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Abstract

Isogeometric approach applied to Boundary Element Methods is an emerging research area (see e.g. [33]). In this

context, the aim of the present contribution is that of investigating, from a numerical point of view, the Symmetric

Galerkin Boundary Element Method (SGBEM) devoted to the solution of 2D boundary value problems for the Laplace

equation, where the boundary and the unknowns on it are both represented by B-splines ([9]). We mainly compare

this approach, which we call IGA-SGBEM, with a curvilinear SGBEM ([2]), which operates on any boundary given

by explicit parametric representation and where the approximate solution is obtained using Lagrangian basis. Both

techniques are further compared with a standard (conventional) SGBEM approach ([1]), where the boundary of the as-

signed problem is approximated by linear elements and the numerical solution is expressed in terms of Lagrangian ba-

sis. Several examples will be presented and discussed, underlying benefits and drawbacks of all the above-mentioned

approaches.
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1. Introduction

Boundary Element Methods (BEMs) have become an important technique for solving linear elliptic partial differ-

ential equations (PDEs) appearing in many relevant physical and engineering applications (e.g. potential, acoustics,

elastostatics, etc.; see [23, 35, 40]). By means of the fundamental solution of the considered differential operator, a

large class of both exterior and interior elliptic Boundary Value Problems (BVPs) can be formulated as a linear inte-

gral equation on the boundary of the given domain. The numerical analysis of these methods for 2D and 3D problems

is now well studied ([1, 2, 3, 12, 23]). The BEM can offer substantial computational advantages over other approx-

imation techniques, such as finite elements (FEM) or finite differences (FDM). Moreover, in some applications, the

physically relevant information is not the solution inside the domain but rather its trace or its normal derivative on the

domain boundary: these latter can be obtained directly from the numerical solution of Boundary Integral Equations

(BIEs), whereas boundary values recovered from FEM solutions are not so accurate. However, in order to achieve an

efficient numerical implementation of general validity, a number of issues have to be dealt with special attention. One

of the most important, for the practical application of the BEM analysis, is the evaluation of singular integrals over

boundary elements. It is only in these last decades that engineers and applied mathematicians have started employing

finite part integrals to formulate several 2D and 3D BVPs, particularly in the area of applied mechanics, as singular

and hypersingular BIEs in the so-called symmetric formulations ([23, 35]). Symmetric Galerkin Boundary Element
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Method (SGBEM) - see [7, 38] and references therein for rather complete surveys - is nowadays recognized as a

valid alternative BEM technique for the solution of boundary value problems, yielding final symmetric discretization

matrices which are suitable for the coupling with FEM ([42, 15]). Since its origins ([34]), a large amount of literature

results has been produced for what concerns stability and convergence properties of the method related to smooth or

piecewise smooth boundaries and to piecewise polynomial systems for the approximation of the BIE solution (see e.g.

[40, 41, 31, 6, 30, 37]); further, great effort has been devoted to the development of efficient schemes for the double

integration of weakly singular, Cauchy singular and hypersingular integrals over boundary elements ([2, 7, 22, 20]).

On the other side, isogeometric analysis (IGA) is a new method for the numerical treatment of problems governed

by PDEs. In its first formulation introduced in the literature ([21]), the aim was to overcome some difficulties arising

in FEMs, proposing a viable alternative to standard, polynomial-based, finite element analysis. Actually, the key issue

in IGA is to retain the description of the domain where the PDE is defined as it is given by a Computer Aided Design

(CAD) system (i.e., in terms of B-splines or their rational generalization, NURBS) instead of approximating it by a

triangular/polygonal mesh. Note that the most domains of interest in engineering problems are exactly described in

terms of B-splines or NURBS. The term isogeometric is due to the fact that the solution space for dependent variables

is represented in terms of the same functions which describe the geometry of the domain. Thus, the isogeometric

approach ensures an exact description of the domain at any level, no matter how coarse is the discretization of the

problem. In addition, the mesh refinement is highly simplified because it can be obtained by standard knot-insertion

and/or degree-elevation procedures ([18]), retaining the exact geometry of the original domain during the process and

eliminating the need to communicate with the CAD system, once the initial mesh is constructed. In addition, the

easier manipulation of smooth elements provides an efficient tool particularly well suited for high order equations.

The above mentioned facts motivate the wide interest received by this new paradigm since the seminal paper [21] (see

for example [26, 36, 39] and references quoted therein).

Very recently, literature on IGA has started dealing with applications involving BEMs (see e.g. [19, 28, 29,

33]), even if the germinal idea was pushed forward in [10, 11]. This new approach has been mostly compared with

standard versions of the BEMs, based on a piecewise polygonal approximation of the boundary of the problem domain,

obtaining, with no doubt, a remarkable superiority.

In this framework, we investigate, from a numerical point of view, the so-called IGA-SGBEM, i.e. the SGBEM

devoted to the solution of 2D BVPs for the Laplace equation (but the analysis could be extended considering other

operators), where B-splines are used to approximate the boundary geometry as well as the unknown potential and flux

fields on it.

In order to combine IGA and SGBEM, we choose to work with B–spline basis, since it is a fundamental tool for

dealing with polynomial spline spaces in the context of CAD and automatic manufacturing, where spline functions

expressed in the B–spline basis (B–form) are the standard for free–form design ([18]). Furthermore, B-splines are

also profitably used in several other fields, for example in multiresolution analysis or in collocation methods (see e.g.

