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Abstract

We discuss the application of a variant of the method of simplest
equation for obtaining exact traveling wave solutions of a class of non-
linear partial differential equations containing polynomial nonlinear-
ities. As simplest equation we use differential equation for a special
function that contains as particular cases trigonometric and hyperbolic
functions as well as the elliptic function of Weierstrass and Jacobi. We
show that for this case the studied class of nonlinear partial differen-
tial equations can be reduced to a system of two equations containing
polynomials of the unknown functions. This system may be further re-
duced to a system of nonlinear algebraic equations for the parameters
of the solved equation and parameters of the solution. Any nontriv-
ial solution of the last system leads to a traveling wave solution of
the solved nonlinear partial differential equation. The methodology
is illustrated by obtaining solitary wave solutions for the generalized
Korteweg-deVries equation and by obtaining solutions of the higher
order Korteweg-deVries equation.
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1 Introduction

Nonlinearity is an essential feature of many systems in Nature and society
10 - 13

Traveling wave solutions of nonlinear partial differential equations are
studied much in the last decades [14]-[21] as they occur in many natural sys-
tems [22]-[25] and because of existence of various methods for obtaining such
solutions [26] - [30]. Below we shall consider the method of simplest equation
for obtaining exact analytical solutions of nonlinear partial differential equa-
tions [31]-[34] and especially its version called modified method of simplest
equation [35] - [37]. Method of simplest equation is based on a procedure
analogous to the first step of the test for the Painleve property [34], [3§].
In the version of the method called modified method of the simplest equa-
tion [39],[40] this procedure is substituted by the concept for the balance
equation. Modified method of simplest equation has its roots back in the
history (for an example see [41]-[44]). Method of simplest equation has been
successfully applied for obtaining exact traveling wave solutions of numerous
nonlinear PDEs such as versions of generalized Kuramoto - Sivashinsky equa-
tion, reaction - diffusion equation, reaction - telegraph equation, generalized
Swift - Hohenberg equation and generalized Rayleigh equation, generalized
Fisher equation, generalized Huxley equation , generalized Degasperis - Pro-
cesi equation and b-equation, extended Korteweg-de Vries equation , etc.
[45] - [51].

A short summary of the method of simplest equation is as follows. First
of all by means of an appropriate ansatz (for an example the traveling-wave
ansatz) the solved of nonlinear partial differential equation is reduced to a
nonlinear ordinary differential equation

P(U,U&’Iigg,...) =0 (].].)

Then the finite-series solution

&) =3 plo©) (12)

p=—v

is substituted in (). p, are coefficients and g¢(&) is solution of simpler
ordinary differential equation called simplest equation. Let the result of this
substitution be a polynomial of g(§). Eq. (L2) is a solution of Eq.(LT]) if all
coefficients of the obtained polynomial of g(§) are equal to 0. This condition
leads to a system of nonlinear algebraic equations. Each solution of the
last system leads to a solution of the studied nonlinear partial differential
equation.



In this article we consider a large class of (1+1)-dimensional nonlinear
partial differential equations that are constricted by polynomials of the un-
known function and its derivatives. As simplest equation we shall use equa-

tion of the kind )
dg ) - i
Y| = E a;g .
(df =

The text below is organized as follows. In Sect. 2 we introduce the class of
studied nonlinear partial differential equations and the used class of simplest
equations and their solutions. Then we show that any of the nonlinear par-
tial differential equations of the discussed class can be reduced to a system
of two equations containing polynomials of the unknown function. These
polynomials can be obtained on the basis of addition and multiplication of
some basic polynomials connected to the derivatives of the solved nonlinear
partial differential equation. In section 3 we calculate some of the most used
basic polynomials. In Sect. 4 the methodology is illustrated by application
for obtaining solitary wave solutions of

e generalized Korteweg-deVries equation;

e higher order Korteweg-deVries equation.

Several concluding remarks are summarized in Sect. 5.

2 Formulation of the method

2.1 Proof of the basic theorem

Let us consider a nonlinear PDE with nonlinearities that are polynomials of
the unknown function h(x,t) and its derivatives. We search solution of the
kind

h(z,t) = h(§); &= pux+ vt (2.1)
where p and v are parameters. The basis of our search will be a solution
g(&) of a certain simplest equation. Hence

h = flg(&)] (2.2)

h from Eq.(2.2)) is a composite function. For the n-th derivative of h we have
the Faa di Bruno formula [52]
n n A
9
hoy = > Joo 22 I e (23
k=1 p(k,n)  i=1 (A ()

where
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® Ny = Gn
k
o fuy =Gk
dig.
® 90 = @t
o p(n,k) ={A1, Ao, ..., A\n}: set of numbers such that

i=1 1=1

Further we shall concentrate on f) and gg;).
Let us now assume that f is a polynomial of g. Then

F=3 by (2.5)
r=0

Let us consider the derivative fq,). If & > r this derivative is 0. The derivative
is non-zero if k& < r. We shall use the function ©,, with the following

definition
0 r<k
O = 2.6
F {1 r>k (2:6)

Then the derivative f(;) can be written as

q
r! rﬁ
r=0 ’

The derivative g is connected to the simplest equation. In general we can
use the following simplest equation with polynomial nonlinearity

oo = () =S @9
=0
where
e k: order of derivative of g;

e [: degree of derivative in the defining ODE;

e m: highest degree of the polynomial of g in the defining ODE.



This special function has very interesting properties as its particular cases
are the trigonometric, hyperbolic, elliptic functions of Jacobi, etc. Below we
shall use the function V4, 4, (§;1,2,m) which is solution of the simplest

equation
dg 2 “ ,
9ty = (d_g) = ;g (2.9)
§=0

We let m undetermined for now.
If g(21) is given by Eq.(2.9) then what is the relationship for the derivative

ox

Lemma. If g(21) is given by Eq. (2.9) then the following relationship holds
Jor the derwative g :

g5 = [A:(9)]" 0ix, (9, 90)) 2 (90)
where
e )\, is a non-negative integer;
e A;(g): polynomial of g;

[ J
1 1 — even, \; — even

1 — even, \; — odd

g
Oix(9:9m) = § (X a;¢9)X/3 i — odd, \; — even

(> ajg" )P/ i — odd, N\ — odd

where [X\; /2] denotes the integer part of \;/2;

1=g¢% i— even
Q; — (1
(g(l)) {9(1) i — Odd

Proof. 1t is easy to show (by direct differentiation and by induction) that if
g(21) is given by Eq. (Z.9) then

9zn) = A2n(9);  Gns) = A2ms1(9)90) (2.10)

where Ay, (g) and As,11(g) are polynomials of g.



