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A MATHEMATICAL MODEL FOR THE CUSTOMER

DYNAMICS BASED ON MARKETING POLICY

CÉSAR M. SILVA, SILVÉRIO ROSA, HELENA ALVES, AND PEDRO G. CARVALHO

Abstract. We consider a compartmental model to study the evolution of the
number of regular customers and referral customers in some corporation. Tran-
sitions between compartments are modeled by parameters depending on the
social network and the marketing policy of the corporation. We obtain some
results on the asymptotic number of regular customers and referral customers
in several particular scenarios. Additionally we present some simulation that
illustrates the behavior of the model and discuss its applicability.

1. Introduction

In marketing literature it has been successively referred the importance of cal-
culating the value of a customer. In fact, such indicative value enables firms to
select those customers that can add profit and consequently constitutes an impor-
tant information to segment the market and efficiently allocate marketing policy
resources [7, 8, 13].

The objective of this work is to establish and study a compartmental model,
mathematically translated into a system of ordinary differential equations, for the
evolution of the number of customers of some firm, assuming that the customers
are divided in two subgroups corresponding to different profitabilities.

Until recently, the value of a customer for a company was based on the present
value of future profits generated by a customer over the full course of their dealings
with a particular company, this is the customer life-time-value (CLV) [9]. How-
ever, other authors refer to the importance of including not only the present and
future revenue from the customer purchases, but also the value of the potential
to influence other customers under incentives on behalf of the company (customer
referral value) or by own initiative (customer influencer value) [8]. Customer in-
fluencing behaviors consists of the intrinsic behaviors motivating the customer to
persuade and influence other customers without there being any type of reward on
behalf of the company and thus designated the customer influencer value (CIV).
In turn, the patterns of customer recommendation are related to the acquisition
of new customers due to company initiatives that reward recommendations made
to other customers, and thereby establishing the customer referral value (CRV).
According to Kumar et al. [9], these components are mutually interwoven. Thus,
CLV positively correlates with CRV (although only up to a certain point and in
an inverted U-shaped relational curve, which means customers reporting average
CLV are those most interested in company referral programs) and CLV is positively
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related with CIV (with an inverted U-shaped relationship in effect between these
two concepts). Much of the literature has focused on the customer referral value
through the influence customers might have on the formation of other customers
attitudes ([4]) in the purchasing making decision [2] and in the reduction of other
customers perceived risks [5], but little is known about how this processes occur.
Since customer referral value and influencer value might have a great impact for
companies, these latter try to identify the most influential customers [6].

A number of studies allow us to think that the customers of a firm can be
classified into several groups according to their influential role over other potential
buyers. In imperfect competitive markets information is not purely transparent;
some persons are more able than others of influencing people to become a customer
of that firm. It is also acceptable to assume that knowing the referrals among
each firms customers and quantifying their influence constitutes an important asset
for the firm competitive advantage, although all customers are important, referrals
would be more valuable.

We mostly agree with Marti and Zenou [12] when they state that physics/applied
mathematics are capable of reproducing many real networks but never reach to
explain why they emerge; the economists are very precise to explain why they
emerge but their approach does a poor job in matching real world networks. That
is why some game theorists are now improving models which take networks as given
entities and study the impact of their structure on individuals outcomes.

Based on the network theory some models have been tested to study the way in-
fluential customers can influence other consumers. For instance Kiss and Bichler [6]
tested real network models, simulated networks and diffusion models to predict in-
fluence between customers based on their position within the network. However,
as the authors mention this analysis not always is possible if we do not know or
do not have information regarding the customer social network. Therefore, other
models are needed to try to explain these processes.

In this work we propose a model suitable to describe the dynamics of the num-
ber of customers of a given firm. This model is given by a system of ordinary
differential equations whose variables correspond to groups of customers and po-
tential customers divided according to their profile and whose parameters reflect
the structure of the underlying social network and the marketing policy of the firm.
We intend to understand the flows between these groups and its consequences on
the raise of customers of the firm. We also want to highlight the usefulness of these
models in helping firms deciding their marketing policy.

Specifically, the main objectives of our study is threefold: we intend to obtain
theoretical results concerning the long term behavior of the number of customers
in various scenarios, we want to present some simulation aimed at illustrating the
possibilities of application of our model and, finally, we want to discuss the benefits
and limitations of this type of analysis.

As referred, we will consider a compartmental model. As far as we are aware,
this is the first time such type of mathematical model is considered in the context
of marketing research. We believe that this type of model can be fruitfully explored
in this context. This believe is based on the fact that compartmental models have
proved to be an important tool not only in the natural sciences, particularly in
mathematical epidemiology [3] and in population biology [15, 17], but also, with
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increasing notoriety in recent years, in the context of economy and other social
sciences [11, 14, 16, 1].