[25, 27]) and, as above mentioned, they are also the standard basis adopted in the recent context of IGA-FEM ([17]).

The reason of this wide success depends on several aspects, surely because splines in B–form can be easily stored,

evaluated and algebraically manipulated. Another important reason is that they have general features, very attractive

for applications, such as nonnegativity, partition of unity, compact support, and total positivity ([9, 13]).

In this paper, IGA-SGBEM approach will be compared with curvilinear SGBEM ([2]) - an improved version

with respect to the existing conventional boundary element techniques - which operates on any boundary given by

explicit parametric representation (hence, in particular, given by B-splines representation), and where the approximate

solution is obtained using Lagrangian basis. Both the above mentioned methods will be further compared with a

standard (conventional) SGBEM approach ([1]), where the boundary of the assigned problem is approximated by

linear elements and the numerical solution is expressed in terms of Lagrangian basis. Singular integrals required

by SGBEMs are efficiently evaluated by suitable quadrature formulas with a very low number of quadrature nodes

related to user assigned accuracy ([1, 2]). Several examples will be presented and discussed, underlying benefits and

drawbacks of all the above mentioned techniques.

2. Model problem and its boundary integral formulation

Let Ω ⊂ R
2 be a bounded, simply connected, open domain with a (piecewise) smooth boundary Γ := ∂Ω = {x =

(x1, x2) ∈ R
2| x = C(t), t ∈ [a, b]}, given by parametric representation on the interval [a, b]. Let us further suppose
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that Γ = Γ̄1 ∪ Γ̄2, where Γ1 and Γ2 are open disjoint subset of Γ and meas (Γ1) > 0. As model problem, we consider a

mixed BVP for the Laplace equation:

given u∗ ∈ H1/2(Γ1) and q∗ ∈ H−1/2(Γ2), find u ∈ H1(Ω) such that



















∆u = 0 in Ω ,

u = u∗ on Γ1 ,
∂u
∂n
= q∗ on Γ2 ,

(1)

where ∂
∂n

denotes the derivative with respect to the outer normal n to Γ. The definition of Sobolev spaces is as usual

(see [24]).

As it is well known ([3, 16, 40]), from problem (1) the following identities for u and q on Γ can be derived:

1

2

[

u

q

]

=

[

−K V

−D K′

] [

u

q

]

, x ∈ Γ , (2)

where

Vq(x) :=

∫

Γ

U(x, y) q(y)dγy , Ku(x) :=

∫

Γ

∂U

∂ny

(x, y) u(y)dγy

K′q(x) :=

∫

Γ

∂U

∂nx

(x, y) q(y)dγy , Du(x) :=

∫

Γ

∂2U

∂nx∂ny

(x, y) u(y)dγy ,

and

U(x, y) := −
1

2π
ln ‖y − x‖2 ,

is the fundamental solution of the 2D Laplace operator. Note that K and K′ are defined by Cauchy singular integrals

when Γ is a piecewise smooth boundary 1, while D is defined by a hypersingular finite part integral in the sense of

Hadamard, i.e. it is understood to be the finite part of an asymptotic expansion ([32, 40]).

Under the above assumptions, the following properties are well known ([16, 32, 40]): the operators

V : H−1/2+σ(Γ) → H1/2+σ(Γ) , K : H1/2+σ(Γ) → H1/2+σ(Γ) ,

K′ : H−1/2+σ(Γ) → H−1/2+σ(Γ) , D : H1/2+σ(Γ) → H−1/2+σ(Γ) ,
(3)

are continuous for σ ∈ (− 1
2
, 1

2
). For σ = 0 the operator K′ is the adjoint of K with respect to the natural duality < ·, · >

between H1/2(Γ) and its dual H−1/2(Γ), which for sufficiently smooth functions coincides with the usual scalar product

in L2(Γ).

The strong system of two BIEs (2) is, of course, overdetermined (see e.g. [7, 40]), hence it can be reformulated

without redundancy, following an approach similar to the one rigorously developed in [4]. Therefore, by imposing

the first equation only on Γ1 and the second one only on Γ2, and inserting the boundary data given in (1), we obtain a

system of two BIEs of the first kind for the unknowns q on Γ1 and u on Γ2, of the form

[

V11 −K12

−K′
21

D22

] [

q

u

]

=

[

−V12
1
2
I + K11

− 1
2
I + K′

22
−D21

] [

q∗

u∗

]

, (4)

where the boundary integral operators subscripts j k mean evaluation over Γ j and integration over Γk. Note that an

alternative non redundant system of two BIEs of the second kind could be obtained considering the first equation only

on Γ2 and the second one only on Γ1. However this latter approach does not lead to symmetric final discretization

matrices.

System (4) will be solved in a weak sense (see [3, 40]). The weak formulation starts from identity (2): finding the

weak solution u ∈ H1(Ω) of BVP (1) is indeed equivalent to find the weak solution [u, q] ∈ H1/2(Γ) × H−1/2(Γ) of

system (2) such that u|Γ1
= u∗ and q|Γ2

= q∗.

