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Abstract In this paper, a two-step regularization method is used to solve an
ill-posed spherical pseudo-differential equation in the presence of noisy data.
For the first step of regularization we approximate the data by means of a
spherical polynomial that minimizes a functional with a penalty term consist-
ing of the squared norm in a Sobolev space. The second step is a regularized
collocation method. An error bound is obtained in the uniform norm, which
is potentially smaller than that for either the noise reduction alone or the reg-
ularized collocation alone. We discuss an a posteriori parameter choice, and
present some numerical experiments, which support the claimed superiority of
the two-step method.
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1 Introduction

Mathematical models appearing in geoscience commonly have the form of an
ill-posed spherical pseudo-differential equation

Ax = y, (1)
where A is a pseudo-differential operator that relates continuous functions
x ∈ C(ΩR) and y ∈ C(Ωρ) defined on concentric spheres ΩR, Ωρ ∈ R3 of radii
R ≤ ρ. For example, in satellite geodesy, this approach has been introduced
in [5, 25] where the spheres ΩR, Ωρ are models of respectively the surface of
the Earth and the surface traversed by the satellite.

Recall that a spherical pseudo-differential operator A : C(ΩR)→ C(Ωρ) is
a linear operator that assigns to any x ∈ C(ΩR) a function

Ax :=
∞∑
k=0

ak

2k+1∑
j=1

x̂k,j
1
ρ
Yk,j

(
·
ρ

)
∈ C(Ωρ), (2)

where

x̂k,j =
〈

1
R
Yk,j

( ·
R

)
, x(·)

〉
L2(ΩR)

:= 1
R

∫
ΩR

x(τ)Yk,j
( τ
R

)
dΩR(τ)

are the spherical Fourier coefficients, and Yk,j(·), j = 1, 2, ..., 2k + 1, are the
spherical harmonics [16] of degree k which are L2-orthonormal with respect to
the unit sphere Ω1 ∈ R3, as a result of which

〈
1
R
Yk,j

( ·
R

)
,

1
R
Yk′,j′

( ·
R

)〉
L2(ΩR)

= 〈Yk,j , Yk′,j′〉L2(Ω1) = δkk′δjj′ . (3)

The sequence of real numbers (ak)∞k=0 is referred to as the spherical symbol of
A. We shall assume that ak is positive, and converges monotonically to zero.

In the case when the symbol sequence ak tends to zero fast enough the
operator A is compact. Therefore, its inverse A−1 is unbounded, and keeping
in mind Hadamard’s definition of a well-posed problem (existence, uniqueness,
and continuity of inverse), we conclude that for this case the first and the third
conditions are violated, and the problem (1), (2) with y ∈ C(ΩR) becomes ill-
posed. Therefore, a regularization technique should be employed for solving
it [4].

As examples of the ill-posed problem (1), (2) we can mention the satellite-

to-satellite tracking problem (SST-problem) with ak = k+1
ρ

(
R
ρ

)k
, the satellite

gravity gradiometry problem (SGG-problem) with ak = (k+1)(k+2)
ρ2

(
R
ρ

)k
, etc.

(for more details on these and other examples we can refer an interested reader
to [5]). These problems are severely ill-posed because of the occurrence of the
geometric factor (R/ρ)k.
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It is worth mentioning that many practical applications use a finite dimen-
sional approximation of the solution of (1), (2). For example, Earth Gravity
Models, such as EGM96 or EGM2008 [20] are parametrized by the spherical
Fourier coefficients up to some prescribed degree M .

Note that in applications the function y is assumed to be continuous.
However, in practice one is provided just with a finite number of points
{ti}Ni=1 ⊂ Ωρ at which information about the values of y is collected. It should
be noted also that the pointwise data yε(ti) contain measurement errors, which
can be modeled, for example, in the following way:

|yε(ti)− y(ti)| ≤ εi, i = 1, . . . , N.

We assume for convenience that there exists a function yε ∈ C(Ωρ) standing
for the noisy version of the original function y, such that

‖yε − y‖C(Ωρ) ≤ ε := max
1≤i≤N

{εi},

where εi are measurement errors.
In such a setup the problem (1), (2) is reduced to the following spherical

pseudo-differential operator equation

AMx :=
M∑
k=0

ak

2k+1∑
j=1

x̂k,j
1
ρ
Yk,j

(
·
ρ

)
= yε. (4)

Several regularization techniques can be used for treating (4). For example,
the method where the discretization level M plays the role of regularization
parameter was discussed in [2, 3, 9]. However, in our case we assume that the
value of M is prescribed, thus this approach cannot be used.

The problem (4), but without noise in the right-hand side, was studied
in [13]. In this noise-free case the solution x can be approximated by solving
the equation

AMx = V̂My,

where V̂M : C(Ωρ) → PM (Ωρ) is the so-called quasi-interpolatory operator.
Here by PM (Ωρ) we denote the set of all spherical polynomials of degree less
than or equal to M , or in other words the restriction to Ωρ of the polynomials
in R3 of degree less than or equal to M . Thus, in [13] the authors suggest
constructing a polynomial approximation of y from the original pointwise data
y(ti), i = 1, 2, . . . , N , and then formally inverting the operator AM .