We consider a continuous compartmental model with four compartments, rep-
resented by the graph in Figure 1 and governed by an autonomous system of four
ordinary differential equations.
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Figure 1. The compartmental model

Measuring time in years, we consider the following (pairwise disjoint) compart-
ments: R(t), the referral customers in time t, C(t), the regular customers in time
t, PR(t), the potential referral customers in time t and PC(t), the potential regular
customers in time t. To model transitions between compartments we consider the
following parameters: λ1, the natural transition rate between PC and C, given by
the number of potential regular customers that become regular customers without
external influence per year over the number of potential customers (by “without
external influence” we mean without being influenced by marketing campaigns or
referral customers); λ2, the referral pull effect, given by the average number of cus-
tomers that a single referral brings (with no additional incentive) per year over the
number of potential customers; λ3, the natural PR to R transition rate, correspond-
ing to the number of potential referral customers that become referral customers
without external influence per year over the number of potential referral customers;
m(t), the undifferentiated marketing costs, corresponding to marketing costs asso-
ciated to undifferentiated marketing campaigns per year; λ4, the pull effect due to
undifferentiated marketing, corresponding to the quotient of the outcome of undif-
ferentiated marketing campaigns per year by the number of potential customers (by
“outcome of undifferentiated marketing campaigns” it is meant the number of po-
tential customers that become customers in the sequence of undifferentiated market-
ing campaigns per unitary marketing cost per year); mR(t), the referral associated
marketing costs, corresponding to marketing costs associated to referral directed
marketing campaigns per year; λ6, the pull effect due to referral directed market-
ing, given by the referral directed marketing campaigns outcome over the number
of potential customers (by “referral directed marketing campaigns outcome” it is
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meant the average number of additional customers that a single referral can bring
with incentives per unitary marketing cost per year); λ5, the non-central/central
transition in the social network equal to the number of individuals non-central in
the social network that become central over the total number of individuals in the
social network; λ7, the central/non-central transition in the social network, given
by the number of individuals central in the social network that become non-central
over the total number of individuals in the social network; β1, the regular customer
defection rate, equal to the number of regular customers that cease to be customers
over the number of regular customers; β2, the referral defection rate, given by the
number of referrals that cease to be customers over the number of referrals; ǫ, the
customer & potential customer defection rate, corresponding to the number of in-
dividuals that leave the universe of customers and potential customers per year
over the number of customers and potential customers (by “number of individuals
that leave the universe of customers and potential customers per year” it is meant
the number of customers and potential customers that cease to be in the set of
customers or potential customers per year due to emigration, death, etc.); γ, the
customer and potential customer recruitment rate, given by the number of individ-
uals that enter the universe of customers and potential customers per year over the
number of customers and potential customers (by “number of individuals that leave
the universe of customers and potential customers per year” it is meant the number
of customers and potential customers that cease to be in the set of customers or
potential customers per year due to immigration, etc.); α, the referral recruitment
rate, equal to the number of referrals that enter the universe of customers and
potential customers per year over number of individuals that enter the universe of
customers and potential customers per year.

Our model can be translated into the following system of differential equa-
tions (1) to be studied along this paper.

(1)



















C′ = λ7R − (ε+ β1 + λ5)C + (λ1 +mλ4)PC + λ2RPC

R′ = λ5C − (ε+ β2 + λ7)R+ (λ3 +mλ4)PR + (λ2 +mRλ6)RPR

P ′

C = (1− α)γ + β1C + λ7PR − (ε+ λ5 + λ1 +mλ4)PC − λ2RPC

P ′

R = αγ + β2R + λ5PC − (ε+ λ7 + λ3 +mλ4)PR − (λ2 +mRλ6)RPR

Notice that λ2RPR correspond to the average number of referrals that are brought
with no incentive by the referrals per year, that λ2RPC is the average number
of regular customers that are brought with no incentive by the referrals per year,
that mR(t)λ6RPR is the average number of additional customers brought due to
incentives per year, that m(t)λ4PR is the number of potential referrals that become
referrals in the sequence of undifferentiated marketing campaigns per year and
that m(t)λ4PC is the number of potential regular customers that become regular
customers in the sequence of undifferentiated marketing campaigns per year.

This paper is divided in the following way: in section 2 we state our main results
concerning the asymptotic behavior of the number of regular customers and referral
customers, in section 3 we present some simulation with the objective of illustrating
our theoretical results, in section 4 we prove our results and, finally, in section 5 we
discuss the results obtained.
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2. Main Results

One of the first natural issues to address when studying a compartmental model
is the existence and stability of equilibrium solutions. We obtain several results on
the existence and stability of equilibrium solutions in of model (1) in this section.

We first derive an auxiliary result. Given δ > 0 define the sets

∆δ = {(x, y, z, w) ∈ (R+
0 )

4 : γ/ε− δ 6 x+ y + z + w 6 γ/ε+ δ}.

