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Abstract

This paper considers the three-dimensional path planning problem for horizon-
tal oil wells. The decision variables in this problem are the curvature, tool-face
angle and switching points for each turn segment in the path, and the optimiza-
tion objective is to minimize the path length and target error. The optimal
curvatures, tool-face angles and switching points can be readily determined us-
ing existing gradient-based dynamic optimization techniques. However, in a
real drilling process, the actual curvatures and tool-face angles will inevitably
deviate from the planned optimal values, thus causing an unexpected increase in
the target error. This is a critical challenge that must be overcome for success-
ful practical implementation. Accordingly, this paper introduces a sensitivity
function that measures the rate of change in the target error with respect to the
curvature and tool-face angle of each turn segment. Based on the sensitivity
function, we propose a new optimization problem in which the switching points
are adjusted to minimize target error sensitivity subject to continuous state in-
equality constraints arising from engineering specifications, and an additional
constraint specifying the maximum allowable increase in the path length from
the optimal value. Our main result shows that the sensitivity function can be
evaluated by solving a set of auxiliary dynamic systems. By combining this re-
sult with the well-known time-scaling transformation, we obtain an equivalent
transformed problem that can be solved using standard nonlinear programming
algorithms. Finally, the paper concludes with a numerical example involving a
practical path planning problem for a Ci-16-Cp146 well.
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1. Introduction

The path planning problem for oil wells involves designing an optimal drill
path, subject to various engineering specifications, to connect given start and
end points. There are many papers devoted to this problem (see, for example,
references [2, 4, 6, 15]). The path planning problem can, in fact, be formulated
as an optimal switching control problem and thereafter solved using standard
gradient-based dynamic optimization techniques [9, 10]. In particular, the op-
timal control software packages MISER 3 [5] and Visual MISER [19] are both
applicable.

In practical path planning problems, the path usually consists of a combina-
tion of turn/straight segments, where the curvature and tool-face angle (both
decision variables) are constant in each segment. Although the segment arc
lengths can be measured and controlled with high precision from the surface,
this is not the case for the curvatures and tool-face angles. Indeed, the actual
curvatures and tool-face angles will likely deviate from the optimal values dur-
ing the real drilling process. Consequently, the well trajectory will deviate from
the optimal trajectory, potentially leading to a large target error.

We are only aware of two papers (references [7] and [8]) that consider the
issue of target error sensitivity with respect to inaccuracies in the curvatures
and tool-face angles. In reference [7], the dispersion between the actual path
and the optimal path is modelled by a stochastic perturbation in the dynamic
system describing the path trajectory. In reference [8], the dispersion is instead
modelled by a series of stochastic impulsive jumps applied at the turn segment
end-points. Both references [7] and [8] apply the Hookes-Jeeves algorithm to
solve a series of nonlinear optimization problems generated by realizations of
the random variables modelling the dispersion. Thus, the methods proposed in
these references require solving multiple optimization problems, not just one.
Moreover, the cost and constraint gradients for these optimization problems are
not provided in references [7] and [8], and hence fast gradient-based optimization
algorithms such as sequential quadratic programming are not applicable.

In any dynamic system, small changes in the system parameters can cause
large changes in the system cost. Therefore, when the system contains param-
eters whose values are uncertain (whether due to model inaccuracies or imple-
mentation errors), the sensitivity of the cost with respect to these parameters
should be considered [14]. To this end, reference [16] proposes a novel opti-
mal control problem in which the control is chosen to minimize the weighted
sum of system cost and system sensitivity. This problem can be solved us-
ing the control parameterization technique [17], whereby the control function is
discretized to yield an approximate optimal parameter selection problem. How-
ever, to generate the cost and constraint gradients in the approximate problem
(as required to solve the problem using nonlinear programming methods), four
dynamic systems must be solved—the state system, the costate system and two
other dynamic systems. This contrasts with standard problems in which only
the state and costate systems need to be solved. The method proposed in [16]
is cumbersome to implement numerically and cannot be automated using the
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MISER 3 software without significant changes to the internal source code.
Reference [13] introduces an alternative computational method for solving

the same sensitivity optimal control problem considered in reference [16]. In this
new method, the system sensitivity is computed by solving a set of auxiliary
dynamic systems, and the non-standard sensitivity problem is converted into a
standard optimal control problem that can be solved using standard techniques.
This idea is extended to impulsive systems in [18].