In principle, this idea can be used also for the ill-posed case (4). However,
in contrast to the approximation of a noise-free continuous function y on the
sphere by means of polynomials, which has been discussed by many authors
(see, for example, [7,24,26,28,30]), the approximation of noisy functions yε has
been studied only recently in [1, 21], to the best of our knowledge. Applying
the method from [1, 21] we first perform so-called data-smoothing (or noise
reduction). After this data preprocessing the formal inversion of AM should



4 Hui Cao et al.

be safer. However, for performing the noise reduction step one needs a priori
information about the smoothness of the function y, which is usually not
available, a fact that makes the direct application of the scheme [21] not always
appropriate.

In a different direction, for estimating the Fourier coefficients x̂k,j directly
from noisy measurements yε(ti) a regularized collocation method has been re-
cently presented in [18]. This method is based on the standard and widely used
Tikhonov-Phillips regularization. However, it is well-known that the Tikhonov-
Phillips method suffers from saturation [15,19], meaning that the accuracy of
reconstruction cannot be improved regardless of the smoothness of the solu-
tion x. Another point is that while the Tikhonov-Phillips method has been
well studied in the Hilbert space L2, to the best of our knowledge, no analysis
has been done in the space of continuous functions, a natural choice for our
noise model.

In the present study we combine these two approaches. Moreover, in con-
trast to the previous results, we will analyze the approximation in the space of
continuous functions. A combination of two regularization methods into one
can be seen as a two-step regularization, in which we use the composition
Rα,M ◦ Tλ,M of data smoothing operator Tλ,M , and a regularized collocation
operator Rα,M . In the literature there are not so many studies on two-step
regularization, and we can refer only to [11,12]. However, the analysis in those
papers does not correspond to the setting of our problem (1)–(4).

The paper is organized as follows. In the next section we present the regu-
larization method for noise reduction and define the data smoothing operator
Tλ,M . In Section 3 we will give a short overview of the regularized collocation
method, and define the operator Rα,M . Section 4 is devoted to theoretical error
bounds for the constructed two-parameter regularization. We will show that
the approximation has the potential to perform at least as well as the better
of the one-parameter regularizations which are involved in the composition.
Finally, in the last section we discuss an a posteriori parameter choice rule,
and present some numerical experiments supporting the claimed superiority
of our method.

2 Data noise reduction

At the first step of our scheme we approximate the noisy continuous function
yε ∈ C(Ωρ) by means of a spherical polynomial pM ∈ PM (Ωρ). As discussed in
the Introduction, instead of y we are provided only with pointwise measure-
ments yε(ti), i = 1, 2, . . . , N . Therefore we introduce the sampling operator
SN : C(Ωρ)→ RNω for which

SNy
ε := (yε(t1), yε(t2), . . . , yε(tN )).

By RNω we denote the vector space RN equipped with the inner product
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〈η, γ〉ω :=
N∑
i=1

ωiηiγi, η, γ ∈ RN ;

the corresponding norm is ‖η‖ω = 〈η, η〉1/2
ω . Here ω1, ω2, . . . , ωN are positive

weights in a cubature formula, and t1, t2, . . . , tN ∈ Ωρ are the corresponding
cubature points, with the cubature rule having the property of being exact for
all polynomials of degree up to 2M ,

∀p ∈ P2M (Ωρ),
N∑
i=1

ωip(ti) =
∫
Ωρ

p(ζ)dΩρ(ζ). (5)

A method for approximating y from SNy
ε ∈ RNω based on such a cubature

rule (but with all weights equal) was proposed recently in [1], while its gener-
alization to other positive weights was presented in [21].

We briefly outline the method from [21] and its extension to pseudo-
differential operator equations. We start with the observation that the space
PM (Ωρ) of spherical polynomials p of degree at most M can be considered as
the reproducing kernel Hilbert space (RKHS) HK generated by the kernel

K(t, τ) =
M∑
k=0

β−2
k

2k+1∑
j=1

1
ρ
Yk,j

(
t

ρ

)
1
ρ
Yk,j

(
τ

ρ

)
, t, τ ∈ Ωρ, (6)

where β = (β1, β2, . . . , βM , . . .) is a non-decreasing sequence of positive pa-
rameters. Note that the inner product of HK associated with this kernel can
be written as

〈f, g〉HK =
M∑
k=0

β2
k

ρ2

2k+1∑
j=1

〈
Yk,j

(
·
ρ

)
, f

〉
L2(Ωρ)

〈
Yk,j

(
·
ρ

)
, g

〉
L2(Ωρ)

. (7)

The reproducing property 〈f,K(·, τ)〉HK = f(τ) for τ ∈ ΩR can be verified
easily. In this paper the numbers β1, β2, . . . , βN are assumed to be given a
priori. We shall see their role later.