We have the following result that shows that the total population in system (1)
converges to the ratio γ/ε, independently of the nonnegative initial conditions con-
sidered.

Lemma 1 (Asymptotic behavior of the total population). Let ε > 0 and let
(C(t), R(t), PC(t), PR(t)) be some solution of system (1) with nonnegative initial
conditions: C(t0) > 0, R(t0) > 0, P (t0) > 0, P (t0) > 0. Then:

a) for all t > t0, we have C(t), R(t), PC(t), PR(t) > 0;

b) we have lim
t→+∞

C(t) + R(t) + PC(t) + PR(t) =
γ

ε
. In particular, given δ > 0

and any solution (C(t), R(t), PC(t), PR(t)), with nonnegative initial conditions
there is T > 0 such that (C(t), R(t), PC(t), PR(t)) ∈ ∆δ for all t > T and any
equilibrium solution is in the set ∆0 = {(x, y, z, w) ∈ (R+

0 )
4 : x+y+z+w = γ/ε}.

Remark 1. The case ε = 0 is not a very interesting case since it corresponds to
the situation where there is no customer & potential customer defection rate which
is not a realistic assumption. Nevertheless it is easy to check that, if ε = 0, then,
given initial conditions C0, R0, PC,0 and PR,0, we have

lim
t→+∞

C(t) +R(t) + PC(t) + PR(t) = γt+ C0 +R0 + PC,0 + PR,0.

In particular if ε = γ = 0, then the total population remains constant.

We now obtain a result on the existence of equilibrium solutions. Under the
assumption of positivity of the defection rate, the referral pull effect and the non
central/central transition in the social network we conclude that there are one, two
or three equilibrium solutions, depending on the number of real roots of some third
degree polynomial. We need to define the constants

(2) p =
γ(αε+ λ5)

ε(ε+ λ5 + λ7)
and q =

γ((1− α)ε+ λ7)

ε(ε+ λ5 + λ7)

and also

u = ε+ β1 + λ5 + λ1 +mλ4 and v = ε+ β2 + λ7 + λ3 +mλ4.

Theorem 1 (Equilibrium solutions). Let ε, λ5 > 0. Then:

a) system (1) has up to three equilibrium solutions (R∗, C∗, P ∗

R, P
∗

C). The first
component, R∗, is always a nonnegative solution of the cubic equation

(3) aR3 + bR2 + cR+ d = 0,

where a = −λ2(λ2 + mRλ6), b = λ2(λ2 + mRλ6)p − u(λ2 + mRλ6) − λ2v,
c = λ2(λ3+mλ4)p+u(λ2+mRλ6)p+(λ7+λ2q)λ5−uv and d = (λ3+mλ4)pu+
(λ1 +mλ4)qλ5;
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b) any equilibrium solution (R∗, C∗, P ∗

R, P
∗

C) is obtained in the following way: R∗

is a nonnegative solution of (3) and P ∗

R = p−R∗, P ∗

C = q − C∗ and

(4) C∗ =
(ε+ β2 + λ7)R

∗ − (λ3 +mλ4 + (λ2 +mRλ6)R
∗)(p−R∗)

λ5
,

are nonnegative constants.

In the next result we discuss the asymptotic behavior of solutions of (1) under
some assumptions on the parameters that roughly correspond to require that the
referral pull effects are bounded by some functions that we can identify with the
other “forces” in the model such as the natural transition rates, the pull effects
due to undifferentiated marketing and the defection rates (see equation (5)). In the
following theorem we were able to show that, under the mentioned assumptions, the
asymptotic behavior of the solutions of (1) can be obtained by the two dimensional
autonomous system (6).

Theorem 2 (Asymptotic behavior of solutions). Let ε > 0 and assume that
(5)

min

{

2ε+ 2β1 + λ5 + 2λ1 + 2mλ4

λ7 + qλ2
,
2ε+ 2β2 + λ7 + 2λ3 + 2mλ4 + 2(λ2 +mRλ6)p

λ5 + qλ2

}

>1.

Consider the system

(6)

{

C′

a = λ7Ra − (ε+ β1 + λ5)Ca + (λ1 +mλ4 + λ2Ra)(q −Ca)

R′

a = λ5Ca − (ε+ β2 + λ7)Ra + (λ3 +mλ4 + (λ2 +mRλ6)Ra) (p−Ra)

and set PR,a(t) = p−Ra(t) and PC,a(t) = q−Ca(t). Then the asymptotic behavior
of C, R, PC and PR in system (1) is the same as the asymptotic behavior of Ca, Ra,
PC,a and PR,a. Namely if (C(t), R(t), PC (t), PR(t)) is a solution of (1) with initial
condition (C(t0), R(t0), PC(t0), PR(t0)) = (C0, R0, PC,0, PR,0) and (Ca(t), Ra(t)) is
a solution of (6) with initial condition (Ca(t0), Ra(t0)) = (C0, R0) then

lim
t→+∞

|C(t) − Ca(t)|+ |R(t)−Ra(t)|+ |PC(t)− PC,a(t)|+ |PR(t)− PR,a(t)| = 0.