Let then

1=4% i—even
o) = { b 1o 1)
9(1) 17— 0

Hence Eq.(2.10) can be written as

96 = Ai(9)Qi(91)) (2.12)

Thus
g5 = AN Qg™ (2.13)

Now from the definition of Q; - Eq.([I) we see that Q) is equal to 1 if i is
even. QZ)" is equal to g(/\f) if 7 is odd. But from Eq.(2.I0) for the case of odd
Ai
. 2([\i/2)+1 .
a0y = 90y = g ()™ (2.14)
In addition from Eq.(2.10) it follows that g(21) is a polynomial of g (this also

can be seen from the definition of the simplest equation (2.9)). Thus we can
define

1 1 —even, \; —even
?11) 1 —even, \; —odd
Oix(9:9m) = (X a;¢")/3 i —odd, \; — even (2.15)
j=0
(3 ajg)P/2 i —odd, \; — odd
\ j=0
and then
(g™ = Oixi(9, 90) 0 (90) (2.16)

Substitution of Eq.(2.16) in Eq.(2.13) leads us to the relationship we want
to prove

Q(A{j = [Ai(9)]O0ix (9. 90)) 0 (91)) (2.17)
]

Now we are in position to prove

Theorem. If g(21) is given by Eq.(Z9) and f is a polynomial of g given by
Eq.(2.3) then for h[f(g)] the following relationship holds

hiny = Kn(q, m)(g) + 901)Zn(q,m)(9)

where K,(q,m)(g) and Z,(q,m)(g) are polynomials of the function g(§).



Proof. The substitution of Eqs. (2I7) and (2.7) in Eq.(2.3) leads to the

following relationship for h,)

k » 9(1) Q
o = D03 0 3 [ OO ) 00)

k=1 r=0 p(nk)  i=1
(2.18)

Now let us show that the relationship (2.I8]) can be written as
hmy = Kn(g: m)(9) + 90)Zn(q,m)(9) (2.19)

where K,,(¢,m)(g) and Z,(¢q, m)(g) are polynomials of the function g(¢§). In
oder to show this we rewrite Eq.([2I8]) as

n q '
h(n) = Z Z @rkﬁbrgr_k Z n!
k=1 r=0 p(n,k)

7 A | T
11 D@

=1

=1

(2.20)
and consider P = H Oix (9, 91)) 2, (91)). This product is equal of polyno-

mial of ¢ multlphed by 94 Where o is an integer. There are two possibilities
for o:

?/2 is a polynomial of g according to Eq.(Z9)

e o: cven . Then (g(21))
e 0: odd. Then g} is equal to 9(1)(9(21))[0]/2 and according to Eq.(2.9)
this is equal to gy multiplied by a polynomial of g.

Because of all above there will be two kinds of terms in h,: terms that are
polynomials of g and terms that contain g(;) multiplied by a polynomial of
g. Collecting the two kinds of terms we arrive at Eq.(2.19). O]

Let us note that for some values of n one of the polynomials K, (g, m) or
Zn(q,m) can be equal to 0.

2.2 Formulation of the method

On the basis of all above the modified method of simplest equation based on
simplest equation ([2.9) can be formulated as follows:

1. We consider a nonlinear PDE E*(u(z, t), u,(z, t), ue(x, t), ug(z,t),...) =
0 where E* is a polynomial of u(z,t) and its derivatives. We search for
solutions of this equation based on the ansatz ¢ = pz + vt where o and
[ are parameters.

H Oix (g, 9(1))QA1- (9(1)

)



2. The ansatz & = px + vt reduces the nonlinear PDE to the ODE
E(h,hy,...) =0 where E is a polynomial of h and its derivatives.

3. We assume h and ¢ are given by the Eqgs. (2.3]) and (2.9). Substitution
of the relationships in the equation £ = 0 reduces any derivative of
this equation to a term of the kind (2.19).

4. As the terms in E = 0 are polynomials of h and its derivatives then
the equation reduces to a polynomial containing g , g1, g(21), R

Wé‘(g)+W1*(g)g(1)+W2*(g)g(21)+. ... Eq.(2.9) reduces the higher degrees
(n > 1) of gy to a polynomial of g (for even n) or to a polynomial of
g multiplied by gy (for odd n). Thus equation £ = 0 is reduces to

E=Wy(g9) +Wi(g9)ga) =0 (2.21)
where Wy 1(g) are polynomials of g.

5. In order to obtain a nontrivial solution of Eq.(2.21]) we have to balance
the highest degree of the polynomial W} (i.e., to ensure that there are
at least two terms that contain the highest degree of Wy). The same
has to be made for the polynomial W;. As a result we obtain one or two
relationships among the parameters of the equation and parameters of
the solution. These equations are called balance equations. Balance
equations fix parameters ¢ and m.

6. Further we set to 0 all coefficients of the polynomials Wy(g) and W (g).
The result is a system of nonlinear algebraic equations that contains
the parameters of the equation, parameters of the solution (23) and
parameters of the simplest equation (2.9)).

7. Any nontrivial solution of the above system of algebraic equations (if it
exists) leads to a traveling wave solution of the nonlinear PDE E* = 0.

3 Calculation of some of polynomials K, and
Z, from Eq.(2.19)

The derivatives hyy, hey, sy, hay, he), he) and by are much used in the
model nonlinear partial differential equations. Below we shall calculate the
polynomials K, and Z, connected to these derivatives.

