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Université Paris-Saclay
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Abstract

A simple method to obtain the highest and lowest Young’s modulus for a
material of the hexagonal class is presented. It is based upon the use of tensor
invariants of plane anisotropic elasticity; in fact, the cylindrical symmetry of
the elastic tensor allows for transforming the 3D original problem into a
planar one, with a considerable simplification.
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1. Introduction

The problem of finding the extrema of the Young’s modulus for mate-
rials belonging to the hexagonal class has been recently addressed by some
authors, [1, 2, 3]. In particular, the last work by Cazzani clearly states some
historical contributions going back to the XIX century, namely to the works
of Saint Venant, [4, 5, 6].

The purpose of this paper is to show that, thanks to the particular elastic
symmetry of hexagonal materials, the problem of finding the extrema of the
Young’s modulus, as well as of any other elastic parameter, can be found by
a direct bi-dimensional approach, much easier and straightforward than the
general approaches proposed in the cited papers. Such an approach is based
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upon the polar formalism, where tensor invariants and angular variables are
used to represent the elastic behavior of the material, in a way that reveals
to be really powerful to state and solve the problem.

2. Statement of the problem by the polar formalism

Let us consider an elastic material having a hexagonal symmetry with X3

as the axis of elastic symmetry. We address here the question of determining
the extrema of the Young’s modulus.

From a purely elastic point of view, a hexagonal symmetry cannot be
distinguished from transverse isotropy: they share the same type of elastic
tensors. This means also that for a hexagonal material, the elastic behavior
is the same in all the meridian planes, i.e. those containing the X3 axis.

For the purposes of this paper, this implies that it is sufficient to study
the Young’s modulus variation in any of such planes: the problem can be
completely reduced from a three-dimensional to a planar one. For the sake
of simplicity, we will indicate by x and y a couple of Cartesian axes in such
a plane. Unlike what is commonly done in the literature, where the axis of
symmetry for a material of the hexagonal symmetry class is labelled as the
axis of X3, the remaining two axes of X1 and X2 laying in the transversal
plane, the use of axes labelled x and y has been preferred here, for emphasiz-
ing the planar character of the approach. These axes lay in a meridian plane;
the axis of x is rotated through an angle θ with respect to the transversal
plane, hence, for instance, with respect to the X1 or X2 axes. For the sake
of shortness, and for giving a particular importance to the couple of axes of
orthotropy, we will name x1 and x2 the axes of x and y, respectively, when
θ = 0. Hence, for being more precise, x1 = X1 (or, indifferently, X2) and
x2 = X3, see Fig. 1. To remark that angle θ is here the latitude, i.e. θ = 0
corresponds to the equator and θ = π/2 to the pole.

It is worth to recall that the components of the compliance tensor S are
exactly the same as those of the corresponding material in a planar state
of stress. As E(θ) is given by (Voigt’s notation is used throughout all this
paper)

E(θ) =
1

Sxx(θ)
, (1)

the final question is hence reduced to a planar elastic one, depending on only
one variable: to find the extrema of the Young’s modulus E(θ) of a planar
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Figure 1: Sketch of the reference frames.

orthotropic material. For the mathematical symmetries, the study can be
restricted to the set 0 ≤ θ < π/2.

An interesting tool for the study of planar problems in anisotropic elastic-
ity is the polar formalism, introduced by Verchery in 1979, [7]. This method
is particularly effective in several situations, namely because a tensor is de-
scribed making use of invariants and angles only, which reveals to be very
useful for describing anisotropic properties. Restricting here the attention to
the strict topic of this paper (the interested reader can find a detailed account
of the polar formalism in [8]; here, due to the peculiarity of the matter, only
the case of orthotropic materials is considered), it is

Sxx(θ) = t0 + 2t1 + (−1)kr0 cos 4(ϕ1 − θ) + 4r1 cos 2(ϕ1 − θ), (2)

with t0 and t1 the isotropy invariants, r0, r1 and k the anisotropy invariants;
all of them are non negative quantities. The last polar parameter, ϕ1, is an
angle that fixes the frame.

