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Abstract

There are few optimal fourth-order methods for solving nonlinear equations when the

multiplicity m of the required root is known in advance. Therefore, the first focus of this

paper is on developing new fourth-order optimal families of iterative methods by a simple

and elegant way. Computational and theoretical properties are fully studied along with a

main theorem describing the convergence analysis. Another main focus of this paper is the

dynamical analysis of the rational map associated with our proposed class for multiple roots;

as far as we know, there are no deep study of this kind on iterative methods for multiple

roots. Further, using Mathematica with its high precision compatibility, a variety of concrete

numerical experiments and relevant results are extensively treated to confirm the theoretical

development.
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1 Introduction

With the advancement of computer algebra, finding higher-order multi-point methods, not

requiring the computation of second-order derivative for multiple roots become very important
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and interesting task from the practical point of view. These multi-point methods are of great

practical importance since they overcome theoretical limits of one-point methods concerning

the order and computational efficiency. Further, these multi-point iterative methods are also

capable to generate root approximations of high accuracy.

Let us consider a nonlinear function f : D ⊂ R→ R, where D is an open interval such that

rm ∈ D is a root of equation f(x) = 0 with multiplicity m.

In the last years, some optimal iterative methods (in the sense of Kung-Traub conjecture

[1]) have appeared. In 2009, Li et al. [2] proposed the following fourth-order optimal two-point

method which requires one function and two first-order derivative evaluations per iteration
yn =xn −

2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 =xn −
f(xn)

2f ′(xn)

[
m(m− 2)

(
m

m+2

)m
f ′(yn)−m2f ′(xn)

f ′(xn)−
(

m
m+2

)m
f ′(yn)

]
.

(1.1)

Sharma and Sharma [3] proposed the following optimal variant of Jarratt’s method for ob-

taining multiple roots

yn =xn −
2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 =xn −
m

8

{
(m3 − 4m+ 8)− (m+ 2)2

(
m

m+ 2

)m f ′(xn)

f ′(yn)

×
(

2(m− 1)− (m+ 2)

(
m

m+ 2

)m f ′(xn)

f ′(yn)

)}
f(xn)

f ′(xn)
.

(1.2)

It has fourth-order of convergence and requires one-function and two-derivative evaluation per

iteration.

Again in 2010, Li et al. [4] proposed six fourth-order two-point methods with closed formulas

for finding multiple zeros of nonlinear functions. Among them, the following one is optimal:
yn =xn −

2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 =xn − a3
f(xn)

f ′(yn)
− f(xn)

b1f ′(xn) + b2f ′(yn)
,

(1.3)

where

a3 = −m(m+ 2)(m+ 2)3

2(m3 − 4m+ 8)

(
m

m+ 2

)m

,

b1 = − (m3 − 4m+ 8)2

m(m2 + 2m− 4)3
,

b2 =
m2(m3 − 4m+ 8)

(m2 + 2m− 4)3

(
m+ 2

m

)m

.

Zhou el al. [5] in 2011 constructed a more general iteration scheme for multiple roots,
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requiring one function and two derivative evaluation per iteration as follows:
yn =xn −

2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 =xn −
f(xn)

f ′(xn)
Q

(
f ′(yn)

f ′(xn)

)
,

(1.4)

where Q(.) ∈ C2(R) is a weight function and discussed the conditions on Q to obtain fourth-

order optimal methods from it. Zhou et al. have also proved that the above methods namely,

(1.2) and (1.3) are special cases of his scheme.

In 2012, Sharifi et al. [6], proposed an optimal family of fourth-order methods as below
yn =xn −

2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 =xn +

(
m(m2 + 2m− 4)

4

f(xn)

f ′(xn)
− m(m+ 2)2

4

(
m

m+ 2

)m f(xn)

f ′(yn)

)[
G

(
f ′(yn)

f ′(xn)

)
+H

(
f(xn)

f ′(yn)

)]
,

(1.5)

where G(.) and H(.) are two real valued weight functions.

On the other hand, Soleymani and Babajee [7] in 2013, developed following fourth-order

optimal family of methods
yn =xn −

2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 =xn −
4m
(

m
m+2

)m
f(xn)(

m
m+2

)m
(m2 + 2m− 4)f ′(xn)−m2f ′(yn)

H

(
f ′(yn)

f ′(xn)

)
,

(1.6)

where H(.) is a real valued weight function.

Zhou et al. [8] in 2013, constructed another family of fourth-order methods, requiring two-

function and one-derivative evaluation per iteration as follows:
yn =xn −m

f(xn)

f ′(xn)
,

xn+1 =xn −mG(v)
f(xn)

f ′(xn)
,

(1.7)

where v = m

√
f(yn)
f(xn)

and G(.) ∈ C2(R) is a weight function.

Also recently, Soleymani et al. [9] proposed the following optimal method for finding multiple

roots
yn =xn −

2m

m + 2

f(xn)

f ′(xn)
,

xn+1 =xn −
16f ′(yn)f(xn)

m2(m− 2)2
(

m
m+2

)m−3
[f ′(xn)]2 + 2(4 + 8

m
+ 2m− 2m2 −m3)f ′(xn)f ′(yn) + m3

(
m
m+2

)−m
[f ′(yn)]2

.

