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STANCU TYPE GENERALIZATION OF THE ¢—FAVARD-SZASZ OPERATORS

ALI KARAISA, DURHASAN TURGUT TOLLU AND YASIN ASAR

ABSTRACT. In this paper, we introduce a Stancu type generalization of the ¢g—Favard-Szasz operators, estimate
the rates of statistical convergence and study the local approximation properties of these operators.

1. INTRODUCTION

In ﬂﬁ], Jakimovski and Leviatan introduced a Favard Szasz type operator, by using Appell polynomials
pr (), k >0, defined by

g(u)e™ =" " px(x)u,
k=0

where g (z) = Y an2™ is an analytic function in the disc |z| < R, R > 1 and g (1) # 0, and they established
n=0

several approximation properties of these operators. Ciupa B], by defined the following operators

Pus i) = Sy S0 £ (47

and investigated the approximation properties and the rate of convergence of these operators via the modulus
of continuity.
In ﬂa], Atakut and Biyilikyazic studied some approximation properties of the operators

o 7 —nx X k4
P i) = Sy o s (2 1)

n+p

where py, (nt) is an Appell polynomial in nt which is a Stancu type generalization of the classical Favard-Szasz
operators. Moreover, In [5], the same authors established the approximation properties of the operators

E—[n]qt >~ P (q, [n]qt) [k]q
L, (f;q,2) = am kgo e ! f<x+@>a

q
which is a g—analogue of the classical Favard-Szasz operators related to the g—Appell polinomials. They also
estimated the rate of convergence of these operators.
Now, let us define Stancu type generalization of the ¢g—Favard-Szasz operators as follows:

) gt e P (g ), K], +o
(1.1) Tn,’tﬁ (fiqgz) = A1) kZ:O ([k]q' ) f (:E + m) ’

where {Py(q;.)}x>0 is a ¢—Appell polynomial set which is generated by

M tu o P q;[n]qt ukF
(1.2) A (u) el :Z%

k=0 a
and A(t) is defined by

Au) = Z apu®.
k=0

In this work, we investigate a Korovkin theorem and the rate of statistical convergence by using modulus
of continuity of (IT]). We also obtain some local approximation results of these new operators.
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Let us recall some definitions and notations regarding the concept of g—calculus. Further results can be
found in [7]. In the sequel, g is a real number satisfying 0 < ¢ < 1. For n € N, the g—integer [n], is defined by

and the g—factorial [n] ! is defined as following

i { [l =l men

3

The g—binomial coefficients are given by

[ k L (K] [ — K],!
The g—derivative D, f of a function f is defined by

f (@) — f(q2)
I-qz

Also, if there exists % (0), then (D, f) (0) = % (0). The following q-derivatives of the product of the functions
f(z) and g(x) are equivalent:

(Duf) (@) = 2 #0.

Dy (f(x)g(x)) = [ (qx) Dag (x) + g(2) Do f (x)

and

Dy (f(x)g(x)) = f (x) Dog () + g(qz) Do f () .

The g—analogues of the exponential function are given by

e}
=0
q

= [n]q!

n

and
e n
x n(n—1) I
Ey=) q > ] !
n=0

q

The exponential functions have the following properties:

Dg (€2%) = ael®, D (E:I”) =aBJ", egE; " = Eje," = 1.

q q 99

2. STATISTICAL APPROXIMATION PROPERTIES

Before proceeding further, let us give basic definition and notation on the concept of the statistical con-
vergence which was introduced by Fast [11]. Let K be a subset of N, the set of natural numbers. Then,
K, = {k<n:k€ K}. The natural density of K is defined by §(K) = lim, % |K,| provided that the limit
exists, where |K,| denotes the cardinality of the set K. A sequence z = (z3,) is called statistically convergent
to the number ¢ € R, denoted by st —limx = ¢. For each € > 0, the set K, = {k € N: |z — | > ¢} has a
natural density zero, that is

lim l|{l<:§n: |z — €] = €} =0.
n—oo N
It is well know that every statistically convergence sequence is ordinary convergent, but the converse is not true.
The concept of statistical convergence was firstly used in approximation theory by Gadjiev and Orhan
[12]. They proved the Bohman—Korovkin type approximation theorem for statistical convergence. For further
information related to the statistical approximation of the operators, the followings are remarkable among
others: [13-17].
Now, we may begin the following lemma which is needed proving our main result.
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Lemma 2.1. Forn € N, x € [0,00) and 0 < ¢ < 1, we have