The purpose of this paper is to apply the sensitivity penalization ideas in-
troduced in references [13, 16, 18] to the path planning problem for drilling
three-dimensional horizontal oil wells. Real drilling operations are susceptible
to implementation inaccuracies in the segment curvatures and tool-face angles
due to the difficulty in measuring these values accurately from the surface. Thus,
our goal is to minimize the target error sensitivity with respect to the curvature
and tool-face angle of each turn segment, subject to a constraint specifying the
maximum path length compared with the theoretical minimum value. Note that
the sensitivity optimal control problems in references [13, 16, 18] do not consider
state constraints, but such constraints are present in the path planning problem
due to practical requirements on the path. The computational algorithm we
develop is capable of handling these constraints.

The remainder of this paper is organized as follows. In Section 2, both the
traditional path planning problem and the new sensitivity problem are defined
mathematically. In Section 3, a computational method is developed for evalu-
ating the target error sensitivity. Then, in Section 4, this method is combined
with a novel transformation procedure to convert the sensitivity problem into a
tractable form. Gradient formulas are derived in Section 5. Simulation results
for a real Ci-16-Cp146 well are presented in Section 6. Finally, some concluding
remarks are given in Section 7.

2. Problem formulation

2.1. Path planning problem

Consider the three-dimensional path planning problem for horizontal oil well-
s described in reference [2]. Let s be an independent variable representing the
distance along the path. Furthermore, let x(s) = (x1(s), . . . , x5(s))

⊤ be the
state vector whose components represent, respectively, the inclination, azimuth,
and Cartesian coordinates of the point located at distance s along the path.

The model is based on the following hypotheses.

(H1). The path is a combination of n smooth turn segments.
(H2). The curvature and tool-face angle are constant in each turn segment.
(H3). The path contains no vertical segments.

Let τi, i = 0, 1, . . . , n, denote the switching points at which the path changes
from one turn segment to another, where τ0 = 0 corresponds to the path’s origin,
and τn corresponds to the path’s terminus. Under the above hypotheses, the
dynamic system describing the path is

ẋ(s) = f(x(s), ξi), s ∈ [τi−1, τi), i = 1, 2, . . . , n, (1)
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with the initial and intermediate conditions:

x(τi) =

{
x0, if i = 0,

x(τi−), if i = 1, 2, . . . , n,
(2)

where ξi = (ξi1, ξ
i
2)

⊤ is a vector containing the curvature and tool-face angle of
the ith turn segment, x0 is a given start point, and

f(x(s), ξi) =


ξi1 cos ξ

i
2

ξi1 sin ξ
i
2/ sinx1(s)

sinx1(s) cosx2(s)
sinx1(s) sinx2(s)

cosx1(s)

 .

Due to physical limitations, the curvatures and tool-face angles are subject to
the following constraints:

a1 ≤ ξi1 ≤ b1, a2 ≤ ξi2 ≤ b2, i = 1, 2, . . . , n, (3)

where a1, b1, a2, b2 are given real numbers such that 0 ≤ a1 < b1 and −1
2π <

a2 < b2 < 1
2π. Let ξ = (ξ1, . . . , ξn)⊤ ∈ R2n. Any ξ ∈ R2n satisfying (3) is

called an admissible parameter vector. Let Ξ denote the set of all admissible
parameter vectors.

In addition to (3), we also have the following constraints on the turn segment
lengths:

c1 ≤ τi − τi−1 ≤ d1, i = 1, 2, . . . , n, (4)

where c1 and d1 are given real numbers such that 0 < c1 < d1. Let τ =
(τ1, . . . , τn)

⊤. Any τ ∈ Rn satisfying (4) is called an admissible switching point
vector. Let Γ denote the set of all admissible switching point vectors. Accord-
ingly, any pair (τ , ξ) ∈ Γ× Ξ is called an admissible pair for system (1)-(2).

Let x(·|τ , ξ) denote the solution of (1)-(2) corresponding to (τ , ξ) ∈ Γ ×
Ξ. Since we only consider horizontal paths without vertical segments (as per
hypothesis (H3)), the solution x(·|τ , ξ) must satisfy the following continuous
state inequality constraints:

ω0 ≤ x1(s|τ , ξ) ≤ 1
2π, s ∈ [0, τn], (5a)

0 ≤ x2(s|τ , ξ) ≤ 2π, s ∈ [0, τn], (5b)

where ω0 > 0 is a given constant.
The path should connect the start point x0 to a given target point xf . In

addition, the path length should also be minimized considering the economic
factor. This is done by adjusting the switching points, curvatures and tool-face
angles to minimize the following weighted sum of path length and target error:

H(τ , ξ) = τn + α
∥∥x(τn|τ , ξ)− xf

∥∥2, (6)

where α is a given weight coefficient. This problem can be formulated as the
following dynamic optimization problem.
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Problem (A). Given the dynamic system (1)-(2), choose an admissible pair
(τ , ξ) ∈ Γ × Ξ such that the cost function (6) is minimized subject to the con-
tinuous state inequality constraints (5).

