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Abstract: An efficient method for finding all real roots of a univariate function in a given bounded 

domain is formulated. The proposed method uses adaptive mesh refinement to locate bracketing intervals 

based on bisection criterion for root finding. Each bracketing interval encloses one root. An adaptive 

form of error is introduced to enclose roots in a desired tolerance based on how much close the roots are. 

Detecting roots with even multiplicity, which is regarded out of the realm of bracketing methods, becomes 

possible with the method proposed in this paper. Also, strategies for finding odd-multiple roots with the 

least number of function evaluations is proposed. Adaptive mesh refinement lead to considerable 

reduction in function evaluations in comparison to previous global root bracketing methods. The 

reliability of the proposed method is being illustrated by several examples. 
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1 Introduction 

A one dimensional root finding problem finds x such that 𝑓(𝑥) = 0, for a given function 𝑓: 𝑅 → 𝑅. 

Such an x is called a root or zero of the function f. Numerical method algorithms which deal with solving 

this problem can be divided into two basic groups, bracketing methods and open methods. Bracketing 

methods start with a bounded interval which is guaranteed to bracket a root. The size of initial bracket is 

reduced step by step until it encloses the root in a desired tolerance. Open methods begin with an initial 

guess of the root and then improving the guess iteratively. Bracketing methods provide an absolute error 

estimate on the root's location and always work but converge slowly. In contrast, open methods do not 

always converge. There is a trade-off between absolute error bound and speed in open methods.  

Bracketing methods use function evaluations but open methods need both the function and its derivative. 

There are three major kinds of bracketing methods. The first one is bisection method. The second one 

is false position which is a method of finding roots based on linear interpolation. The third one is the 

Brent-Dekker method which combines an interpolation strategy with the bisection algorithm. Bisection 

method or interval halving is the simplest bracketing method for root finding of a continuous non-linear 

function, namely 𝑓(𝑥). This method has a linear convergence rate [1]. The first step in bisection method 

is to provide a search bound. The search bound represented by [𝑥𝑎  𝑥𝑏] is the limit of an interval where the 

sign of 𝑓(𝑥𝑎) and 𝑓(𝑥𝑏) are different. Based on the Intermediate Value Theorem, when 𝑓(𝑥𝑎) and 𝑓(𝑥𝑏) 

have opposites signs, then there is at least one real root between 𝑥𝑎 and 𝑥𝑏. The iteration begins with 

halving the search space. The midpoint of the interval 𝑥𝑚 = (𝑥𝑎 + 𝑥𝑏)/2 and 𝑓(𝑥𝑚) are evaluated. If 

𝑓(𝑥𝑎) × 𝑓(𝑥𝑚) < 0, then 𝑥𝑏 is replaced by 𝑥𝑚 otherwise 𝑥𝑎 is replaced by 𝑥𝑚. The search space is 

halved at each step. The process is repeated and the root estimate refined by dividing the subintervals into 
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finer increments. Iteration terminates if at any point 𝑓(𝑥) equals 0 or the distance between 𝑥𝑎 and 𝑥𝑏 

becomes lower than a requested precision. This well-known algorithm can find only one root in the search 

bound. If there is more than one root, it is unclear which root is found. It’s very favorable to extend 

bracketing methods in somehow to find all roots of an objective function at a given interval. Such a 

method is named global root bracketing method (GRBM). In this paper a globalization of bisection 

method for finding all roots of an objective function is proposed. 

The rest of the paper is organized as follows. In section 2, the GRBM which previously proposed will 

be reviewed and its deficiencies will be shown. In section 3, a new approach which adds adaptive mesh 

refinement (AMR) feature to the GRBM is introduced. It will be shown that implementing AMR can 

greatly increase the speed of GRBM, adding new features, and suppressing the deficiencies. Finally, a 

conclusion is given in Section 4. In this paper, the root finding is discussed for one-dimension problems 

but the idea can be applied to higher dimensions and will be discussed in further publications.  