Let us mention first that the polynomials K, ,; and Z,; are connected
to the polynomials K, and Z,. This relationship can be obtained on the



basis of the relationship

d

Substitution of Eq.(Z19) in Eq.(B1) leads to

iz, , 1 dK,
h(n+1) = {an@) + d—gg(l)] + dg g (3.2)
Taking in account Eq.(2.9]) we obtain
Znx~ . iy dZyxN
Kp = 72]%‘9] + dg Zang
Jj=0 j=0
dK
Zn = 3.3
+1 i (3.3)

Hence we need to calculate only K; and Z; and then we can obtain K, and
Zny n=2,3,... by the recurrence equations (3.3)).
We can write

Ky = Z brgr

r=0
Zy = 0 (3.4)
From Eq.(2.18]) we obtain
q
Ky =0, Zy=> rbyg ™" (3.5)
r=0
Then
4. morq ’
K, = Z [éjfr +r(r— 1)] a;b.g’ "2
r=0 j=0
Zy = 0. (3.6)
K3 = 0,
. Mmoo ‘
Zy = [éjr +r(r— 1)] (j+7r—2)ab.g’t"?
r=0 j=0

(3.7)



[ (L. . I e
K, = ZZ{<§JT+T<T_1)) (j+r—2) <§u—|—j+'r’—3)} a;bra,g’ e

r=0 j=0 u=0
Zy = 0. (3.8)
Ks = 0;
Zs = q ii [(lj'r—l—r(r— 1)) (j+r—2) <1u—|—j+7’—3)] (4 +

=0 7m0 umo L\2 2

r+u—4)abea,g’ TP (3.9)

r=0 7=0 u=0 v=0
1 .
r+u— 4)} <§v +j4+r4+u-— 5) a;bpa,a,g’ 0
Ze = 0 (3.10)
K. = 0

Zy = iii[(%jr—i—r(r—l))(jﬂLr—Q)(%u+]’+r—3)(j+

1 .
r+u—4) <§v +j+r4+u— 5) (j+7+u+v—6)ab.a,a,g T
(3.11)

ete.

For the practical application of the modified method of simplest equation
we need to calculate the maximum grade of polynomials in h,). As we have
seen above in the text h,) consists of two kinds of terms: polynomial of
g plus another polynomial of g multiplied by g). We note that the above
maximum grades have to be non-negative. Thus the obtained relationships
below hold when the corresponding maximum degree is max > 0.

By the method of mathematical induction we can prove that:

o For h(zey: Maximum grade of polynomial K5, (g) is mar = g+o(m—2)
where 0 = 1,2,.... Maximum grade of the polynomial Zs,(g) is 0.

o For h(zeq1y: Maximum grade of polynomial of Ks,1(g) is 0. Maximum
grade of the polynomial of Zy,,1(g) is mar = g+ o(m — 2) — 1 where
c=0,1,....

10



4 Examples

4.1 Generalized Korteweg-deVries equation

We shall consider the equation

du ou  du

— 4+ AuP—+ — =0 4.1

ot "o T aa 1)
where A is a parameter and p is a positive integer number. This equation has
different applications as for an example in the electrohydrodynamics [53]. For

the case when p is a positive integer Eq.(3.1]) is called generalized Korteweg-
Pu
deVries equation. It is obtained by addition of the dispersion term — to

Ox3
0 0
the nonlinear convective wave equation 6_u + Au? a_ 0.
x

We search for solutions of Eq.(4I]) of the kind u = h[f(g(§))] where
£ = ax + ft, g is solution of the simplest equation (Z9) and f is given by
Eq.(Z3). The substitution of u = h[f(g(£))] in Eq.(@T) leads to equation of
the kind (2.21)) where

Wolg) = vKi(g)+ pnAKo(9)"Ki(g) + 1’ Ks(g)
Wil(g) = vZi(g) + pAKo(9)? Z1(g) + 11° Z3(g) (4.2)

As K; = K3 = 0 there is no need to balance the relationship for Wy(g). The
relationship for Wi(g) has to be balanced however. The resulting balance
equation is

m =2+ pq (4.3)

Let us consider the case ¢ = 1, m = 2 + p. Then from Eqs.([2.5) and (2.9)

one obtains
24p

h =by+ big; g(21) = Zajgj. (4.4)
=0

Substituting corresponding relationships for the polynomials Z;, Z3 and K,
in the second of equations (£.2)) we obtain the following system of nonlinear
algebraic relationships among the parameters of Eq.(41]) and the parameters
of the solution:

_ 1
Vb1507k+ (Z) ,uAb{)’ kb’f—H+§M3(k‘+1)(/€+2)ak+2b1 = 0, k= 0, .o, P (45)

where 0 is the delta-symbol of Kronecker.

11



Solution of Eqgs.(45]) can be obtained when by = 0. Then

1
Vb150,k + (z) ,lLAblf+15k7p+ 5[13(/{3+ 1)(k’+2)ak+gbl = O, k‘ = 0, Ce

The system (4.6)) is reduced to

E = 0: v+play=0
kK = 1: a3:0

k= p—1: ap1 =0
1
k = p: Ab€+§u2(p+1)(p+2)ap+2:0.

The system (4.7)) has a solution:

v 2Ab]
Ay = ——; Qpio = —
2T TP T 2+ 1)(p+2)

Hence the simplest equation Eq.(29) becomes

g = ———g? — 201 g
W A” A+ 1)(p+2)

p+2

A solution of this simplest equation is as follows. The function

Q

g(§) = cosh®(€)

(where w and €2 are parameters) is solution of the equation

2 2 9 w® 249
gy =wg — Q2/wg 2/
Hence if
w = g /’62: pZAQpbzf U= _4_[;)
p’ 2p+1)(p+2) p?
then b
1
wé)=———"&=pur+uvt
() oo (&) {=p

is solution of Eq.(41]).
Let us note that according to Egs.(4.10) and (41T

0
s (§1,2,24p) =

‘/07074/12270 7777 aP+2:_pQQp COShQ/p (6)

12
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(4.10)

(4.11)

(4.12)

(4.13)

(4.14)



Let us consider the particular case p = 1, A = —6. Then Eq.(@J)) is
reduced to the classical Korteweg-deVries equation. Setting b; = 1 and
2 = —2 we obtain y = 1, v = —4. Thus the solution (4.I3) reduces to the
one-soliton solution of the equation of Korteweg-deVries

2

u(z,t) = ——————— 4.15

(1) cosh?(z — 4t) (4.15)
Let us stress the following. Above p was arbitrary non-negative integer. Now
we shall show that p can be arbitrary non-zero real number. Namely we shall

prove

Proposition. Eq. ({{.13) is solution of Eq.({4.1) for arbitrary real nonzero
value of p.