In the next two theorems we discuss two particular situations where we analyse
the existence of equilibriums and their stability. The vector fields plotted with the
objective of illustrating the situations correspond to the reduced system (6) but we
considered situations where Theorem 2 apply so that the asymptotic behavior of
referrals and regular clients is the same for both systems.

First we will discuss the situation where there is no transition between refer-
ral/potential referral and customer/potential customer and thus we set λ5 = λ7 = 0.
We consider two cases: the situation where λ3 +mλ4 6= 0 and λ1 +mλ4 6= 0 (we
named it “static social network” to reflect the fact that there is no transition be-
tween referrals and regular customers) and the situation where λ1 = λ2 = λ4 = 0,
corresponding to the case where all potential customers and potential referrals that
become customers are consequence of referral influence (we named it “word of
mouth” to emphasise that all marketing efforts are related to referrals).

We have the following result in the static social network case.

Theorem 3 (Static social network). The following holds for system (1) with ε > 0,
λ2 > 0, λ3+mλ4 6= 0, λ1+mλ4 6= 0 and λ5 = λ7 = 0: there is a unique equilibrium
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solution (R∗, C∗, P ∗

R, P
∗

C) that is locally asymptotically stable and is given by

(7) R∗ =
αγ

2ε
− θ +

√

(αγ

2ε
+ θ

)2

−
αγ(ε+ β2)

ε(λ2 +mRλ6)
,

C∗ =
(1− α)γ(λ1 +mλ4 + λ2R

∗)

ε(ε+ β1 + λ1 +mλ4 + λ2R∗)
,

P ∗

R = γα/ε−R∗ and P ∗

C = γ(1− α)/ε− C∗ where

θ =
λ3 +mλ4 + β2 + ε

2(λ2 +mRλ6)
.

Define

(8) τ =
αγ(λ2 +mRλ6)

ε(ε+ β2)
.

We now consider the word of mouth case. In Figure 2 we show the behavior in
the plane C −R in both of the regimes of Theorem 4. In Figure 2 we used for the
plot in the left m = 40, mR = 0, ε = 0.01 and λ2 = 10−5, and, for the plot in the
right, m = 30, mR = 10, ε = 0.01 and λ2 = 10−5.

Theorem 4 (Word of mouth). The following statements holds for system (1) with
ε > 0, λ2 > 0 and λ1 = λ3 = λ4 = λ5 = λ7 = 0:

a) if τ 6 1 then there a unique locally stable equilibrium given by

(C∗, R∗, P ∗

C , P
∗

R) =

(

0, 0,
γ(1− α)

ε
,
γα

ε

)

;

b) if τ > 1 then there are two equilibrium solutions. An unstable equilibrium given
by

(C∗

1 , R
∗

1, P
∗

C,1, P
∗

R,1) =

(

0, 0,
γ(1− α)

ε
,
γα

ε

)

;

and a locally stable equilibrium given by

(C∗

2 , R
∗

2, P
∗

C,2, P
∗

R,2)

=

(

α(1 − α)λ2γ
2(1− 1

τ
)

ε2(ε+ β1 + λ2(1−
1
τ
))
,
αγ(1− 1

τ
)

ε
,

(1− α)(ε+ β1)γ

ε(ε+ β1 + λ2(1 −
1
τ
))
,

ε+ β2

λ2 +mRλ6

)

.
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Figure 2. Word of mouth: τ < 1 and τ > 1
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We next consider a scenario where there is no direct referral influence and thus
we set λ2 = λ6 = 0. Define

κ1 =
λ5[λ7p+ (λ1 +mλ4)q]

up(ε+ β2 + λ7)
and κ2 =

λ7[λ5q + (λ3 +mλ4)p]

vq(ε+ β1 + λ5)
.

Theorem 5 (No referral influence). For system (1) with ε > 0, λ5 > 0 and
λ2 = λ6 = 0 there is a unique equilibrium solution that is globally asymptotically
stable and is given by

(R∗, C∗, P ∗

R, P
∗

C) = (κ1p, κ2p, p− κ1p, q − κ2p).

In Figure 3 we illustrate the behavior of the reduced system in the plane C −R
for the setting in Theorem 5. In Figure 3 we used λ2 = λ6 = 0, m = 40, mR = 0,
λ1 = λ3 = λ4 = λ7 = 0.0002, λ5 = 0.0000018, β1 = β2 = 0.18, ε = 0.01 and, for
the plot on the left, α = 0, and, for the plot on the right α = 0.5. Note that for
the figure in the left the number of referrals in the equilibrium point is nonzero,
although it seems to be (the number of referrals is very low since the there are no
referrals entering the population).
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Figure 3. Word of mouth: α = 0 and α = 0.5

3. Simulation

To obtain a better understanding of the behavior of our model, we assume that,
for a given corporation, we consider the values for the parameters presented in
Table 1. and initial conditions C0 = 2200, PC,0 = 22000, R0 = 20 and PR,0 = 200.

