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Abstract

In this paper, we consider a class of stochastic pantograph differential equa-
tions with Lévy jumps (SPDEwLJs). By using the Burkholder-Davis-Gundy
inequality and the Kunita’s inequality, we prove the existence and unique-
ness of solutions to SPDEwLJs whose coefficients satisfying the Lipschitz
conditions and the local Lipschitz conditions. Meantime, we establish the
p-th exponential estimations and almost surely asymptotic estimations of
solutions to SPDEwLJs.
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1. Introduction

It is well known that the following differential equation

x′(t) = ax(t) + bx(qt), t ≥ 0, q ∈ (0, 1),

x(0) = x0, (1)

is a linear pantograph equation with unbounded delay and it is a very special
delay differential equation. Since qt < t, equation (1) is a differential equa-
tion with the delay t−qt. We note that qt satisfies qt → ∞ as t → ∞, but the
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delay t− qt is unbounded. Equation (1) arises in different fields of pure and
applied mathematics such as dynamical systems, probability, quantum me-
chanics and electrodynamics (see [1,2]) and its generalisations possess a wide
range of applications. In [3,4], the authors studied the existence, uniqueness
and asymptotic properties of solution to equation (1). Numerical analysis
for solution to equation (1) are studied by [5,6]. Meantime, many authors
extended the study on equation (1) to the case of non-linear pantograph dif-
ferential equation and obtained many results about existence, stability and
numerical analysis of solution to non-linear pantograph delay equation (see
[7-9]).

As differential equation, delay differential equation are often perturbed by
the external noise and it is described by stochastic delay differential equation
(SDDEs). During the past few decades, qualitative theory of SDDEs have
been studied intensively for many authors. One can see [10-20] and the refer-
ences therein. As a special case of SDDEs, stochastic pantograph differential
equations (SPDEs) has been received a great deal of attention. SPDEs can
be regarded as a pantograph differential equation perturped by Brownian
motion. For example, existence and stability of solution to SPDEs are given
in [21-23]. Various efficient computational methods are obtained and their
convergence and stability have been studied by many authors [24-29].

It is worth pointing out that the above works only focused on the case
of SDDEs driven by a Brownian motion. However, a Brownian motion can
not be used to describe the stochastic disturbances in some real systems
such as the fluctuations in the financial markets. There is evidence that the
dynamics of prices of financial instruments exhibit jumps which cannot be
adequately described solely by Brownian motion (see [30]). Also, there are
empirical studies, such as [31], which demonstrate the existence of jumps in
stock markets and the foreign exchange market. For this case, it is recognized
that stochastic differential equations (SDEs) with jump are quite suitable to
describe such stochastic abrupt phenomena. For example, SDEs with jump
are used to delineate large market fluctuations such as rallies or crashes in
financial market [32]. In recent years, SDEs with Poisson processes N(t) have
been studied by many authors (see [33-36]). However, if the perturbation is a
random process, then the number of the points where jumps occur is random,
moreover, the jump values taken at the jump points are also random. In this
case, it is not enough to describe the above perturbation by using Poisson
processes N(t). It is natural to consider the general jump processes arising
from Poisson random measures Np̄(t, A) generated by a Poisson point process
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p̄(t) (see Section 2 for more details). One should note that one important
and widely used class of Poisson random measures are the one associated to
a Lévy process. By Lévy-Itô decomposition, Lévy processes can be regarded
as processes with a Brownian motion and an independent Poisson random
measures. In this case, we call that Poisson random measures Np̄(t, A) is
a Lévy jump. SDEs driven by Levy jumps have become extremely popular
for modeling financial, physical and biological phenomena and many results
about such equations have been studied intensively for many authors. For
example, Ikeda [37], Applebaum [38] and Rong [39] are devoted to the study
of such equations both in theory and their applications; Bass [40] and Albev-
erio [41] focused on the study about existence and uniqueness of SDEs with
Poisson random measure; Oksendal [42] have studied the optimal control,
optimal stopping and impulse control for jump diffusion processes; Li [43]
discussed the almost sure stability of linear stochastic differential equations
with jumps; Applebaum [44] investigated almost sure exponential stability
and moment exponential stability of SDEs with Lévy noise; Applebaum [45]
showed that perturbed system with Brownian motion and Poisson random
measure is almost surely exponentially stable and estimated the correspond-
ing Lyapunov exponents; Zhu [46] studied the asymptotic stability in the
p-th moment and almost sure stability for SDEs with Lévy jump.

Motivated by the above works, this paper is concerned with stochastic
pantograph differential equations with Lévy jumps (SPDEwLJs)

dx(t) = f(t, x(t), x(qt))dt+ g(t, x(t), x(qt))dwt + dQ(t), t ∈ [t0, T ],

Q(t) =

∫ t

t0

∫
U

h(x(s), x(qs), u)Np̄(ds, du), (2)

x(t) = φ(t), t ∈ [qt0, t0].

where 0 < q < 1. To the best of our knowledge, there are no literatures
concerned with the p-th exponential estimations and almost surely asymp-
totic estimations of solution to equation (2). On one hand, we prove that
equation (2) has a unique solution x(t) in the sense of the LP norm. Our
approach is similar to the one in [11]. But we don’t use the fixed point
Theorem in [22]. Instead, we get the solution of equation (2) via successive
approximations. On the other hand, we study the p-th exponential estima-
tions and almost surely asymptotic estimations of solution to equation (2).
By the Burkholder-Davis-Gundy inequality, the Kunita’s inequality and Itô
formula, we show that the P-th moment of solution will grow at most expo-

3



nentially with exponent M2. Moreover, we prove that the p-th exponential
estimations implies almost surely asymptotic estimations and give an upper
bound for the sample Lyapunov exponent. Meantime, it should be pointed
out that the proof for SPDEwLJs is certainly not a straightforward gener-
alization of that for SPDEs without Lévy jumps and some new techniques
are developed to cope with the difficulties due to Lévy jumps. Some known
results in Mao [11], Fan [22] are generalized to cover a class of more general
SPDEwLJs.

The rest of the paper is organized as follows. In Section 2, we introduce
some notations and hypotheses concerning equation (2); In Section 3, the ex-
istence and uniqueness of solution to equation (2) are investigated; In Section
4, we prove the pth moment of solution will grow at most exponentially with
exponent M2 and show that the exponential estimations implies the almost
surely asymptotic estimations.