2 Global root bracketing method 

Using bracketing methods for finding all the roots of an objective function has previously reported [2-

8]. For a detailed review of root bracketing methods refer to [1]. Such methods sometimes called 

bisection-exclusion methods. In the GRBM, incremental search approach is used to locate subintervals 

where the function changes sign. These subintervals are called bracketing intervals. Other subintervals 

which fail to pass bisection criterion are excluded. A bracketing method is used to locate the root in every 

one of the bracketing intervals. The generic form of GRBM can be presented in the following algorithm 

[1]:  

1. Input: 𝑓(𝑥) = 0, search bound limits, halving threshold (HT), tolerance for stopping criterion 

2. Create an initial mesh  

3. Evaluate 𝑓(𝑥) at the nodes of the initial mesh  

4. Select bracketing intervals  

5. Apply a root bracketing method to each bracketing interval 

6. Output roots founded in step 5 

 In some works, the search interval divided into sub-intervals all in once [5]. In some other works, 

dividing goes on step by step [2]. If an interval is not detected as a bracketing interval and its size is 

bigger than the 𝐻𝑇, it should be halved. That’s because failing in fulfilling bracketing criterion doesn’t 

guarantee that a subinterval does not contain any root. So, it should be chuck down further. The 𝐻𝑇 is 

chosen to limit halving process. The problem which arises is that a small 𝐻𝑇 is computationally costly. 

On the other hand, if a large 𝐻𝑇 is chosen, some roots may be omitted. The problem is compounded by 

the possible existence of even-multiplicity roots, such as 𝑓(𝑥) = (𝑥 − 𝑥0)2. A representation of GRBM is 

depicted in Fig. 1.  

Dashed lines in Fig. 1 show increment length or mesh. One can see that the HT is not small enough to 

detect bracketing intervals which enclose any of the two roots which lie at [x3 x4]. The last root on the 

right is a root with even-multiplicity and would be missed regardless of HT because the curve never 

crosses x axis at an even-multiple root. Roots lie at [x1 x2] and [x2 x3] can be detected correctly. It’s clear 

from Fig. 1 that GRBM leads to static mesh refinement with constant grid spacing. 

Here, the first deficiency of the generic form of GBM is discussed. There are regions in the search 
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space which need to be investigated with smaller 𝐻𝑇 ([x4 x5] in Fig. 1). On the other hand, there are 

regions ([x1 x2] in Fig. 1) that a large 𝐻𝑇 can take care of root finding. Uniform mesh refinement which is 

 

 

depicted in Fig. 1 fails to find bracketing intervals efficiently. In order to separate close roots with static 

mesh refinement, 𝐻𝑇 should not be bigger than the minimum distance between roots. In section 2, an 

adaptive mesh refinement will be presented which can solve this problem. 

The other problem is related to definition of error or termination criterion in root bracketing methods. 

The acceptable form of error for root bracketing methods including the bisection method is same as other 

iterative methods and can be expressed as follows [9]: 

|
𝑥𝑚

𝑛𝑒𝑤 − 𝑥𝑚
𝑜𝑙𝑑

 𝑥𝑚
𝑛𝑒𝑤 | = 𝜀𝑎 

(1) 

in which, 𝑥𝑚
𝑛𝑒𝑤 is the root for the present iteration and 𝑥𝑚

𝑜𝑙𝑑 is the root from the previous iteration. 𝜀𝑎 

is the tolerance of 𝑥𝑚
𝑛𝑒𝑤. The absolute value is used because the sign of the tolerance is not important. 