The approximation pmin studied in [1, 21] appears as the minimizer of the
following functional

pmin = arg min
{
‖SNp− SNyε‖2

ω + λ ‖p‖2
HK , p ∈ PM (Ωρ)

}
, (8)

where λ ≥ 0 is a regularization parameter. Note that (8) can be seen as the
definition of the data smoothing operator Tλ,M : C(Ωρ)→ PM (Ωρ) such that
pmin = Tλ,My

ε. Note that the regularization term involves the HK-norm of p,
and hence depends on the rate of growth of the parameters βk. The solution
of (8) is given by the following theorem.
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Theorem 1 Assume that the points {ti} and weights {ωi} are such that (5)
holds. Then the minimizer Tλ,Myε = pmin in (8) has the form

(Tλ,Myε) (·) =
M∑
k=0

1
1 + λβ2

k

2k+1∑
j=1

1
ρ
Yk,j

(
·
ρ

) N∑
i=1

ωi
1
ρ
Yk,j

(
ti
ρ

)
yε(ti). (9)

Proof It is known that the minimizer of the functional in (8) can be written
as

Tλ,My
ε = (λI + S∗NSN )−1S∗NSNy

ε, (10)
where S∗N : RNω → HK is the adjoint of SN , and I is the identity operator in
HK . By definition, for (ηi)Ni=1 ∈ RNω we have

〈η, SNf〉ω =
N∑
i=1

ηif(ti)ωi =
N∑
i=1

ηi 〈K(ti, ·), f(·)〉HK ωi

=
〈

N∑
i=1

ωiK(ti, ·)ηi, f(·)
〉
HK

,

thus there holds

(S∗Nη)(·) =
N∑
i=1

ωiK(ti, ·)ηi, ∀η ∈ RNω ,

and thereby

(S∗NSNf)(·) =
N∑
i=1

ωiK(ti, ·)f(ti).

Inserting this expression into (10), we observe that pmin solves

λpmin(·) +
N∑
i=1

ωiK(ti, ·)pmin(ti) =
N∑
i=1

ωiK(ti, ·)yε(ti) (11)

The spherical harmonic expansion of the polynomial pmin = Tλ,My
ε is

pmin(t) =
M∑
k=0

2k+1∑
j=1

〈
pmin,

1
ρ
Yk,j

(
·
ρ

)〉
L2(Ωρ)

1
ρ
Yk,j

(
t

ρ

)
, t ∈ Ωρ. (12)

To find the coefficients in this expansion, we write the second term on the
left-hand side of (11), on using (5) and then (6), as
N∑
i=1

ωiK(ti, t)pmin(ti) = 〈pmin,K(·, t)〉L2(Ωρ)

=
N∑
k=0

β−2
k

2k+1∑
j=1

〈
pmin,

1
ρ
Yk,j

(
·
ρ

)〉
L2(Ωρ)

1
ρ
Yk,j

(
t

ρ

)
.
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After expanding the right-hand side of (11) using (6), and then equating the
coefficients of Yk,j

(
t
ρ

)
, we obtain

(λ+ β−2
k )

〈
pmin, Yk,j

(
t

ρ

)〉
L2(Ωρ)

= β−2
k

N∑
i=1

ωiYk,j

(
t

ρ

)
yε(ti), t ∈ Ωρ,

which on substituting into (12) yields the desired result.
ut

At this point the solution of the first step depends on the regularization
parameter λ, and the penalization weights βk. As mentioned in the Introduc-
tion, the choice of the regularization parameter λ will be addressed in the last
section. A data-driven choice of the penalization weights βk has been recently
discussed in [21].

The assumption that the function x on ΩR is continuous implies that
x ∈ L2(ΩR), and hence that its Fourier coefficients

〈 1
RYk,j

( ·
R

)
, x
〉
L2(ΩR) with

respect to the basis of spherical harmonics are square-summable, i.e,

∞∑
k=0

2k+1∑
j=1

∣∣∣∣∣
〈

1
R
Yk,j

( ·
R

)
, x

〉
L2(ΩR)

∣∣∣∣∣
2

<∞.

Any additional smoothness of x can be measured in terms of the summability
of Fourier coefficients with some increasing weights depending on the sequence
(βk) or, as it is usual for the regularization theory (see, e. g., [14]), on the
symbol (ak). Therefore, it is convenient to introduce two Sobolev spaces Wφ,β ,
and Wψ,a, the first depending on the sequence (βk) and the second on the
symbol (ak), and defined by

Wφ,β :=

g ∈ L2(ΩR) :
∞∑
k=0

2k+1∑
j=1

∣∣∣〈 1
R
Yk,j

(
·
R

)
, g
〉
L2(ΩR)

∣∣∣2
φ2(β−2

k
)

=: ‖g‖2
Wφ,β <∞

 , (13)

Wψ,a :=

g ∈ L2(ΩR) :
∞∑
k=0

2k+1∑
j=1

∣∣∣〈 1
R
Yk,j

(
·
R

)
, g
〉
L2(ΩR)

∣∣∣2
ψ2(a2

k
)

=: ‖g‖2
Wψ,a <∞

 , (14)

where φ, ψ are non-decreasing functions such that φ(0) = 0 and ψ(0) =
0. In the literature, see, e.g., [14], the functions φ, ψ go under the name of
“smoothness index functions”, and are usually unknown.