Proof. Let us substitute Eq.(£13)) in Eq.(@J]) where parameters a and (3 are
given by Eq.(412) and p is an arbitrary nonzero real number. Eq.(dJ) is
satisfied. Hence Eq.(£13) is solution of Eq.(4.1]) for arbitrary real p # 0. O

Let for an example p = 3/2. Then a solitary wave solution of the equation

ou 320U Pu
5 + Au o + s 0 (4.16)

1S

u(x,t) = Qby cosh™/3 =0 5 \ 70

1/2 3/2
(3/193/%?/2) - 16(9AQ3/263/2) t]

(4.17)

4.2 Application of methodology to the higher order
Korteweg-deVries equation

Let us apply the above methodology to a more complicated equation such as
the second-order Korteweg-deVries equation

8u+8u+ 8u+ ou 0*u Gu @‘F 28_+ 83u+ Pu
875 8 Oéoua [0 a2U as3U Oy (673 8355

0z 9z Oa? o 'O =0(18)

This equation is known also as Olver equation [54] and it is a second order
equation for description of shallow water waves (the first order equation is
the famous Korteweg-deVries equation). Eq.([dI8) has been used also as
a model equation for nonlinear waves in a liquid with gas bubbles [55, [50]
From the point of view of the method of simplest equation (based on the

13



first step of a test for Painleve property) the equation was discussed in [55]-
[57] and various solutions expressed by the elliptic function of Weierstrass
have been obtained there. Below we shall discuss Eq.(4.I8]) from the point
of view of the modified method of simplest equation (based on the concept
for balance equation). We stress again that the modified method of simplest
equation is a version of the method of simplest equation and then some of
the obtained below solutions (especially for the case m = 3) will be the
same as these obtained in [57]. After studying the methodologies from [57]
and from this paper the reader will have an extensive understanding about
the possibilities for obtaining exact analytical solutions of nonlinear partial
differential equations on the basis of the method of simplest equation.

We search for a solution of the kind u(z,t) = u(§) = u(ax + 5t) (We note
that in [57] o = 1). According to the theory above Eq.(£I8) can be reduced
to the following system of equations

Wo(g) = 0;

Wilg) = (u+v)Z1(9) + aopKo(g)Zi(g) + orp® Ka(g) Z1(g) +
i’ Ko(g)Zs(g) + aspK3(9) Z1(g) + caup® Zs(g) +
asp’Zs(g) = 0 (4.19)

The second of Egs.(dI9) has to be balanced and the balance is as follows
1. m = 1: there is no balance;
2. m = 2: there is no balance;
3. m > 3: the equation is balanced if ¢ = m — 2.

Let us now consider several cases.

4.3 Case m =3
In this case ¢ = 1. Then

u(§) =bo+brg(§); {=pr+uvt (4.20)
and
9ty = o + a1g + azg” + asg® (4.21)

In addition we have to solve the system of nonlinear algebraic equations
for the parameters of the solution that can be obtained from the equation

Wi(g) = 0 from Egs.([@19).

14



We note that the general solution of Eq.(£2]]) is given by the special
function Vi, 4y 49,45 (€: 1,2, 3) and for the special case when ay = 0 and a3 =4
we have reduction of V' to the elliptic function of Weierstrass

Vao,al,oA(f% 1,2, 3) = Kﬂ(fé ao, al) (4-22)

Let us first consider the case of general non-reduced solution Vy, 4, ay.05(€; 1,2, 3)
of Eq.(@.21)). The system of nonlinear algebraic equations arising from second

of the Eqs.(£19) is (Al from the appendix A. The solution of the system
(ALT) is:

b
as = 3()#120[5 ( — 0 — 20[2 + \/(Oél + 20[2)2 — 400[30[5)
1
s = —
Sl (a1 + /(a1 +2a9)% — 4Oa3a5)
(Oégb() + Oé4)\/<0(1 + 20[2)2 — 400[30[5 — OélOégbo — 20[3()(} +
200[30(5[)0 + ].00(0(){5 — Xy — 20(40(2:|
T
a = =
1 T
2
T, = — 25;104%&3&5()(2) — 6,u0/21b(2) + 90ua§a3a5bg + 25,u0z00zfoz5bo +

3O,u0zooz§oz5bo — 300ua0a3a§bo + 2,u0z%0z2a4b0 — 2ua1a§a4b0 +
5(),ua§a§ — 35paparagas — 20 + poatal — 6uasas +
25,uafoz5 + 5Oua§a5 — 500/10@04% + 25VO[%O[5 + 50Va§a5 —

5001/&3(1% + 80,u0z;»,ozioz5 + 50payasas + H0vaasas + ua%agbg —
,ualagbg — SOOMagagbg — 12/,4043044()0 — ualaQai - 20ua1a2a3a5bg +

15pagayasasby — T0paazayasby + 120pasazayasby +
(6,u0z§0z4b0 — pagasby — 15papagas + 3uaibs — payai + 3pagal +

25 s + 25vag as + 25,uala3a5bg — 3Oﬂa2a3a5b§ + 25 oo aisby —

2[10[10(20[4[)0 - 30#0(30[40[51)0) \/(Ozl + 20[2)2 - 400[30(5:|

T, = plash {(5(1% + 3 — 2% — 30a05) /(1 + 2002)2 — 403 +
1002ay + Tagas — 1300 azas — 60 + 60&2(13&5] (4.23)

15



The solution of the higher order Korteweg-deVries equation (£.I8]) is
u(&) = by + bl‘/;toﬂhamas(g; 1,2, 3)7 g = pr +vit (4'24>

where a; 53 are given by Eqs.(4.23)).

Let us now consider the particular case (£22]) when the V-function is
reduced to the elliptic function of Weierstrass. In this case we have to set
az = 0; ag = 4 in the system (?7). The solution of the obtained system of
algebraic equations is

o \/(ozl + ag)? — 405 — gy — 200 + dayag

bo ==
20(3 (\/(Ozl + 20[2)2 - 40&3&5 - Oél)
3,u2( — oy — 209 + \/(a1 + 209)% — 40a3a5)
by =
a3
(4.25)
13
a; = -
1 T,
N 2 2 _ 2 2
T35 = 5 pogoy — 2pogogan + 20pagagas — Spuopaaaisay + 8uasag +

+4ua%a3 + 8uaasas + 8,u0z§0z3 — 8O,u0z§oz5 + 41/0@&3 + Srajasas +

81/043043 — 801/04§Oz5 + (uagal — 4o — 4ua1a3) \/(a1 + 2ap)? — 40aza5

2
T4 = ,u5 (\/(Oél —+ 20[2)2 — 400[30[5 - Oél) (Oél\/<()él + 20(2)2 — 400[30[5 —
oz% — 20009 + 12a3a5)

The solution of Eq.(418) becomes

_Oéo\/(Oél + 20(2)2 — 400&30[5 — Qpxp — 20(00[2 + 40(40[3

20[3 (\/(O&l + 20[2)2 - 40&30[5 - Ozl)

u(§) =

3,u2( — oy — 209 + \/(a1 + 209)% — 4Oa3a5)

Qs p(gﬂ ap, a’l)
£ = px+ vt (4.26)
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where a; is given by the corresponding relationship from Eqs. (£.25]).