When 𝜀𝑎 becomes less than a pre-specified stopping criterion 𝜀𝑠, the computation is terminated. To avoid 

dividing by very small numbers, relative tolerance is presented as follows [9]: 

|
𝑥𝑚

𝑛𝑒𝑤 − 𝑥𝑚
𝑜𝑙𝑑

max (1, 𝑥𝑚
𝑛𝑒𝑤)

| = 𝜀𝑎 
(2) 

 

When there are roots very close to each other, the 𝜀𝑠 should be lower than the distance between two 

roots in order to separate roots precisely. But, there is no foreknowledge about how close to each other 

two distinct roots can be. In fact, that’s what we are going to find out. So, decreasing 𝜀𝑠 cannot be a 

solution to precise reporting of close roots.  Also, very small 𝜀𝑠 will increase computation time. An 

adaptive 𝜀𝑠 should be defined to be decreased in relation to the distance between the roots. An appropriate 

definition will be presented in the next section which enables GRBM to detect close roots precisely. 

3 Global root bracketing method with adaptive mesh refinement 

The flowchart of GRBM with AMR is presented in Fig. 2. Bisection method is used as the root 

bracketing method. Each block is numbered to be addressed easily. Inputs which are defined in box 1 

include 𝑓(𝑥) = 0 as the objective function and 𝑥𝐿(1) and 𝑥𝑅(1) as the left and right limits of the search 

Figure 1: Cases where roots could be missed in GRBM 
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bound. Also, 𝜀, 𝜀𝑚, and 𝜀𝑓 which are related to tolerance estimation, and 𝐶 which is related to 𝐻𝑇 should 

be provided by user. In box 2, some counting parameters are initialized. In box 3, the midpoint of 

subinterval is calculated and stored in a row matrix 𝑥𝑚(𝑗). j is an index number for subintervals. In box 4, 

the bisection criterion is checked. If it is found out that the subinterval is not a bracketing one, algorithm 

proceeds to box 5. If the objective function returns a value below 𝜀𝑓 at 𝑥𝑚(𝑗) (box 5), then the midpoint is 

saved as a root at box 6. 𝜀𝑓  should be a number very close to zero. If the condition in box 5 does not 

meet, the condition in box 7 should be checked. Box 7 states that the subinterval should be halved if its 

size is bigger than 𝐻𝑇. Instead of assigning a constant value to 𝐻𝑇, a new definition for 𝐻𝑇 is presented 

as follows: 

𝐻𝑇 = 𝐶 ×
𝑚𝑖𝑛{|𝑓(𝑥𝐿(𝑗))|, |𝑓(𝑥𝑅(𝑗))|}

𝑥𝑅(𝑗) − 𝑥𝐿(𝑗)
 (3) 

C is defined by user. It can adjust how deep the halving process can go. Other parameters in Eq. 3 

change as the algorithm proceeds. C is multiplied by the minimum of absolute value of 𝑓(𝑥) at each of 

the left and right limit of the subinterval. Multiplying by such term means that when 𝑓(𝑥) is close to zero 

at any limit of the subinterval, the 𝐻𝑇 is decreased. That’s because it’s much more probable to find a root 

in the vicinity of a point where 𝑓(𝑥) is close to zero. On the other hand, when 𝑓(𝑥) is far from zero, this 

chance is decreased. The problem with multiplying with the mentioned term arises when the algorithm 

converges to a root. In this case, 𝑓(𝑥) at both ends of the subinterval becomes so close to zero. This leads  

𝐻𝑇 to become very small step by step. To solve this problem, we should consider that as the bisection 

converges to a root, the subinterval becomes small. So, by dividing the size of the working interval to C, 

nonstop decreasing of 𝐻𝑇 is inhibited. In contrast to generic form of GRBM, the definition of 𝐻𝑇 which 

was presented in Eq. 3 will lead to an adaptive mesh refinement. In numerical analysis, adaptive mesh 

refinement is a method of changing the accuracy of a solution in certain regions, during the time the 

solution is being calculated. In regions where 𝑓(𝑥) is close to zero, there would be a dense mesh 

refinement and in regions where 𝑓(𝑥) is far from zero there would be a coarse mesh refinement. The 

proposed approach decreases function evaluations and computation time considerably. 