1In the case of a smooth boundary, the operators K and K′ are only weakly singular ([5], Section 7).
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After having recovered the missing Cauchy data by solving, with obvious meaning of notation, the weak symmetric

([7]) problem:

<

[

V11 −K12

−K′
21

D22

] [

q

u

]

,

[

p

v

]

>=<

[

f1
f2

]

,

[

p

v

]

> , ∀ [p, v] ∈ H−1/2(Γ1) × H
1/2

0
(Γ2) , (5)

one can use the representation formula

u(x) =

∫

Γ

U(x, y) q(y)dγy −

∫

Γ

∂U

∂ny

(x, y) u(y)dγy , x ∈ Ω ,

to obtain the solution at any point of the domain.

Let us remember the advantages of using the symmetric boundary integral problem (4) for a mixed BVP: the un-

knowns on the boundary are directly those of the differential problem instead of density functions typical of indirect

formulations ([14]); the linear system coming from the discretization of (5), due to the involved integral operators

properties, presents a symmetric matrix and this, of course, is extremely important for what concerns saving compu-

tational time in matrix generation and memory in matrix storage.

Remark. If we have to deal with a Dirichlet BVP, i.e. Γ ≡ Γ1, the systems (4) obviously reduces to the first equation

alone, where the only unknown is q(x). A similar boundary integral equation can be written for a Dirichlet problem

exterior to an open arc in the plane (see e.g. [14]): in this case, the unknown is the jump of q(x) across the arc Γ, i.e.

[q(x)]Γ.

3. Symmetric Galerkin Boundary Element Method

For the discretization phase, we consider a uniform partition of the parametrization interval [a, b] =
⋃n
ℓ=1 Iℓ, made

up by n subintervals Iℓ and governed by the decomposition parameter h = length(Iℓ). This induces over Γ, using the

parametric representation of the boundary, a mesh Γh =
⋃n
ℓ=1 eℓ, constituted by curvilinear elements eℓ = C(Iℓ).

In a similar way, a finite dimensional subspace of piecewise polynomial functions can then be lifted on the boundary,

starting from the introduced partition of [a, b].

In the IGA-SGBEM the very same B-spline basis used to represent the boundary Γ is used also as a basis for the

functional approximation space; in the curvilinear SGBEM, the boundary can be given by any explicitly defined

parametric representation (and therefore also by B-spline representation), but the approximation space is spanned by

a Lagrangian basis defined over the decomposition of [a, b].

At last, in the standard SGBEM, Γ is approximated by a polygonal boundary Γ̃h, constituted by linear elements, each

interpolating the endpoints of eℓ, ℓ = 1, · · · , n, and a local Lagrangian basis is lifted onto each straight element of Γ̃h

from the reference element [0, 1].

In any case, denoting with {φi} the basis of the functional approximation space where we will search the unknowns

by means of Galerkin criteria, the elements of the final discretization linear system matrix will be double integrals of

the form
∫

Γh

φ j(x)

∫

Γh

K(x, y)φi(y) dγydγx , (6)

(substituting Γh with Γ̃h in the case of standard SGBEM), whereK denotes one of the kernels of the integral operators

(3) and therefore it can be weakly singular, singular or hypersingular. Consequently, the inner integral in (6) has to be

defined as generalized, Cauchy principal value or Hadamard finite part, respectively.

Then, using suitable numerical integration schemes to face all these types of singularities (see [1, 2]), one can write

down the linear, symmetric, non singular system of equations

[

R11 R12

R21 R22

] [

qh

uh

]

=

[

b1

b2

]

, (7)
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where the vector unknowns qh, uh collect the coefficients with respect to the selected basis, which allow to finally

obtain an approximate solution of the integral problem.

In the remaining part of the Section, we recall the definition of B-spline basis used in IGA-SGBEM approach,

because it could be not necessarily known to people in the numerical simulation community. On the opposite, we do

not recall the definition of the Lagrangian basis used below to compare IGA-SGBEM with curvilinear and standard

SGBEMs, because it’s more basic (anyway the interested reader can refer to [8]).

Given a partition ∆ := {a = t0 < · · · < tn = b} of an interval [a, b], a general polynomial spline space S of order k

on such partition is composed by piecewise polynomial functions of degree k−1 which are required to have an assigned

regularity Ck−1−mi at the breakpoints ti, i = 1, . . . , n − 1, with mi denoting an integer between 1 and k 2. For example

when all the mi are fixed equal to 1 or to k−1 or to k, respectively S is a subset of Ck−2[a, b], it is included in C[a, b] or

it is just a subset of L2(a, b). It is quite easy to verify that the dimension of such space is dim(S ) = k +
∑n−1

i=1 mi . The

easiest way to define in S a B-spline basis Bi,k(t), i = 0, . . . ,N,with N+1 = dim(S ), is based on the usage of a recursion

formula and can be described through two easy steps ([9]). The first step consists in associating to S an extended knot

vector T = {τ0, · · · , τN+k} whose elements constitute a non decreasing sequence of abscissas, where {τk−1, · · · , τN+1}

are the internal knots with τk−1 = t0, τN+1 = tn and {τk, · · · , τN } = {t1, · · · , t1, · · · , tn−1, · · · , tn−1}, where each ti has mi

occurrences and it is said multiple if mi > 1. The remaining knots in T, {τ0, · · · , τk−2} and {τN+2, · · · , τN+k} form two

sets of (k − 1) knots called auxiliary left and right knots which are only required to verify the following inequalities,

τ0 ≤ · · · ≤ τk−2 ≤ τk−1 = a and b = τN+1 ≤ τN+2 ≤ · · · ≤ τN+k . Note that, in the numerical simulations, we will

always use the standard assumption of selecting an open extended knot vector, that is τ0 = · · · = τk−2 = τk−1 = a and

b = τN+1 = τN+2 = · · · = τN+k .