2.2. Sensitivity problem

Problem (A) can be solved using gradient-based dynamic optimization tech-
niques such as those described in [9] and [10]. These techniques have been
implemented as part of the optimal control software packages MISER 3 [5] and
Visual MISER [19]. Let (τ ∗, ξ∗) ∈ Γ × Ξ be an optimal pair for Problem (A),
where ξ∗ = (ξ1∗, . . . , ξn∗)⊤ ∈ R2n and τ ∗ = (τ∗1 , . . . , τ

∗
n)

⊤ ∈ Rn. In practice,
due to limitations with the drilling equipment, it is impossible to implement
the solution (τ ∗, ξ∗) with perfect accuracy. In particular, the curvatures and
tool-face angles cannot be measured accurately from the surface, and thus they
will likely deviate from the optimal values during the drilling process. This will,
in turn, cause the actual path to deviate from the optimal trajectory. Small in-
accuracies in the curvatures and tool-face angles can propagate along the path
and cause the target error to increase significantly. Therefore, the switching
points must be chosen so that the target error is insensitive to small perturba-
tions in ξ∗. For this purpose, we introduce the following sensitivity function,
which should be minimized with respect to τ :

J(τ ) =

(
∂G(τ , ξ∗)

∂ξ

)(
∂G(τ , ξ∗)

∂ξ

)⊤

, (7)

where
G(τ , ξ∗) =

∥∥x(τn|τ , ξ∗)− xf
∥∥2,

and
∂G(τ , ξ∗)

∂ξ
=

∂G(τ , ξ)

∂ξ

∣∣∣∣
ξ=ξ∗

.

With ξ = ξ∗, the continuous state inequality constraints (5) become

ω0 ≤ x1(s|τ , ξ∗) ≤ 1
2π, s ∈ [0, τn], (8a)

0 ≤ x2(s|τ , ξ∗) ≤ 2π, s ∈ [0, τn]. (8b)

Moreover, we impose the following constraint to ensure that the new path length
is sufficiently close to the optimal value:

τn ≤ (1 + β)τ∗n, (9)

where β > 0 is a given constant specifying the maximum allowable increase in
the path length from the optimal value.

Thus, the new dynamic optimization problem, which takes target error sen-
sitivity into account, can be stated as follows.
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Problem (B). Given an optimal solution (τ ∗, ξ∗) for Problem (A) and the
dynamic system (1)-(2) with ξ = ξ∗, choose an admissible switching point vector
τ ∈ Γ such that the target error sensitivity function (7) is minimized subject
to the continuous state inequality constraints (8) and the additional inequality
constraint (9).

For Problem (B), conventional dynamic optimization techniques are not di-
rectly applicable due to the non-standard sensitivity function (7). In the next
section, we derive a tractable method for computing this sensitivity function.

3. Computing the sensitivity function

We first present conditions under which the state trajectory x(·|τ , ξ) exists
and is unique. This is crucial for Problems (A) and (B) in Section 2 to be
well-defined.

Theorem 1. Let (τ , ξ) ∈ Γ× Ξ be an admissible pair satisfying

0 < x0
1 +

i∑
j=1

ξj1 cos ξ
j
2(τj − τj−1) < π, i = 0, 1, . . . , n. (10)

Then there exists a unique state trajectory x(·|τ , ξ) for system (1)-(2) cor-
responding to (τ , ξ).

Proof. The first state equation in system (1)-(2) can be integrated to yield

x1(s|τ, ξ) = x0
1 +

i−1∑
j=1

ξj1 cos ξ
j
2(τj − τj−1) + ξi1 cos ξ

i
2(s− τi−1),

s ∈ [τi−1, τi], i = 1, 2, . . . , n.

Evaluating this equation at the switching points gives

x1(τi|τ , ξ) = x0
1 +

i∑
j=1

ξj1 cos ξ
j
2(τj − τj−1), i = 0, 1, . . . , n.

Condition (10) then implies that 0 < x1(τi|τ , ξ) < π for each i = 0, 1, . . . , n.
Hence, since x1(·|τ , ξ) is piecewise-linear with break-points at s = τi, i =
0, 1, . . . , n, we have 0 < x1(s|τ , ξ) < π for all s ∈ [0, τn]. This shows that,
under condition (10), the right-hand side of (1) is well-defined.

Now, let ρ0 ∈ (0, π) be such that

ρ0 ≤ x0
1 +

i∑
j=1

ξj1 cos ξ
j
2(τj − τj−1) ≤ π − ρ0, i = 0, 1, . . . , n.