If the condition in box 7 (Fig. 2) is met, the working interval is halved. The location of left and right 

limit of new subintervals are saved in row matrices of 𝑥𝐿 and 𝑥𝑅 (box 8). i index is used to number new 

subintervals which produced by halving process all through the flowchart. In box 20, j will be increased 

by one and if the condition in box 21 doesn’t met, the process goes back to box 3. In fact, the subinterval 

is changed and bracketing condition is checked again. 

In box 4 (Fig. 2), if the subinterval is detected as a bracketing one, the size of bracketing interval is 

stored in a parameter called L (box 9). That’s because 𝑥𝐿(𝑗) and 𝑥𝑅(𝑗) are going to change in the 

bisection loop. After that, the tolerance check is performed in box 10. Instead of using the relative form of 

tolerance presented in Eq. 2, new definition for error is presented as follows:  

𝑇𝑜𝑙 = 𝑚𝑖𝑛{𝜀 × 𝐿 , 𝜀𝑚} (4) 

in which, 𝑇𝑜𝑙 stands for tolerance and 𝐿 is the size of the bracketing interval. 𝑇𝑜𝑙 has a maximum of 𝜀𝑚 

but its minimum is boundless. Actually, the minimum of 𝑇𝑜𝑙 is dependent on the 𝐿. This type of tolerance 

definition can solve the problem of reporting close roots with appropriate precision. When two roots are 

very close to each other, the bracketing interval for detecting each one of them becomes very small in  
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Start

Inputs: f(x)=0, xL(1), xR(1), C, , m, f

f(xL(j)) × f(xR(j)) <0

xR(j)-xL(j)>Tol

xR(j)-xL(j)>HT

xm(j)=(xR(j)+xL(j))/2;
f(xL(j)) × f(xm(j)) <0

xR(j)-xm(j)>HT

xR(j)= xm(j);

xROOT(k)= [xm(j) , Tol];

k=k+1;

j=j+1;

xL(i+1)= xm(j);

xR(i+1)= xR(j);

i=i+1;

j ≥i

xm(j)-xL(j)>HT

xL(j)= xm(j);

xL(i+1)= xL(j);

xR(i+1)= xm(j);

i=i+1;

Initializing counter parameters:

i=1; j=1; k=1;

xR(i+1)= xm(j);  xL(i+1)= xL(j);
xR(i+2)= xR(j);  xL(i+2)= xm(j);
i=i+2;
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Figure 2: Flowchart of global root bracketing method with adaptive mesh refinement 
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comparison to far a parted roots. In this cases, by multiplying the size of bracketing interval (𝐿) into 𝜀, 

tolerance will be decreased in proportion to the closeness of the roots. In cases where L becomes bigger 

than one, the minimum operator will choose 𝜀𝑚 as the tolerance. 

If the condition in box 10 (Fig. 2) is met, the working interval is halved. One of the halves is chosen as 

bracketing interval and the other is checked weather if it’s bigger than 𝐻𝑇 or not. If it is found that the 

non-bracketing half is bigger than 𝐻𝑇, its location will be saved as a new subinterval which have to be 

fed into the algorithm afterward. These steps take place in boxes 11 to 18. New subintervals are defined in 

boxes 8, 14, and 17. Bisection loop is terminated when the condition in box 10 is failed to meet. After 

failing at box 10, the location of midpoint of the bracketing interval is saved as a root in box 19. In box 

20, j is increased by one. If j is lower than i, it means that there are still subintervals that should be 

checked. Location of roots and the error in locating each one them are saved in a matrix called 𝑥𝑅𝑂𝑂𝑇 

(boxes 5 and 19). 

It should be noted that the tolerances used in the flowchart cannot be less than machine epsilon of the 

processor in which the algorithm is executed. Machine epsilon gives an upper bound on the relative error 

due to rounding in floating point arithmetic. So, roots which are close to each other less than machine 

epsilon cannot be detected. For most of computing software, machine epsilon is equal to 2.22×10-16. 