(1.8)

Motivated and inspired by the recent activities in this direction, researchers proposed optimal

fourth-order two-point methods which require either one f and two first-order derivative f ′ or

3



two f and one first-order derivative f ′ per iteration. In this manuscript, we present a simple

and elegant way to achieve as high as possible convergence order consuming as small as possible

function evaluations. Therefore, to develop an optimal general class of fourth-order methods, we

have taken the arithmetic mean of Halley’s method [10, 11] and Schröder’s method [10, 11, 12]

with five disposable parameters.

In order to study the complex dynamical behavior of the operator associated to these iterative

methods, it is necessary to recall some basic concepts. For a more extensive review of these tools,

see [13, 14].

Let R : Ĉ→ Ĉ be an operator that results from applying an iterative method on a particular

function, where Ĉ is the Riemann sphere. The orbit of a point z0 ∈ Ĉ is defined as the set of

successive images of z0 by the operator, {z0, R(z0), . . . , R
n(z0), . . .}.

The dynamical behavior of the orbit of a point on the complex plane can be classified

depending on its asymptotic behavior. In this way, a point z0 ∈ C is a fixed point of R if

R(z0) = z0. A fixed point is attracting, repelling or neutral if |R′(z0)| is less than, greater than

or equal to 1, respectively. Moreover, if |R′(z0)| = 0, the fixed point is superattracting.

If z∗f is an attracting fixed point of the operator R, its basin of attraction A(z∗f ) is defined

as the set of pre-images of any order such that

A(z∗f ) =
{
z0 ∈ Ĉ : Rn(z0)→ z∗f , n→∞

}
.

A point zc is defined as a critical point if R′(zc) = 0. A classical result establishes that there

is at least one critical point associated with each invariant Fatou component [14].

The set of points whose orbits tends to an attracting fixed point z∗f is defined as the Fatou

set, F(R). The complementary set, the Julia set J (R), is the closure of the set consisting of its

repelling fixed points, and establishes the boundaries between the basins of attraction.

The aim of this paper is to highlight the advantages of this new approach over the traditional

approaches like weight function approach, quadrature approach, functional approach, etc. It is

also observed that the body structures of our proposed families of methods can be simpler

than the existing families of fourth-order methods for multiple roots. Further, these families of

iterative methods are more effective and equally competent in all the tested examples to the

existing methods available in the literature. The dynamic study of these methods not only

supports the theoretical aspects, but also shows those elements of the parametric families more

stable and which ones must be avoided because of their dangerous numerical behavior.

These tools have been widely used in the last years for studying the stability of many iterative

methods for solving nonlinear equations with simple roots (see, for example, [15, 16, 17, 18]).
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Recently, these studies have been extended to iterative methods for multiple roots as in [19, 20].

Let us remark that, in [20], the authors analyzed the dynamics of the methods under study

applied on polynomial p(z) = ((z−a)(z−b))m. In this manuscript, we will analyze the dynamics

of the proposed family on polynomial p(z) = (z − a)m(z − b), where m = 2 or m = 3.

The rest of the paper is organized as follows: in Section 2 we describe the new optimal fourth-

order families and analyze their convergence; in Section 3 the complex dynamics of the families

is studied, showing curious behavior in terms of stability and convergence to the roots. Section

4 is devoted to numerical performances of the methods, comparing the described schemes with

other known ones. Finally, some conclusions and remarks are presented.

2 An optimal general class of iterative methods

The well-known Halley’s method [10] for simple zeros and Schröder’s method [12] for multiple

roots are given by

xn+1 = xn −
2f(xn)f ′(xn)

2[f ′(xn)]2 − f(xn)f ′′(xn)
(2.1)

and

xn+1 = xn −
f(xn)f ′(xn)

[f ′(xn)]2 − f(xn)f ′′(xn)
, (2.2)

respectively. We now intend to develop new optimal families of Jarratt-type method [11]. For

this, we take the arithmetic mean of (2.1) and (2.2) to get

xn+1 = xn −
1

2

[
2f(xn)f ′(xn)

2[f ′(xn)]2 − f(xn)f ′′(xn)
+

f(xn)f ′(xn)

[f ′(xn)]2 − f(xn)f ′′(xn)

]
. (2.3)

Now, consider a Newton-type iterative method for multiple roots as

yn = xn −
2m

m+ 2

f(xn)

f ′(xn)
, (2.4)

where m ≥ 1 is the multiplicity of the multiple root x = rm.

Now, expanding the function f ′(yn) = f ′
(
xn − 2m

m+2
f(xn)
f ′(xn)

)
about the point x = xn by Taylor’s

series expansion, we have

f ′
(
xn −

2m

m+ 2

f(xn)

f ′(xn)

)
≈ f ′(xn)− 2m

m+ 2

f(xn)f ′′(xn)

f ′(xn)
,

therefore, we obtain

f ′′(xn) ≈ (m+ 2)f ′(xn)[f ′(xn)− f ′(yn)]

2mf(xn)
. (2.5)

Using this approximate value of f ′′(xn) in the method (2.3) and after some simplification, we get


yn =xn −

2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 =xn −
[

2mf(xn)

(3m− 2)f ′(xn) + (m+ 2)f ′(yn)
+

mf(xn)

(m− 2)f ′(xn) + (m+ 2)f ′(yn)

]
.