2. Preliminaries

Let (Ω,F , {Ft}t≥0, P ) be a complete probability space with a filtration
(Ft)t≥0 satisfying the usual condition,(i.e., the filtration (Ft) is continuous on
the right and (F0) contains all P -null sets.) Here w(t) is an m-dimensional
Brownian motion defined on the probability space (Ω,F , P ) adapted to the
filtration (Ft)t≥0. Let t ≥ 0 and D([qt, t], Rn) denote the family of functions
φ from [qt, t] → Rn that are right-continuous and have limits on the left.
D([qt, t], Rn) is equipped with the norm ||φ|| = sup

qt≤θ≤t
|φ(θ)|, where |.| is the

Euclidean norm in Rn. If A is a vector or matrix, its transpose is denoted
by A⊤. If A is a matrix, its norm ||A|| is defined by ||A|| = sup{|Ax| :
|x| = 1}. For p ≥ 2, Lp

Ft
([qt, t];Rn) denote the family of all (Ft)-measurable,

D([qt, t], Rn)-valued random variables φ = {φ(θ) : qt ≤ θ ≤ t} such that
E||φ||p < ∞.

Let (Rn,B(Rn)) be a measurable space and π(du) a σ- finite measure on
it. Let p̄ = p̄(t), t ≥ t0 be a stationary Ft-adapted and Rn-valued Poisson
point process. Then, for A ∈ B(Rn − {0}), here 0 ̸∈ the closure of A, we
define the Poisson counting measure Np̄ associated with p̄ by

Np̄((t0, t]× A) := #{t0 < s ≤ t, p̄(s) ∈ A} =
∑

t0<s≤t

IA(p̄(s)),
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where # denotes the cardinality of set {.}. For simplicity, we denote

Np̄(t, A) := Np̄((t0, t]× A).

From [37], we can obtain that there exists a σ- finite measure π such that

E[Np̄(t, A)] = π(A)(t− t0)

and

P (Np̄(t, A) = n) =
exp[−π(A)(t− t0)][π(A)(t− t0)]

n

n!
.

This measure π is called the Lévy measure. Moreover, by Doob-Meyer’s de-
composition theorem, there exists a unique {Ft}-adapted martingale Ñp̄(t, A)

and a unique {Ft}-adapted natural increasing process N̂p̄(t, A) such that

Np̄(t, A) = Ñp̄(t, A) + N̂p̄(t, A), t > t0.

Here Ñp̄(t, A) is called the compensated Poisson random measure and

N̂p̄(t, A) = π(A)(t− t0)

is called the compensator. For more details on the Poisson point process and
Lévy jumps, see [37, 38, 39].

For U ∈ B(Rn − {0}), the integral version of equation (2) is given by

x(t) = φ(t) +

∫ t

t0

f(s, x(s), x(qs))ds+

∫ t

t0

g(s, x(s), x(qs))dws +Q(t),

Q(t) =

∫ t

t0

∫
U

h(x(s), x(qs), u)Np̄(ds, du), (3)

with initial data {x(t) : qt0 ≤ t ≤ t0} = φ ∈ Lp
Ft0

([qt0, t0];R
n). Here

0 < q < 1 and f : [t0,∞] × Rn × Rn → Rn, g : [t0,∞] × Rn × Rn → Rn×m

and h : Rn × Rn × U → Rn are both Borel-measurable functions. x(t) is a
n-dimensional state process, wt is a standard m-dimensional Brownian mo-
tion and Np̄(dt, du) is the Poisson random measure given by Np̄(dt, du) =
Ñp̄(dt, du) + π(du)dt, here Ñp̄(dt, du) is the compensated Poisson random
measure associated to Np̄ and π(du) is the Lévy measure associated to Np̄.
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Let the following assumptions hold.

(H1) For each t ∈ [t0, T ] and p ≥ 2, there exist two positive constants k1
and k2 such that for all x1, y1, x2, y2 ∈ Rn,

|f(t, x1, y1)− f(t, x2, y2)|2 ∨ |g(t, x1, y1)− g(t, x2, y2)|2

≤ k1(|x1 − x2|2 + |y1 − y2|2),

and∫
U

|h(x1, y1, u)− h(x2, y2, u)|pπ(du) ≤ k2(|x1 − x2|p + |y1 − y2|p).

(H2) For each t ∈ [t0, T ] and p ≥ 2, there exist two positive constants
L1 and L2 such that for all x, y ∈ Rn,

|f(t, x, y)|2 ∨ |g(t, x, y)|2 ≤ L1(1 + |x|2 + |y|2),

and ∫
U

|h(x, y, u)|pπ(du) ≤ L2(1 + |x|p + |y|p).

Now we present the definition of solution to equation (3).

Definition 2.1 A right continuous with left limits process x = {x(t), t ∈
[qt0, T ]} (t0 < T < ∞) is called a solution of equation (3) with initial data
φ(t) if

(1) x(t) is Ft-adapted and x = {x(t), t ∈ [t0, T ]} is Rn-valued;

(2)
∫ T

qt0
|x(t)|pds < ∞, a.s. for any p ≥ 2;

(3) x(t) satisfies equation (3).

A solution x(t) is said to be unique if any other solution y(t) is indistin-
guishable from it, that is,

P{x(t) = y(t), t ∈ [qt0, T ]} = 1.
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3. The existence and uniqueness theorem

In this section, we prove the existence and uniqueness of a solution to
equation (3).

Define x0(t) = φ(t0), for t ∈ [t0, T ]. For each n = 1, 2, · · ·, set xn(t) =
φ(t), t ∈ [qt0, t0]. We introduce the sequence of successive approximations
defined as follows:

xn(t) = φ(t0) +

∫ t

t0

f(s, xn−1(s), xn−1(qs))ds

+

∫ t

t0

g(s, xn−1(s), xn−1(qs))dws

+

∫ t

t0

∫
U

h(xn−1(s), xn−1(qs), u)Np̄(ds, du), t ∈ [t0, T ]. (4)

Theorem 3.1 Let p ≥ 2 and conditions (H1)-(H2) hold, then there exists
a unique solution x(t) to equation (3) and the solution x(t) ∈ Mp([t0, T ];R

n).

To prove Theorem 3.1, we give the following lemmas 3.1 and 3.2.

Lemma 3.1 Under conditions (H1)-(H2), there exists a positive constant
c such that

E sup
t0≤t≤T

|xn(t)|p ≤ c, (5)

where c = (c6 + c7(T − t0)E||φ||p)ec7(T−t0).

Proof: For simplicity, we denote

fn
t = f(t, xn(t), xn(qt)), gnt = g(t, xn(t), xn(qt)), hn

t = h(xn(t), xn(qt), u).

For every integer R ≥ 1, define the stopping time

τR = T ∧ inf{t ∈ [t0, T ] : |xn−1(t)| ∨ |xn−1(qt)| ≥ R}.