21) T3 (eolt);gsz) = 1,
0B (o (paa) — oo el a | RD,(A(1)
(22) Tn,t ( 1(t)7q, ) - + [n]q+ﬂ + [n]q+ﬂ [n]q+ﬁ )
o8 ottroa — (4o Mt \', 20la+ RD(AQ)
T’n,,t ( 2(t)7Q7 ) - < + [n]q+ﬂ + [n]q+ﬂ
(2.3) +a2 +2RaDgy(A(1) +2D§(A(1)) N [n]qt[2a+Dq(z;1(1))] N q[n]qt N
(i, +8) (in), + 8) (inl, +8)

q[n],t 7[71]qt

where R = % ,and ey(t) = (z+ )", v=0,1,2.

Proof. If we consider (IL2), we can show the following

[n]gt
(2.4) N = A1) e,
k=0 q
(2.5) = p (4 71 K], = A1) [n], tel " + ™' A (1)
prrd [k]q' q q

and

P q?[n]qt n| t n| t q[n] t n| t
(2.6) k([k] , )[kJi—Dg (A1) eg""" + Dy(A(L) ], teg " + ], 1D, A () e """ + AL) [l 2y

k=0 qa

By using the relations (24)-(2.8), from (LI]), we obtain the results

—[n],t oo . —[n],t
o E a Pk | G; [n]qt E, a [n] ¢
T (eo(t); s ) = ;‘1(1) > ([k] ! ) = 2(1) A(l)eg * =1,

k=0 q

—[n],t oo .
o.f o — Ea " Zpk (‘% [”]qf) k], +a
Tn,t (61 (t)v q; :E) - A (1) [k] ' x + [n]q m ﬂ

=0 g
gy Mt i Pi (q; [n]qt) . g, Mt i Pi (q; [n]qt) 2

O =IO =

—[n],t

o E,
Pl B A (in], +8)
], ¢ o Dy(A()R

[n], + 8 " nl,+8  [n],+8

= x+

(40)[n) tellat 4 MMt p 4 M)

q 4

= x+

= x+



and

—[nlyt o p q;[n]qt k o 2
T3 (eat); gio) = Eq o 3 k( ) <x+ k], + )

B, " > Pk (q; [n]qt)
A(1) ([n]q+[3)2 = K
_ [y Iyt 2+ 22fa + RD,(A1))]
[n], + B

n]q

+

o® + 2RaDy(A(1) + D2(A(1)) N [n], t[2a + Dg(A(1))] N q[n],t

([n]q_’_ﬁ)2 (["]q+5)2 ([n]q+ﬁ)2.

Hence, the proof is completed.
Theorem 2.2. Assume that q := (q), 0 < g, < 1 be a sequence satisfying the following conditions:
(2.7) st—lirrlnqnzl, st—lirrlan:b, b<1
Then, if f is any monotone increasing continuous function defined on [0,a], we have the following:
st—1lim | T35 (£, 4ns ) = f lego.0= 0-
Proof. Tt is enough to prove that
st —Tim || T3 (60 (0),40 ) — 0(t) o= 0
where v =0, 1, 2.
From the equation ([ZT), it is easy to obtain that
st —tim || 755 (eo(t), i) — eo(t) llcio. = 0.
By taking sup, 4c(,q in Z2)), we get

a a+ RD,(A(1 Ba
| TP (er(t), gmi ) — ex(t) llopo.a< o(A(1))

[nlg + 8 [nlg + 8
Now, let € > 0 be given, define the following sets:
K = {k Tl e®,a) = ea(t) 1> e}
K - {k:L;},
Mg, +8 ~ 2
Ky = {k;w>£}7
[n)q. + 8 2
such that K C K7 U Ks.
From (21), one can see that
o Ba e} { R+«
4k <n | T  (er(t), gn;.) — ex(t e <Ok<n:———>-v4063k<n: >
(b <nil T 0.0 - a0 lowa> of <0k <n: P05 S R

By 7)), it is obvious that,

(2.8) st — lim (#) = 0.

n \[nlg, +8
Thus, we have
(2.9) st —lim || 7,7 (e1(t), g3 -) = €1 llcgo,a1= 0.
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By taking sup, ,c(9 o in (2.3)), one can write the following
Ba®[n],  2afa+ RD,(AQ1))] | @ +2RaDy(A(1)) + Da(A(1))
Wte W8 :
q g ([n]q + 5)
[n], al2a + Dy(A(1))] L9 [n], a

(i, +8)  (wl,+8)"
[n]q

st — lim <m> =0, st—lim <([n]([:1]73:6)2> =0and st—lim <([7§’;7+"ﬁ)2> —0.