In the second step, the basis is defined by using the following recursion ([9]):

Bi,1(t) :=

{

1, if τi ≤ t < τi+1 ,

0, otherwise.

Bi, j(t) := ωi, j(t) Bi, j−1(t) + ( 1 − ωi+1, j(t) ) Bi+1, j−1(t) , 1 < j ≤ k ,

with ωi, j(t) :=

{ t−τi

τi+ j−1−τi
if τi < τi+ j−1 ,

0 otherwise.

Note that from the above recursive definition it is easy to verify the nonnegativity of B-splines and that the support of

Bi,k is the subinterval [τi , τi+k]. The partition of unity property can also be easily proved by induction on the order.

As an example, in Figure 1, the plots of all B-splines spanning two different quadratic spline spaces S 1 and

S 2, respectively of dimension N + 1 = 13 and N + 1 = 15, can be seen. Such spaces share the same partition

{ti = i, i = 0, . . . , 9} of the interval [0 , 9] but their extended knot vectors are T1 on the left and T2 on the right, with

T1 = [0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 9, 9] ,

T2 = [0, 0, 0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 9, 9, 9] .
(8)

4. Numerical results

From now on, we will indicate curvilinear and standard SGBEMs with C-SGBEM and S-SGBEM, respectively.

Example 1.

In this example we consider a potential problem interior to the domain shown in Figure 2, which has three sharp

corners and is similar to that one constructed by means of NURBS in [33]. The boundary of the domain is in our

case described by a closed parametric piecewise quadratic curve, C(t), t ∈ [0, 9], with integer uniform breakpoints

ti = i, i = 0, . . . , 9. Such curve can be represented in B-form, that is as a linear combination of the quadratic B-splines

2When mi = k this means that the function has a finite jump at t = ti .
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(see Figure 1, left) associated to the extended knot vector T1 given in (8) and control points Qi, i = 0 . . . , 12, whose

coordinates are given in the following matrix:

Q =
[ 0 0.5 1 1 0 −1 −1 −1 0 1 1 0.5 0

0 0.125 0.25 1 1 1 0 −1 −1 −1 −0.25 −0.125 0

]

.

Note that the curve is closed because Q0 = Q12 but its regularity at the initial/final joint point is only C0 because T1

is an open extended knot vector. Moreover, considering the double multiplicity of the breakpoints t1 and t8 specified

in T1, it turns out that C(t) ∈ C0[0, 9] ∩ C1[1, 8] . In this way, the geometry of the domain boundary can be exactly

described.

The differential problem is equipped with Dirichlet boundary condition u∗(x) = −(x1 + x2); the solution of the

related boundary integral equation is explicitly known, it reads q(x) = q(C(t)) = (C′
1
(t) − C′

2
(t))/‖C′(t)‖2 and has

L2(0, 9) regularity. In particular it presents a jump discontinuity at t = t1, t = t8 and at t = t0 (t = t9), while it is only

C0 in the remaining breakpoints.

As a first choice, we do not care about the low regularity of the solution and we work in the space used to describe

the boundary which is spanned by the quadratic B-splines associated to T1 and is a subset of C0[0, 9] ∩ C1[1, 8].

Then we successively extend the space by inserting a new simple knot at the midpoint between any two successive

breakpoints (this corresponds to halving the mesh step h, since uniform distributions of the breakpoints are always

assumed).

In Table 1, the obtained results are shown: for each considered h, the corresponding total number of degrees of

freedom (DoF), the spectral condition number of the matrix in (7), and the relative error

E =: ‖q − qh‖L2/‖q‖L2 , (9)

are given.

Figure 3 confirms that the numerical solution obtained with h = 1/8 mainly agrees with the analytical solution. As

expected, the jumps are smoothly approximated; small oscillations occur in the neighborhood of the jumps, especially

around t = 1.

In order to adequate the quadratic spline space to the regularity of the analytical solution, we have then performed

a similar set of experiments starting now from the extended knot vector T2, given in (8). The associated L2(0, 9) ∩

C1[1, 8] quadratic B-spline basis is shown in Figure 1, right.

In Table 2, we show the comparison between the results obtained successively refining the parameter h for the

L2(0, 9) ∩ C1[1, 8] quadratic B-splines in IGA-SGBEM and the L2(0, 9) ∩ C0[1, 8] quadratic Lagrangian basis in

C-SGBEM. In particular, for both approaches, we present the total number of degrees of freedom (DoF), the spectral

condition number of the associated linear system matrix and the relative error (9).