Using the basic inequality |a+ b+ c+ d|p ≤ 4p−1[|a|p + |b|p + |c|p + |d|p], it is
easy to see from (4) that

E sup
t0≤s≤t

|xn(s ∧ τR)|p
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≤ 4p−1E||φ|p + 4p−1E( sup
t0≤s≤t

|
∫ s

t0

fn−1
σ∧τRdσ|

p) + 4p−1E( sup
t0≤s≤t

|
∫ s

t0

gn−1
σ∧τRdwσ|p)

+4p−1E( sup
t0≤s≤t

|
∫ s

t0

∫
U

hn−1
σ∧τRNp̄(dσ, du)|p). (6)

Let us estimate the terms introduced above. By the Hölder inequality and
(H2), we get

E( sup
t0≤s≤t

|
∫ s

t0

fn−1
σ∧τRdσ|

p) ≤ (t− t0)
p−1

∫ t

t0

E|fn−1
s∧τR |

pds

≤ (T − t0)
p−1

∫ t

t0

E[L1(1 + |xn−1(s ∧ τR)|2 + |xn−1(qs ∧ τR)|2)]
p
2ds

≤ (T − t0)
p−1L

p
2
1 3

p
2
−1

∫ t

t0

E(1 + |xn−1(s ∧ τR)|p + |xn−1(qs ∧ τR)|p)ds

≤ c1(T − t0) + 2c1

∫ t

t0

E( sup
t0≤σ≤s

|xn−1(σ ∧ τR)|p)ds, (7)

where c1 = (T − t0)
p−1L

p
2
1 3

p
2
−1. Now, using the Burkholder-Davis-Gundy

inequality and the Hölder inequality, we have a positive real number cp such
that the following inequality holds:

E( sup
t0≤s≤t

|
∫ s

t0

gn−1
σ∧τRdwσ|p) ≤ cpE(

∫ t

t0

|gn−1
s∧τR |

2ds)
p
2

≤ cp(T − t0)
p
2
−1E

∫ t

t0

|gn−1
s∧τR |

pds.

Similar to (7), we obtain

E( sup
t0≤s≤t

|
∫ s

t0

gn−1
σ∧τRdwσ|p) ≤ c2(T − t0)

+2c2

∫ t

t0

E( sup
t0≤σ≤s

|xn−1(σ ∧ τR)|p)ds, (8)

where c2 = cpL
p
2
1 (3(T − t0))

p
2
−1. Next, we estimate the last term of (6). By

the definition of Np̄(dt, du) = Ñp̄(dt, du) + π(du)dt and the basic inequality
|a+ b|p ≤ 2p−1(|a|p + |b|p), we have

E( sup
t0≤s≤t

|
∫ s

t0

∫
U

hn−1
σ∧τRNp̄(dσ, du)|p)
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= E( sup
t0≤s≤t

|
∫ s

t0

∫
U

hn−1
σ∧τRÑp̄(dσ, du) +

∫ s

t0

∫
U

hn−1
σ∧τRπ(du)dσ|

p)

≤ 2p−1E( sup
t0≤s≤t

|
∫ s

t0

∫
U

hn−1
σ∧τRÑp̄(dσ, du)|p)

+2p−1E( sup
t0≤s≤t

|
∫ s

t0

∫
U

hn−1
σ∧τRπ(du)dσ|

p). (9)

For the second term of (9), by the Hölder inequality, we have

E( sup
t0≤s≤t

|
∫ s

t0

∫
U

hn−1
σ∧τRπ(du)dσ|

p)

≤ E sup
t0≤s≤t

{[
∫ s

t0

dσ]p−1

∫ s

t0

|
∫
U

hn−1
σ∧τRπ(du)|

pdσ}

≤ (t− t0)
p−1E

∫ t

t0

|
∫
U

hn−1
σ∧τRπ(du)|

pds

≤ (T − t0)
p−1E

∫ t

t0

{[
∫
U

π(du)]
p
2 [

∫
U

|hn−1
s∧τR |

2π(du)]
p
2}ds

≤ (T − t0)
p−1[π(U)]

p
2E

∫ t

t0

[L2(1 + |xn−1(s ∧ τR)|2 + |xn−1(qs ∧ τR)|2)]
p
2ds

≤ c3(T − t0) + 2c3

∫ t

t0

E( sup
t0≤σ≤s

|xn−1(σ ∧ τR)|p)ds, (10)

where c3 = (T − t0)
p−1L

p
2
2 (π(U))

p
2 3

p
2
−1. Now let us estimate the first term in

(9). By the Kunita’s first inequality (see Applebaum [38] and Kunita [47]),
we have a positive real number Dp such that

E sup
t0≤s≤t

|
∫ s

t0

∫
U

hn−1
σ∧τRÑp̄(dσ, du)|p

≤ Dp{E[

∫ t

t0

∫
U

|hn−1
s∧τR |

2π(du)ds]
p
2 + E[

∫ t

t0

∫
U

|hn−1
s∧τR |

pπ(du)ds]}. (11)

In the same way as (10) was done, it follows from (11) that

E sup
t0≤s≤t

|
∫ s

t0

∫
U

hn−1
σ∧τRÑp̄(dσ, du)|p

≤ Dp[3
p
2
−1L

p
2
2 (T − t0)

p
2
−1 + L2]E

∫ t

t0

(1 + |xn−1(s ∧ τR)|p
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+|xn−1(qs ∧ τR)|p)ds

≤ c4(T − t0) + 2c4

∫ t

t0

E( sup
t0≤σ≤s

|xn−1(σ ∧ τR)|p)ds, (12)

where c4 = Dp[3
p
2
−1L

p
2
2 (T − t0)

p
2
−1 +L2]. Inserting (10) and (12) into (9), we

obtain

E( sup
t0≤s≤t

|
∫ s

t0

∫
U

hn−1
σ∧τRNp̄(dσ, du)|p)

≤ c5(T − t0) + 2c5

∫ t

t0

E( sup
t0≤σ≤s

|xn−1(σ ∧ τR)|p)ds, (13)

where c5 = 2p−1(c3 + c4). Combing (7), (8) and (13) together, we have

E sup
t0≤s≤t

|xn(s ∧ τR)|p ≤ c6 + c7

∫ t

t0

E( sup
t0≤σ≤s

|xn−1(σ ∧ τR)|p)ds, (14)

where c6 = 4p−1[E||φ||p +(c1 + c2 + c5)(T − t0)], c7 = 24p−1(c1 + c2 + c5). For
any r ≥ 1, it follows from (14) that

max
1≤n≤r

E( sup
t0≤s≤t

|xn(s ∧ τR)|p)

≤ c6 + c7

∫ t

t0

max
1≤n≤r

E sup
t0≤σ≤s

|xn−1(σ ∧ τR)|pds

≤ c6 + c7

∫ t

t0

(E||φ||p + max
1≤n≤r

E sup
t0≤σ≤s

|xn(σ ∧ τR)|p)ds.

From the Gronwall inequality, we derive that

max
1≤n≤r

E( sup
t0≤s≤t

|xn(s ∧ τR)|p) ≤ [c6 + c7(T − t0)E||φ||p]ec7(T−t0).

Since r is arbitrary, we must have

E( sup
t0≤s≤t

|xn(s ∧ τR)|p) ≤ (c6 + c7(T − t0)E||φ||p)ec7(T−t0).