(2.6)
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This method satisfies the following error equation

en+1 =

[
1−m

(
1

(−2 +m)m+ u(2 +m)2
+

2

u(2 +m)2 +m(−2 + 3m)

)]
en +O(e2n),

where u =

(
m

m+ 2

)m

. It is clear that, according to the Kung-Traub conjecture, the above

method (2.6) is not an optimal method because it has linear-order convergence and requires

three evaluations of function per full iteration. Therefore, to build our optimal families of

methods, we shall take five free disposable parameters. Therefore, we consider
yn =xn −

2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 =xn −
[

2ma1f(xn)

(3m− 2)f ′(xn) + (m+ 2)a2f ′(yn)
+

ma3f(xn)

(m− 2)a4f ′(xn) + (m+ 2)a5f ′(yn)

]
,

(2.7)

where a1, a2, a3, a4, a5 are real parameters such that the order of convergence reaches at the

optimal level four without using any more functional evaluations. Theorem 2.1 indicates that

under what choices on the disposable parameters in (2.7), the order of convergence will reach at

the optimal level four.

Theorem 2.1 Let f : D ⊆ R → R be a sufficiently smooth function defined on an open interval

D, enclosing a multiple zero of f(x), say x = rm with multiplicity m ≥ 1. Then the family of

iterative methods defined by (2.7) has fourth-order convergence when

a1 =− (3m− 2)(m2(m− 2)a4 + u(m3 + 4m2 − 8)a5)3

2(m3(m− 2)a4 + u(m4 + 2m3 − 4m2 + 16)a5)((m− 2)2m3a2
4 + 2m3u(m2 − 4)a4a5 + u2(m + 2)2(m3 − 4m + 8)a2

5)
,

a2 =−
m2

(
m
m+2

)1−m
(3m− 2)((m− 2)a4 + (m + 2)ua5)

m3(m− 2)a4 + u(m4 + 2m3 − 4m2 + 16)a5
,

a3 =− (m− 2)(m(m− 2)a4 + u(m + 2)2a5)3

2((m− 2)2m3a2
4 + 2m3u(m2 − 4)a4a5 + u2(m + 2)2(m3 − 4m + 8)a2

5)
,

(2.8)

where u =
(

m
m+2

)m
and a4 and a5 are free parameters. The family (2.7) satisfies the following

error equation

en+1 =

(
α1

α2
c31 −

1

m
c1c2 +

m

(m+ 2)2
c3

)
e4n +O(e5n), (2.9)

where α1 = (u2(m+ 2)2(m6 + 6m5 + 10m4− 2m3− 24m2 + 8m− 32)a25 + 2u(m8 + 4m7− 18m5−

24m4 + 24m3 + 8m2 − 64m+ 96)a4a5 +m3(m− 2)2(m3 + 2m2 + 2m− 2)a24),

α2 = 3m4(m + 2)2(u(m + 2)2a5 + m(m − 2)a4)(m
2(m − 2)a4 + u(m3 + 4m2 − 8)) and ck =

m!

(m+ k)!

f (m+k)(rm)

f (m)(rm)
, k = 1, 2, 3, . . .

Proof: Let x = rm be a multiple zero of f(x). Expanding f(xn) and f ′(xn) about x = rm

by the Taylor’s series expansion, we have

f(xn) =
f (m)(rm)

m!
emn
(
1 + c1en + c2e

2
n + c3e

3
n + c4e

4
n

)
+O(e5n), (2.10)
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and

f ′(xn) =
fm(rm)

(m− 1)!
em−1n

(
1 +

m+ 1

m
c1en +

m+ 2

m
c2e

2
n +

m+ 3

m
c3e

3
n +

(m+ 4)

m
c4e

4
n

)
+O(e5n),

(2.11)

respectively.

From equations (2.10) and (2.11), we have

f(xn)

f ′(xn)
=

1

m
en −

c1
m2

e2n +

(
(m+ 1)c21 − 2mc2

m3

)
e3n +O(e4n). (2.12)

Furthermore, we have

2ma1f(xn)

(3m− 2)f ′(xn) + (m+ 2)a2f ′(yn)
=

(
2a1

3m− 2 + a2mm−1(m+ 2)2−m

)
en

−
(

2a1(m+ 2)m((3m− 2)m2(m+ 2)m + a2m
m(m3 + 4m2 − 8))c1

m[a2mm(m+ 2)2 +m(m+ 2)m(3m− 2)]2

)
e2n

+Ae3n +O(e4n),

(2.13)

where

A =
2a1

m2[u(m+ 2)2a2 +m(3m− 2)]3
[
(m3(3m− 2)2(m+ 1) + 2u(3m6 + 13m5 + 8m4 − 18m3 − 20m2

− 8m+ 16)a2 + u2(m+ 2)2(m4 + 5m3 + 4m2 − 8m− 16)a22)c21 − 2m((3m− 2)2m3

+2mu(3m4 + 10m3 − 2m2 − 16m+ 8)a2 + u2(m+ 2)3(m2 + 2m− 4)a22)c2
]
.