Parameter Value

α, ǫ 0.01

γ ǫN0

λ1, . . . , λ4, λ6, λ7 0.0002

λ5 λ7R0/C0

β1, β2 0.18

Table 1. Values of parameters
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We write N0 = C0 + PC,0 + R0 + PR,0. The value considered for β1 and β2 is
based on usual assumptions concerning the defection rate [10]. The assumptions
λ5C0 = λ7R0 and λ5PC,0 = λ7PR,0 are made to assure that the underlying social
network hasn’t an initial tendency to “benefit” any of the four compartments. We
also consider γ = N0 × ǫ so that the total population converges to an equilibrium
where the total population equals N0.

We solved system (1) (named initial) and system (6) (named reduced) with
MATLAB. In the figures we plot the solution for the initial and the reduced sys-
tems. We considered two sets of values for m and mR, namely (m,mR) = (40, 0)
corresponding to a situation of undifferentiated marketing and (m,mR) = (30, 10)
corresponding to a situation where some effort is made for attracting referrals. In
both situations we maintain the same total effort, m + mR = 40, in order to be
able to compare both cases.

In Figures 4 and 5 we consider the evolution of customers and referrals in the case
where marketing is used in an undifferentiated way. We can see that the number
of customers and referrals decreases in this situation and stabilizes in some lower
value for both compartments.
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Figure 4. Regular customers evolution with m = 40 and mR = 0
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Figure 5. Referral evolution with m = 40 and mR = 0



10 CÉSAR M. SILVA, SILVÉRIO ROSA, HELENA ALVES, AND PEDRO G. CARVALHO

In Figures 6 and 7 we now consider the evolution of customers and referrals in
the case where some marketing effort is used to attract referrals. We can see that
there is an initial small decrease in the number of customers that is followed rapidly
by an increase that asymptotically doubles its number. There is also an increase in
the number of referrals due to the positive value of mR.
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Figure 6. Regular customers evolution with m = 30 and mR = 10
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Figure 7. Referral evolution with m = 30 and mR = 10

In the Figure 8 we present the evolution of customers and referrals in the case
where λ2 is reduced to 10−5 in order to satisfy the condition (5) in Theorem (2).
We can see that, as stated in the theorem, the solutions asymptotically approach
the same value. In the previous cases, although condition (5) is not satisfied,
there is computational evidence that the same happens. Thus we conjecture that
condition (5) can be weakened.

4. Proofs

4.1. Proof of Lemma 1. Let ε > 0. Analysing the direction of the flow on the
boundary of the set {(x, y, z, w) ∈ R4 : x, y, z, w > 0} we immediately obtain a).
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Figure 8. Asymptotic behavior with m = 30, mR = 10 and λ2 =
1× 10−5

Adding the four equations in (1) and letting N(t) = C(t) + R(t) + PC(t) + PR(t),
we get the differential equation

(9) N ′ = γ − εN.

The general solution of (9) is N(t) = γ/ε+ C e−εt and thus lim
t→+∞

N(t) = γ/ε. In

particular, if N(t) corresponds to an equilibrium solution then N(t) = γ/ε. This
proves b).

4.2. Proof of Theorem 1. Adding equations for R and PR and for C and PC

in (1) we get

{

(R+ PR)
′ = αγ − (ε+ λ7)(R + PR) + λ5(C + PC)

(C + PC)
′ = (1 − α)γ − (ε+ λ5)(C + PC) + λ7(R + PR)

and, setting X = R+ PR and Y = C + PC , we obtain

(10)

{

X ′ = αγ − (ε+ λ7)X + λ5Y

Y ′ = (1− α)γ + λ7X − (ε+ λ5)Y
.

The linear system (10) has the general solution














X(t) =
γ(αε+ λ5)

ε(ε+ λ5 + λ7)
+

C1λ7 − C2λ5

λ5 + λ7
e−(ε+λ5+λ7)t +

(C1 + C2)λ5

λ5 + λ7
e−εt

Y (t) =
γ((1− α)ε+ λ7)

ε(ε+ λ5 + λ7)
+

C2λ5 − C1λ7

λ5 + λ7
e−(ε+λ5+λ7)t +

(C1 + C2)λ7

λ5 + λ7
e−εt

.

and thus

(11)















PR(t) =
γ(αε+ λ5)

ε(ε+ λ5 + λ7)
+ θ1(t)−R(t)

PC(t) =
γ((1− α)ε+ λ7)

ε(ε+ λ5 + λ7)
+ θ2(t)− C(t)
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with θi(t) → 0 as t → ∞ for i = 1, 2. Replacing PR and PC by the expressions
in (11) in the first two equations in system (1) we obtain
(12)
{