3 Regularized collocation method after noise reduction

After the first step of our method the reduced original equation (4) is trans-
formed into the equation
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AMx = Tλ,My
ε. (15)

The regularized collocation method (see [18]) is now applied to this equation,
yielding an approximate solution xεα,λ of the equation (15), defined as the
minimizer of the functional

‖BN,Mx− SNTλ,Myε‖2
ω + α ‖x‖2

L2(ΩR) , (16)

where BN,M := SNAM : L2(ΩR) → RNω , and α ≥ 0 is the regularization
parameter for the second step. The minimizer of (16) can be written in the
form

xεα,λ = (αI +B∗N,MBN,M )−1B∗N,MSNTλ,My
ε, (17)

where B∗N,M : RNω → L2(ΩR) is the adjoint of BN,M , given by

(B∗N,Mη)(·) =
M∑
k=0

ak

2k+1∑
j=1

1
R
Yk,j

( ·
R

) N∑
i=1

ωi
1
ρ
Yk,j

(
ti
ρ

)
ηi,

from which it follows, using (4), that

B∗N,MBN,Mx =
M∑
k=0

a2
k

2k+1∑
j=1

1
R
Yk,j

( ·
R

)
x̂k,j .

Using (17) and (9) we then obtain explicitly

xεα,λ :=
M∑
k=0

ak
α+ a2

k

1
1 + λβ2

k

2k+1∑
j=1

1
R
Yk,j

( ·
R

) N∑
i=1

ωi
1
ρ
Yk,j

(
ti
ρ

)
yε(ti). (18)

If we now define Rα,M : PM (Ωρ)→ PM (ΩR) as

(Rα,Mp) (·) :=
((
αI +B∗N,MBN,M

)−1
B∗N,MSNp

)
(·)

=
M∑
k=0

ak
α+ a2

k

2k+1∑
j=1

1
R
Yk,j

( ·
R

) N∑
i=1

ωi
1
ρ
Yk,j

(
ti
ρ

)
p(ti) (19)

=
M∑
k=0

ak
α+ a2

k

2k+1∑
j=1

1
R
Yk,j

( ·
R

)〈1
ρ
Yk,j , p

〉
L2(Ωρ)

. (20)

then we can write xεα,λ = Rα,MTλ,My
ε. Thus Rα,M reflects the regularized

collocation second step of the method, whereas Tλ,M corresponds to the noise
reduction first step.

As one can see from (18), in the end we approximate the unknown solution
x on ΩR by means of a spherical polynomial of degree M . In this context a
question arises about the best approximation of a continuous function x by
means of a polynomial of degree M . In turn the quality of best polynomial
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approximation is determined by the smoothness of x. We shall assume that x
lies in the intersection of Wφ,β and Wψ,a, see (13) or (14), thus the smoothness
of x is encoded in φ and βk, or ψ and ak. For example, if the smoothness index
function φ(t) and the sequence β = {βk} increase polynomially with t and k,
then Jackson’s theorem on the sphere (see [22], Theorem 3.3) tells us that for
x ∈Wφ,β there is ν > 0 such that

inf
p∈PM

‖x− p‖C(ΩR) = O
(
M−ν

)
. (21)

At the same time, if the sequence β = {βk} increases exponentially then
for polynomially increasing φ and x ∈Wφ,β we have

inf
p∈PM

‖x− p‖C(ΩR) = O
(
e−qM

)
,

where q is some positive number that does not depend on M .
In the error analysis of the next section we shall make use of a constructive

polynomial approximation introduced in [26], in which x ∈ C(ΩR) is approxi-
mated by VMx ∈ PM (ΩR), given by

(VMx) (t) =
M∑
k=0

h

(
k

M

) 2k+1∑
j=1

1
R
Yk,j

(
t

R

)〈
1
R
Yk,j

( ·
R

)
, x

〉
L2(ΩR)

, t ∈ ΩR,

(22)
where h (a “filter function”) is a continuously differentiable function on R+

satisfying

h(t) =
{

1, t ∈ [0, 1/2] ,
0, t ∈ [1,∞) , 0 ≤ h(t) ≤ 1 for t ∈ R+

Explicit examples of suitable filter functions h can be found in [27]. It is im-
portant for our later analysis that, as shown in [26], VMx is (up to a constant)
an optimal approximation in the uniform norm, in the sense that,

‖x− VMx‖C(ΩR) ≤ c inf
p∈P[M/2]

‖x− p‖C(ΩR) , (23)

where c is a generic constant, which may take different values at different
occurrences, and [·] denotes the floor function.

In view of (21), for polynomially increasing φ, β and for x ∈Wφ,β we have

‖x− VMx‖C(ΩR) ≤ c [M/2]−ν ≤ cM−ν .