Similarly, we can also get

ma3f(xn)

(m− 2)a4f ′(xn) + (m+ 2)a5f ′(yn)
=

(
ma3

m(m− 2)a4 + (m+ 2)2ua5

)
en

−
(
a3(m

2(m− 2)a4 + u(m3 + 4m2 − 8)a5)c1
m(m(m− 2)a4 + (m+ 2)2ua5)2

)
e2n

+Be3n +O(e4n),

(2.14)

where

B =
a3

m2(m(m− 2)a4 + (m + 2)2ua5)3
[
(m− 2)2m3a2

4((m + 1)c21 − 2mc2) + 2u(m2 − 4)a4a5((m4 + 3m3 − 2m− 4)c21

−2m2(m2 + 2m− 2)c2) + u2(m + 2)2a2
5((m4 + 5m3 + 4m2 − 8m− 16)c21 − 2m(m3 + 4m2 − 8m)c2)

]
.

Using equations (2.13) and (2.14) in scheme (2.7), we get the following error equation

en+1 = en −
[

2ma1f(xn)

(3m− 2)f ′(xn) + (m + 2)a2f ′(yn)
+

ma3f(xn)

(m− 2)a4f ′(xn) + (m + 2)a5f ′(yn)

]
,

=

(
1− 2a1

3m− 2 + a2mm−1(m + 2)2−m
− ma3

m(m− 2)a4 + (m + 2)2ua5

)
en

+

(
2a1(m + 2)m((3m− 2)m2(m + 2)m + a2m

m(m3 + 4m2 − 8))c1
m[a2mm(m + 2)2 + m(m + 2)m(3m− 2)]2

+
a3(m2(m− 2)a4 + u(m3 + 4m2 − 8)a5)c1

m(m(m− 2)a4 + (m + 2)2ua5)2

)
c1e

2
n

− (A + B)e3n + O(e4n).

(2.15)
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For obtaining an iterative method of order four, the coefficients of en, e2n, and e3n in the error

equation (2.15) must be zero simultaneously. After simplifying the equation (2.15), we have the

following values of a1, a2, a3 involving two free parameters a4 and a5

a1 =− (3m− 2)(m2(m− 2)a4 + u(m3 + 4m2 − 8)a5)3

2(m3(m− 2)a4 + u(m4 + 2m3 − 4m2 + 16)a5)((m− 2)2m3a2
4 + 2m3u(m2 − 4)a4a5 + u2(m + 2)2(m3 − 4m + 8)a2

5)
,

a2 =−
m2

(
m
m+2

)1−m
(3m− 2)((m− 2)a4 + (m + 2)ua5)

m3(m− 2)a4 + u(m4 + 2m3 − 4m2 + 16)a5
,

a3 =− (m− 2)(m(m− 2)a4 + u(m + 2)2a5)3

2((m− 2)2m3a2
4 + 2m3u(m2 − 4)a4a5 + u2(m + 2)2(m3 − 4m + 8)a2

5)
,

(2.16)

where u =
(

m
m+2

)m
.

The family (2.7) satisfies the following error equation

en+1 =

(
α1

α2
c31 −

1

m
c1c2 +

m

(m+ 2)2
c3

)
e4n +O(e5n), (2.17)

where α1 = (u2(m+ 2)2(m6 + 6m5 + 10m4−2m3−24m2 + 8m−32)a25 + 2u(m8 + 4m7−18m5−

24m4 + 24m3 + 8m2 − 64m+ 96)a4a5 +m3(m− 2)2(m3 + 2m2 + 2m− 2)a24),

α2 = 3m4(m+ 2)2(u(m+ 2)2a5 +m(m− 2)a4)(m
2(m− 2)a4 + u(m3 + 4m2 − 8)).

This reveals that the general two-step class of methods (2.7) reaches the optimal order of

convergence four by using only three functional evaluations per full iteration. This completes

the proof of Theorem 2.1. 2

2.1 Some special cases

It is straight forward to see from the above mentioned general class (2.7) that for different

specific values of a4 and a5, the following various optimal families of methods can be derived

by fixing one of the free disposable parameters. Some of the important families of methods are

given below as:

(i) For a5 = −1, family (2.7) reads as
yn =xn −

2m

m+ 2

f(xn)

f ′(xn)
,

xn+1 =xn −
mf(xn)α5

2((m+ 2)f ′(yn)− (m− 2)a4f ′(xn))α6
,

(2.18)

where

α5 = 2u(m2−4)(u(m4+2m3−2m2−4m−8)f ′(xn)−m2(m2−6)f ′(yn))a4+m3(m−2)2((m−2)f ′(yn)

−muf ′(xn))a24)−u2(m+ 2)2(u(m− 2)(m+ 2)3f ′(xn)− (m4 + 2m3− 8m2− 16m− 16)f ′(yn)), and

α6 = (u(m+ 2)(u(m3 − 4m+ 8)f ′(xn)−m3f ′(yn)) +m3(m− 2)(f ′(yn)− uf ′(xn))a4).

The above scheme is a new fourth-order multi-point family of iterative methods.

Some specific subcases of above family (2.18) are:
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(a) For a4 = 0, family (2.18) reads as a fourth-order method (1.3) proposed by Li et al.

[4].

(b) For a4 = −u(m+2)2

m2 , family (2.18) reads as
yn =xn −

2m

m + 2

f(xn)

f ′(xn)
,

xn+1 =xn −
muf(xn)[m(m5 − 9m3 + 20m− 8)f ′(yn)− u(m6 + 2m5 − 5m4 − 10m3 + 8m + 16)f ′(xn)](

m2f ′(yn) + u(m2 − 4)f ′(xn)
)(
u(m3 − 4m + 4)f ′(xn)−m(m2 − 2)f ′(yn)

) .