Then clearly ρ0 ≤ x1(s|τ , ξ) ≤ π − ρ0 for all s ∈ [0, τn]. Consider the last four
state equations in (1)-(2):

˙̂x(s) = f̂(s, x̂(s), ξi), s ∈ [τi−1, τi), i = 1, 2, . . . , n, (11)
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with the initial and intermediate conditions:

x̂(τi) =

{
x̂0, if i = 0,

x̂(τi−), if i = 1, 2, . . . , n,
(12)

where

x̂(s) =


x2(s)
x3(s)
x4(s)
x5(s)

 , x̂0 =


x0
2

x0
3

x0
4

x0
5

 ,

and

f̂(s, x̂(s), ξi) =


ξi1 sin ξ

i
2/ sinx1(s|τ , ξ)

sinx1(s|τ , ξ) cosx2(s)
sinx1(s|τ , ξ) sinx2(s)

cosx1(s|τ , ξ)

 .

Clearly, f̂ is continuous with respect to s and x̂. Furthermore, for any s ∈ [0, τn]
and x̂ = (x2, x3, x4, x5)

⊤ ∈ R4,

∥∥f̂(s, x̂, ξi)∥∥2 =
(ξi1)

2 sin2 ξi2
sin2 x1(s|τ , ξ)

+ sin2 x1(s|τ , ξ) cos2 x2

+ sin2 x1(s|τ , ξ) sin2 x2 + cos2 x1(s|τ , ξ)

≤ b21
sin2 ρ0

+ 3.

Thus, f̂ is uniformly bounded. Based on the results in [1], system (11)-(12) has a
unique solution x̂(·|τ , ξ). Taking x(·|τ , ξ) = (x1(·|τ , ξ), x̂(·|τ , ξ)⊤)⊤ completes
the proof.

Let (τ , ξ) ∈ Γ × Ξ be a feasible pair for Problem (A) and consider fixed
integers k ∈ {1, . . . , n} and l ∈ {1, 2}. For notational simplicity, let x(·) =
x(·|τ , ξ) and xϵ(·) = x(·|τ , ξ + ϵe2(k−1)+l), where e2(k−1)+l ∈ R2n denotes
the unit basis vector whose (2(k − 1) + l)th component is one, and all other
components are zero. Note that the ith subvector in ξ + ϵe2(k−1)+l (i.e., the
subvector corresponding to ξi) is

(ξ + ϵe2(k−1)+l)
i =


ξi, if i ̸= k,

(ξi1 + ϵ, ξi2)
⊤, if i = k and l = 1,

(ξi1, ξ
i
2 + ϵ)⊤, if i = k and l = 2,

= (ξi1 + ϵδl1δik, ξ
i
2 + ϵδl2δik)

⊤,

where δl1, δl2, and δik are the respective Kronecker delta functions.
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Since (τ , ξ) must satisfy the continuous state inequality constraints (5a), we
have

ω0 ≤ x1(τi|τ , ξ) = x0
1 +

i∑
j=1

ξj1 cos ξ
j
2(τj − τj−1) ≤ 1

2π, i = 0, 1, . . . , n.

Thus, since ξj1 + ϵδl1δjk → ξj1 and cos(ξj2 + ϵδl2δjk) → cos ξj2 as ϵ → 0, there
exists a constant ρ1 ∈ (0, π) and an interval ∆ ⊂ [al − ξkl , bl − ξkl ] of positive
Lebesgue measure such that for all ϵ ∈ ∆,

ρ1 ≤ x0
1 +

i∑
j=1

(ξj1 + ϵδl1δjk) cos(ξ
j
2 + ϵδl2δjk)(τj − τj−1) ≤ π − ρ1,

i = 0, 1, . . . , n. (13)

We may assume that 0 ∈ ∆. Moreover, since ∆ ⊂ [al − ξkl , bl − ξkl ],

ϵ ∈ ∆ =⇒ ξ + ϵe2(k−1)+l ∈ Ξ.

The following lemma gives a uniform bound for the solution of system (1)-(2)
corresponding to (τ , ξ + ϵe2(k−1)+l).

Lemma 1. There exists a constant L1 > 0 such that for each ϵ ∈ ∆,∥∥xϵ(s)
∥∥ ≤ L1, s ∈ [0, τn].

Proof. In view of (13) and Theorem 1, xϵ(·) exists for each ϵ ∈ ∆. Moreover,

xϵ(s) = x0 +
i∑

j=1

∫ min{τj ,s}

τj−1

f(xϵ(η), (ξ + ϵe2(k−1)+l)
j)dη,

s ∈ [τi−1, τi], i = 1, 2, . . . , n.