Letting R → ∞, we then obtain

E( sup
t0≤s≤t

|xn(s)|p) ≤ (c6 + c7(T − t0)E||φ||p)ec7(T−t0),
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which shows that the desired result holds with c = (c6+c7(T−t0)E||φ||p)ec7(T−t0).

Lemma 3.2 Let conditions (H1),(H2) hold, then {xn(t)}n≥1 defined by
(4) is a Cauchy sequence in D([t0, T ], R

n).

Proof: For n ≥ 1 and t ∈ [t0, T ], it follows from (4) that

xn+1(t)− xn(t) =

∫ t

t0

fn,n−1
s ds+

∫ t

t0

gn,n−1
s dws +

∫ t

t0

∫
U

hn,n−1
s,u Np̄(ds, du),

where

fn,n−1
s = f(s, xn(s), xn(qs))− f(s, xn−1(s), xn−1(qs))

gn,n−1
s = g(s, xn(s), xn(qs))− g(s, xn−1(s), xn−1(qs))

hn,n−1
s,u = h(xn(s), xn(qs), u)− h(xn−1(s), xn−1(qs), u).

Thus taking expectation on |xn+1(t)− xn(t)|p, we have

E( sup
t0≤s≤t

|xn+1(s)− xn(s)|p)

≤ 3p−1[E( sup
t0≤s≤t

|
∫ s

0

fn,n−1
σ dσ|p) + E( sup

t0≤s≤t
|
∫ t

t0

gn,n−1
σ dwσ|p)

+E( sup
t0≤s≤t

|
∫ t

t0

∫
U

hn,n−1
σ,u Np̄(dσ, du)|p)]. (15)

By the Hölder inequality and (H1), we obtain that

E( sup
t0≤s≤t

|
∫ s

t0

fn,n−1
σ dσ|p)

≤ (t− t0)
p−1E

∫ t

t0

|fn,n−1
s |pds

≤ (T − t0)
p−1k

p
2
1 2

p
2
−1E

∫ t

t0

[|xn(s)− xn−1(s)|p + |xn(qs)− xn−1(qs)|p]ds

≤ (T − t0)
p−1k

p
2
1 2

p
2

∫ t

t0

E sup
0≤σ≤s

|xn(σ)− xn−1(σ)|pds. (16)

Now, using the Burkholder-Davis-Gundy inequality and Hölder inequality,
we get

E( sup
t0≤s≤t

|
∫ s

t0

gn,n−1
σ dwσ|p)
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≤ cpE(

∫ t

t0

|gn,n−1
s |2ds)

p
2 ≤ cp(t− t0)

p
2
−1E

∫ t

t0

|gn,n−1
s |pds

≤ cp(T − t0)
p
2
−1k

p
2
1 2

p
2

∫ t

t0

E sup
t0≤σ≤s

|xn(σ)− xn−1(σ)|pds. (17)

Similar to (9), by the Kunita’s first inequality, Hölder inequality, we have

E( sup
t0≤s≤t

|
∫ s

t0

∫
U

hn,n−1
σ,u Np̄(dσ, du)|p)

≤ E( sup
t0≤s≤t

|
∫ s

t0

∫
U

hn,n−1
σ,u Ñp̄(dσ, du) +

∫ s

t0

∫
U

hn,n−1
σ,u π(du)dσ|p)

≤ c8E sup
t0≤σ≤s

|xn(σ)− xn−1(σ)|pds, (18)

where c8 = 2
3p
2
−1k

p
2
2 [Dp(T − t0)

p
2
−1+(π(U))

p
2 (T − t0)

p−1]+ 2pDpk2. Inserting
(16)-(18) into (15), it follows that

E( sup
t0≤s≤t

|xn+1(s)− xn(s)|p) ≤ c9

∫ t

t0

E( sup
t0≤σ≤s

|xn(σ)− xn−1(σ)|p)ds, (19)

where c9 = 3p−1k
p
2
1 2

p
2 [(T − t0)

p
2
−1cp + (T − t0)

p−1] + 3p−1c8. Setting φn(t) =
E sup

t0≤s≤t
|xn+1(s)− xn(s)|p, we have

φn(t) ≤ c9

∫ t

t0

φn−1(s1)ds1 ≤ c29

∫ t

0

ds1

∫ s1

t0

φn−2(s2)ds2

≤ · · ·

≤ cn9

∫ t

t0

ds1

∫ s1

t0

ds2 · · ·
∫ sn−1

t0

φ0(sn)dsn. (20)

Using the Burkholder-Davis-Gundy inequality inequality, Hölder inequality
and (H2), we have

φ0(t) = E sup
t0≤s≤t

|x1(s)− x0(s)|p ≤ M. (21)

Substituting (21) into (20) and integrating the right hand side, we obtain
that

E( sup
t0≤s≤t

|xn+1(s)− xn(s)|p) ≤ M(c9(t− t0))
n

n!
. (22)

12



For (22), taking t = T,

E( sup
t0≤t≤T

|xn+1(t)− xn(t)|p) ≤ M(c9(T − t0))
n

n!
.

Then using the Chebyshev inequality, one gets

P ( sup
t0≤t≤T

|xn+1(t)− xn(t)| > 1

2n
)

≤ P (|
∫ T

t0

fn,n−1
s ds| > 1

3

1

2n
) + P ( sup

t0≤t≤T
|
∫ t

t0

gn,n−1
s dws| >

1

3

1

2n
)

+P ( sup
t0≤t≤T

|
∫ t

t0

∫
U

hn,n−1
s,u Np̄(ds, du)| >

1

3

1

2n
)

≤ 3p2np(t− t0)
p−1E

∫ T

t0

|fn,n−1
s |pds+ 3p2npE sup

t0≤t≤T
|
∫ t

t0

gn,n−1
s ]dws|p

+3p2npE sup
t0≤t≤T

|
∫ t

t0

∫
U

hn,n−1
s,u Np̄(ds, du)|p. (23)

By a straightforward computation, there exists a positive constant C such
that

P ( sup
t0≤t≤T

|xn+1(t)− xn(t)| > 1

2n
)

≤ C

∫ T

t0

E sup
t0≤s≤t

|xn(s)− xn−1(s)|pdt ≤ CM(c9(T − t0))
n

n!
. (24)

For any t ∈ [t0, T ], (24) implies that

Σ∞
n=0P ( sup

t0≤t≤T
|xn+1(t)− xn(t)| > 1

2n
) < ∞.