(2.19)

This is a new fourth-order multi-point iterative method.

(c) For a4 = −u(m+ 2)2, family (2.18) corresponds to
yn =xn −

2m

m + 2

f(xn)

f ′(xn)
,

xn+1 =xn −
f(xn)mu

[
f ′(yn)h1 + f ′(xn)u(48 + 16m− 20m3 + 5m4 + 4m5 − 6m6 + m8)

]
2 (f ′(yn) + f ′(xn)u (−4 + m2)) (−f ′(yn)m3 (−3 + m2) + f ′(xn)u (8− 4m− 3m3 + m5))

,

(2.20)

where h1 =
(
−16 + 16m− 40m2 + 30m3 + 3m4 − 16m5 + 6m6 + 2m7 −m8

)
.

It is another new fourth-order multi-point iterative method.

(d) For

a4 = −
2(2 +m)

√
(16 + 16m+ 12m2 − 4m3 − 3m4) + (16 + 16m+ 8m2 − 2m3 − 4m4 −m5)

u−1(−2 +m)m4
,

general class (2.7) reads as a fourth-order method (1.8) proposed by Soleymani et

al. [9].

(ii) For a5 = 0 and a4 6= 0, general class (2.7) is a fourth-order method (1.1) proposed by Li

et al. [2].

3 Dynamical analysis in the complex plane

Under the point of view of complex dynamics, we will study the general convergence of family

(2.7) on polynomials with multiple roots of multiplicity 2 and 3. It is known that the roots of a

polynomial can be transformed by an affine map with no qualitative changes on the dynamics of

the family. So, we can use the polynomials p (z) = (z−a)2(z− b) and q(z) = (z−a)3(z− b). Let

us remark that the operator of the family on p(z) and q(z) is a rational function that depends,

not only on a4 and a5, but also on parameters a and b.

Blanchard in [21] considered the conjugacy map h (z) =
z − a
z − b

, (a Möbius transformation)

with the following properties:

i) h (∞) = 1, ii) h (a) = 0, iii) h (b) =∞,

9



and proved that, for quadratic polynomials, Newton’s operator is conjugate to the rational

map z2. In what follows, we will use this transformation in order to avoid the appearance of

parameters a and b in the rational functions resulting from applying the fixed point operator of

the iterative method on polynomials p(z) and q(z).

In the next sections we are going to analyze, under the dynamical point of view, the stability

and reliability of the members of the proposed family. Firstly, we will study the fixed points

of the rational function that are not related with the original roots of the polynomial (called

strange fixed points), and the free critical points, that is, the critical points of the associated

rational function different from 0 and ∞.

3.1 Complex dynamics on double roots

For p(z), the operator associated to family (2.7) is the rational function:

Mp(z, a, b) =
−3z4 + a3(2b+ z) + a2

(
8b2 − 20bz + 3z2

)
+ a

(
8b3 − 32b2z + 42bz2 − 9z3

)
3a3 + 8b3 + a2(2b− 11z)− 32b2z + 42bz2 − 21z3 + a (8b2 − 20bz + 21z2)

,

depending on the parameters a and b (although does not depend on a4 and a5); moreover, in

this case a3 = 0 since m = 2 and the iterative expression of the method would be simpler. On

the other hand, operator Mp(z, a, b) on p(z) is conjugated to operator Op (z),

Op (z) =
(
h ◦Mp ◦ h−1

)
(z) =

3z4

8− 6z2 + z3
. (3.1)

Let us observe that the parameters a and b have been obviated in Op(z).

In order to analyze the stability of the fixed points of Op(z), it is necessary to calculate its

derivative:

O′p(z) =
3z3

(
32− 12z2 + z3

)
(8− 6z2 + z3)2

.

Lemma 3.1 The fixed points of Op(z) and their stability are described in the following state-

ments:

• Fixed points of Op (z) are the roots of the equation Op (z) = z, that is, z = 0, z =∞ (that

corresponds to the roots of p(z)) and the strange fixed points z1 = −2 and z2 = 1.

• By analyzing the derivative of the fixed point operator on each of the fixed points, their

character is:

– z = 0 is superattracting, as O′p (0) = 0.

– z =∞ is attracting, being O′p (∞) = 1
3 .

– z1 is a parabolic fixed point, as O′p (z1) = 1.

10



– z2 is repulsive, as O′p (z2) = 7.

From this result we would like to remark that the methods guaranties the high-order conver-

gence on the multiple root (this is not the case of the simple one). Moreover, the existence of a

parabolic fixed point could imply a dangerous numerical behavior if there exist any free critical

point close to it.

Lemma 3.2 The critical points of Op(z) are z = 0 and the roots of polynomial 32 − 12z + z3,

that is, the free critical points are approximately cr1 ≈ 11.769, cr2 ≈ 1.7685 and cr3 ≈ −1.53747.

Let us remark that cr3 is close to fixed point z1 and it yields to the existence of its own

basin of attraction, as can be observed in the Figure 1. This basin appears in black because

the convergence to this fixed point is very slow. The same happens between the attracting fixed

point z =∞ and cr1.

For the representation of the dynamical planes we have used the software described in [22].