Taking the Euclidean norm of both sides yields

∥∥xϵ(s)
∥∥ ≤

∥∥x0
∥∥+

i∑
j=1

∫ min{τj ,s}

τj−1

{
(ξj1 + ϵδl1δjk)

2 cos2(ξj2 + ϵδl2δjk)

+
(ξj1 + ϵδl1δjk)

2 sin2(ξj2 + ϵδl2δjk)

sin2 xϵ
1(η)

+ sin2 xϵ
1(η) cos

2 xϵ
2(η)

+ sin2 xϵ
1(η) sin

2 xϵ
2(η) + cos2 xϵ

1(η)

} 1
2

dη

≤
∥∥x0

∥∥+ nd1

√
b21 +

b21
sin2 ρ1

+ 3, s ∈ [τi−1, τi], i = 1, 2, . . . , n,

where ρ1 is as defined in (13). Hence, xϵ(s) is uniformly bounded with respect
to ϵ, as required.
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Now, for each ϵ ∈ ∆, define a function vϵ(·) as follows:

vϵ(s) = xϵ(s)− x(s), s ∈ [0, τn]. (14)

The next lemma shows that the partial derivatives of f are bounded.

Lemma 2. There exists a constant L2 > 0 such that for each ϵ ∈ ∆ and
η ∈ [0, 1],∥∥∥∥∂f(x(s) + ηvϵ(s), (ξ + ηϵe2(k−1)+l)

i)

∂x

∥∥∥∥ ≤ L2, s ∈ [τi−1, τi], i = 1, 2, . . . , n,∥∥∥∥∂f(x(s) + ηvϵ(s), (ξ + ηϵe2(k−1)+l)
i)

∂ξil

∥∥∥∥ ≤ L2, s ∈ [τi−1, τi], i = 1, 2, . . . , n.

Proof. It follows from Lemma 1 that for each ϵ ∈ ∆,

xϵ(s) ∈ B5(L1), s ∈ [τi−1, τi], i = 1, 2, . . . , n,

where B5(L1) is a closed ball in R5 of radius L1 centered at the origin. Since
B5(L1) is convex, we conclude that for each ϵ ∈ ∆ and η ∈ [0, 1],

x(s) + ηvϵ(s) ∈ B5(L1), s ∈ [τi−1, τi], i = 1, 2, . . . , n. (15)

Moreover, for each ϵ ∈ ∆ and η ∈ [0, 1],

(ξ + ηϵe2(k−1)+l)
i ∈ [a1, b1]× [a2, b2], i = 1, 2, . . . , n. (16)

Since ∂f/∂x and ∂f/∂ξil are continuous, the result follows from (15) and (16)
and the compactness of B5(L1) and [a1, b1]× [a2, b2].

We now turn our attention to the target error sensitivity function (7). Con-
sider the following variational system:

ψ̇k
l (s) =

i∑
j=1

δjk
∂f(x(s|τ , ξ), ξi)

∂x
ψk

l (s) + δik
∂f(x(s|τ , ξ), ξi)

∂ξil
,

s ∈ [τi−1, τi), i = 1, 2, . . . , n, (17)

with the initial and intermediate conditions:

ψk
l (τi) =

{
0, if i = 0,

ψk
l (τi−), if i = 1, 2, . . . , n.

(18)

Let ψk
l (·|τ , ξ) denote the solution of the variational system (17)-(18). The

following theorem shows that the partial derivative of x(·|τ , ξ) with respect to
ξkl can be expressed in terms of the solution of the variational system (17)-(18).

Theorem 2. Let (τ , ξ) ∈ Γ × Ξ and consider fixed integers k ∈ {1, 2, . . . , n}
and l ∈ {1, 2}. Then

∂x(s|τ , ξ)
∂ξkl

= ψk
l (s|τ , ξ), s ∈ [0, τn].
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Proof. To prove the theorem, we need to show that

lim
ϵ→0

xϵ(s)− x(s)
ϵ

= lim
ϵ→0

ϵ−1vϵ(s) = ψk
l (s|τ , ξ), s ∈ [0, τn]. (19)

We consider two cases: (i) 0 ≤ s ≤ τk−1; and (ii) s > τk−1. It is clear that
vϵ(s) = 0 and ψk

l (s|τ , ξ) = 0 for all s ≤ τk−1 and thus (19) holds for case (i).
We will prove case (ii) in three steps.