Let us now consider as simplest equation Eq.(4I1]) for the case w = 2,

namely
4

90y = 49" — 59’ (4.27)

In this case ag = a; =0, as = 4 and az = —%. The solution of Eq.(4L.21) is

= g = Yooa 461,29 (1.23)
One solution of the system of nonlinear algebraic equations for this case is
by = — L [(4,u2a1 + 4o +
Q3 \/(ozl + 209)? — 405 +

ao) \/(a1 + 200)% — 40035 + 4pPal + 12p a o +

8#2(13 — 80a5u2a3 + apay + 2009 — 4044043}

(4.29)
32 .
b1 = — o+ 20[2 -+ \/(Ozl + 20[2) - 40&3&5
O[gQ
— 1% {
]/ = p—
4a3(\/(0z1 + 2&2)2 — 40asas50q + CY% + 2000 + 2&% - 20&3&5)

(agal + 4doqas + 16u4of;’ + 32u4afa2 + 16u4a1a§ —
4 2 2

2564 v azas) V(a1 4 2a9)? — 40azas + 64p ey + 80ptalal —
576;14&%&3045 + 32,u4oz10z§ — 512,u40z10z2a3a5 — 192,u4oz§oz3a5 + 1920u4a§a§ —

aga% — 2&3&10@ + 20043043&5 — 8aganazay + 804%042 + 404%043 + 8aasag +

8&%(13 — 80a§a5

and the corresponding solitary-wave solution of Eq.([4I8) is

u(§)

_ 1 2 2
(4,u o +4pcas +

B (0%} \/(Oél + 20[2)2 — 400&30[5 + oy

ao) \/(al + 2019)2 — 40035 + 4pPad + 12p a0 +
2

3
8/120[3 — 80a5u2a3 + o + 20(00[2 — 40[40[3:| + Ozi <Oél + 20(2 +
3

V(g + 20,)% — 4Oa3a5) m (4.30)
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where

p
§ = pxr—
dos(v/ (a1 + 202)? — 40azason + af 4 20105 4 203 — 200305)

(agal + 4oz + 16,u4ofrlS + 32/1404%042 + 16u4a1a§ —

256/ g ) V(a1 + 2a5)? — 40azas + 644 adas + 80ptalas —
576,u4afa3045 + 32#4041043 — 512M4a1a2a3a5 — 192u4a§a3a5 + 1920u4a§a§ —

a%a% — 20430410@ + 20&3043045 — 8aganazay + 8&%0@21 + 404%043 + S8aasas +

80[%043 — 800z§0z5 t

4.4 Case m =4
In this case ¢ = 2. Then

w(€) = by + b1g(€) + bag?(€); & = px + vt (4.31)

and
94y = a0 + a1g + a29” + asg” + asg* (4.32)

In addition we have to solve the system of nonlinear algebraic equations
for the parameters of the solution that can be obtained from the equation
Wi(g) = 0 from Egs.(d.19).
The general solution of Eq..(4.32]) is given by the special function Vi, 4, a9.a5.0. (§; 1,2, 4).
For several particular cases this function can be reduced to the elliptic func-
tions of Jacobi. Examples are

Vio—a+r2y0k2(&51,2,4) = sn(&k);
Vickeo2e2-1)0-k2(&1,2,4) = cn(&;k);
V_(1-k2)0,02-k2)0,-1(§1,2,4) = dn(& k). (4.33)

For the general case the system of nonlinear algebraic equations becomes
(A.2)) from the Appendix. This system of equations possesses exact solutions
for ag, ay, as, as, as but they are very long and we shall not reproduce them
here. Instead of this we shall give a solution for an illustrative particular
case. From the first of equations ([A.2)) one obtains a solution as follows

bg[—O&l — 20(2 + \/(a1 + 20(2)2 - 400(30[5]

= 4.34
“ 120052 (4.34)
Let us consider the particular case
(Ozl + 20[2)2
=~ = 4.35
@ 400&3 ( )
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For this particular case a solution of the system of equations ([A.2)) is as
follows

a3bs
T TR 1 200)
2ai3b1
T T3 1 2a,)
daasboby + ayash? + 2a9a1 by + daganby — 8aizagby
@ = - 4p2boay (g + 209)
b1 (12a1a3boby — apazb? + 6o by + 12aaby — 24ai3004hs)
“@o= 1202163 (ay + )
ay = T I8Pl +12a2)(7a1 . (336,ua a3bibs — 84uaiazbybiby +

Tuada3b] — 288uaianalbiba + T2uaiasaibobiby — 6patasaib] +

336 pana asbobs — 420 aisbby + 384 pcgad anasbobs — 48 pana aipaisbiby —

576 oy s asbobs + T2p0pan agosbiby — 1344,u0zlozgoz4bob + 168,u0z1a30z4b by +
1152Ma1a2a§a4bob2 144ua1a2a3a4b162 + 24ua0a3b2 + 144,uaoalong§
288uaga1a262 + 192uoz 3b2 672ua0a%a3a4b — 1728,u0z00z10z2a3a462 —

768 1cpazazagbs 4+ 23040 azaiby + T68pazasaibs + 240uaiasbs +

480patanasbs + 240vad asbs + 4801/(1%(12(1317%) (4.36)

and the solution of Eq.(4.I8]) for the discussed particular case (£.35) is

’U/(f) = bO _'_ blvao,al,az,ag,cm (57 17 2 ) _'_ b2va20 ai,a2,as3,a4 (57 17 27 4) (437>

Let us now consider the particular case when Vi, a, 40.a5.0.(§;1,2,4) is
reduced to the Jacobi elliptic function sn(&; k). In this case we have to set
ag = 1;a; = 0;ay = —(1+k?); a3 = 0; a4 = k* in Egs.(A2)). The full solution
of the system of algebraic equation is again very long. In order to illustrate it
we discuss the particular case given by Eq.(£35). A solution of the obtained
system is