We draw a mesh with four hundred points per axis; each point of the mesh is a different initial

estimation which we introduce in each procedure. When the method reaches one fixed point in

less than eighty iterations, this point is drawn in a different color for each attracting fixed point

(with a tolerance of 10−3). The color will be more intense when the number of iterations is lower.

These attracting fixed points will be represented by white stars in the different pictures, while

fixed points (independently from their character) are plotted as white circles and critical points

are represented by white squares. Finally, if there is no convergence to any attracting fixed

point, after a maximum of 80 iterations, then the point of the mesh used as initial estimation is

painted in black.

Let us remark that two different dynamical behaviors have been observed, depending on

the multiplicity of the roots: if the root is multiple (m = 2 in this case), a wide basin of

attraction with fourth-order convergence is found. However, the second order of convergence is

not reached for the simple root; the result is that the respective fixed point is attracting, but

not superattracting.

3.2 Complex dynamics on roots of multiplicity three

When m = 3 and the behavior of the method on q(z) is considered, the operator of the fam-

ily is a rational function Mp(z, a4, a5, a, b) that depends on all the parameters. By means

of Möbius transformation, this rational function is conjugated to operator Oq (z, a4, a5) =

11



(
h ◦Mp ◦ h−1

)
(z), which numerator is the polynomial

z4
(
50
(
467289 + 788859z + 518130z2 + 173934z3 + 34341z4 + 3751z5

)
a4a5+

625(3 + z)3
(
441 + 318z + 49z2

)
a24 + 81

(
220239 + 368793z + 239022z2 + 80490z3 + 17075z4 + 2125z5

)
a25
)

and its denominator is the polynomial

625(3 + z)3
(
2187 + 972z − 1431z2 − 1008z3 + 6z4 + 82z5

)
a24 +

50
(
2302911 + 3247695z + 196830z2 − 2071818z3 − 1428759z4 − 320949z5 + 28620z6 + 27456z7 + 4318z8

)
a4a5 +

243
(
360855 + 503739z + 25110z2 − 320058z3 − 217935z4 − 50553z5 + 3140z6 + 4200z7 + 750z8

)
a25.

Let us observe that the parameters a and b have been obviated in Oq(z, a4, a5).

Lemma 3.3 The fixed points of Oq(z, a4, a5) and their stability are described in the following

statements:

(i) Fixed points of Oq(z, a4, a5) are the roots of the equation Oq(z, a4, a5) = z, that is, z = 0,

z =∞ (that corresponds to the roots of q(z)) and the strange fixed points z1 = −3 (except

for a5 = −25
27a4 or a5 = 0) and z2 = 1 and the roots of the polynomial

r(z) = −455625a24 − 1421550a4a5 − 1082565a25 + z
(
−658125a24 − 2004750a4a5 − 1511217a25

)
+z2

(
−360000a24 − 1069200a4a5 − 797040a25

)
+ z3

(
−58125a24 − 190350a4a5 − 147825a25

)
+z4

(
6875a24 + 9450a4a5 + 3375a25

)
.

(ii) By analyzing the derivative of the fixed point operator on each of the fixed points, their

character is:

– z = 0 is superattracting, as O′p (0) = 0.

– z1 = −3 is always parabolic, as O′p(z1) = 1.

– z2 = 1 can be attracting in the following cases:

∗ If a5 < 0, then −584550−300
√
52701

381250 a5 > a4 >
−584550+300

√
52701

381250 a5.

∗ If a5 > 0, then −584550−300
√
52701

381250 a5 < a4 <
−584550+300

√
52701

381250 a5.

– z =∞ can be attracting in the following cases:

∗ If a5 < 0, then −1377a5
1225 < a4 < −5a5.

∗ If a5 > 0, then −5a5 < a4 < −1377a5
1225 .

Proof:
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(i) Let us start with the fixed points of operator Oq(z, a4, a5). In order to get them we factorize

Oq(z, a4, a5)− z which numerator is

n(z) = (3(−1 + z)z(3 + z)3(−455625a24 − 1421550a4a5 − 1082565a25 − 658125a24z − 2004750a4a5z

−1511217a25z − 360000a24z
2 − 1069200a4a5z

2 − 797040a25z
2 − 58125a24z

3

−190350a4a5z
3 − 147825a25z

3 + 6875a24z
4 + 9450a4a5z

4 + 3375a25z
4))

From this factorization the thesis of this item is obtained.

(ii) In order to analyze the stability of the fixed points of Oq(z, a4, a5), it is necessary to

calculate its derivative:

O′q(z, a4, a5) =
3z3

(
32− 12z2 + z3

)
(8− 6z2 + z3)2

.

– Obviously, O′q(0, a4, a5) = 0 and z = 0 is superattracting.

– It is also clear that O′q(−3, a4, a5) = 1, being this point parabolic.

– As

O′q(1, a4, a5) =
635000a24 + 1947625a4a5 + 1472499a25

63125a24 + 193975a4a5 + 146772a25
,

and Oq(1, a4, a5) < 1 is equivalent to 571875a24 + 1753650a4a5 + 1325727a25 < 0, the

stated results can be deduced (by analyzing the previous parabola in a4).

– When z =∞ is considered,

O′q (∞, a4, a5) =
2
(
784765625a44 + 8111937500a34a5 + 27447428750a24a

2
5 + 35671387500a4a35 + 15684890625a45

)(
30625a24 + 187550a4a5 + 172125a25

)2
and by using a similar reasoning than in case z2 = 1, the thesis can be stated.