On the other hand, for exponentially increasing β and polynomially increasing
φ the theory [23] suggests taking h(t) ≡ 1, t ∈ [0, 1]. In this case the right-hand
side of (23) has to be modified by multiplying by

√
M , and by replacing [M/2]

by M , thus for x ∈Wφ,β there holds

‖x− VMx‖C(ΩR) ≤ c
√
M inf

p∈PM
‖x− p‖C(ΩR) ≤ c

√
Me−qM .
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4 Error estimation in uniform norm

In this section we will estimate the uniform error of approximation of x by the
polynomial xεα,λ given by (18). It is clear that∥∥x− xεα,λ∥∥C(ΩR)

=
∥∥x−Rα,MTλ,Myε∥∥

C(ΩR)
(24)

≤ ‖x− VMx‖C(ΩR) +
∥∥VMx−Rα,MUMy∥∥

C(ΩR)

+
∥∥(Rα,M −Rα,MTλ,M )UMy

∥∥
C(ΩR)

+
∥∥Rα,MTλ,M∥∥

C(Ωρ)→C(ΩR)

(
‖UMy − y‖C(Ωρ) + ‖y − yε‖C(Ωρ)

)
,

where UMy is the same as VMx in (22) except that it is an approximation on
the larger sphere Ωρ instead of on ΩR,

(UMy) (t) =
M∑
k=0

h

(
k

M

) 2k+1∑
j=1

1
ρ2Yk,j

(
t

ρ

)〈
Yk,j

(
·
ρ

)
, y(·)

〉
L2(Ωρ)

. (25)

It is natural to assume that ‖UMy − y‖C(Ωρ) < ε, since otherwise data noise
is dominated by the approximation error and no regularization is required.
We also restrict ourselves to the case when ‖x− VMx‖C(ΩR) < cε, otherwise
the term ‖x− VMx‖C(ΩR), representing the error of almost best polynomial
approximation, will dominate the error bound.

Then the bound (24) can be reduced to the following one

∥∥x− xεα,λ∥∥C(ΩR) ≤ ‖VMx−Rα,MUMy‖C(ΩR) (26)

+ ‖(Rα,M −Rα,MTλ,M )UMy‖C(ΩR) + c(1 + ‖Rα,MTλ,M‖C(Ωρ)→C(ΩR))ε.

An estimate of the coefficient in the last term is given by the following
theorem.

Theorem 2 Under the conditions of Theorem 1

‖Rα,MTλ,M‖C(Ωρ)→C(ΩR) ≤
1
Rρ

max
t∈ΩR

∣∣∣∣∣
N∑
i=1

ωi

M∑
k=0

(2k + 1)ak
4π(α + a2

k
)(1 + λβ2

k
)
Pk

(
t · ti
Rρ

)∣∣∣∣∣ ,
where Pk are the Legendre polynomials of degree k.

Proof In view of the definition (9) and (19), together with (3) with R replaced
by ρ and the property (5) of the cubature rule, we can write

(Rα,MTλ,My) (t)

=
M∑
k=0

ak
α+ a2

k

1
1 + λβ2

k

2k+1∑
j=1

1
R
Yk,j

(
t

R

) N∑
i=1

ωi
1
ρ
Yk,j

(
ti
ρ

)
y(ti)

= 1
Rρ

M∑
k=0

2k + 1
4π

ak
α+ a2

k

1
1 + λβ2

k

N∑
i=1

ωiPk

(
t · ti
Rρ

)
y(ti), ∀t ∈ ΩR,
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where in the last step we used the addition theorem for the spherical harmonics
[16]

2k+1∑
j=1

Yk,j(x)Yk,j(y) = 2k + 1
4π Pk(x · y), x, y ∈ Ω1.

ut

Finally, we estimate the first two terms of the error bound (26).

Theorem 3 Assume that the smoothness index functions φ, ψ are such that
the functions t/φ(t), and t/ψ(t) are monotone. Then for x ∈ Wφ,β

⋂
Wψ,a

and Ax = y we have

‖VMx−Rα,MUMy‖C(ΩR) + ‖(Rα,M −Rα,MTλ,M )UMy‖C(ΩR)

≤ cM [ψ̂(α) ‖x‖Wψ,a + φ̂(λ) ‖x‖Wφ,β ],

where φ̂(λ) = φ(λ), ψ̂(α) = ψ(α), if t/φ(t) and t/ψ(t) are non-decreasing, and
φ̂(λ) = λ, ψ̂(α) = α otherwise.

Proof It follows easily from (2) and (3) that

ak

〈
1
R
Yk,j

( ·
R

)
, x

〉
L2(ΩR)

=
〈

1
ρ
Yk,j

(
·
ρ

)
, y

〉
L2(Ωρ)

.

Hence from (22) and (25) we obtain

(VMx) (t) =
M∑
k=0

h

(
k

M

)
1
ak

2k+1∑
j=1

1
R
Yk,j

(
t

R

)〈
1
ρ
Yk,j

(
·
ρ

)
, y

〉
L2(Ωρ)

=
M∑
k=0

1
ak

2k+1∑
j=1

1
R
Yk,j

(
t

R

)〈
1
ρ
Yk,j

(
·
ρ

)
, (UMy)

〉
L2(Ωρ)

.