1

‘ 2#0[10(3(70[1 — 6@2) |: M + M OlezQ ,u alaz ,lLOéoozl

8o vy + 12p0as + 28aupuasary — 24 a0y + ( — (7a? + 8oy — 120t x
(21p°aq + 24p’alay — 36p°atas — buagat + 20puajas — 80pagaaasay + 80pasad +

1/2
200’ ag + 201/(1%043)) ]
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3
b = — 3 7 2 8 _ 12 2 - 7 2 8 _ 12 9
? 2NQ1()63<7()41 - 6042) |:M al( ap 81 aZ) + ( Qi + 3a1Qo CYQ),M X

(21p°aq + 24p’alay — 36p°atas — buagat + 20uajas — 80pagaaasay + 80pasad +

1/2
20p0’ ag + 201/04%043)) ]

1 1

k =
V20 (o + 2a) {M(Ml — 6ag)
(—(7ad + 8anan — 12a3) u(21p°af + 24p°aiay — 36p°a%als — Spaial + 20paias —

(al(al 4 200) (TP + 8pPaday — 12pana +

1/2
80papaaazay + 80paial 4+ 20uaias + 20vaia ))1/2))] (4.38)

and the solution of Eq.(£.18) is

1

u§) = 2uanaz(Tag — 6ag)

{21@30(‘;’ + 241202y — 36paras — Tpagad —

Spagay g + 12#&0043 + 28y paza — 24 pasasoy + < — (704% + 8ayag — 12043);; X

(21p°aq + 24p°alay — 36p°alas — buagai + 20uajas — 80pagaaaszay + 80pazad +
1/2
3
20p0i o + 20vad — Son (704 + 8ayap — 12053
patas + VOélOég)) Yo (7o — 6ag) {,u a1 (7o + 8ajay a;3) +

( — (702 + 8y — 1203 i x (21p°af + 24p°aday — 36p°atas — Spaia? +

1/2
20pagas — 80pagasaizay + 80uasa] + 20pasas + 201/04%043)) } X

1 1
Sn2{ [ <a o] + 2« 7 +8 a o
¢ \/_MOél(Oq—i-QOzQ) w(7ay — 6as) 1@ o) (T ax praday —
5.2 2

12/80102 + (— (702 4 8ana — 1202) (21 P af + 24p° gy — 36p°a2al —

1/2
Suagas + 20puaias — 80pagaaaszay + 80pazad + 20paias + 201/04%(13))1/2))] }
& = px + vt. (4.39)

Let us now consider the particular case when the simplest equation is the
Riccati equation
ga) =Co+ 19 + 29 (4.40)

In this case

2 2 2
ag = ¢g; a1 = 2¢pC1; Ay = ¢ + 2coCa; ag = 2¢102; a4 = (4.41)
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The full solution of the system of algebraic equation is again very long. We
illustrate it for the particular case given by Eq.(£3H). A solution of the
system of algebraic equations is

by — _8/1204%0002 + pPadc? + 162 arancoey + 2paranc® + 2apay + 4agas — 8azay
4oz
b o— 3u2cica(y + 2a)
as
by — 3pPc (o + 20)
a3
v o= — 80:%0@ <12,u4offcgc§ — 56utalcgciey + Tutaict + 128t adancics —

64ptadascocicy + 8ptadasc] — 192utalaicics 4+ 96ptalaicocicy —

12u*ataie; — 20adat + 80adas — 320apaaasay + 32003l + 8004%043) (4.42)

From the solutions of the Riccati equation (A39]) here we shall discuss the
solution (c is a constant of integration)

g(6) = QL{ tanh [ _ [~ depey) 2 (€ + c)} - cl} (4.43)

Co 2

valid when ¢ > 4cgey and (2¢29(€) + ¢1)? < ¢ — 4cges. Then the solution of

Eq.#I8) is

© 8uaicocy + plalct + 16p arancocy + 21 aranct + 200y + dagan — 8azay
u = —
40(10[3
3 2 9 2 4 1/2
C3pta(an +209) [ [ (61— daoea) €40 —e -
20[3 2
3,2 92 2 _ ¢y 1/2 2
B L ) O IO ) e e | O (4.44)
40(3 2

which is a kink.

4.5 Case m =5
In this case ¢ = 3. Then

w(€) = bo + brg(&) + bag® (&) + bsg®(&); & = p + vt (4.45)

and
9%y = a0+ a19 + azg” + asg’ + asg* + asg’ (4.46)

21



In addition we have to solve the system of nonlinear algebraic equations
for the parameters of the solution that can be obtained from the equation

Wi(g) = 0 from Egs.(d.19).

The system of algebraic equations obtained from Eq.(£I8) is (A.3)). The
full solution of this system is quite long. We shall illustrate the solution for
the particular case

(014 209)% (o +2)?
4005 40

Qg — (i3 = 1, a5 — (447)

The solution for this case is
4bs
812
20by
_W
4(b3 + Tbyb3)
_W
2(162a1bob3 + 72a1bybebs — 100103 + 243pb3 — 324,b2)
2187u2b3ay

as =

ay =

a3

ay = —

4 2 272 2 4
a; = —m (1620[1b0b2b3 + 1080[1b1b3 - 630[1b1b2b3 + 80[1b2 +

2430byb3 — 324a4b2b§)

2
ag = —m (6480[1b0b1b§ — 1620&1b0b3b§ — 1440(1b%b2b§ + 680[1b1b§b3 - 80[1()3 +

972a0by by — 2430pb3b; — 12964, b3 + 324a4b§b§)
—65610Va1b§
o= c
T* = 4374a7b5b; — 291603bobbabs + 64803 bbb — 216a7bbs + 702a7bTb3b3 —
28802b1bybs + 32a7b5 + 13122001 boby — 43T4agybibybl + 972000 bisbs —
174960v; agbobs + 58320r1 cugby babiy — 1296y agb3bs + 59049a5bs —
288684apaubs + 27993603bs + 656100, b3 (4.48)

and the solution of Eq.(£I8)) (for the particular case given by Eqgs.(£4T)) is
u(f) = by + bl‘/amal,a2,a3,a47a5 (f, 1,2, 5) + b2V2 (f, 1,2, 5) +

aop,a1,a2,a3,a4,as

b3va?;,a1,a2,a3,a4,a5 (gv 17 27 5) (449>
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where

_ 65610ua1b§x N

¢ - vt (4.50)

4.6 Casem=6

In this case ¢ = 4. We note that with increasing m (and ¢) the number of
equations in the nonlinear algebraic system we have to solve becomes large
very fast. When the number of equations become larger that the number
of parameters of the solution then the system could not have any nontrivial
solution.

