+3‘(|?‘|.X<C F (s X (s—),x)—F(s,)Z (s—),x)

< 3TE_:Ub(s, X (s—))-b(s, X (s-))
u

Noticing the Assumption 1, we have

2v(dx)ds

2

i +Hcr(s, X (S—))—G(S, X (s—))

F(s,X(s—).x)-F (s, X (s-), x)rv(dx)ds.

E(|x (6)- % (1)< 3TE[ 2(s)c{|X (5)-X () Jos. (31)
Since «(q) or «( q)z/q is concave function, the above inequality (31) yields

E(|x (1)-% (t)‘Z)SSTj;A(S)K(E‘X (5)-X(s)f Jos.

du

x(a)

Then, noticing that l(t) an integrable function and IO =+o0, the above

inequality, as is well know, implies
E(\x(t)_X(t)r):o,te[o,T]. (32)
Since T is an arbitrary positive number, we obtain from this X (t)z X (t)

forall0<t<T.

The proof of the uniqueness of solutions of SDEs (2) is complete. i
4. Stability of solutions

Definition 1. A solution X (t)of Eq.(2) with intial value X (0)=¢ is said to be

stable in mean square if for all & > Othere exists & > 0 such that when E|& —17|2 <3,
18



E(sup

O<s<t

X¢ (s)- x"(s)msa

where X" (t) is another solution of Eq.(2 ) with intial value X (0)=n.

In order to obtain the stability of solutions, we give two lemmas without details

proof.

Lemma 8. (Bihari inequality) Let T >0 andu, >0, u(t),v(t) be continuous
functions on [O,T]. Let x:R" —> R" be a concave continuous and non-decreasing
function such that «(q)>0forq>0. If

u(t)<u, +J';v(s)r<(u(s))ds,for allte[0,T],

then

for allt [0, T ]such that
G(u0)+ﬂv(s)ds eDom(G™),

where G(q)= qids,q >0and G is the inverse function of G .
1 K(S

)

Lemma 9. Let the assumptions of Lemma 8 hold and v(t)>0forte[0,T]. If for

alle >0, there exists t, >0 such thatforO<u,<e¢,

holds. Then for everyt [t,, T], the estimate u(t) <& holds.

Refer to [25, 26] to obtain proofs.

Theorem 3. Let X*(t) and X" (t)be two solutions of the Eq.(2) with intial value &
and 7, respectively. The Assumption 1 is satisfied; then the solution of the Eq.(2) is

said to be stable in mean square.

Proof:

19



X (s)- X”(s)ms4E|§—n|2

E(sup
0<s<t

AE o (s, X (5))-b(s.X" (s)f +fo (5. (5-)) o (5. x" s ))f
+LX‘<C F (s, X< (s—),x)— F (s, X" (s—),x)‘zv(dx)ds

<4E[¢ —n|2 +16t(sup/1(s)) K‘[E

K3(0) :16T(sup /l(s)jzc(q) ,

0<s<T

S S

Let

Thus, «,(q) is obvious a monotone non-decreasing, continuous and concave

function such that x,(0)=0 and . —)dq .50 for anye>0,¢, = ; we
+K q

have Iirrgrl%dqzoo. Thus, there is a positive constant 6 <g such that
S— S KS q

j —dq>T

xé(s)_xv(s)\zj.

From the Lemma 9, letu, = 4E|& —17|2, v(t) =1, u(t) = E(sup

O<s<t

when u, <d <g, we have

. K J. q >T :Ev(t)dt

So, forany te[0,T], the estimate u(t) <& holds.

This completes the proof. i
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