2

Let us remark that the strange fixed points that are roots of the fourth-order polynomial

stated in the Lemma 3.3 have very complicated expressions and to study their stability ana-

lytically is not possible. However, we can analyze numerically their stability functions, whose

graphics appear in Figure 2.

It is interesting to notice that z =∞ (the simple root of the original polynomial q(z)) is not

always an attracting fixed point. This is the reason why it is not a critical point, meanwhile

z = 0 (the multiple root of q(z)) is always a critical point. As we have also seen in the previous

section, the behavior of the roots is different depending on the multiplicity: meanwhile the

multiple root shows a very stable behavior, the simple one can be even a repulsive fixed point.

Some interesting cases can be extracted from the previous results: it is easy to check that

if z2 = 1 is an attracting strange fixed point, then z = ∞ is also attracting. In Figure 3a, the

13



dynamical plane corresponding to a4 = 0.857 and a5 = −0.5 is showed. It can be observed that

four basins of attraction appear, corresponding to z = 0, z =∞, z2 = 1 and z1 = −3. In Figure

3b the dynamical plane of a3 = 0 is presented; the areas of convergence of z = 0, z1 = −3 (in

black because of the slow convergence) and z =∞ appear.

In Figure 4b the dynamical plane associated to a4 = 0 and any value of a5 is presented. In

it, the basin of attraction of z =∞ does not exist, the one of z = 0 appears in orange and a big

black area that corresponds to z1 = −3 and z = 48.8272, parabolic and attracting fixed points

respectively, with a very slow convergence. This is the reason why these dynamical planes have

been drawn with 800×800 points and 2000 iterations. Even under this circumstances, the basin

of z1 = −3 appears in black.

Now, we are going to analyze the cases in which z1 = −3 is not a parabolic point. It has

been stated that it happens when a5 = 0 or a5 = −25
27a4 (see Lemma 3.3). Both cases have the

same associated rational function,

Oq(z) =
z4
(
441 + 318z + 49z2

)
2187 + 972z − 1431z2 − 1008z3 + 6z4 + 82z5

.

This rational function has as fixed points z = 0 and z = ∞, being z = 1 and the roots of

polynomial s(z) = −729− 1053z − 576z2 − 93z3 + 11z4 the strange fixed points. respect to the

stability of these fixed points, let us remark that z = 0 is superattracting, z =∞ and z = 1 are

repulsive and three of the roots of s(z) are repulsive, being the last one attractive.

As in case of parametric families of iterative methods for finding simple roots, the dynamical

behavior, when multiple roots are searched, depends on the value of the parameter and stable

or unstable cases can be found and the regions of the parameter plane where these behaviors

happen are delimited. Nevertheless, the differences between the simple and the multiple root

remain, due to the different order of convergence of the methods on them.

4 Numerical results

In this section, we shall check the effectiveness of the new optimal methods. We employ

the present methods namely, method (2.19) and (2.20) denoted by OM1
4 and OM2

4 respectively

to solve the following nonlinear equations in table 1. We compare them with the method of

Zhou et al., iterative expression (11) of [5], denoted by ZM4; method (1.2) of Sharma and

Sharma [3] (called SSM4); method (1.3) designed by Li et al. in [4] and denoted by LM4. In

addition, Soleymani and Babajee constructed in [7] several fourth-order methods for multiple

roots, between them we will use expression (27) and expression (29), denoted by SBM1
4 and
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SBM2
4 , respectively. Finally, we will also compare our schemes with the method of Sharifi et

al. SHM4, expression (35) of [6]. For better comparisons of our proposed methods, we have

given three types of comparison tables in each example: one is corresponding to absolute error

value of given nonlinear functions, other is with respect to number of iterations and third one

is regarding the computational order of convergence (obtained from the expression (see [23])) in

tables 2-4, respectively

ρ ≈ ln |(xk+1 − rm)/(xk − rm)|
ln |(xk − rm)/(xk−1 − rm)|

.

All computations have been performed using the programming package Mathematica 9 with

multiple precision arithmetic. We use ε = 10−34 as a tolerance error. The following stopping

criterium are used for computer programs: |xn+1 − xn| < ε and |f(xn+1)| < ε.

5 Concluding remarks

In this paper, we have proposed a simple and different technique to construct higher-order

optimal methods for computing multiple roots of nonlinear equations numerically. The family

of methods requires one function and two of its first-order derivative evaluations per iteration

step. Proposed methods are free from second or higher order derivatives. Further, one can

easily generate many new optimal families and some existing methods by fixing one of the free

disposable parameters in our proposed schemes (2.7). It is observed from Tables 2-4 that the

proposed methods namely, method (2.19) and (2.20) have at least equal or better performance

as compared with other similar robust methods available in literature. On the other hand,

investigation has been made on the complex plane for such methods to reveal their dynamical

behavior on polynomials with double and triple roots. The dynamic study of our families

of iterative methods allows us to select iterative schemes with good stability and reliability

properties and detect iterative methods with dangerous numerical behavior. It has been also

observed that the difference between simple and multiple roots in terms of dynamical behavior

is clear, when a method designed for multiple roots is applied, as it only hold the order of