3.1 Evaluating the GRBM with AMR 

In this section the power of the proposed GRBM with AMR is evaluated and compared with the 

generic form of GRBM through some examples. A program based on flowchart presented in Fig. 2 was 

written in Matlab software. The objective function was written in a different file within the Matlab 

environment. In order to minimize function evaluations, the function is defined in such a way that inhibit 

recalculation. The number of function evaluations is counted within the function file. As an example, a 

polynomial is chosen for root finding which is as follows: 

𝑓(𝑥) = (𝑥 − 0.5)(𝑥 − 0.50001)(𝑥 − 4)(𝑥 − 4.05)(𝑥 − 9.3)    0<x<10 (5) 

It’s clear that 𝑓(𝑥) in Eq. 5 has five roots including x1=0.5, x2=0.50001, x3=4, x4=4.05, x5=9.3. x1 and 

x2 are very close, x3 and x4 are relatively close, and x5 is far apart from other roots. To quantify the 

concept of closeness, an index of closeness is defined as follows:     

𝐶𝐼 =
𝑡ℎ𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑒𝑎𝑟𝑐ℎ 𝑏𝑜𝑢𝑛𝑑

𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑤𝑜 𝑟𝑜𝑜𝑡𝑠 
 (6) 

CI is the closeness index which shows how close to each other two distinct roots can be in relation to the 

size of the initial search bound. A root with higher CI is harder to find in comparison to a root with lower 

CI. Based on the definition presented in Eq. 6, roots of the polynomial in Eq. 5 has the following CI, 

CI1=CI2=106, CI3=CI4=100, and CI5=2.04. So, roots cover a wide range of CI which makes the 

polynomial of Eq. 5 a challenging test for a GRBM.  

One of the most important parameters in GRBM with AMR is C in Eq. 3. Other parameters which 

should be set are 𝜀, 𝜀𝑚, and 𝜀𝑓. Program which was wrote in Matlab ran with 𝜀𝑓 = 2.22 × 10−16 and 

different values of C, 𝜀, 𝜀𝑚. With every different value for C, different number of function evaluations is 

needed for solving the problem. The distance between points where the objective function is evaluated 

reveals how the mesh refinement is performed. Table 1 shows relevant data of each run.  
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Every raw in table 1 is related to a different run which are numbered consecutively in column one. N 

in column five from the left is the number of function evaluations for each run. In run #1, not all the roots 

Table 1: Roots of 𝑓(𝑥) defined in Eq. 5  
 

No. 𝐶 𝜀 𝜀𝑚 N Roots 

1 0.05 10-2 10-3 45 
9.300±10-3, 4.0000±4×10-4, 4.0501±4×10-4 

2 0.04 10-2 10-3 95 9.300±10-3, 4.0000±4×10-4, 4.0501±4×10-4, 

0.5000000±10-7, 0.5000099±10-7 

3 0.04 10-2 10-5 111 9.29999±10-5, 4.00000±10-5, 4.05000±10-5, 

0.5000000±10-7, 0.5000099±10-7 

4 0.01 10-2 10-5 139 9.29999±10-5, 4.00000±10-5, 4.05000±10-5, 

0.5000000±10-7, 0.5000099±10-7 

5 0.01 10-4 10-5 157 9.29999±10-5, 4.00000±4×10-6, 4.05000±4×10-6, 

0.5000000000±10-10, 0.5000010000±10-10 

 

are found. In fact, two roots with highest CI are missing. Tolerance for x3 and x4 is almost the half of 

tolerance for x5. That’s because x3 and x4 are close to each other. In run #2, C is lowered to 0.04 which 

lead to finding all the roots. The minimum tolerance for separating x1 and x2 is 10-5. In this run, the error 

for x1 and x2 is 10-7 which is good enough. To give a picture how differing other parameters affect N, 

other runs are listed in table 1. 