By the Borel-Cantelli lemma, we have

P (lim sup
n→∞

sup
t0≤t≤T

|xn+1(t)− xn(t)| ≤ 1

2n
) = 1. (25)

That is, there exists a set Ω ∈ F with P (Ω) = 1 and a positive integer
n0 = n0(ω) such that for almost all ω ∈ Ω, we have

sup
t0≤t≤T

|xn+1(t)− xn(t)| ≤ 1

2n
whenever n ≥ n0(ω).
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This implies {xn(t)}n=1,2··· is a Cauchy sequence on [t0, T ] under sup |.|. How-
ever, the spaceD([t0, T ], R

n) is not a complete space under sup |.| and we can-
not get the limit of the sequence {xn(t)}n≥1. So, we need to introduce a met-
ric to make the space D([t0, T ], R

n) complete. For any x, y ∈ D([t0, T ], R
n),

Billing [48] gives the following metric

d(x, y) = inf
λ∈Λ

{ sup
t0≤t≤T

|xt − yλ(t)|+ sup
t0≤s≤t≤T

|logλ(t)− λ(s)

t− s
|},

where Λ = {λ = λ(t) : λ is strictly increasing, continuous on t ∈ [t0, T ], such
that λ(t0) = t0, λ(T ) = T}. Thus, we have that (D([t0, T ]), R

n) is a complete
metric space. Taking λ(t) = t, we can see {xn(t)}n≥1 is a cauchy sequence
under d(., .). So the proof is complete.

Proof of Theorem 3.1 Uniqueness. Let x(t) and y(t) be two solu-
tions of equation (3). Then, by the Burkholder-Davis-Gundy inequality, the
Kunita’s first inequality and Hölder inequality, we have

E sup
t0≤s≤t

|x(s)− y(s)|p ≤ C

∫ t

t0

E sup
t0≤u≤s

|x(u)− y(u)|pds.

Therefore, the Gronwall inequality implies,

E sup
t0≤s≤t

|x(s)− y(s)|p = 0, t ∈ [t0, T ].

The above expression means that x(t) = y(t) for all t ∈ [t0, T ]. Therefore,
for all t ∈ [t0, T ], x(t) = y(t) a.s.

Existence. We derive from Lemma 3.2 that {xn(t)}n=1,2··· is a Cauchy
sequence in D([t0, T ], R

n). Hence there exists a unique x(t) ∈ D([t0, T ], R
n)

such that d(xn(.), x(.)) → 0 as n → ∞. For all t ∈ [t0, T ], taking limits on
both sides of (4) and letting n → ∞, we can show that x(t) is a solution of
equation (3). On the other hand, similar to the proof of lemma 3.1, we can
easily obtain that

E|x(t)|p ≤ C, for all t0 ≤ t ≤ T,

where C is a constant. Therefore,

E

∫ T

t0

|x(t)|pdt ≤ C(T − t0) < ∞.

14



That is x(t) ∈ Mp([t0, T ];R
n). So the proof of Theorem 3.1 is complete.

Next, we relax the Lipschitz condition (H1) and replace them by the fol-
lowing local Lipschitz condition.

(H3) For each t ∈ [t0, T ] and p ≥ 2, there exists a positive constant kn
such that

|f(t, x1, y1)−f(t, x2, y2)|2 ∨ |g(t, x1, y1)−g(t, x2, y2)|2≤kn(|x1−x2|2 +|y1−y2|2),

and ∫
U

|h(x1, y1, u)−h(x2, y2, u)|pπ(du) ≤ kn(|x1 − x2|p +|y1 − y2|p).

for all x1, y1, x2, y2 ∈ Rn with |x1| ∨ |y1| ∨ |x2| ∨ |y2| ≤ n.

Then Theorem 3.1 can be generalized as Theorem 3.2.

Theorem 3.2 Let conditions (H2), (H3) hold, then equation (3) has a
unique solution x(t) on [t0, T ].

Proof: For each n ≥ 1, define the truncation function

fn(t, x, y) =



f(t, x, y), if |x| ∨ |y| ≤ n,

f(t,
nx

|x|
,
ny

|y|
), if |x| ∧ |y| > n,

f(t, x,
ny

|y|
), if |x| ≤ n and |y| > n,

f(t,
nx

|x|
, y), if |x| > n and |y| ≤ n,

(26)

and gn(t, x, y), hn(x, y, u) similarly. Then fn, gn, hn satisfy conditions (H1)
and (H2). Let fn(t) = fn(t, xn(t), xn(qt)), gn(t) = gn(t, xn(t), xn(qt)), hn(t, u) =
hn(xn(t), xn(qt), u). By Theorem 3.1, we have that equation

xn(t) = φ(t) +

∫ t

t0

fn(s)ds+

∫ t

t0

gn(s)dws +

∫ t

t0

∫
U

hn(s, u)Np̄(ds, du)(27)

has a unique solution xn(t), moreover, xn(t) ∈ Mp([t0, T ];R
n). Of course,

xn+1(t) is the unique solution of equation

xn+1(t) = φ(t)+

∫ t

t0

fn+1(s)ds+

∫ t

t0

gn+1(s)dws+

∫ t

t0

∫
U

hn+1(s, u)Np̄(ds, du).
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and xn+1(t) ∈ Mp([t0, T ];R
n). For any fixed n ≥ 1, define the stopping time

τn = T ∧ inf{t ∈ [t0, T ] : |xn(t)| ∨ |xn(qt)| ≥ n}.

Taking the expectation on rn(t) = |xn+1(t)− xn(t)|p, we have

E sup
t0≤s≤t

|rn(s)|p ≤ 3p−1[E sup
t0≤s≤t

|
∫ s

t0

[fn+1(σ))− fn(σ)]dσ|p

+E sup
t0≤s≤t

|
∫ s

t0

[gn+1(σ)− gn(σ)]dwσ|p

+E sup
t0≤s≤t

|
∫ s

t0

∫
U

[hn+1(σ, u)− hn(σ, u)]Np̄(dσ, du)|p]

= 3p−1(I1 + I2 + I3). (28)

By the Hölder inequality and rearranging the terms on the right-hand side
by plus-and minus technique, we get

I1 ≤ (t− t0)
p−1E

∫ t

t0

|fn+1(s)− fn(s)|pds

≤ (2(t− t0))
p−1E

∫ t

t0

[|fn+1(s)− fn+1(s, xn(s), xn(qs))|p

+|fn+1(s, xn(s), xn(qs))− fn(s)|p]ds. (29)

Using the Burkholder-Davis-Gundy inequality inequality, the Kunita’s first
inequality and the Hölder inequality again, it follows that

I2 ≤ cpE(

∫ t

t0

|gn+1(s)− gn(s)|2ds)
p
2

≤ cp(t− t0)
p
2
−1E

∫ t

t0

|gn+1(s)− gn(s)|pds

≤ cp(t− t0)
p
2
−12p−1E

∫ t

t0

[|gn+1(s)− gn+1(s, xn(s), xn(qs))|p

+|gn+1(s, xn(s), xn(qs))− gn(s)|p]ds. (30)

and

I3 ≤ (2(T − t0))
p−1[π(U)]

p
2E

∫ t

t0

[

∫
U

|hn+1(s, u)− hn(s, u)|2π(du)]
p
2ds
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+2p−1Dp{E[