Final errors are better than the corresponding ones shown in Table 1, even if we note an error stagnation, for either

IGA-SGBEM and C-SGBEM. This is due to the difficulty of recovering the analytical solution near the jumps, in

particular on the side of the jumps where the exact solution is constant, even if, anyway, the approximation sensibly

improves elsewhere, as it is shown in Fig. 4. Actually, for this kind of solutions, as well as for solutions exhibiting

sharp layers, the use of generalized exponential spline spaces could be more suitable ([26]) and it is planned as future

work.

Example 2.

In the second example we consider a potential problem interior to the domain shown in Figure 5, see [28]. Such

domain has a smooth boundary that can be described by a closed parametric piecewise cubic curve, C(t), t ∈ [0, 1],

with uniform breakpoints and mesh step h = 1/8. This curve can be represented in B-form with extended knot vector

T3 = [0, 0, 0, 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1, 1, 1, 1]

and control points Qi, i = 0 . . . , 10, whose coordinates are collected in the following matrix:

Q =
[ −16 −22 −1 2 29 1 32 12 4 −10 −16

11.5 6.5 2 −15 −8 −4 17 19 1 16.5 11.5

]

.
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The differential problem is equipped with Dirichlet boundary condition u∗(x) = −(x1 + x2); as in the previous

example, the solution q(x), x = C(t), of the related boundary integral equation is explicitly known, but now, as

function of t, it is C1 regular on [0, 1].

For this example, we first present a comparison between the results obtained working in nested C2 spline spaces

of increasing degree ≥ 3, spanned by the B-spline basis (IGA-SGBEM), and working with larger C0 spline spaces

of corresponding degree spanned by the Lagrangian basis (C-SGBEM). Note that the boundary curve can be exactly

expressed in all the considered spaces and its representation can be obtained combining a degree elevation with a knot

insertion procedures (see e.g. [18]).

The recalled basis functions regularity, which defines the type of norms that can be used to estimate the approx-

imation error ([31]), allows us to compare the different approaches considering the relative error E defined in (9), as

done in the previous example. Results are presented in Table 3 and the errors are then plotted in Figure 6 with respect

to DoF.

Then, in Tables 4 and 5, results obtained considering two successive halving of the mesh size h are reported. The

corresponding error behaviors are shown in Figures 7 and 8, respectively: the rate of convergence of both methods are

almost equal, although, using IGA-SGBEM we can achieve the same error with fewer DoFs w.r.t. C-SGBEM. This

is due to the fact that in the so-called p-version of the Galerkin BEM ([37, 30]), where the accuracy is reached fixing

the mesh and elevating the degree of the piecewise polynomial basis, the error mainly depends on this degree (order).

Further, note that in these simulations the conditioning of B-splines systems are worse than the corresponding

Lagrangian ones. Anyway, the remarkable shape reproduction capability of our scheme is underlined in Figure 9

which shows the approximate solution obtained with h = 1/16 and the B-spline basis of degree 9 together with the

analytical solution.

Finally, in order to put in evidence possible benefits of our approach, we fix now the degree of the piecewise

polynomial spaces equal to 3 and compare the results obtained using C2 B-spline basis in IGA-SGBEM and C0

Lagrangian basis in C-SGBEM. The comparison is first done in Table 6, with respect to h, where results obtained

using C1 B-spline basis in IGA-SGBEM are also given. We note that the errors with the IGA-SGBEM approach are

slightly worse, but the degrees of freedom are remarkably lower.

The benefits of our approach can be better observed looking at Table 7, where indeed the comparison is done with

respect to DoF. Such a comparison can be achieved by selecting, for a given value of DoF, a suitable mesh size h. To

complete this benchmark, on the right of Table 7, for the same DoF, relative errors obtained using L2 cubic Lagrangian

basis on piecewise linear approximation Γ̃h of the boundary Γ are reported. All the errors of these last Table are plotted

in Figure 10 with respect to DoF. This graphic reveals the inferiority of the standard SGBEM approach with respect

to IGA and curvilinear SGBEMs, due to the introduced approximation of the boundary.

Example 3.

Since one of the major strengths of BEM approach (with respect to FEM) is its ability of easily treating domains

with holes, let us now consider the two trimmed domains depicted in Figure 11. For the domain on the left (A), the

two boundary curves are represented by cubic B-splines with extended knot vector

T4 = [0, 0, 0, 0, 1/6, 2/6, 3/6, 4/6, 5/6, 1, 1, 1, 1],

while the curves defining the domain on the right (B), are quartic B-splines with extended knot vector

T5 = [0, 0, 0, 0, 0, 1/5, 2/5, 3/5, 4/5, 1, 1, 1, 1, 1].

The coordinates of the control points associated to the external and internal boundary curves are collected in the

following matrices:

QestA =
[ 1 1 0 −1 −1 −1 0 1 1

0 1 1 1 0 −1 −1 −1 0

]

,

QintA =
[ 0.25 0.25 −0.25 −0.75 −0.75 −0.75 −0.25 0.25 0.25

0.25 −0.25 −0.25 −0.25 0.25 0.75 0.75 0.75 0.25

]

.

QestB =
[ 1 1 0 −1 −1 −1 0 1 1

0 1 1 1 0 −1 −1 −1 0

]

,
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QintB =
[ −0.25 −0.25 −0.5 −0.75 −0.75 −0.75 −0.5 −0.25 −0.25

0.5 0.25 0.25 0.25 0.5 0.75 0.75 0.75 0.5

]

.