Plots for different values of C which show HT and 𝑓(𝑥) versus 𝑥 based on function evaluations which 

were performed in the program are presented in Fig. 3. Fig. 3a and b are related to run #1 and Fig. 3c and 

d are related to run #2. It can be seen from Fig. 3b and d that with decreasing 𝐻𝑇, roots with higher CI 

which are x1 and x2 can be detected. Fig. 3a and c show how 𝐻𝑇 changes as 𝑥 approaches a root or get far 

from it. It’s clear that the GRBM with AMR can optimize 𝐻𝑇 to minimize function evaluations, enhances 

the GRBM, and decreases computation time.  

To find roots of polynomial presented in Eq. 2 with generic form of GRBM which was summarized in 

section 2, the algorithm presented in Fig. 2 can be used with two replacement. Replacements are the 

definition of 𝐻𝑇 and 𝑇𝑜𝑙. For generic form of GRBM, tolerance is defined as it presented in Eq. 2 and 𝐻𝑇 

is regarded as a constant number which should be defined by user.  The 𝐻𝑇 should not be bigger than the 

minimum distance between two roots otherwise some roots will be missed. The minimum distance 

between roots for problem defined in Eq. 5 is between x1 and x2 and it’s equal to 10-5. So, 𝐻𝑇 should set to 

be 10-5 at least. At this value of 𝐻𝑇, 𝑓(𝑥) should be calculated in 106 points. The number comes from 

initial search bound width divided by 𝐻𝑇. In fact, the number of function evaluations has the order of 

magnitude of the highest closeness index between roots. 106 times function evaluations finds bracketing 

intervals which contain all the roots. According to table 1, EGB method only needs 95 times function 

evaluations to find all the roots. The difference between GRBM with AMR and generic form of GRBM 

method in terms of speed and efficiency is substantial. This difference becomes even greater as the CI 

increases. 
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3.2 Finding roots with even-multiplicity 

It was noted in section 1 that root bracketing methods are unable to find roots with even-multiplicity 

because the function curve never crosses x axis in such points but only touches it. AMR embedded in 

 

 

Figure 3: Plots of 𝐻𝑇 and 𝑓(𝑥) versus 𝑥 for different values of C 

 

the algorithm presented in Fig. 2 enables us to find roots with even-multiplicity. Although the condition 

in box 6 always fails in such points but even multiple roots are caught in box 4. GRBM with AMR can 

converge to roots with even-multiplicity because of the definition proposed for 𝐻𝑇 in Eq. 3. The 𝐻𝑇 

decreases in the vicinity of such points and lead the algorithm to converge in box 4. As an example, a 

function with even-multiple roots is defined as follows: 

𝑔(𝑥) = (𝑥 − 3)2(𝑥 − 4)2   0 < 𝑥 < 5 (7) 

At 𝑥 = 3 and 4, 𝑔(𝑥) meets its roots which both of them are double roots. Table 2 shows information 

of different runs for finding roots of 𝑔(𝑥) using GRBM with AMR. The value of 𝜀 and 𝜀𝑚 are irrelevant 

because the process of root finding never enters bisection loop in this case. But, the parameters C and  

𝜀𝑓 does matter. In all of the runs, C=4. The algorithm was executed on a processor in which the floating 

point format has double precision with machine epsilon of 2.22×10-16.  
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Plot of g(x) in run 1 (table 2) is depicted in Fig. 4. It’s clear from Fig. 4 and table 2 that roots of 𝑔(𝑥) 

are detected properly. Because even-multiple roots are detected in a different box (Fig. 2), they can be 

easily marked as even-multiple.  