Now, let € > 0 be given, we define the following sets:

I T2 (e2(t), ans ) — e2(t) oo <

+

It is obvious that

Vo= {ril T <>qk,.>_eg<)| J,
nT {k'Qa[aﬁ]iiﬁ /5}

v = {k:a+2RaD(((?n(])): )g (1) + 522/2}7
V= {k:a[n]q’c([[iij 5;4< m);}

such that V C V; U Vo U V3 U V.
Thus, we obtain

5{k <l T ea(t) gns ) — e2(t) llopo.a> 6} <9 2afa + Dy(AQL))]

k<n: 2;}
[n]q, + B
D

{ 2

* 5{“"’ <n1qk:ﬁ>
{
{

+ 4

([ a B 2
agx[n]q, e}
2.10 + 0dk<n > -
(210) [l + AP~ 7
Hence, (23), (@) and 2I0) imply that
(2.11) st —lim || T (ea(t), g3 ) — e2(t) lcfo,a1= 0-

3. RATES OF STATISTICAL CONVERGENCE

In this section, we give the rates of statistical convergence of the operators T ( f;¢;x) by means of
modulus of continuity with the help of functions from Lipschitz class.
The modulus of continuity of f, w(f,0) is defined by

w(f,0) = sup |[f(x)— f(y)l|

le—y|<o

z,y€[0,a]
It is well-known that for a function f € C10, al,

lim w(f,0)=0
n—0t
for any § > 0
|z —y|

(3.1) 7)1 <wf0) (28 4 1)

Now, we prove the following theorem for the rate of pointwise convergence of the operators T,ff ’tB (f;q;x) to the
function f(z + t) by means of modulus of continuity.
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Theorem 3.1. If the sequence q := (gn) satisfies the condition (2.7), x € [0,00) and t > 0, then we have

Tl (fr00) = F@)] < 20(F,V/B0),
for all f € C*[0,00), where 0+ = Ts"tﬁ (s —e1(t)* qn; 2)

Proof. To prove the theorem, we will use the linearity and positivity of the operators T ( fiq¢;x). By (1),

we have
—[n],t oo .
E, ™ pk@dﬂﬁ) k], +
T2 (Fao) — fla+ 0] < = flo+ =3 |~ fla+1)
A T [nl, + 8
B, Mt oo pr (4[], t k], +
< L > ( ) (f,){l[]q a—t‘+1}
A 2, 5 [l 8
—[n],t o .
SAM) 2=, [, + 8 ’
If we apply Cauchy-Schwarz inequality for sums, we obtain
1/2 1/2
ipk (q; [n]qt) k], + ? _ ipk (q; [n]qt) > pk < [k], )
prd [%],! [n], + 8 — [%],! k ‘ [n]
Using above inequality and by (21I), we have
_1/2
p 1B S (1,1) (18],
k 0
S 1/2
(£.6) 1+ & Eimtmp’“ v <’“ )
= w y + —
] i A(l) P [n] |
17w 1/2
= wlr0) e g [ - e1<t>>2;q;x)} }
such that we choose § = /0, = Ti’tﬁ ((s — e1(t))?; gn; ). This step concludes the proof. O

Theorem 3.2. If the sequence q := (gy) satisfies the condition (2.7) and f € C[0,a], then we have

I T (frqns ) — £ o< 20(f, V/on),

where

5o Pl o® +2RaD, (A1) + DiAQ) [l t2o+ Dy(AQ)] gyt

(in), +8)° (in), +8)° (), +8)" (], +8)"

Proof. Now, let us estimate the second moment of the operators T}, P (f:q; ). From @ZI)-23), we get

(3.2) TP (s — e ()% 32) = t2[n], 4 a? + 2RaD,4(A(1)) th(A(U)
(inl, +8) (inl, + 5)
" [n], t[2a + Dq(A(1))] gln],t

2 + z
(inl, +5) (inl, + 8)
a,f L[ a8 2 1/2
(3.3) ITo (fiq2) = fx+ 1) < w(f,0) {1 t5 [Tn,’t (s —ex(t)) ;q;x)} }
Substituting ([B2)) into (B3)) and letting § = §,, in B3], we obtain

H Ta B(f qn; ) - f() ”C[O,a]< 20J(f, V 571)
Thus, we get the desired result. O

By Theorem [3.I] we have



Now, we give the rate of convergence of the operators Ti ’tﬁ with the help of functions from Lipschitz class
Lippr(a) where M > 0 and 0 < o < 1. A function f is an element of Lipas(a) if

(3.4) |f(z) = f)l < M|z —y[* (z,y € [a,0]).