For both domains a mixed BVP is considered, where a Dirichlet condition u∗ = 1 is assigned on the interior

boundary, while a Neumann condition q∗ = 0 is prescribed on the exterior boundary. This configuration can model a

stationary heat conduction problem, where a constant temperature on the inner wall and a zero heat flux on the outer

wall are given.

Focusing on domain A, we have tested our IGA-SGBEM approach just using the cubic spline space used to define

the boundary curves (h = 1/6). The resulting linear system is of order 16 and the approach produces an approximate

solution with an absolute error EM in maximum norm equal to 1.9451 10−5 for what concerns the recovered flux q

and equal to 2.1153 10−5 for what concerns the recovered potential u. If we use cubic C-SGBEM, instead, we have to

solve a liner system of order 36 to reproduce the same error order.

Regarding domain B, we have again tested our scheme just considering the quartic spline space used to describe

the boundaries (h = 1/5). Again we end up with a linear system of order 16, which produces an approximate solution

with an absolute error EM in maximum norm equal to 3.7748 10−5 for what concerns the recovered flux q and equal

to 3.7301 10−5 for what concerns the recovered potential u. If we use quartic C-SGBEM, instead, we have to solve a

liner system of order 40 to reproduce the same error order.

Remark. Here, we have chosen to evaluate the absolute error EM in maximum norm instead of (9) since the considered

mixed boundary conditions allow the BVP to have the constant solution u = 1. The obtained errors are due to the

approximation of weakly singular, singular and hypersingular double integrals by means of the already mentioned

quadrature formulas ([2]).

Example 4.

Let us conclude this Section, considering a Dirichlet BVP for the Laplace equation exterior to the arc of parabola

Γ = {x = (x1, x2)| x1 = t, x2 = 1− t2, t ∈ [a, b] = [−1, 1]}, representable by means of quadratic B-splines related to the

extended knot vector

T6 = [−1 −1 −1 1 1 1]

and to the control points Qi, i = 0, · · · , 2, whose coordinates are collected in the following matrix:

Q =
[ −1 0 1

0 2 0

]

.

The considered differential problem can model the electrostatic problem of finding the electric potential around

a condenser, whose two faces are so near one another to be considered as overlapped, knowing the electric potential

only on the condenser. Here the Dirichlet datum is given in such a way that the solution of the related boundary

integral equation is explicitly known and reads [q(x)]Γ =

√

1 + 4x2
1
.

The comparison reported in Table 8, for different values of the parameter h, which uniformly decomposes the

parameter interval [−1, 1], involves C1 quadratic B-spline basis for IGA-SGBEM, C0 quadratic Lagrangian basis for

C-SGBEM and L2 quadratic Lagrangian basis on piecewise linear approximation Γ̃h of Γ for S-SGBEM. Together

with DoF and spectral condition numbers of the associated matrices, we show the absolute errors EM in maximum

norm. These errors are visualized in Figure 12 with respect to DoF.

At last, for this example, in Table 9 we show a comparison between Galerkin IGA-BEM described in this paper

and collocation IGA-BEM, where collocation is done at the Greville abscissae as in [33]. It turns out that, for a

fixed discretization parameter h, the Galerkin technique is more accurate than the collocation one, while the matrix

condition number of the latter is better, even if the symmetry property useful in the coupling with FEM ([42, 15])

is lost. Both techniques, as shown in this Table, satisfy the estimates given in [31] for what concerns the decay of

Galerkin error EM , which, for smooth boundaries and sufficiently regular data, behaves as O(hk), being k the order of

the fixed B-spline basis.

5. Conclusions

In this work we studied from a numerical point of view an Isogeometric Symmetric Galerkin Boundary Element

Method, which we called IGA-SGBEM, dealing with the reference 2D Laplace problem, on domains having different
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shapes. In particular our aim was to compare the performances of such approach not only with those of standard

SGBEM (where the boundary of the domain is approximated by polygonal lines), but also with those of a more

advanced SGBEM, namely curvilinear SGBEM, which is capable of retaining the exact boundary.

The potential strength and superiority of the presented approach has been confirmed by all the numerical tests,

where smooth and non smooth interior domains as well as domains with holes or unbounded domains exterior to an

open arc have been considered. The only drawback of IGA-SGBEM is, in few cases involving very long boundary

elements, the worse conditioning of the discretization linear system matrix, which is probably due to the larger support

of B-splines with respect to that one of the Lagrangian basis functions.

In order to better exploit the potentiality of the isogeometric approach combined with SGBEM we plan, as a future

work, to extend the analysis to non polynomial spline spaces, able to represent exactly complex shapes. This can be

achieved by considering generalized B-splines ([26]). The extension of our approach to 3D problems would constitute

a further challenge, where its major appeal with respect to classical IGA-FEM could be more evident.
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Exterior Potential-Flow Problems around Lifting Bodies, in: E. Oñate, J. Oliver and A. Huerta (Eds.) Proceeding of ECCM V, 2433–2444,

(2014).

[30] F.V. Postell, E.P. Stephan, On the h-,p- and h-p versions of the boundary element method- Numerical results, Comp. Methods Appl. Mech.

Eng. 83, 69–89, (1990).