Moreover, in view of (26), (25) and (5) we also have the representations

(
Rα,MUMy

)
(t) =

M∑
k=0

ak

α+ a2
k

2k+1∑
j=1

1
R
Yk,j

(
t

R

) N∑
i=1

ωi
1
ρ
Yk,j

(
ti

ρ

)
(UMy) (ti)

=
M∑
k=0

ak

α+ a2
k

2k+1∑
j=1

1
R
Yk,j

(
t

R

)〈1
ρ
Yk,j

( ·
ρ

)
, (UMy) (·)

〉
L2(Ωρ)

,

while from (7) and (3) and two uses of (4) we obtain

(Rα,MTλ,MUMy) (t) =
M∑
k=0

ak

α + a2
k

1
1 + λβ2

k

2k+1∑
j=1

1
R
Yk,j

(
t

R

) N∑
i=1

ωi
1
ρ
Yk,j

(
ti

ρ

)
(UMy) (ti)

=
M∑
k=0

ak

α + a2
k

1
1 + λβ2

k

2k+1∑
j=1

1
R
Yk,j

(
t

R

)〈
1
ρ
Yk,j

(
·
ρ

)
, (UMy) (·)

〉
L2(Ωρ)

.
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Then we can write, using again (25),

‖VMx−Rα,MUMy‖C(ΩR)

=

∥∥∥∥∥∥
M∑
k=0

(
1
ak
− ak
α+ a2

k

) 2k+1∑
j=1

1
R
Yk,j

(
t

R

)〈
1
ρ
Yk,j

(
·
ρ

)
, UMy

〉
L2(Ωρ)

∥∥∥∥∥∥
C(ΩR)

=

∥∥∥∥∥∥
M∑
k=0

h

(
k

M

)
α

ak(α+ a2
k)

2k+1∑
j=1

1
R
Yk,j

(
t

R

)〈
1
ρ
Yk,j

(
·
ρ

)
, y

〉
L2(Ωρ)

∥∥∥∥∥∥
C(ΩR)

.

Now using the property that 0 ≤ h
(
k
M

)
≤ 1 and then the Nikolskii in-

equality (see, e.g., [17], Proposition 2.5), we obtain, for x ∈Wψ,a,

‖VMx−Rα,MUMy‖C(ΩR)

≤

∥∥∥∥∥∥
M∑
k=0

α

α+ a2
k

2k+1∑
j=1

1
R
Yk,j

(
t

R

)〈
1
R
Yk,j

( ·
R

)
, x

〉
L2(ΩR)

∥∥∥∥∥∥
C(ΩR)

≤ cM

∥∥∥∥∥∥
M∑
k=0

α

α+ a2
k

2k+1∑
j=1

1
R
Yk,j

(
t

R

)〈
1
R
Yk,j

( ·
R

)
, x

〉
L2(ΩR)

∥∥∥∥∥∥
L2(ΩR)

= cM

∥∥∥∥∥∥
M∑
k=0

α

α+ a2
k

ψ(a2
k)

2k+1∑
j=1

1
RYk,j

(
t
R

) 〈 1
RYk,j

( ·
R

)
, x(·)

〉
L2(ΩR)

ψ(a2
k)

∥∥∥∥∥∥
L2(ΩR)

≤ cM sup
u≤a2

1

∣∣∣∣ α

α+ u
ψ(u)

∣∣∣∣ ‖x‖Wψ,a .

The proof can be completed by using Proposition 2.7 from [14]. For con-
venience, we present the corresponding argument here.

Let us consider two cases. First, we assume that t/ψ(t) is a non-decreasing
function. Then keeping in mind that the function ψ is increasing, for 0 < u < α
we obtain

sup
u<α

∣∣∣∣ α

α+ u
ψ(u)

∣∣∣∣ ≤ sup
u<α

ψ(u) < ψ(α).

If α ≤ u we can write

sup
α≤u

∣∣∣∣ α

α+ u
ψ(u)

∣∣∣∣ ≤ sup
α≤u

∣∣∣∣ αu

α+ u

ψ(u)
u

∣∣∣∣ ≤ sup
α≤u

∣∣∣∣ αu

α+ u

∣∣∣∣ sup
α≤u

∣∣∣∣ψ(u)
u

∣∣∣∣
≤ α

infα≤u u
ψ(u)

≤ α
α

ψ(α)
= ψ(α).
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Assume now that t/ψ(t) is a decreasing function. Then

sup
u≤a2

1

∣∣∣∣ α

α+ u
ψ(u)

∣∣∣∣ ≤ sup
u≤a2

1

∣∣∣∣ αu

α+ u

ψ(u)
u

∣∣∣∣ ≤ αψ(a2
1)

a2
1
≤ cα.

Combining everything together we obtain

‖VMx−Rα,MUMy‖C(ΩR) ≤ cMψ̂(α) ‖x‖Wψ,a .

The second part of the regularization error can be bounded by applying
similar steps and using the assumption of the theorem that x ∈Wφ,β . ut

From (26) and Theorems 2 and 3 we can estimate the error of the approx-
imation of x with the use of the proposed two-step regularization scheme as
follows:

∥∥x− xεα,λ∥∥C(ΩR) ≤ cM [φ̂(λ) ‖x‖Wφ,β + ψ̂(α) ‖x‖Wψ,a ] (27)

+ c max
t∈ΩR

M∑
k=0

(2k + 1)ak
4π(a2

k + α)(1 + λβ2
k)

1
Rρ

∣∣∣∣∣
N∑
i=1

ωiPk

(
t · ti
Rρ

)∣∣∣∣∣ ε.
From the error decomposition (27) one can easily obtain the error bounds

for the single parameter regularization schemes involved in the two-step com-
bination. If λ = 0, which means that no noise reduction has been done, we
derive the following error bound in the uniform norm:

∥∥x− xεα,λ∥∥C(ΩR) ≤ cMψ̂(α) ‖x‖Wψ,a (28)

+ c max
t∈ΩR

M∑
k=0

(2k + 1)ak
(α+ a2

k)
1
Rρ

∣∣∣∣∣
N∑
i=1

ωiPk

(
t · ti
Rρ

)∣∣∣∣∣ ε.
On the other hand, if α = 0, which means that direct inversion after data

pre-smoothing has been done, then

∥∥x− xεα,λ∥∥C(ΩR) ≤ cMφ̂(λ) ‖x‖Wφ,β (29)

+ c max
t∈ΩR

M∑
k=0

2k + 1
4πak(1 + λβ2

k)
1
Rρ

∣∣∣∣∣
N∑
i=1

ωiPk

(
t · ti
Rρ

)∣∣∣∣∣ ε.
Now we illustrate the potential advantage of the two-step approximation

compared to the single-parameter schemes. Assume that φ(t) = tµ, and ψ(t) =
tν for some µ, ν ∈ (0, 1). In this case the error bound (27) is reduced to the
following one
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∥∥x− xεα,λ∥∥C(ΩR) ≤ cM(λµ ‖x‖Wφ,β + αν ‖x‖Wψ,a) (30)

+ c max
t∈ΩR

M∑
k=0

(2k + 1)ak
(α+ a2

k)(1 + λβ2
k)

1
Rρ

∣∣∣∣∣
N∑
i=1

ωiPk

(
t · ti
Rρ

)∣∣∣∣∣ ε.
Consider for simplicity the situation in which for fixed µ and ν, α = λµ/ν .
Then the first terms of (28), (29) and (30) are essentially the same, whereas
the last term in (30) is obviously smaller than that in either (28) or (29).

5 Numerical illustrations

In all our experiments the regularization parameters λ, α are chosen by means
of the so-called quasi-optimality criterion. This heuristic approach was origi-
nally proposed in [29] and has been recently advocated in [10].

In the case of the noise reduction method (8), the quasi-optimality criterion
chooses a regularization parameter λ = λl from a set

QλL =
{
λ = λi = λ0q

i, i = 0, 1, 2, . . . , L
}
, q > 1, (31)

such that∥∥A−1
M (Tλl,My

ε − Tλl−1,My
ε)
∥∥ = min

{∥∥A−1
M (Tλi,My

ε − Tλi−1,My
ε)
∥∥ , i = 0, 1, . . . , L

}
,

where ‖·‖ denotes the uniform norm in the space C = C(ΩR) of continuous
functions.

In the similar way we can apply the quasi-optimality criterion in the regu-
larized collocation method. Then a regularization parameter α = αk is chosen
from a set

QαK =
{
α = αj = α0r

j , j = 0, 1, 2, . . . ,K
}
, r > 1, (32)

in such a way that

∥∥Rαk,Myε −Rαk−1,My
ε
∥∥ = min

{∥∥Rαj ,Myε −Rαj−1,My
ε
∥∥ , j = 0, 1, . . . ,K

}
.

For the two-step regularization the quasi-optimality criterion can be im-
plemented as follows. First, for every α = αj ∈ QαK we choose λ = λl = λ(αj)
from the set (31) such that

∥∥∥xεαj ,λl − xεαj ,λl−1

∥∥∥ = min
{∥∥∥xεαj ,λi − xεαj ,λi−1

∥∥∥ , i = 0, 1, . . . , L
}
.

Next, we apply the quasi-optimality criterion to the sequence
{
xελ(αj),αj

}
parametrized by αj ∈ QαK . More specifically, we select αk ∈ QαK such that



Two-parameter regularization 15

∥∥xεαk,λ(αk) − x
ε
αk−1,λ(αk−1)

∥∥ = min
{∥∥xεαj,λ(αj) − x

ε
αj−1,λ(αj−1)

∥∥ , j = 0, 1, . . . , K
}
.

Then, a regularized approximate solution xεα,λ of our choice is defined by (18)
with λ = λ(αk) and α = αk.

In all our experiments we follow [6,18] and assume that {ti}Ni=1 is the set of
Gauss-Legendre points, for which the positive quadrature weights are known
analytically. In this case N = 2(M + 1)2, and we take M = 30.

The data are simulated in the following way. First we generate a spherical
function

y(t) =
M∑
k=0

ak

2k+1∑
j=1

x̂k,j
1
ρ
Yk,j

(
t

ρ

)
, t ∈ Ωρ,

where x̂k,j = (k + 1/2)−υgk,j , k = 0, ...,M, j = 1, ...2k + 1, υ > 0, and
gk,j are uniformly distributed random values from [−1, 1]. This means that
the solutions of the simulated problems have Sobolev smoothness υ, and y
can be seen as a result of the action of the operator A on a function x from
the spherical Sobolev space Hυ

2 . A noisy spherical function yε is simulated by
adding a Gaussian white noise of intensity ε = 0.05 to the values of the initial
function y at the points {ti}Ni=1.