C′ = λ7R− (ε+ β1 + λ5)C + (λ1 +mλ4 + λ2R) (q + θ2(t)− C)

R′ = λ5C − (ε+ β2 + λ7)R+ (λ3 +mλ4 + (λ2 +mRλ6)R) (p+ θ1(t)−R)
,

where p and q are given by (2).
By Lemma 1 every equilibrium solution must belong to ∆0. Thus every equilib-

rium solution must satisfy

(13)

{

λ7R− (ε+ β1 + λ5)C + (λ1 +mλ4 + λ2R) (q − C) = 0

λ5C − (ε+ β2 + λ7)R+ (λ3 +mλ4 + (λ2 +mRλ6)R) (p−R) = 0
.

Since λ5 6= 0 we have

(14) C =
(ε+ β2 + λ7)R− (λ3 +mλ4 + (λ2 +mRλ6)R) (p−R)

λ5
.

Substituting (14) in the first equation of (13) we obtain equation (3). Each solution
of (3) uniquely determines C, R and PR. Thus, we have at most three equilibrium
solutions and a) follows.

By (11) for any equilibrium solution (R∗, C∗, P ∗

R, P
∗

C) we have P ∗

R = p−R∗ and
P ∗

C = q − C∗. By (14) we obtain (4) and b).

4.3. Proof of Theorem 2. Assume that ε > 0 and choose δ > 0. Additionally,
define V : (R+)2 → R by V (x, y) = 1

2 (x
2 + y2) and let (C(t), R(t), PC(t), PR(t))

be a solution of (1) with initial conditions C(t0) = C0, R(t0) = R0, PR(0) = PR,0

and PC(0) = PC,0 and (Ca(t), Ra(t)) be a solution of (6) with initial conditions
Ca(t0) = C0 and Ra(t0) = R0. Define x(t) = C(t)−Ca(t) and y(t) = R(t)−Ra(t).

By (12) and (6) we have

x′ = C′ − C′

A

= λ7(R−Ra)− (ε+ β1 + λ5)(C − Ca) + (λ1 +mλ4)(θ2(t)− (C − Ca))

+ qλ2(R−Ra) + λ2θ2(t)R + λ2(RaCa −RC)

= λ7y − (ε+ β1 + λ5)x+ (λ1 +mλ4)(θ2(t)− x) + qλ2y + λ2θ2(t)R

+ λ2(Ra(Ca − C) + (Ra −R)C)

= −(ε+ β1 + λ5 + λ1 +mλ4 + λ2Ra)x+ (λ7 + qλ2 − Cλ2)y

+ (λ2R+ (λ1 −mλ4))θ2(t)

(15)

and

y′ = R′ −R′

a

= λ5(C − Ca)− (ε+ β2 + λ7 + λ3 +mλ4 + (λ2 +mRλ6)p)(R −Ra)

+ (λ2 +mRλ6)(R
2 −R2

a) + ((λ2 +mRλ6)R+ λ3 +mλ4)θ1(t)

= λ5x− (ε+ β2 + λ7 + λ3 +mλ4 + (λ2 +mRλ6)p)y

+ (λ2 +mRλ6)(R +Ra)y + ((λ2 +mRλ6)R + λ3 +mλ4)θ1(t)

.(16)

By (11) in the proof of Theorem 1, there is T0 > 0 such that PR(t), R(t) 6 PR(t)+
R(t) < p+ δ and PC(t), C(t) 6 PC(t)+C(t) < q+ δ, for all t > T0. Using this fact,



A MATHEMATICAL MODEL FOR THE CUSTOMER DYNAMICS... 13

by (15) and (16) we have

d

dt
V (x, y) = xx′ + yy′

= −(ε+ β1 + λ5 + λ1 +mλ4 + λ2Ra)x
2 + (λ7 + qλ2 − Cλ2)xy

+ (λ2R+ (λ1 −mλ4))xθ2(t) + λ5xy

− (ε+ β2 + λ7 + λ3 +mλ4 + (λ2 +mRλ6)p)y
2

+ (λ2 +mRλ6)(R+Ra)y
2 + ((λ2 +mRλ6)R+ λ3 +mλ4)yθ1(t)

6 −(ε+ β1 + λ5 + λ1 +mλ4)x
2 + (λ5 + λ7 + qλ2 − Cλ2)xy

− (ε+ β2 + λ7 + λ3 +mλ4 + (λ2 +mRλ6)(p+ 2δ))y2 +Θ(t),

for t > T0, where

Θ(t) = (λ2R + (λ1 −mλ4))(p+ δ)θ2(t) + ((λ2 +mRλ6)R+ λ3 +mλ4)(q + δ)θ1(t).