Step 1. The function vϵ(·) is of order ϵ

It follows from the definition of vϵ(s) in (14) that for each ϵ ∈ ∆,

vϵ(s) =
i∑

j=k

∫ min{s,τj}

τj−1

{
f(xϵ(ϑ), (ξ + ϵe2(k−1)+l)

j)− f(x(ϑ), ξj)
}
dϑ,

s ∈ [τi−1, τi], i = k, . . . , n.

By the mean value theorem, we obtain

vϵ(s) =
i∑

j=k

∫ min{s,τj}

τj−1

∫ 1

0

∂f(x(ϑ) + ηvϵ(ϑ), (ξ + ηϵe2(k−1)+l)
j)

∂x
vϵ(ϑ)dηdϑ

+

∫ min{s,τk}

τk−1

∫ 1

0

ϵ
∂f(x(ϑ) + ηvϵ(ϑ), (ξ + ηϵe2(k−1)+l)

k)

∂ξkl
dηdϑ,

s ∈ [τi−1, τi], i = k, . . . , n. (20)

Taking the norm of both sides of (20) and applying Lemma 2, we have

∥∥vϵ(s)∥∥ ≤ L2d1|ϵ|+
∫ s

τk−1

L2

∥∥vϵ(ϑ)∥∥dϑ, s ∈ [τk−1, τn].

Hence, by the Gronwall-Bellman Lemma, we have∥∥vϵ(s)∥∥ ≤ L2d1|ϵ| exp(L2(s− τk−1))

≤ L2d1|ϵ| exp(L2nd1), s ∈ [τk−1, τn]. (21)

This shows that the function vϵ(·) is of order ϵ.

Step 2. Definition and limiting behavior of ρ(·)
For each ϵ ∈ ∆, define functions γ1,ϵ,j : [τj−1, τj ] → R5, j = 1, 2, . . . , n, and

γ2,ϵ,k : [τk−1, τk] → R5 as follows:

γ1,ϵ,j(ϑ) :=

∫ 1

0

{
∂f(x(ϑ) + ηvϵ(ϑ), (ξ + ηϵe2(k−1)+l)

j)

∂x
− ∂f(x(ϑ), ξj)

∂x

}
vϵ(ϑ)dη
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and

γ2,ϵ,k(ϑ) :=

∫ 1

0

ϵ

{
∂f(x(ϑ) + ηvϵ(ϑ), (ξ + ηϵe2(k−1)+l)

k)

∂ξkl
− ∂f(x(ϑ), ξk)

∂ξkl

}
dη.

Furthermore, define another function ρ : ∆ \ {0} → R as follows:

ρ(ϵ) := |ϵ|−1
n∑

j=1

∫ τj

τj−1

∥∥γ1,ϵ,j(ϑ)
∥∥dϑ+ |ϵ|−1

∫ τk

τk−1

∥∥γ2,ϵ,k(ϑ)
∥∥dϑ, ϵ ∈ ∆ \ {0}.

It follows from (21) that

x(ϑ) + ηvϵ(ϑ) → x(ϑ) as ϵ → 0, (22)

uniformly with respect to ϑ ∈ [0, τn] and η ∈ [0, 1]. In addition, it is obvious
that

ξ + ηϵe2(k−1)+l → ξ as ϵ → 0, (23)

uniformly with respect to η ∈ [0, 1]. Lemma 1 implies that the convergence in
(22) takes place inside the ball B5(L1), and the definition of ∆ implies that the
convergence in (23) takes place inside Ξ. Thus, since ∂f/∂x and ∂f/∂ξkl are
uniformly continuous on the compact set B5(L1)× Ξ, we have

∂f(x(ϑ) + ηvϵ(ϑ), (ξ + ηϵe2(k−1)+l)
j)

∂x
→ ∂f(x(ϑ), ξj)

∂x
as ϵ → 0

and

∂f(x(ϑ) + ηvϵ(ϑ), (ξ + ηϵe2(k−1)+l)
k)

∂ξkl
→ ∂f(x(ϑ), ξk)

∂ξkl
as ϵ → 0

uniformly with respect to ϑ ∈ [0, τn] and η ∈ [0, 1]. These results, together with
inequality (21), imply that ϵ−1γ1,ϵ,j(ϑ) → 0 and ϵ−1γ2,ϵ,k(ϑ) → 0 uniformly
with respect to ϑ ∈ [0, τn] as ϵ → 0. Consequently,

lim
ϵ→0

ρ(ϵ) = 0. (24)

Step 3. Comparing ϵ−1vϵ(·) with ψk
l (·|τ , ξ)

Using (20), we obtain

vϵ(s) =
i∑

j=k

∫ min{s,τj}

τj−1

{
γ1,ϵ,j(ϑ) +

∂f(x(ϑ), ξj)

∂x
vϵ(ϑ)