To assess the performance of the considered schemes we measure the rela-
tive error ∥∥∥x− xεα,λ∥∥∥

‖x‖
,

where

x =
M∑
k=0

2k+1∑
j=1

x̂k,j
1
R
Yk,j

( ·
R

)
,

and the approximation xεα,λ is given by (18).
The results are displayed in Figure 1, where each subfigure corresponds

to different values of ak, υ, and penalization weights βk. In Figure 1 each
circle exhibits a value of the relative error in solving the problem with one of
10 simulated data, for each of three methods: regularized collocation method
corresponding to the case when λ = 0, noise reduction method with direct
inversion (the case when α = 0), and the two-step regularization method. Note
that such a form of graphical representation of the performance of different
regularization algorithms is rather common (see, e.g., [8]).

In our experiments we tried to cover different degrees of ill-posedness of (1),
(2), i.e. the so-called moderate ill-posedness when the spherical symbol tends
to zero polynomially (Figures 1c, 1d, 1e), and severely ill-posed case with
exponential symbol decrease (Figures 1a, 1b). Note that the spherical pseudo-
differential operators with polynomial symbol have been studied in [13], while
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(a) Relative errors for the case ak =
(1.48)−k, υ = 3/2, β2

k = a−1
k
, k =

1, 2, . . . ,M .

(b) Relative errors for the case ak =
(1.48)−k, υ = 11/2, β2

k = a−1
k

(k +
1/2)7/2, k = 1, 2, . . . ,M .

(c) Relative errors for the case ak =
(k + 1)−2, υ = 3/2, β2

k = a−1
k
, k =

1, 2, . . . ,M .

(d) Relative errors for the case ak =
(k + 1)−2, υ = 11/2, β2

k = a−1
k

(k +
1/2)7/2, k = 1, 2, . . . ,M .

(e) Relative errors for the case ak =
(k + 1)−2, υ = 11/2, β2

k = a−1
k

(k +
1/2)11/2, k = 1, 2, . . . ,M .

Fig. 1: Numerical illustrations. The comparison of the performance of single-
parameter regularizations and their combination (Multi). In each of the figures
the results corresponding to the two-step regularization are displayed at the
top, the case of noise reduction with direct inversion is shown in the middle,
and the case of regularized collocation corresponds to the bottom row. The
horizontal axes show values of the relative errors (the vertical axes have no
significance)
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the operators with exponentialy decreasing symbol, appearing in geoscience,
have been discussed in the Introduction.

It is instructive to look at Figures 1a, 1b and 1c, 1d from the view point
of [21], where a priori choice of the penalization weights βk has been dis-
cussed. For the situations described in the above mentioned figures the choice
of βk suggested in [21] would be β2

k = a−1
k (k + 1)υ. But such a choice re-

quires knowledge of the smoothness υ of the unknown solutions. In practice
the smooothness υ is usually unknown, and the Figures 1a–1d correspond to
the case of “underpenalization”.

As can be seen from Figures 1a–1d in such a case it is not clear a priori
which of the considered single-parameter regularizations performs better. At
the same time, these figures show that the proposed two-step method automat-
ically follows the leader. The situation does not change when the penalization
weights are chosen according to [21] (see Figure 1e).

In all our experiments the choice of the regularization parameters was
done by using the quasi-optimality criterion described above with α0 = λ0 =
1.78e − 5, q = r = 1.25, and L = K = 50. Note also that we add the term
λ = α = 0 to each of the sets (31), and (32).

These numerical results confirm the theoretical conclusion that the con-
structed two-step regularization methods can perform similarly to (or even
better than) the best of single-parameter schemes.

6 Conclusion

We studied a two-parameter regularization scheme, which is a combination of
the inversion after a data presmoothing and regularized collocation. In prin-
ciple, each of the combined methods can be used alone as a regularization
method. However, their performance very much depends on the interplay be-
tween the degree of ill-posedness of (1), (2), coded in the rate of increase of
the spherical symbol {ak}, and the smoothness of the solution.

For example, from Figure 1 one may conclude that for a severely ill-posed
problem and moderately smooth solution (Figure 1a) the regularized colloca-
tion performs a bit better than the inversion after a data presmoothing, but
for a moderately ill-posed problem (Figure 1c) this is not the case.

Since for ill-posed problems the smoothness of their solutions is usually
unknown, it is not clear which of the single parameter regularizations is the
better one. In this situation the combination of the single parameter regu-
larizations, resulting in a two-parameter scheme, can be seen as a method of
choice. The above figures illustrate this point.

At the end of Section 4 we have used Theorems 2 and 3 to demonstrate
theoretically that the two-parameter scheme (18) is able to provide a better
error bound than ones for the schemes involved in the combination. However,
this demonstration is limited to an a priori choice of the regularization param-
eters, requiring knowledge of the solution smoothness, and therefore seldom
usable in practice.



18 Hui Cao et al.

On the other hand, in Section 5 the above mentioned ability of the two-
parameter scheme has been demonstrated for an a posteriori choice of the
regularization parameters, where no knowledge of the solution smoothness has
been used. At the same time, a posteriori parameter choice employed in Sec-
tion 5 is of a heuristic nature. We hope that this paper will stimulate research
towards theoretical justification of a posteriori rules for multi-parameter reg-
ularization.
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