It’s clear from table 2 that the lowest achievable tolerance for roots of g(x) is 10-7 for 𝜀𝑓 equal to 

machine epsilon. What if one wants to achieve a lower tolerance? To do this, a more strict condition 

Table 2: Roots of 𝑔(𝑥) defined in Eq. 7  
 

No. 𝜀𝑓 N Roots  

1 10-8 50 3.000±10-3, 3.999±10-3 

2 2.22×10-16 98 3.0000000±10-7, 4.0000000±10-7 

need to be applied. If the objective function is differentiable, the first derivative at a point with even 

multiple root should be equal to zero. This fact is shown in Fig. 1 at the last root on the right. So, to get 

more precise result from the algorithm proposed in Fig. 2, the condition in box 4 is removed and the 

following code is implemented: 

IF |𝑓(𝑥𝑚(𝑗))| < 𝜀𝑓 

 IF |𝑑𝑓(𝑥𝑚(𝑗))| < 𝜀𝑑 

  Output 𝑥𝑚(𝑗) as an even-multiple root. 

 END 

END 

 

in which, 𝑑𝑓 is the first derivative of 𝑓 and 𝜀𝑑 is the tolerance for zero. In this way, both of the function 

and its derivative should be checked. For getting the most accurate result, both of  𝜀𝑓 and 𝜀𝑑 should be 

equal to machine epsilon. The program used for finding roots of g(x) ran with the proposed codes. 𝜀𝑓 and 

𝜀𝑑 set to machine epsilon of 2.22×10-16. Result show that roots are found properly with accuracy of 

2.22×10-16. 202 times function evaluations and 198 times first derivative evaluations were performed to 

detect roots with the highest possible accuracy. 

Figure 4: plot of g(x) at run 1 described in table 2. 
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3.3 Finding roots with odd-multiplicity 

Generally speaking, root bracketing methods can find roots with odd-multiplicity but at a reduced rate 

of convergence. Methods with higher rate of convergence like Newton’s method are used to find roots in 

such cases. In this section, finding roots with odd-multiplicity using the GRBM with AMR is discussed.  

A sample objective function which contains a triple root is defined as follows: 

ℎ(𝑥) = (𝑥 − 0.5)3(𝑥 − 0.50001)(𝑥 − 1)          0 < 𝑥 < 1.5 (8) 

ℎ(𝑥) has three roots as follows, x1=0.5, x2=0.50001, and x3=1. GRBM with AMR is used to find roots of 

ℎ(𝑥). It was found out that the algorithm with 𝜀 = 𝜀𝑚 = 10−5 and C=500 needs at least 500 times 

function evaluations to find the roots. But after finding the three roots, the algorithm continues to divide 

subintervals into halves around the triple root consistently. This increases the number of function 

evaluations into millions. In fact, the algorithm get stuck between near the triple root. This phenomena 

doesn’t happen for simple close roots as it was shown in section 3.1. If the root x2, instead of being so 

close to x1, is moved to the point 0.6; after 1491 times function evaluations, all the roots are found. So, 

finding odd-multiple roots increase number of function evaluations drastically and when they are so close 

to another root makes the problem even bigger. The reason behind this drastic increase of function 

evaluations for finding odd-multiple roots lies in this fact that the objective function crosses the x axis 

with a flat shape and very smoothly in such points. So, in a vicinity around an odd-multiple root, 

objective function stays very close to x axis. This behavior deceives the algorithm to search deeper and 

deeper to find another root where there is none.  Adding another root close to an odd-multiple root makes 

this case harder.  

To solve the problem of finding odd-multiple roots, a modification in the formula of HT which defined 

in Eq. 3 is done as follows:  

𝐻𝑇 = 𝐶 ×
𝑚𝑖𝑛{|𝑓(𝑥𝐿(𝑗))| , |𝑓(𝑥𝑅(𝑗))|}

(𝑥𝑅(𝑗) − 𝑥𝐿(𝑗))
𝑛  (9) 

The difference between Eq. 3 and 9 is that the denominator on the right side of formula is raised to 

power of n. The proposed definition for HT is used to find roots of Eq. 8. The result shows that with 𝜀 =

𝜀𝑚 = 10−5, C=20, and n=3 only 87 times function evaluations is enough to detect roots as follows, x1=0. 