}
dϑ

+

∫ min{s,τk}

τk−1

{
γ2,ϵ,k(ϑ) + ϵ

∂f(x(ϑ), ξk)

∂ξkl

}
dϑ,

s ∈ [τi−1, τi], i = k, . . . , n. (25)
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Furthermore, since ψk
l (τk−1) = 0, integrating the auxiliary system (17)-(18)

gives

ψk
l (s) =

i∑
j=k

∫ min{s,τj}

τj−1

∂f(x(ϑ), ξj)

∂x
ψk

l (ϑ)dϑ+

∫ min{s,τk}

τk−1

∂f(x(ϑ), ξk)

∂ξkl
dϑ,

s ∈ [τi−1, τi], i = k, . . . , n. (26)

Multiplying (25) by ϵ−1 and then subtracting (26) yields

ϵ−1vϵ(s)−ψk
l (s) = ϵ−1

i∑
j=k

∫ min{s,τj}

τj−1

γ1,ϵ,j(ϑ)dϑ+ ϵ−1

∫ min{s,τk}

τk−1

γ2,ϵ,k(ϑ)dϑ

+
i∑

j=k

∫ min{s,τj}

τj−1

∂f(x(ϑ), ξj)

∂x
(ϵ−1vϵ(ϑ)−ψk

l (ϑ))dϑ,

s ∈ [τi−1, τi], i = k, . . . , n. (27)

Hence, by taking the norm of both sides of (27), we have∥∥ϵ−1vϵ(s)−ψk
l (s)

∥∥ ≤ ρ(ϵ) +

∫ s

τk−1

L2

∥∥ϵ−1vϵ(ϑ)−ψk
l (ϑ)

∥∥dϑ, s ∈ [τk−1, τn].

By the Gronwall-Bellman Lemma, we obtain∥∥ϵ−1vϵ(s)−ψk
l (s)

∥∥ ≤ ρ(ϵ) exp(L2d1n), s ∈ [τk−1, τn].

Taking the limit as ϵ → 0 in the above inequality and then applying (24), it
follows that

lim
ϵ→0

ϵ−1vϵ(s) = ψk
l (s).

This shows that equation (19) also holds for s > τk−1.

Based on Theorem 2, we can now simplify the non-standard sensitivity term
in Problem (B).

Theorem 3. For each τ ∈ Γ,(
∂G(τ , ξ∗)

∂ξ

)(
∂G(τ , ξ∗)

∂ξ

)⊤

= 4
n∑

k=1

2∑
l=1

[
(x(τn|τ , ξ∗)− xf )⊤ψk

l (τn|τ , ξ∗)
]2
.

Proof. By Theorem 2,

∂x(τn|τ , ξ∗)
∂ξkl

= ψk
l (τn|τ , ξ∗).

Thus,

∂G(τ , ξ∗)

∂ξkl
= 2(x(τn|τ , ξ∗)− xf )⊤ψk

l (τn|τ , ξ∗).

12



It therefore follows that(
∂G(τ , ξ∗)

∂ξ

)(
∂G(τ , ξ∗)

∂ξ

)⊤

=
n∑

k=1

2∑
l=1

[
∂G(τ , ξ∗)

∂ξkl

]2

= 4
n∑

k=1

2∑
l=1

[
(x(τn|τ , ξ∗)− xf )⊤ψk

l (τn|τ , ξ∗)
]2
,

as required.

By virtue of Theorem 3, the target error sensitivity function (7) can be
rewritten as

J(τ ) = 4
n∑

k=1

2∑
l=1

[
(x(τn|τ , ξ∗)− xf )⊤ψk

l (τn|τ , ξ∗)
]2
. (28)

It follows that Problem (B) is equivalent to the following optimization problem.

Problem (C). Given an optimal solution (τ ∗, ξ∗) for Problem (A) and the dy-
namic systems (1)-(2) and (17)-(18) with ξ = ξ∗, choose an admissible switch-
ing point vector τ ∈ Γ such that the target error sensitivity function (28) is
minimized subject to the continuous state inequality constraints (8) and the ad-
ditional inequality constraint (9).

4. Problem transformation

4.1. Continuous state inequality constraints

Recall from Section 3 that the well inclination trajectory is given by

x1(s|τ, ξ) = x0
1 +

i−1∑
j=1

ξj1 cos ξ
j
2(τj − τj−1) + ξi1 cos ξ

i
2(s− τi−1),

s ∈ [τi−1, τi], i = 1, 2, . . . , n. (29)

Note that (29) is a piecewise-linear function of s with break-points at s = τi,
i = 0, 1, . . . , n. Thus, constraint (8a) is equivalent to

ω0 ≤ x1(τi|τ , ξ∗) = x0
1 +

i∑
j=1

ξj∗1 cos ξj∗2 (τj − τj−1) ≤ 1
2π, i = 0, 1, . . . , n, (30)

where ξj∗1 and ξj∗2 denote, respectively, the optimal curvature and optimal tool-
face angle for the jth turn section in Problem (A). Constraints (30) are con-
ventional parameter constraints that can be handled directly using standard
nonlinear programming algorithms.