∫ t

t0

∫
U

|hn+1(s, u)− hn(s, u)|2π(du)ds]
p
2

+E[

∫ t

t0

∫
U

|hn+1(s, u)− hn(s, u)|pπ(du)ds]}

≤ (2(T − t0))
p−1[π(U)]

p
2E

∫ t

t0

[

∫
U

(2|hn+1(s, u)− hn+1(xn(s), xn(qs), u)|2

+2|hn+1(xn(s), xn(qs), u)− hn(s, u)|2)π(du)]
p
2ds

+2p−1DpE[

∫ t

t0

∫
U

(2|hn+1(s, u)− hn+1(xn(s), xn(qs), u)|2

+2|hn+1(xn(s), xn(qs), u)− hn(s, u)|2)π(du)ds]
p
2

+22p−2DpE

∫ t

t0

∫
U

(|hn+1(s, u)− hn+1(xn(s), xn(qs), u)|p

+|hn+1(xn(s), xn(qs), u)− hn(s, u)|p)π(du)ds. (31)

Combing (29)-(31) together, it follows that

E sup
t0≤s≤t

|rn(s)|p

≤ (6(T − t0))
p−1E

∫ t

t0

[|fn+1(s)− fn+1(s, xn(s), xn(qs))|p

+|fn+1(s, xn(s), xn(qs))− fn(s)|p]ds

+6p−1cp(T − t0)
p
2
−1E

∫ t

t0

[|gn+1(s)− gn+1(s, xn(s), xn(qs))|p

+|gn+1(s, xn(s), xn(qs))− gn(s)|p]ds

+(6(T − t0))
p−1[π(U)]

p
2E

∫ t

t0

[

∫
U

(2|hn+1(s, u)− hn+1(xn(s), xn(qs), u)|2

+2|hn+1(xn(s), xn(qs), u)− hn(s, u)|2)π(du)]
p
2ds

+6p−1DpE[

∫ t

t0

∫
U

(2|hn+1(s, u)− hn+1(xn(s), xn(qs), u)|2

+2|hn+1(xn(s), xn(qs), u)− hn(s, u)|2)π(du)ds]
p
2

+12p−1DpE

∫ t

t0

∫
U

(|hn+1(s, u)− hn+1(xn(s), xn(qs), u)|p

+|hn+1(xn(s), xn(qs), u)− hn(s, u)|p)π(du)ds. (32)
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For t0 ≤ t ≤ τn, we have

fn+1(t, xn(t), xn(qt)) = fn(t) = f(t, xn(t), xn(qt)),

gn+1(t, xn(t), xn(qt)) = gn(t) = g(t, xn(t), xn(qt)),

hn+1(xn(t), xn(qt), u) = hn(t, u) = h(xn(t), xn(qt), u). (33)

By (33), we get from (32),

E sup
t0≤s≤t

|rn(s)|p

≤ (6(T − t0))
p−1E

∫ t

t0

|fn+1(s)− fn+1(s, xn(s), xn(qs))|pds

+6p−1cp(T − t0)
p
2
−1E

∫ t

t0

|gn+1(s)− gn+1(s, xn(s), xn(qs))|pds

+(6(T − t0))
p−1[2π(U)]

p
2E

∫ t

t0

[

∫
U

|hn+1(s, u)

−hn+1(xn(s), xn(qs), u)|2π(du)]
p
2ds

+6p−1Dp2
p
2E[

∫ t

t0

∫
U

|hn+1(s, u)− hn+1(xn(s), xn(qs), u)|2π(du)ds]
p
2

+12p−1DpE

∫ t

t0

∫
U

|hn+1(s, u)− hn+1(xn(s), xn(qs), u)|pπ(du)ds.

By the local Lipschitz condition (H3) and the basic inequality |a + b|p ≤
2p−1(|a|p + |b|p), we have

E sup
t0≤s≤t

|rn(s)|p ≤ CE

∫ t

t0

[|rn(s)|p + |rn(qs))|p]ds

≤ 2C

∫ t

t0

E sup
t0≤σ≤s

|rn(σ)|pds,

where C = (12(T − t0))
p−1(knπ(du))

p
2 + 12p−1Dp[(kn(T − t0))

p
2 + kn]. Thus,

the Gronwall inequality implies that

E sup
t0≤s≤t

|xn+1(s)− xn(s)|p = 0, t0 ≤ t ≤ τn.

Therefore we obtain that

xn+1(t) = xn(t), for t ∈ [t0, τn]. (34)
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It then deduced that τn is increasing, that is as n → ∞, τn ↑ T a.s. By the
linear growth condition (H2), for almost all ω ∈ Ω, there exists an integer
n0 = n0(ω) such that τn = T as n ≥ n0. Now define x(t) by x(t) = xn0(t)
for t ∈ [t0, T ]. Next to verify that x(t) is a solution of equation (3). By (34),
x(t ∧ τn) = xn(t ∧ τn), and by (27), it follows that

x(t ∧ τn) = φ(t) +

∫ t∧τn

t0

fn(s)ds+

∫ t∧τn

t0

gn(s)dws

+

∫ t∧τn

t0

∫
U

hn(s, u)Np̄(ds, du)

= φ(t) +

∫ t∧τn

t0

f(s, x(s), x(qs))ds+

∫ t∧τn

t0

g(s, x(s), x(qs))dws

+

∫ t∧τn

0

∫
U

h(x(s), x(qs), u)Np̄(ds, du).

Letting n → ∞, then yields

x(t ∧ T ) = φ(t) +

∫ t∧T

t0

f(s, x(s), x(qs))ds+

∫ t∧T

t0

g(s, x(s), x(qs))dws

+

∫ t∧T

t0

∫
U

h(x(s), x(qs), u)Np̄(ds, du).

That is

x(t) = φ(t) +

∫ t

t0

f(s, x(s), x(qs))ds+

∫ t

t0

g(s, x(s), x(qs))dws

+

∫ t

t0

∫
U

h(x(s), x(qs), u)Np̄(ds, du).

we can see that x(t) is the solution of equation (3) and x(t) ∈ Mp([t0, T ];R
n).

The existence of solution to equation (3) is complete. By stopping our pro-
cess, uniqueness is obtained. The proof is complete.

4. Asymptotic estimations for solutions

In this section, we will study the exponential estimate of solution to equa-
tion (3).
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According to the definition of Ñp̄(dt, du) := Np̄(dt, du)− π(du)dt, we can
rewrite equation (2) as the following equation

dx(t) = F (t, x(t), x(qt), u)dt+ g(t, x(t), x(qt))dwt

+

∫
U

h(x(t), x(qt), u)Ñp̄(dt, du), (35)

where F (t, x(t), x(qt), u) = f(t, x(t), x(qt)) +
∫
U
h(x(t), x(qt), u)π(du).