Thus, using the fact that xy 6 1/2(x2 + y2), we get

d

dt
V (x, y) 6 −(ε+ β1 + λ5 + λ1 +mλ4)x

2 +
1

2
(λ5 + λ7 + qλ2)(x

2 + y2)

− (ε+ β2 + λ7 + λ3 +mλ4 + (λ2 +mRλ6)(p+ 2δ))y2 +Θ(t)

6 −(ε+ β1 +
1

2
(λ5 − λ7) + λ1 +mλ4 −

1

2
qλ2)x

2

− (ε+ β2 +
1

2
(λ7 − λ5) + λ3 +mλ4 + (λ2 +mRλ6)(p+ 2δ)

−
1

2
qλ2)y

2 +Θ(t),

for t > T0. By (5), there is M > 0 such that

d

dt
V (x, y) 6 −MV (x, y) + Θ(t).

Since Θ(t) → 0 as t → 0, there is T1 > T0 > 0 sufficiently large such that, for t > T1,
we have Θ(t) 6 δ. Thus

d

dt
V (x(t), y(t)) 6 −MV (x, y) + δ

for t > T1. Therefore, for t > T1,

V (x(t), y(t)) 6
δ

M
+ V (x(T1), y(T1)) e

−M(t−T1) .

We conclude that

lim
t→+∞

V (x(t), y(t)) 6
δ

M
.

Since δ > 0 is arbitrary, the theorem follows.

4.4. Proof of Theorem 3. Adding equations for R and PR and for C and PC in (1) we
get the system

{

(R + PR)
′ = αγ − ε(R+ PR)

(C + PC)
′ = (1− α)γ − ε(C + PC)

and thus






R(t) + PR(t) =
αγ

ε
+ C1 e

−εt

C(t) + PC(t) =
(1−α)γ

ε
+ C2 e

−εt
.

Therefore, if (R∗, C∗, P ∗

R, P
∗

C) is an equilibrium solution, then

(17) P ∗

R = αγ/ε −R∗ and P ∗

C = (1− α)γ/ε−R∗.
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Using these expressions and the first two equations in System (1), we obtain

(18)

{

−(ε+ β1)C
∗ + (λ1 +mλ4 + λ2R

∗)
(

(1−α)γ
ε

− C∗

)

= 0

−(ε+ β2)R
∗ + (λ3 +mλ4 + (λ2 +mRλ6)R

∗)
(

αγ

ε
−R∗

)

= 0
,

and using the second equation in (18) and dividing by −(λ2 +mRλ6) (that is nonzero by
assumption), we get

(R∗)2 + 2θR∗ −
αγ(λ3 +mλ4)

ε(λ2 +mRλ6)
= 0.

Thus we have a unique nonnegative root given by (7). By the first equation in (18) we
obtain

C∗ =
(1− α)γ

ε

λ1 +mλ4 + λ2R
∗

ε+ β1 + λ1 +mλ4 + λ2R∗
,

by (17) we conclude that

P ∗

R =
αγ

2ε
+ θ −

√

(αγ

2ε
+ θ

)2

−
αγ(λ3 +mλ4)

ε(λ2 +mRλ6)

and it is easy to check that the expression above is nonnegative. Again by (17) we get
P ∗

C = γ(1− α)/ε− C∗ and it is also immediate that this expression is nonnegative.
To study the stability of the equilibrium, we consider the Jacobian matrix J at the

equilibrium. Namely

J =









−ε− β1 λ2P
∗

C λ1 +mλ4 + λ2R
∗ 0

0 −ε−A 0 B
β1 −λ2P

∗

C −ε− λ1 −mλ4 − λ2R
∗ 0

0 A 0 −ε−B









,

where A = β2 − (λ2 + mRλ6)P
∗

R and B = λ3 + mλ4 + (λ2 + mRλ6)R
∗. It is easy check

that the eigenvalues of J are −ε, −(A+B + ε) and −(β1 + ε+ λ1 + λ4m− λ2R
∗). Thus,

all eigenvalues have negative real part and we conclude that the equilibrium solution is
locally asymptotically stable.

4.5. Proof of Theorem 4. By the second equation in (1) we can see that, if (R∗, C∗, P ∗

R, P
∗

C)
is an equilibrium solution of our system, then

((λ2 +mRλ6)P
∗

R − ε− β1)R
∗ = 0

and thus R∗ = 0 or P ∗

R = (ε + β)/(λ2 + mRλ6). Using the remaining equations and
condition (8) it is straightforward to obtain the equilibrium points.

In the equilibrium (R∗

1 , C
∗

1 , P
∗

R,1, P
∗

C,1), the Jacobian matrix J is given by

J =









−ε− β1 λ2(1− α)γ/ε 0 0
0 −ε− β2 + (λ2 +mRλ6)γα/ε 0 0
β1 −λ2(1− α)γ/ε −ε 0
0 β2 − (λ2 +mRλ6)γα/ε 0 −ε









.