The expressions of the above quantities are given as functions of the
Cartesian components of S by the following relations (with the usual frame
{X1, X2, X3} mentioned above, S22 should be S33, S12 should be S13 or S23
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and S66 indifferently S44 or S55, while S11 does not change of indexes):

t0 = 1
8
(S11 − 2S12 + S66 + S22),

t1 = 1
8
(S11 + 2S12 + S22),

r0 = 1
8
|S11 − 2S12 − S66 + S22|,
r1 = 1

8
|S11 − S22|,

cos 2ϕ1 = S11−S22

|S11−S22| .

(3)

It can be proved that the fifth invariant, k, can only be an integer; thanks
to the periodicity of the Cartesian components, see for instance eq. (2), only
two values are actually interesting, 0 and 1. For this reason, a suitable
expression for uniquely determining k is:

k =
1

2

∣∣∣∣ S11 − 2S12 − S66 + S22

|S11 − 2S12 − S66 + S22|
− 1

∣∣∣∣ ; (4)

k fixes the type of planar orthotropy and is of the greatest importance in the
following, see also [9].

Incidentally, a glance at eq. (2) shows that the Cartesian components of S
needed to describe the behavior of the material in a meridian plane are four,
but that actually this behavior depends on all the five tensor invariants of the
fictitious planar orthotropic material having the same Cartesian components
of the hexagonal-symmetric material (i.e., with S22 corresponding to S33, S66

to S44 and so on, as explained above). So, the planar analysis depends on the
whole set of independent invariants and in this sense it is hence complete.

A remark, for the sake of precision: formulae in eq. (3) and (4) have
been written as functions of the Cartesian components in the frame x1− x2,
i.e. for θ = 0, and considering an orthotropic material, which is the case of
concern here. More general formulae, using the Cartesian components in a
generic frame x− y rotated through an angle θ and concerning a completely
anisotropic material, could be written as well, but have been omitted here
for the sake of conciseness.

Of course, see eq. (1), the extrema of Sxx(θ) correspond to those of E(θ):
a maximum for Sxx(θ) is a minimum for E(θ), and a minimum for Sxx(θ) is
a maximum for E(θ). Hence, we will study Sxx(θ), the results for E(θ) will
descend immediately.

Before proceeding with the search for the extrema of Sxx(θ), let us turn
the attention on the choice of the frame. Fixing ϕ1 = 0 corresponds to
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put the axis of x1 aligned with the direction giving the highest value of
Sxx(θ), θ ∈ {0, π}, and ϕ1 = π/2 with the direction of the lowest value.
Because these are the only two cases of concern here, it is worth to write eq.
(2) in the equivalent form

Sxx(θ) = t0 + 2t1 + (−1)kr0 cos 4θ + 4(−1)hr1 cos 2θ, (5)

with h = 0 if ϕ1 = 0 and h = 1 if ϕ1 = π/2. A suitable Cartesian expression
for h is

h =
1

2

∣∣∣∣ S11 − S22

|S11 − S22|
− 1

∣∣∣∣ . (6)

Looking at eq. (35), it can be easily noticed that for materials with
S11 > S22, ϕ1 = 0 and h = 0. This is the case of a Young’s modulus
represented by a prolate surface, i.e. having E(θ = 0) < E(θ = π/2); to
remember that the x1 axis belongs to the transversal plane and x2 is the
hexagonal axis of symmetry of the material. An oblate surface, i.e. with
E(θ = 0) > E(θ = π/2), corresponds to the case S11 < S22, that gives
ϕ1 = π/2 and h = 1.

Though parameter h plays an algebraic role equivalent to that of k,
nonetheless, these two quantities are really different, mathematically and
mechanically: k is an invariant that determines the type of orthotropy re-
gardless of the frame, h is a parameter linked to the frame choice that gives
the form of the surface of E: prolate, for h = 0, oblate for h = 1.