Theorem 3.3. Let ¢ := (¢n) be a sequence satisfies the condition (2.7) and f € Lipm(a), 0 < a < 1, then we
have

T (f5qms ) = F()] < M,
where 0, = (T,‘i’f(el(t) —8)2,q;x)'/2.

Proof. Since T # is linear and positive and by (34), we obtain

T, (franiz) — f@)] < TP = f@)] g5 2)
< MTH (|t — 2|, g ).

[e]3

Assuming p = é, q= 5

and applying the Holder inequality, we get

TP (frans2) — (@) < TEL(f@) - f2)],g52)
< M{TS (er — )%, gy )}/

n,t

Taking 6, = (T (e1 — )2, ¢; 2)/2. We get the desired result. O

n,t
4. LocAL APPROXIMATION
In this section, we state the local approximation theorem of the operators Ti’tﬁ (f;q;x). Let Cp [0, 00) be the

space of all real valued continuous bounded functions f on [0, c0) with the norm || f ||=sup {|f(z)| : x € [0, 00)}.
The K-functional of f is defined by

K>(f;0) = nf {If —gll + ollg"II}

where § > 0 and W? = {g € Cp[0,00) : ¢/,g" € Cg[0,00)}. By Devore-Lorentz |1, p. 177], there exists an
absolute constant C' > 0 such that

(4.1) Ka (£,8) < Can (£,V3)
where

wo (f,\/S): sup  sup |f(z+2h) —2f(zx + h) + f(z)]

0<h<0z€[0,00)

is the second order modulus of smoothness of f. Moreover,

w(f,6) = sup sup |f(z+h)— f(z)|

0<h<0 z€[0,00)
denotes the modulus of continuity of f.
Now, we give the direct local approximation theorem for the operators T} ’f (f;q;2).

Theorem 4.1. Let q € (0,1). We have

T2 (fiase) e +0)] < Con () ( 1

a+ Dy(A(1))R — Bt)
[nlq +
Ve € [0,00), f € Cp[0,00), where C is a positive constant.

Proof. Let us define the following operators

~a o nlgt + a+ D,(A(1))R
(12) Tl (Fo) = T2 (i) — f (4 1 A0 ¢ fa o),
[n]g + B
x € [0,00). The operators i‘;‘f (f;q;x) are linear. Thus, we have the following:
(43) Toi (s — (x + ) q;2) =0,

(see Lemma 2.0)). Let g € W2, from Taylor’s expansion

S

9(5) = ga+ ) + g+ ) (s — (& + 1) + / (s )

s € ]0,00) and [@3) we obtain

T2 (g5 q:2) = gz +t) + T/ </

7

S

(s — u)g”(x)du) .

+t



By (&2)), we have the following

72f ([ (s =)

[n]gt+at+Dg(AQ)R

T3, (g5 q:2) — ga + )] <

AT [nlgt a4 Dy(A()R y
+ /w+t T+ P —u>g (u)du
a,B ° " mﬁ_w [n]qt-i-a—i—R p
2
Using (B.2), we get
N t+a+ Dy(A(1))R\? t4 o+ Dy(A(1)R\’
TP ((s = (z + 1) ¢) + (x+ "y ?n]q+‘1ﬁ( ) ) < Gnt (a:+ "y &]q:ﬁ( L) )
Thus, by ([@4), we obtain
= Dy(A(1)R\?
(4.5) Tof (grq:7) —g(z +1)] < 6n+<x+["]qt+?n]t+q[§ (1) ) .

By (LI), &) and @2), we get

TP (frq:2) | T (fiq:2) + 2| £
IAITSE (15.q52) + 2|/ ]
3 £1I-

NN N

(4.6)
Now, by (£2), (£3) and (L0)
T3P (fiqsa) — flz+8)] < TSP (fF—gigz) = (f — g) (@ + )| + T3 (g a3 2) — gla + 1)

[n]gt + o+ Dy(A(1))R
f(“ [y + 8 >_f(“t)'
< Alf =gl +a)llg”

In view of @), Vg € (0,1) we get

+

T (Frgia) — Fo + 1)) < Cuon (f,5) + (“Dq(“‘(”m‘ﬁt)

[n]q +
and this concludes the proof. (I
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