[31] R. Rannacher, W.L. Wendland, On the order of pointwise convergence of some boundary element methods. Part I. Operators of negative and

zero order, Math. Model. Numer. Anal. 19(1), 65-88, (1985).

[32] C. Schwab, W.L. Wendland, Kernel properties and representations of boundary integral operators, Math. Nachr. 156, 156–218, (1992).

[33] R.N. Simpson, S.P.A. Bordas, J. Trevelyan, T. Rabczuk, A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis,

Comput. Methods Appl. Mech. Engrg. 209-212, 87–100, (2012).

[34] S. Sirtori, General stress analysis method by means of integral equations and boundary elements, Meccanica 14, 21–218, (1979).

[35] S. Sirtori, G. Maier, G. Novati, S. Micoli, A Galerkin symmetric boundary element method in elasticity: formulation and implementation,

Internat. J. Numer. Methods Engrg. 35, 255–282, (1992).

[36] H. Speleers, C. Manni, F. Pelosi, M. L. Sampoli, Isogeometric analysis with Powell-Sabin splines for advection-diffusion-reaction problems,

Comput. Methods Appl. Mech. Engrg. 221–222, 132–148, (2012).

[37] E.P. Stephan, M. Suri, On the convergence of the p-version of the Boundary Element Galerkin Method, Math. Comp. 52(185), 31-48, (1989).

[38] A. Sutradhar, G.H. Paulino, L.J. Gray, Symmetric Galerkin Boundary Element Method, Springer, (2008).
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h DoF cond. E

1 13 2.53 102 3.32 10−1

1/2 22 3.05 102 1.61 10−1

1/4 40 5.82 102 1.08 10−1

1/8 76 1.23 103 7.62 10−2

Table 1: Example 1: results obtained by quadratic B-splines starting from extended knot vector T1.

IGA-SGBEM C-SGBEM

h DoF cond. E DoF cond. E

1 15 4.23 102 2.06 10−1 21 1.68 102 4.56 10−2

1/2 24 3.55 102 5.20 10−2 39 2.68 102 1.84 10−2

1/4 42 5.68 102 1.83 10−2 75 5.38 102 2.35 10−2

1/8 78 1.21 103 1.84 10−2 147 1.09 103 3.34 10−2

Table 2: Example 1: comparison between results obtained with quadratic L2(0, 9)∩C1[1, 8] B-splines/ L2(0, 9)∩C0[1, 8] Lagrangian basis, varying

h.

h = 1/8 IGA-SGBEM C-SGBEM

degree DoF cond. E DoF cond. E

3 10 6.61 102 3.37 10−1 24 5.47 102 4.69 10−2

4 18 4.07 103 1.26 10−1 32 1.21 103 3.43 10−2

5 26 1.89 104 6.55 10−2 40 2.02 103 2.34 10−2

6 34 9.19 104 3.23 10−2 48 4.42 103 1.56 10−2

7 42 4.40 105 1.71 10−2 56 5.50 103 1.17 10−2

8 50 2.08 106 1.03 10−2 64 1.88 104 8.51 10−3

9 58 9.84 106 3.57 10−3 72 1.45 104 3.26 10−3

Table 3: Example 2: comparison between results obtained with IGA-SGBEM based on C2 B-splines and C-SGBEM based on C0 Lagrangian basis,

for different degrees of the piecewise polynomial basis and h = 1/8.
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h = 1/16 IGA-SGBEM C-SGBEM

degree DoF cond. E DoF cond. E

3 18 1.18 103 1.28 10−1 48 1.49 103 1.85 10−2

4 34 7.78 103 4.06 10−2 64 3.36 103 1.13 10−2

5 50 3.72 104 1.44 10−2 80 5.30 103 6.32 10−3

6 66 1.90 105 4.92 10−3 96 1.16 104 2.52 10−3

7 82 9.69 105 1.97 10−3 112 1.35 104 1.10 10−3

8 98 4.98 106 7.31 10−4 128 4.93 104 4.31 10−4

9 114 2.51 107 4.08 10−4 144 3.49 104 3.74 10−4

Table 4: Example 2: comparison between results obtained with IGA-SGBEM based on C2 B-splines and C-SGBEM based on C0 Lagrangian basis,

for different degrees of the piecewise polynomial basis and h = 1/16.

h = 1/32 IGA-SGBEM C-SGBEM

degree DoF cond. E DoF cond. E

3 34 2.44 103 4.11 10−2 96 4.21 103 5.38 10−3

4 66 2.21 104 7.81 10−3 128 8.84 103 1.52 10−3

5 98 1.13 105 1.63 10−3 160 1.32 104 2.74 10−4

6 130 5.90 105 3.80 10−4 192 2.77 104 1.60 10−4

7 162 3.08 106 1.28 10−4 224 3.09 104 9.40 10−5

8 194 1.59 107 3.86 10−5 256 1.12 105 3.23 10−5

9 226 8.08 107 1.28 10−5 288 7.53 104 6.36 10−6

Table 5: Example 2: comparison between results obtained with IGA-SGBEM based on C2 B-splines and C-SGBEM based on C0 Lagrangian basis,

for different degrees of the piecewise polynomial basis and h = 1/32.