Let C2(Rn×R+, R+) denote the family of all nonnegative functions V (x, t)
on Rn × R+ which are continuously twice differentiable in x. For each V ∈
C2(Rn ×R+, R+), define an operator LV from Rn ×Rn ×R+ to R by

LV (x, y, t) ≡ Vt(x, t) + Vx(x, t)F (t, x, y, u)

+
1

2
trace[g⊤(t, x, y)Vxx(x, t)g(t, x, y)]

+

∫
U

[V (x+ h(x, y, u), t)− V (x, t)− Vx(x, t)h(x, y, u)]π(du), (36)

where

Vt(x, t) =
∂V (x, t)

∂t
, Vx(x, t) = (

∂V (x, t)

∂x1

, · · · , ∂V (x, t

∂xn

),

Vxx(x, t) = (
∂2V (x, t)

∂xi∂xj

)n×n.

First, we establish the p-th exponential estimations of solution to equation
(3).

Theorem 4.1 Let {x(t), t0 ≤ t ≤ T} be a solution of equation (3) whose
coefficients satisfy conditions (H1), (H2). Then, for any p ≥ 2, there exist
two constants M1,M2 such that

E sup
t0≤s≤t

|x(s)|p ≤ [2(1 + E||φ||p) +M1(T − t0)]e
M2(t−t0). (37)

Proof: Let V (t, x(t)) = 1+ |x(t)|p, then Vt(t, x(t)) = 0. Applying the Itô
formula to V (t, x(t)), we obtain

V (t, x(t)) = V (t0, x(t0)) +

∫ t

t0

LV (x(s), x(qs), s)ds
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+

∫ t

t0

Vx(s, x(s))g(s, x(s), x(qs))dws

+

∫ t

t0

∫
U

[V (x(s)+h(x(s), x(qs), u), s)−V (x(s), s)]Ñp̄(ds, du). (38)

Let ft = f(t, x(t), x(qt)), gt = g(t, x(t), x(qt)), ht,u = h(x(t), x(qt), u), Ft,u =
ft +

∫
U
ht,uπ(du). By (38), we obtain that

1 + |x(t)|p = 1 + |x(t0)|p + p

∫ t

t0

|x(s)|p−2(x(s), Fs,u)ds

+
1

2
p

∫ t

t0

|x(s)|p−2|gs|2ds+
p(p− 2)

2

∫ t

t0

|x(s)|p−4|(x(s), gs)|2ds

+p

∫ t

t0

|x(s)|p−2(x(s), gsdws)

+

∫ t

t0

∫
U

{(1 + |x(s) + hs,u|p)− (1 + |x(s)|p)− p|x(s)|p−2(x(s), hs,u)}π(du)ds

+

∫ t

t0

∫
U

{(1 + |x(s) + hs,u|p)− (1 + |x(s)|p)}Ñp̄(ds, du).

Taking expectation on 1+ |x(t)|p and using the basic inequality 2ab ≤ a2+b2,
we have

E sup
t0≤s≤t

(1 + |x(s)|p)

≤ 1 + E||φ||p + p

2
E

∫ t

t0

|x(s)|pds+ p

2
E

∫ t

t0

|x(s)|p−2|Fs,u|2ds

+
p(p− 1)

2
E

∫ t

t0

|x(s)|p−2|gs|2ds

+pE sup
t0≤s≤t

∫ s

t0

|x(σ)|p−2(x(σ), gσdwσ)

+pE sup
t0≤s≤t

∫ s

t0

∫
U

|x(σ)|p−2(x(σ), hσ,u)Ñp̄(dσ, du)

+E sup
t0≤s≤t

∫ s

t0

∫
U

{|x(σ) + hσ,u|p − |x(σ)|p

−p|x(σ)|p−2(x(σ), hσ,u)}Np̄(dσ, du)

≤ 1 + E||φ||p + p

2
E

∫ t

t0

|x(s)|pds+ J1 + J2 + J3 + J4 + J5. (39)
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Let us estimate J1. By the Young inequality, we have

J1 ≤ p

2
[
p− 2

p
E

∫ t

t0

|x(s)|pds+ 2

p
E

∫ t

t0

|Fs,u|pds. (40)

Using the basic inequality and (H2), we obtain

E

∫ t

t0

|Fs,u|pds ≤ c10(T − t0) + 2c10

∫ t

t0

E sup
t0≤σ≤s

|x(σ)|pds]. (41)

where c10 = 2p−13
p
2
−1[L

p
2
1 + (L2π(U))

p
2 ]. Then, we get

J1 ≤ c10(T − t0) + [
p− 2

2
+ 2c10]

∫ t

t0

E sup
0≤σ≤s

|x(σ)|pds. (42)

Similarly, we obtain that

J2 ≤ c11(T − t0) + [
p− 2

2
+ 2c11]

∫ t

t0

E sup
0≤σ≤s

|x(σ)|pds, (43)

where c11 = (p−1)L
p
2
1 3

p
2
−1. Let us estimate J5. SinceNp̄(dt, du) = Ñp̄(dt, du)+

π(du)dt and Ñp̄(dt, du) is a martingale, it follows that

J5 ≤ E

∫ t

t0

∫
U

{|x(s)+hs,u|p−|x(s)|p−p|x(s)|p−2(x(s), hs,u)}π(du)ds.(44)

We note that it has the form

E

∫ t

t0

∫
U

{f(x(s) + hs,u)− f(x(s))− f ′(x(s))hs,u}π(du)ds,

where f(x) = |x|p. Using the Taylor formula, there exists a positive constant
Mp (p ≥ 2) such that

f(x(s) + hs,u)− f(x(s))− f ′(x(s))hs,u

= |x(s) + hs,u|p − |x(s)|p − p|x(s)|p−2(x(s), hs,u)

≤ Mp[|x(s) + hs,u|p−2|hs,u|2 + |hs,u|p]. (45)
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Thus, using the basic inequality |a+ b|p−2 ≤ 2p−3(|a|p−2 + |b|p−2), the Young
inequality and (H2), we obtain that

J5 ≤ MpE

∫ t

t0

∫
U

[|x(s) + hs,u|p−2|hs,u|2 + |hs,u|p]π(du)ds

≤ Mp2
p−3p− 2

p
E

∫ t

t0

∫
U

|x(s)|pπ(du)ds

+Mp[2
p−3(1 +

2

p
) + 1]E

∫ t

t0

∫
U

|hs,u|pπ(du)ds

≤ Mp2
p−3p− 2

p
π(U)E

∫ t

t0

|x(s)|pds

+Mp[2
p−3(1 +

2

p
) + 1]L2E

∫ t

t0

(1 + |x(s)|p + |x(qs)|p)ds

≤ c12(T − t0) + c13

∫ t

t0

E sup
t0≤σ≤s

|x(σ)|pds. (46)

where c12 = Mp[2
p−3(1+ 2

p
)+1]L2 and c13 = Mp2

p−3 p−2
p
π(U)+2Mp[2

p−3(1+
2
p
)+1]L2. For the estimation of J3, by the Burkholder-Davis-Gundy inequal-

ity, we have

J3 ≤ 3pE[

∫ t

t0

|x(s)|2p−2|gs|2ds]
1
2

≤ 3pE[ sup
t0≤s≤t

|x(s)|p(
∫ t

t0

|x(s)|p−2|gs|2ds)]
1
2 .