4999999999±10-10, x2=0.5000099999±10-10, x3=1.00000±10-5. The right value of n and C for minimum 

number of function evaluations are obtained by trial and error. For subintervals smaller than 1 in width, as 

the n increases for n>1, the HT increases. This is how the excess halving process is inhibited. Adjusting 

the right value of n can greatly decrease function evaluations. But, there is a serious drawback with 

increasing n higher than 1. In cases where simple roots especially close ones are distributed in the initial 

search bound, n>1 lead to missing some of simple roots.  

3.4 Finding roots in the most difficult cases  

To have a perfect algorithm, n in Eq. 9 have to change based on how the function behaves at different 

regions of the search bound. In the absence of such a definition for n, an alternative strategy for finding 

all the roots when there are combination of different types of root is proposed here. The strategy relies on 

running the algorithm different times with different values of n. In this way, at n>1 multiple roots are 

found with the least effort. At the next run, regions which include the roots are excluded from the search 
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domain and the rest of search interval fed into algorithm with n=1. The limits of these regions should be 

defined a little far from roots to avoid the algorithm to converge toward the excluded roots in the next run. 

This strategy can find all the roots regardless of the type and closeness index of roots in an efficient way. 

As an example, roots of an objective function which is formulated as followed are found by the 

mentioned strategy. 

𝑝(𝑥) = (𝑥 − 0.5)3(𝑥 − 0.50001)3(𝑥 − 4.0)(𝑥 − 4.0001) (𝑥 − 4.2)2         0 < 𝑥 < 4.5 (10) 

𝑝(𝑥) has five roots as follows, x1=0.5, x2=0.50001, x3=0.4, x4=0.401, and x5=4.2. It’s clear that 

different types of roots are placed close together which makes the problem of root finding very hard. In 

the first run, n=5, C=0.1, and 𝜀 = 𝜀𝑚 = 10−5. Also, in the first run, because we look only for odd-

multiple roots, box 5 in Fig. 2 which is for detecting even-multiple roots is removed. After 78 times 

function evaluations, roots are found as follows, x1=0.4999999999±10-11 and x2= 0.5000099999±10-11. At 

the second run, n=1, C=0.01, 𝜀 = 𝜀𝑚 = 10−5, and the condition on box 5 in Fig. 2 comes back with the 

adjustment that proposed in section 3.2. In the second run, the search domain is replaced by [0.6 4.5]. 

After 292 times function evaluations and 125 times first derivative evaluations, the rest of the roots are 

found as follows, x3= 3.999999999±10-10, x4= 4.000100000±10-10, and x5= 4.200000000000000±10-16. Use 

of first derivative information is not compulsory, but such information is used to decrease the error bound 

for even-multiple roots. Without use of first derivative information, the number of function evaluations 

decreases to 227 and the error bound for the even-multiple root increases to 10-9. 

Although, in examples which were discussed, polynomials were chosen as the objective function; but 

methods which proposed in this paper are not dependent on the type of the objective function. 

4 Conclusion 

Some of the most troublesome deficiencies of bracketing methods for root finding were addressed and 

resolved. New definition of halving threshold was presented which lead to adaptive mesh refinement. The 

proposed method can decrease function evaluations notably in comparison to global root bracketing with 

static mesh refinement. In a case study revealed that for a polynomial root finding problem, 95 times 

function evaluations in global root bracketing with adaptive mesh refinement is corresponding to at least 

106 times function evaluations with static mesh refinement. Another achievement is presenting a new 

definition for stopping criterion of root bracketing methods. This definition solves the problem of 

reporting close roots with appropriate accuracy. Special cases of finding odd or even-multiple roots were 

discussed. With adjustment in the definition of halving threshold, the algorithm was enhanced to handle 

finding multiple roots with the least number of function evaluations. The methods proposed in this paper 

showed that they can be very successful in global root finding especially when it comes to separating 

close roots.  
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