The first derivative of Sxx(θ) is

S ′xx(θ) = −8r1
[
(−1)kρ cos 2θ + (−1)h

]
sin 2θ, (7)

where
ρ =

r0
r1
. (8)

The zeros of S ′xx(θ) are

θ1 = 0, θ2 =
1

2
arccos

(−1)1+h−k

ρ
, θ3 =

π

2
; (9)

the second (intermediate) root, θ2, exists ⇐⇒ ρ > 1. The second derivative
of Sxx(θ) is

S ′′xx(θ) = −16r1
[
(−1)kρ cos 4θ + (−1)h cos 2θ

]
, (10)
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that gets the following values for the zeros of S ′xx(θ):

S ′′xx(θ1) = −16r1
[
(−1)kρ+ (−1)h

]
,

S ′′xx(θ2) = −16(−1)kr1
1−ρ2
ρ
,

S ′′xx(θ3) = −16r1
[
(−1)kρ− (−1)h

]
.

(11)

When θ2 exists, ρ > 1, so it is always

1− ρ2

ρ
< 0; (12)

hence, the sign of S ′′xx(θ2) depends exclusively on k, because r1 ≥ 0, unlike
what happens for S ′′xx(θ1) and S ′′xx(θ3), where it depends also on h, hence on
the form of the surface representing E.

Considering the above equations and remarks, one can easily determine
the nature of the stationary points of Sxx(θ) and hence of E(θ):

E(θ1) = 1
t0+2t1+(−1)kr0+4(−1)hr1 ,

E(θ2) = 1
t0+2t1−(−1)k(r20+2r21)/r0

,

E(θ3) = 1
t0+2t1+(−1)kr0−4(−1)hr1 .

(13)

The results for all the possible cases, eight on the whole, are summarized
in Table 1, along with eight examples of materials, extracted from [3]; Be
is Beryllium, Tc is Technetium, Ti is Titanium, CdS is Cadmium-Sulphide,
Cd-Zn is a Cadmium-Zinc alloy, Zn is Zinc, InSe is Indium Selenide and
Cd-Mg is a Cadmium-Magnesium alloy. It is worth noticing that the same
extremal value of E(θ) can change its nature as a function of ρ, while E(θ2)
does not depend upon h, confirming the remark above.

The expressions of E(θi) in eq. (13) can be given in a completely Cartesian
form using eq. (3):

E(θ1) = 1
S11
,

E(θ2) = 4(S11−2S12−S66+S22)
4S11S22−(2S12+S66)2

,

E(θ3) = 1
S22
.

(14)

It should be remarked that the difference between the cases k = 0 and
k = 1 does not appear explicitly with the Cartesian formalism. Anyway, eq.
(4), it is easy to check that

k = 0 ⇐⇒ S11 − 2S12 − S66 + S22 > 0. (15)
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Table 1: Extrema of the Young’s modulus: polar formulae.

θ1 θ2 θ3 Example

h = 0

k = 0

ρ ≤ 1 min - max Be

ρ > 1 absolute min max local min Tc

(θ2 ∈ {π/4, π/2})

E(θi)
1

t0+2t1+r0+4r1
1

t0+2t1−r0−2r21/r0
1

t0+2t1+r0−4r1

k = 1

ρ ≤ 1 min - max Ti

ρ > 1 local max min absolute max CdS

(θ2 ∈ {0, π/4})

E(θi)
1

t0+2t1−r0+4r1
1

t0+2t1+r0+2r21/r0

1
t0+2t1−r0−4r1

h = 1

k = 0

ρ ≤ 1 max - min Cd-Zn

ρ > 1 local min max absolute min Zn

(θ2 ∈ {0, π/4})

E(θi)
1

t0+2t1+r0−4r1
1

t0+2t1−r0−2r21/r0
1

t0+2t1+r0+4r1

k = 1

ρ ≤ 1 max - min InSe

ρ > 1 absolute max min local max Cd-Mg

(θ2 ∈ {π/4, π/2})

E(θi)
1

t0+2t1−r0−4r1
1

t0+2t1+r0+2r21/r0

1
t0+2t1−r0+4r1

7



About the angle θ2, its value is

θ2 =
1

2
arccos

(−1)1+h−k

ρ
=

1

2
arccos

S22 − S11

S11 − 2S12 − S66 + S22

. (16)

Its polar expression gives immediately that for k 6= h, 0 ≤ θ2 < π/4, while for
k = h, π/4 ≤ θ2 < π/2. Hence, the intermediate minimum of E(θ) is located
between 0 and π/4, while the intermediate maximum between π/4 and π/2
for h = 0, prolate surfaces, and the exact contrary for the oblate surfaces,
h = 1, see Table 1.