For the case m =6

w(€) = bo + brg(&) + bag® (&) + bsg® (&) + bag*(§); € =pax+vt  (451)

and
9%y = a0 + arg + asg” + asg® + asg* + asg® + agg’ (4.52)

In addition we have to solve the system of nonlinear algebraic equations
for the parameters of the solution that can be obtained from the equation
Wi(g) = 0 from Egs.(#19). The general solution of Eq.(4.52) is given by the
function Vi 4y .a9.05.a4.a5.06 (€ 15 2, 6).

The system of nonlinear algebraic equations connected to Eq.(ZI8) is
very large. It still has a solution. In order to illustrate this solution we shall
consider a particular case of Eq.(d52) namely the equation of Abel of first
kind

gy = co + €19 + c2g” + c39° (4.53)

The corresponding system of nonlinear algebraic equations consists of 12

equations. The solution is very long and we shall illustrate it for the partic-
(041 +2a2)2

ular case when ay = e, - For this case one solution of the system of

23



algebraic equations is

_4;120‘21(&1 + 2a)

b, =
! 3asc?
16p%c3 (o + 2as
by = —
30(301
; 8ucs(aq + 2a)
2 = o
poo— 16p%ca(3aicoen + 4arcd + 6ascyey + 8anc?)
! 15&301
1
by = ——— 96u O[lcOCQ + 8,u ozlc1 + 192u a1iacoce + 160 alo@c% +
300[10[3
15apa; + 30y — 60a3a4)
3
_ 4
@ = 27¢2
2
G
o = —
2 300
4 2
uo= raias (4.54)

2 2 2 2 22 2
aja] — 4agos + 16agaeasay — 16azay — 4dajos

The Abel equations becomes:

2 C3
gy =cot+ag+—g* + =59 (4.55)
3¢ 27c§
Its solution is:
g(g) =V 5c2 20c3 5ed 28§ (456)

2
ct,2coc e 5o e 3 moa A
0,4€0¢1, 73 "27cq 27cE 1813 729¢]

The solution of Eq. (£IS) is

— 2
u(§) = b0-|—b1V2 5¢2 20c3 5cd 2c8 oF +62V 562 2063 5cd 08 6 T
g:2c0c1, 5t gty o 2 2cpc1, L 290 24 A
0 3 "27cq’27¢2 7813 720k 0 g

3 727¢o ’27% ’ 81c8 ’ 729cg

3 4
b3V 5c2 20¢3 5cd 2 o8 +b4V 5c2 20¢3 5ed 2ch 6 (457)

2
c22coct, b, ot L €5, 2C0C1, 7 155 o Ty T
0s4C0C1, 3 727CO 27(‘(2)7810(3) 7729(‘% 0,4C0C1, 3 72760 270(2) 781(‘% 7729(‘%

where

4raiasz
§ = 5—& + vt
4a0a2 + 16agaaazoy — 16a3a4 dajos
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Let now ¢y = =2 (01 — %) and c¢3 < 0. Then the Abel equation

3c3 9
Co 203 9 3
== S — 4.58
90 = 3. <01 %, + 19+ c29” + c39 (4.58)
has the solution [5§]
c2 f
e (- 52) ¢ c
g(€) = i _ 2 (4.59)

\/C — 2czexp [2 <01 — %) f] 3¢

where C' is the constant of integration. Let us assume that C' > 0. The

use of the Abel equation (£358)) leads to a following solution of the system of

. . . . 2009)2
nonlinear algebraic equations (for the particular case as = %)

B 12p%c3 (o + 2a)

by =
as
b — 16 cocs(ag + 2a)
a3
by, — _4,u2(3alclcg + a3 + 6ageies + 2aac3)
as
b — _8M2<9a16103 — a1 + 18ascic — 2a9¢3)
9a3cs

—m 2268 atcics — 3024utalcicacs 4+ 1512utalcicycs —

336u afciches + 28utalds + 2592t adagcicy — 3456t adasciciel +

1728 a1 ascicyes — 384ptataseicSes + 32utadancl — 3888utatascics +

5184utalascicaics — 2592utatascicycs + 576 atasc ches — 48utalasc —

4050503 c; + 16200 a3c; — 6480agasazaycy + 6480a3aics + 1620aiascs

(4.60)
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Hence the solution of Eq.(&I8) becomes

812 (9aicics — s + 18ancics — 2aipc3)

u(€) = by —

90[303

wfe-2)] o
\/C — 2c3exp [2 (01 — %) {} 3¢

_4,u2(30zlclcg + a3 + 6ageies + 2aac3) y

(6%}
2

16p2cocs(ar + 2as) P [(Cl B ﬁ) §] C2
o3 c2 303
C — 2czexp [2 (01 - ﬁ) f}
4
s
1202¢3(ay + 2019) P [(Cl - §> g] L2

@ \/C — 2c3 exp [2 (01 — %) {} 3¢3

that is a solution of kink’s kind as the solution (4.44).

5 Concluding remarks

In this article we have discussed a version of the method of simplest equation
applicable to a class of nonlinear partial differential equations that are much
used as model equations in the area of natural sciences. Eq.(2.9]) was used as
simplest equation and we have described a methodology based on the concept
for balance equations. This methodology reduces the studied nonlinear par-
tial differential equations to systems of nonlinear algebraic equations. Any
nontrivial solution of the obtained system of algebraic equations leads to an
exact solution of the corresponding nonlinear partial differential equation.
Discussed examples have shown the effectivity of the methodology of this
variant of the method of simplest equation.
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A Systems of algebraic equations connected

to Eq.(4.18)

A.1 Casem=3

3 45
0 = 5041#2@3()1 + 3agp’bias + asb? + 7045;14@%

0 = 15u4a2a3a5 + p2a2a1b1 + u2a2a2b1 + 3,u2a3a2b0 + 3,u2a3a4 +
20[3b0b1 + Oé(]bl

1
0 = v+ 1% + Oéo,LLb() + 50&1/130,1()1 + CY2M3b0a2 + agubg +

9
agpag + o’ <§a3a1 + a%) (A.1)

A2 Casem=14

0 = 360u4aia5 + 6,u2a40z1b2 + 12u2a4a2b2 + agbg

0 = 2a1by(5asby + 2a4by) + 60 pi*asboby + 240 p®bragbs +
o t?by(15a3by + 6agby) + 5asbi b2 + asp*(840asashy + 120a2b))