C2 IGA-SGBEM C1 IGA-SGBEM C0 C-SGBEM

h DoF cond. E DoF cond. E DoF cond. E

1/8 10 6.61 102 3.37 10−1 17 1.29 103 1.30 10−1 24 5.47 102 4.69 10−2

1/16 18 1.18 103 1.28 10−1 25 2.17 103 6.23 10−2 48 1.49 103 1.85 10−2

1/32 34 2.44 103 4.11 10−2 41 3.99 103 1.95 10−2 96 4.21 103 5.38 10−3

1/64 66 7.48 103 8.29 10−3 73 1.19 104 2.63 10−3 192 1.10 104 4.92 10−4

Table 6: Example 2: comparison among results obtained with cubic C2 B-splines (left), cubic C1 B-splines (middle) and cubic C0 Lagrangian basis

(right).

IGA-SGBEM C-SGBEM S-SGBEM

DoF h cond. E h cond. E h cond. E

24 1/22 1.63 103 9.53 10−2 1/8 5.47 102 4.69 10−2 1/6 3.01 102 6.54 10−1

48 1/46 4.25 103 2.75 10−2 1/16 1.49 103 1.85 10−2 1/12 1.26 103 5.06 10−1

96 1/94 1.46 104 3.70 10−3 1/32 4.21 103 5.38 10−3 1/24 1.59 103 1.41 10−1

192 1/190 4.57 104 2.08 10−4 1/64 1.10 104 4.92 10−4 1/48 5.29 103 4.82 10−2

Table 7: Example 2: comparison between results obtained with cubic C2 B-splines (left), C0 Lagrangian basis (middle), L2 Lagrangian basis on Γ̃h

(right), for different values of DoF.
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IGA-SGBEM C-SGBEM S-SGBEM

h DoF cond. EM DoF cond. EM DoF cond EM

1/10 22 1.87 102 2.11 10−5 41 2.33 102 4.20 10−5 60 1.01 103 1.07 10−1

1/20 42 4.57 102 1.27 10−6 81 5.00 102 2.92 10−6 120 2.09 103 5.55 10−2

1/40 82 1.01 103 1.48 10−7 161 1.04 103 2.40 10−7 240 4.27 103 2.82 10−2

Table 8: Example 4: comparison between IGA-SGBEM, C-SGBEM, S-SGBEM, based on quadratic piecewise polynomial basis functions, for

different values of h.

Galerkin IGA-BEM collocation IGA-BEM

h DoF cond. EM(h) log2

(

EM (2h)

EM (h)

)

cond. EM(h) log2

(

EM (2h)

EM (h)

)

1/5 12 7.19 101 4.03 10−4 − 1.73 101 4.88 10−4 −

1/10 22 1.87 102 2.11 10−5 4.26 3.63 101 5.74 10−5 3.09

1/20 42 4.57 102 1.27 10−6 4.05 7.70 101 6.94 10−6 3.05

1/40 82 1.01 103 1.48 10−7 3.10 1.58 102 8.58 10−7 3.01

1/80 162 2.12 103 1.81 10−8 3.03 3.20 102 1.07 10−7 3.00

Table 9: Example 4: comparison between Galerkin and collocation IGA-BEM results, varying h.
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Figure 1: Quadratic B-splines basis with knot vector T1 (left), and knot vector T2 (right), related to the same partition of the interval [0, 9].
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Figure 2: Example 1: the quadratic closed spline curve defining the boundary of the considered interior domain along with the related B-spline

control polygon. The control points and the nodal (mesh) points of the spline curve are respectively marked with the symbol ’∗’ and ’◦’.
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Figure 3: Example 1: the analytical solution (solid) and the numerical solution (dash-dotted), obtained after three refinements of T1 (h = 1/8).
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Figure 4: Example 1: the analytical solution (solid) and the numerical solution (dotted), obtained after three refinements of T2 (h = 1/8).
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Figure 5: Example 2: the cubic closed spline curve defining the boundary of the considered interior domain along with the related B-spline control

polygon. The control points and the nodal (mesh) points of the spline curve are respectively marked with the symbol ’∗’ and ’◦’.
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Figure 6: Example 2: relative errors of Table 3 vs DoF with h = 1/8 (’∗’ B-splines, ’◦’ Lagrangian basis).
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Figure 7: Example2: relative errors of Table 4 vs DoF with h = 1/16 (’∗’ B-splines, ’◦’ Lagrangian basis).
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Figure 8: Example 2: relative errors of Table 5 vs DoF with h = 1/32 (’∗’ B-splines, ’◦’ Lagrangian basis).
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Figure 9: Example 2: approximate solution obtained with the B-spline basis of degree 9 and h = 1/16, together with the analytical solution.
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Figure 10: Example 2: relative errors of Table 7 (’∗’ IGA-SGBEM, ’◦’ C-SGBEM, ’+’ S-SGBEM).
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Figure 11: Example 3: Domains with holes. The two closed boundary curves on the left (A) are cubics and those on the right (B) are quartics. The

nodal (mesh) points of the spline curves are marked with the symbol ’◦’.
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Figure 12: Example 4: Absolute errors, related to quadratic basis functions, for different value of h (’∗’ C1 B-splines, ’◦’ C0 Lagrangian basis, ’+’

L2 Lagrangian basis on Γ̃h).
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