For any ε1 > 0, the Young inequality implies that

J3 ≤ 3p[ε1E sup
t0≤s≤t

|x(s)|p]
1
2 [

1

ε1
E(

∫ t

t0

|x(s)|p−2|gs|2ds)]
1
2

≤ 3pε1
2

E sup
t0≤s≤t

|x(s)|p + 3p

2ε1
E

∫ t

t0

|x(s)|p−2|gs|2ds

≤ 3pε1
2

E sup
t0≤s≤t

|x(s)|p + (T − t0)

ε1
(3L1)

p
2

+[
3(p− 2)

2ε1
+

2

ε1
(3L1)

p
2 ]

∫ t

t0

E sup
t0≤σ≤s

|x(σ)|pds. (47)
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Let ε1 =
1
6p
, it follows from (47) that

J3 ≤ 1

4
E sup

t0≤s≤t
|x(s)|p + 6p(3L1)

p
2 (T − t0)

+c14

∫ t

t0

E sup
t0≤σ≤s

|x(σ)|pds. (48)

where c14 = 9p(p − 2) + 12p(3L1)
p
2 . Finally, we will give the estimate of

J4. By applying the Burkholder-Davis-Gundy inequality again, there exists
a positive constant c̃p such that

J4 ≤ pc̃pE[

∫ t

t0

∫
U

|x(s)|2p−2|hs,u|2π(du)ds]
1
2

≤ pc̃pE[ sup
t0≤s≤t

|x(s)|p(
∫ t

t0

∫
U

|x(s)|p−2|hs,u|2π(du)ds)]
1
2 .

Further, using the Young inequality again, we have for any ε2 > 0

J4 ≤ pc̃p[ε2E sup
t0≤s≤t

|x(s)|p]
1
2 [

1

ε2
E(

∫ t

t0

∫
U

|x(s)|p−2|hs,u|2π(du)ds)]
1
2

≤ pc̃pε2
2

E sup
t0≤s≤t

|x(s)|p + pc̃p
2ε2

E

∫ t

t0

∫
U

|x(s)|p−2|hs,u|2π(du)ds

≤ pc̃pε2
2

E sup
t0≤s≤t

|x(s)|p + pc̃p
2ε2

[
p− 2

p
E

∫ t

t0

∫
U

|x(s)|pπ(du)ds

+
2

p
E

∫ t

0

∫
U

|hs,u|pπ(du)ds]

≤ pc̃pε2
2

E sup
t0≤s≤t

|x(s)|p + c̃p
ε2
L2(T − t0)

+[
c̃p(p− 2)π(U)

2ε2
+

2c̃p
ε2

L2]

∫ t

t0

E sup
t0≤σ≤s

|x(σ)|pds. (49)

Let ε2 =
1

2pc̃p
, we obtain that

J4 ≤ 1

4
E sup

t0≤s≤t
|x(s)|p+ 2pc̃2pL2(T−t0) +c15

∫ t

t0

E sup
t0≤σ≤s

|x(σ)|pds, (50)
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where c15 = p(p − 2)c̃2pπ(U) + 2pc̃2pL2. Combing J1 − J5 and (39) together,
we have

E sup
t0≤s≤t

(1 + |x(s)|p) ≤ 2(1 + E||φ||p) +M1(T − t0)

+M2

∫ t

t0

E sup
0≤σ≤s

(1 + |x(σ)|p)ds,

where

M1 = 2[c10 + c11 + c12 + 6p(3L1)
p
2 + 2pc̃2pL2],

M2 = 2(
3p

2
− 2 + 2c10 + 2c11 + c13 + c14 + c15).

Therefore, we apply the Gronwall inequality to get

E sup
t0≤s≤t

(1 + |x(s)|p) ≤ [2(1 + E||φ||p) +M1(T − t0)]e
M2(t−t0).

This completes the proof.

The next result shows that exponential estimations implies almost surely
asymptotic estimations, and we give an upper bound for the sample Lya-
punov exponent.

Theorem 4.2 Under conditions (H1), (H2), we have

lim sup
t→∞

1

t
log|x(t)| ≤ 1 + 78L1 + (2 + 4π(U) + 8c̃22)L2, a.s. (51)

That is, the sample Lyapunov exponent of the solution should not be greater
than 1 + 78L1 + (2 + 4π(U) + 8c̃22)L2.

Proof: For each n = 1, 2, . . ., it follows from Theorem 4.1 (taking p = 2)
that

E( sup
t0+n−1≤t≤t0+n

|x(t)|2) ≤ βeγn,

where β = 2(1 + E||φ||2) + 2[39L1 + (1 + 2π(U) + 4c̃22)L2](T − t0) and γ =
2[1 + 78L1 + (2 + 4π(U) + 8c̃22)L2]. Hence, for any ε > 0, by the chebysher
inequality, it follows that

P{ω : sup
t0+n−1≤t≤t0+n

|x(t)|2 > e(γ+ϵ)n} ≤ βe−ϵn.
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Since Σ∞
n=0βe

−εn < ∞, by Borel-Cantelli lemma, we deduce that, there exists
a integer n0 such that

sup
t0+n−1≤t≤t0+n

|x(t)|2 ≤ e(γ+ε)n a.s n ≥ n0.

Thus, for almost all ω ∈ Ω, if t0 + n− 1 ≤ t ≤ t0 + n and n ≥ n0, then

1

t
log|x(t)| = 1

2t
log(|x(t)|2) ≤ (γ + ε)n

2(t0 + n− 1)
. (52)

Taking lim sup in (52) leads to almost surely exponential estimate, that is,

lim sup
t→∞

1

t
log|x(t)| ≤ γ + ε

2
= 1 + 78L1 + (2 + 4π(U) + 8c̃22)L2, a.s.

Required assertion (51) follows because ε > 0 is arbitrary.
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equations with Lévy noise, J. Math. Anal. Appl, 416 (2014), 126-142.

[47] H. Kunita, Stochastic differential equations based on Lévy processes and
stochastic flows of diffeomorphisms, in Real and Stochastic Analysis, New
Perspectives, ed. M. M. Rao, Birkhauser Boston Basel Berlin, (2004), 305-75.

[48] P. Billingsley, Convergence of probability measures, JohnWiley and Sons,
Inc., New York-London- Sydney, 1968.

30