0 = 2apbs + 20 1% (4agbs + (3/2)ashy )by + aypi® (5asby + 2a4by )by +
2405 1*boasby + copi®by (15a3by + 6a4b1) + copr*by(8asbs + 3asby) +
2003(20by + b )by + 2ai3b3by + 240t agby + aspt (480agasby + 210a§b2 +
120aga4b )

0 = 3apbiby + 201 1% (3a1by + agby )by + a pi*(dagbs + (3/2)asby )by +
o by (15a3by + 6asby) + aapi®b1(8agby + 3asbi) + agp®by(3aibs + agby) +
dauzboby by + azby (2bgby + b2) + aup® (15asby + 6a4by) + asp’[(45/2)azb, +
270a4bsa; + 195a3baas + 60a4b;as]

0 = 2(v+ )by + 2apuboby + aoub® + 21 11 (2a0by + (1/2)arby )by +
o p1® (3arby + aghy )by + by (8agbs + 3asby) + awp®by (3a1by + asby) +
20z3,ub3b2 + 203 p1bob? + g pi® (8agbs + 3ashy) + s’ (144agasbs +
84aiasby + 30ayash; + 32a3by + 15azasb,)

0 = (v p)by + aouboby + arp®(2agby + (1/2)a1by )by + aop®by(3arby + aghy) +
Oég,ubgbl + aypi® (3arby 4 agby) + asp®(azby + 12a4b1ag + 15a9bsa; +
30asbsag + (9/2)asbiay) (A.2)
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A.3 Casem=5

0 = (81/2)aqp’asbs + 8lagubias + 3asubs + (10935/2)asu’azbs

0 = ap®(12a4bs + Tasby)bs + 27a pasbsbs + 8lagu’byasbs +
Qo pi*b3(60a,4bs + 35asbs) + S8azpbabs + asp®(7656a,4asbs + 1820a2bsy)

0 = 3a1u*((21/2)asbs + 6asbs + (5/2)asby)bs + 20 1 (12a4bs + Tasby )by +
(27/2) a1 pi*asbsby + 8lagpiPbiasbs + aopby(60asbs + 35a5by) +
o 1’bg(42a3bs + 24agby + 10asby ) + 3ovzpu(2b1bs + b3 )bs + 4aspbibs +
s b3y + asp®(2520a3bs + 385a2b; + (10605/2)asbsas + 2394asbyay)

0 = 3agubi + 3ayp®(9asbs + 5azby + 2a4b1)bs + 201123 ((21/2)asbs + 6asby +
(5/2)asby )by + a1 (12a4bs + Tasby )by + 8lanpbyasbs +
o 13by (60a4bs + 35asby) + cvapiPby(42a3bs + 24asby + 10ashy ) +
o t’b3(2Tagbs + 15a3by + 6asbr) + 3z p(2b9bs + 2b1bo)bs + 20v314(2b1b3 + b3 )by +
203 pubabsby + 8laypPasbs + asp® (3645aza5bs 4 3240asasbs +
1560asasby + 720a3bs + 462a4a5b; )

0 = Bagubebs + 31 ((15/2)arbs + 4ashy + (3/2)azby)bs + 201 (9agbs +
5azby + 2a4b1 )by + a1 p®((21/2)asbs + 6asbs + (5/2)asby )by +
o 1>bo(60asbs + 35asby) + capi®by (42a3bs + 24asby + 10asby ) +
Qo t’by (2T agbs + 15asby + 6asby) + aop®bs(15a1bs + Sasby + 3azby) +
3aspi(2bby + b3)bs + 20r3p4(2bgbs + 2b1b2 )by + aizp(2b1bs + b3)by +
g pt®(60asbs + 35asby) + asp” (2490asbsa; + 2040a4bzas + 1015a5byas +
945a3bs + 840asbyas + 120a3b; + (555/2)asbias)

0 = 4daopbibs + 2aoub? + 3a i (6agbs + 3ayby + asby )bs + 200 1 ((15/2)aybs +
4agby + (3/2)asby )by + aq pi®(9agbs + 5asby + 2a4b1 )by + by (42a3bs +
24a,4by + 10asby) + aopby(27asbs + 15as3by + 6a4by) + qop®by(15a1bs + Sagby +
3asby) + aoiPbs(6aghs + 3aiby 4 agby) + 6aspbobibs + 2ai3pu(2bobs + b2)by +
3t (2bbs + 2b1bo )by + aup® (42a3bs + 24a4bs + 10asby) + s’ (1680agasbs +
1260a;a4b3 + 660a;a5b9 + 1050asa3bs + 480asasby + 170aqa5b1 + 210a§bg +
120aza4by)
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(3(v + ))bs + 3apubobs + 3apubiby + 3aqp® (2agbs + (1/2)aiby)bs +
2001 11 (6aghs + 3aiby + agby )by 4+ i ((15/2)arbs + 4aghy +
(3/2)asby )by + qap®by(27asbs + 15a3by + 6ayby) + capby (15a,bs + S8asbs + 3ashy) +
o 13by(6aghs + 3aibs + aghy) + 3a3ub§b3 + dovspiboby by + aizpe(2bgbs + b2)by +
aui®(27azbs + 15asby + 6asby) + asp®(243a3bs + (45/2)azby + 756a4bsag +
420asbya0 + (1107/2)asbsa; + 270a4bsaq1 + 105a5b1a1 + 195a3bsas + 60a4bias)
(2(v + p1))ba + 20 pboby + agub? 4 20 11 (2agby + (1/2)ayb )by +
o p1? (6agbs + 3aiby + aghy )by + by (15a1bs + Sasby + 3aszby) +
o i®by (6aghs + 3aiby + aghy) + 2a3ubgb2 + 203 pubob? + ugpi®(15a,bs + S8agbs + 3ashy) +
a5u5(270a0a3b3 + 144agasbs + 60agasby + 195a1a2b5 + 84ajasbs + 30aia4by +
32a3by + 15a5a3b,)
(v + )by + apuboby 4 oy i (2agbs 4 (1/2)arby)by + aapi®by(6agbs + 3ai1by + aghy) +
s by + aup® (6agbs + 3a1by + agby) + asp®((45/2)aibs + azby + (9/2)asbia; +
15asboay + 12a4b1ag + 60asbszag + 30azbeag)
(A.3)
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