convergence for the multiple zeros, and not for the simple ones.
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Table 1: Test problems

f(x) rm multiplicity of rm

f1(x) = (sin2 x + x)5 0.0000000000000000000000000000000000 5

f2(x) = (xex + cosx)5 −1.2010606007342119750993085470974788 5

f3(x) = x2 sin(4x) 0.0000000000000000000000000000000000 3

f4(x) = (x2 − ex − 3x + 2)6 0.25753028543986076045536730493724178 6

f5(x) =
(
5 tan−1 x− 4x

)8 −0.94913461128828951372581521479848875 8

f6(x) =
(
1 + cos

(
xπ
2

)
−
√

1− x2
)4 −0.72858404644482671671233310242278337 4
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Table 2: Comparison of different fourth-order methods with the same total number of functional

evaluations (TNFE=12)

f(x) x0 ZM4 SSM4 LM4 SBM1
4 SBM2

4 SHM4 OM1
4 OM2

4

f1(x) −3.4 2.0e−100 2.5e−102 3.4e−109 D D D 1.1e−110 5.7e−114

1.2 3.7e−46 1.6e−97 1.5e−97 1.6e−97 1.6e−97 D 1.5e−97 1.5e−97

f2(x) −2.4 9.0e−79 1.7e−76 1.8e−70 C C 2.5e+13 1.8e−69 1.5e−67

2.0 2.1e−113 3.5e−127 2.1e−206 C C 5.4e−17 1.1e−172 1.8e−145

f3(x) −3.5 1.2e−314 2.5e−314 9.3e−315 6.9e−315 2.7e−315 4.7e−284 9.2e−315 8.9e−315

3.5 1.2e−314 2.5e−314 9.3e−315 6.9e−315 2.7e−315 4.7e−284 9.2e−315 8.9e−315

f4(x) −7.0 8.6e−317 4.0e−325 7.0e−356 1.0e−291 1.5e−290 D 1.8e−361 1.8e−361

1.4 5.6e−743 1.5e−742 1.6e−741 8.6e−736 1.3e−735 1.2e−320 2.0e−741 2.0e−741

f5(x) −2.3 3.3e−410 2.1e−410 4.2e−411 8.2e−416 7.7e−416 8.1e−410 3.6e−411 2.8e−411

0.3 C C C C C C 7.4e−9 5.5−10

f6(x) −0.88 1.2e−158 8.8e−161 3.0e−167 2.1e−94 2.1e−74 4.3e−143 1.0e−168 1.9e−172

−0.1 4.3e−133 3.4e−133 2.4e−133 7.3e−133 4.3e−133 D 2.3e−133 2.1e−133

C: converges to undesired root, D: divergent.

Table 3: Comparison of different fourth-order methods with respect to number of iteration

f(x) x0 ZM4 SSM4 LM4 SBM1
4 SBM2

4 SHM4 OM1
4 OM2

4

f1(x) −3.4 6 6 6 D D D 6 6

1.2 6 6 6 6 6 D 6 6

f2(x) −2.4 6 6 5 C C 12 6 6

2.0 6 6 5 C C 7 5 6

f3(x) −3.5 5 5 5 5 5 5 5 5

3.5 5 5 5 5 5 5 5 5

f4(x) −7.0 5 5 5 5 6 D 5 5

1.4 5 5 5 5 5 5 5 5

f5(x) −2.3 5 5 5 5 5 5 5 5

0.3 C C C C C C 8 8

f6(x) −0.88 5 5 5 6 6 5 5 5

−0.1 5 5 5 5 5 D 5 5

Table 4: Computational order of convergence of different fourth-order methods

f(x) x0 ZM4 SSM4 LM4 SBM1
4 SBM2

4 SHM4 OM1
4 OM2

4

f1(x) −3.4 4.000 4.000 4.000 D D D 4.000 4.000

1.2 3.999 3.999 4.000 4.000 4.000 D 4.000 4.000

f2(x) −2.4 4.000 4.000 4.000 C C 4.000 4.000 4.000

2.0 4.000 4.000 4.000 C C 4.001 3.997 4.000

f3(x) −3.5 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000

3.5 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000

f4(x) −7.0 4.000 4.000 4.000 4.000 4.000 D 4.000 4.000

1.4 4.000 4.000 4.000 4.000 4.000 3.999 4.000 4.000

f5(x) −2.3 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000

0.3 C C C C C C 4.000 4.000

f6(x) −0.88 3.998 3.999 3.999 4.000 4.000 4.003 4.000 3.999

−0.1 3.995 3.995 3.995 3.995 3.995 3.995 3.995 3.995
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Figure 1: Dynamical plane associated to Op(z) for m = 2

(a) |O′q(ex1)| (b) |O′q(ex2)|

(c) |O′q(ex3)| (d) |O′q(ex4)|

Figure 2: Stability functions of some strange fixed points
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(a) a4 = 0.857 and a5 = −0.5 (b) a4 = 0

Figure 3: Dynamical plane associated to Oq(z, a4, a5) for m = 3

(a) a4 = 0 (b) A detail

Figure 4: Dynamical plane associated to Oq(z, a4, a5) for m = 3 and a4 = 0

(a) a5 = 0 (b) A detail

Figure 5: Dynamical plane associated to Oq(z, a4, a5) for m = 3 and a5 = 0
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