We can easily check that the constants −ε, −b1 − ε and γα(λ2 + λ6mR)/ε− (β2 + ε) are
the eigenvalues of J . Therefore if τ > 1 the equilibrium is unstable and if τ < 1 it is
locally asymptotically stable.

In the equilibrium (R∗

2 , C
∗

2 , P
∗

R,2, P
∗

C,2), the Jacobian matrix J has the following form

J =









−ε− β1 λ2P
∗

C,2 λ2R
∗

2 0
0 0 0 (λ2 +mRλ6)R

∗

2

β1 −λ2P
∗

C,2 −ε− λ2R
∗

2 0
0 −ε 0 −ε− (λ2 +mRλ6)R

∗

2









.

We can easily check that the negative constants −ε, −(β1+ε+λ2R
∗

2) and −(λ2+mRλ6)R
∗

2

are the eigenvalues of J . Therefore the equilibrium is locally asymptotically stable.
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4.6. Proof of Theorem 5. In our case, equation (3) in Theorem 1 has a unique solution
which is nonnegative and is given by

R∗ =
(λ3 +mλ4)up+ (λ1 +mλ4)λ5q

uv − λ5λ7
.

Thus, again by Theorem 1, the possible equilibrium solutions are given by (R∗, C∗, P ∗

R, P
∗

C)
where R∗ is the constant above,

C∗ =
(ε+ β2 + λ7 + λ3 +mλ4)R

∗ − (λ3 +mλ4)p

λ5

=
uvp(λ3 +mλ4) + λ5vq(λ1 +mλ4)− uvp(λ3 +mλ4) + λ5λ7p(λ3 +mλ4)

λ5(uv − λ5λ7)

=
(λ1 +mλ4)vq + (λ3 +mλ4)λ7p

uv − λ5λ7
.

P ∗

R = p−R∗ =
up(ε+ β2 + λ7)− λ5(λ7p+ (λ1 +mλ4)q)

uv − λ5λ7

and

P ∗

C = p− C∗ =
vq(ε+ β1 + λ5)− λ7(λ5q + (λ3 +mλ4)p)

uv − λ5λ7
.

Since max{κ1, κ2} 6 1, is immediate that P ∗

R > 0 and P ∗

C > 0. We conclude that there is
a unique equilibrium solution (R∗, C∗, P ∗

R, P
∗

C).
The Jacobian matrix J at the equilibrium is given by

J =









−ε− β1 − λ5 λ7 λ1 +mλ4 0
λ5 −ε− β2 − λ7 0 λ3 +mλ4

β1 0 −ε− λ5 − λ1 −mλ4 λ7

0 β2 λ5 −ε− λ7 − λ3 −mλ4









.

We can check that the eigenvalues are all negative and given by −ε, −ε− λ5 − λ7 and

1

2

(

−σ − 2λ4m±
√

σ2 − 4[(ε+ β1 + λ1 + λ5)(ε+ β2 + λ3 + λ7)− λ7λ5]
)

.

Therefore the equilibrium is asymptotically stable. Since the system in this case is linear,
the equilibrium is globally asymptotically stable.

5. Conclusions

We presented and studied in this paper a compartmental model with four compart-
ments to describe the evolution of the number of customers and potential customers of
some corporation based on the marketing policy of the corporation, determined by the
effort used in undifferentiated marketing campaigns and in referral directed marketing.
Apparently the results obtained are reasonable in the sense that the qualitative behavior
obtained is not going against common sense. The results show that the model works in
theory in the several scenarios considered, with and without marketing incentives, thus
relying on normal marketing policies or on incentives to referrals. The model shows that,
in theory, it is possible to predict the influence referrals can have on their peers based on
the incentives given to them by the company. The different scenarios also allows to see, in
a specific period of time, what happens to the number of current and potential customers
based on the zero incentives policy, and therefore, only based on the natural attractive-
ness power of the referrals (Theorem 4 with λ6 = 0); what happens if the company invests
in marketing but not on incentives to referrals (Theorem 5); and also, what happens if
the company only invests on incentives to referrals (Theorem 4 with λ6 6= 0). Based on
this results, this model allows companies to adjust their marketing policies in order to
maximize a specific parameter of the model. For instance, the model allows a company
to estimate the amount of investment necessary to transform an x number of potential
customers in customers.
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This study must be followed by work where the model is used in real world problems.
In fact, comparing the results given by the model and real data would of fundamental
importance to confirm the usefulness of it. Naturally this is a major task whose feasibility
will certainly depend on the accuracy in the estimation of parameters.

We believe that this work opens several possibilities for future studies. For instance,
it would be interesting to consider versions of this model with time-varying parameters
to model seasonal phenomena that may occur in some economic activities. It can also
be of interest to consider age structured populations, to distinguish different consumption
habits, or to subdivide the universe of referrals, to reflect different aspects that make those
customers important to the corporation.
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