It is evident that angle θ2, and hence the second (intermediate) stationary
value of the Young’s modulus, exists if and only if the argument of function
arccos in eq. (16) is admissible, i.e. if and only if

ρ > 1 ⇐⇒ r0 > r1, (17)

or equivalently if and only if

|S22 − S11| < |S11 − 2S12 − S66 + S22|. (18)
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Figure 2: Normalized directional diagrams of E(θ) for the eight materials in Table 2. The
dashed line represents the isotropic case

Eight examples, referring to the materials presented in Table 1, are pre-
sented in Table 2. The variation of the E(θ) for these eight cases is presented
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Table 2: Numerical values for the eight materials cited in Table 1; the Young’s moduli are
in GPa, the Cartesian and polar components of S in GPa−1 × 10−3.

Be Tc Ti CdS Cd-Zn Zn InSe Cd-Mg

S11 3.45 3.20 9.69 20.50 12.55 8.22 11.60 24.20

S22 2.87 2.90 6.86 15.90 35.62 27.70 38.70 28.50

S12 −0.05 −0.90 −1.82 −5.30 −9.76 −7.00 −7.50 −6.20
S66 6.16 5.70 21.50 66.70 49.78 25.30 85.50 75.10

t0 1.57 1.70 5.21 14.21 14.68 9.40 18.85 17.53

t1 0.78 0.54 1.61 3.23 3.58 2.74 4.41 5.04

r0 0.03 0.28 0.16 2.46 2.24 3.08 2.53 1.25

r1 0.07 0.04 0.35 0.58 2.88 2.44 3.39 0.54

k 0 0 1 1 0 0 1 1

h 0 0 0 0 1 1 1 1

ρ 0.45 7.33 0.46 4.28 0.78 1.26 0.75 2.33

θ2 (◦) - 48.92 - 38.25 - 18.85 - 57.73

E(θ1) 289.86 312.50 103.20 48.78 79.68 121.65 86.21 41.32

E(θ2) - 401.64 - 42.75 - 125.76 - 34.12

E(θ3) 348.43 344.83 145.77 62.89 28.07 36.10 25.84 35.09

in Fig. 2; the diagrams have been normalized with respect to E(θ = 0). In
Fig. 3 the three-dimensional surface diagram of E is presented for these eight
materials; following a consolidated habitude, the symmetry axis has been put
in the vertical direction.

3. Conclusion

The problem of determining the extrema of the Young’s modulus has
been addressed in this paper; it has been shown that it can be reduced to the
search for the maxima and minima of the component Sxx of the compliance
tensor S of an ordinarily orthotropic planar material. In such a case, the
use of the polar tensor invariants reduces the problem to an almost trivial
one, with the advantage that the different possible cases, actually only eight,
are determined by three non negative dimensionless parameters: k, an inte-
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Be                          Tc                            Ti                        CdS               

Prolate surfaces (h=0)!
!

Oblate surfaces (h=1)

Cd-Zn                    Zn                              InSe                     Cd-Mg              

Figure 3: Normalized three-dimensional diagrams of E for the eight materials in Table 2.

ger invariant accounting for the type of planar ordinary orthotropy, h, still
an integer, taking into account for the type of the surface representing E,
and the ratio ρ, representing the relative importance of the two compliance
anisotropy phases, r0 and r1.
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pliquées (Liouville) 10 series II (1867) 297–349.

[7] G. Verchery, Les invariants des tenseurs d’ordre 4 du type de l’élasticité.
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