Now, for the second continuous state inequality constraint (8b), we first
consider the dynamic equation for x2:

ẋ2(s) = ξi1 sin ξ
i
2 cscx1(s|τ , ξ), s ∈ [τi−1, τi), i = 1, 2, . . . , n, (31)

13



where x1(·|τ , ξ) is given by (29). Recall from Section 2 that ξi∗1 ≥ 0 for each
i = 1, 2, . . . , n. Thus, if (30) holds (i.e., ω0 ≤ x1(s|τ , ξ∗) ≤ 1

2π for all s ∈ [0, τn]),
then the sign of ẋ2(s) on [τi−1, τi) for ξ = ξ∗ is the same as the sign of sin ξi∗2 .
This immediately implies that x2(·) for ξ = ξ∗ is monotonic on [τi−1, τi], and
hence constraint (8b) can be replaced by

0 ≤ x2(τi|τ , ξ∗) ≤ 2π, i = 0, 1, . . . , n. (32)

To simplify this constraint, we integrate (31) to obtain

x2(s|τ , ξ) = x2(τi−1|τ , ξ) +
∫ s

τi−1

ξi1 sin ξ
i
2 csc(x1(η|τ , ξ))dη

= x2(τi−1|τ , ξ)

+ tan ξi2 ln

[
csc(x1(τi−1|τ , ξ)) + cot(x1(τi−1|τ , ξ))

csc(x1(s|τ , ξ)) + cot(x1(s|τ , ξ))

]
,

s ∈ [τi−1, τi], i = 1, 2, . . . , n.

Hence, by induction,

x2(τi|τ , ξ) = x0
2 +

i∑
j=1

tan ξj2 ln

[
csc(x1(τj−1|τ , ξ)) + cot(x1(τj−1|τ , ξ))

csc(x1(τj |τ , ξ)) + cot(x1(τj |τ , ξ))

]
,

i = 0, 1, . . . , n.

Thus, constraint (32) becomes

0 ≤ x0
2 +

i∑
j=1

tan ξj∗2 ln

[
csc(x1(τj−1|τ , ξ∗)) + cot(x1(τj−1|τ , ξ∗))

csc(x1(τj |τ , ξ∗)) + cot(x1(τj |τ , ξ∗))

]
≤ 2π,

i = 0, 1, . . . , n. (33)

Replacing the continuous state inequality constraints (8) with constraints (30)
and (33) yields the following transformed problem.

Problem (D). Given an optimal solution (τ ∗, ξ∗) for Problem (A) and the dy-
namic systems (1)-(2) and (17)-(18) with ξ = ξ∗, choose an admissible switch-
ing point vector τ ∈ Γ such that the target error sensitivity function (28) is
minimized subject to the inequality constraints (9), (30) and (33).

4.2. Time-scaling transformation

In Problem (D), the decision variables are the switching points τi, i =
1, 2, . . . , n. It is well known that variable switching points pose major diffi-
culties for gradient-based optimization techniques [11]. Thus, we now apply a
time-scaling transformation [12] to replace the variable switching points with
conventional decision parameters, thereby yielding a new problem in which the
switching points are fixed.
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First, we introduce a new independent variable t ∈ [0, n]. Next, we relate
the new variable t ∈ [0, n] to the original arc length variable s ∈ [0, τn] through
the following differential equation:

ṡ(t) = θi, t ∈ [i− 1, i), i = 1, 2, . . . , n, (34)

with initial condition

s(0) = 0, (35)

where θi = τi − τi−1 is the length of the ith turn segment in the original arc
length horizon. Let θ = (θ1, θ2, . . . , θn)

⊤ ∈ Rn. From (4), we have the following
constraints on θ:

c1 ≤ θi ≤ d1, i = 1, 2, . . . , n. (36)

Any θ ∈ Rn satisfying (36) is called an admissible segment length vector. Let
Θ denote the set of all admissible segment length vectors. Clearly, from the
dynamic equations (34) and (35),

s(i) = θ1 + θ2 + · · ·+ θi = τi, i = 1, 2, . . . , n.

Hence, the ith switching point s = τi gets mapped to t = i via equations (34)
and (35). Let x̃(t) = x(s(t)) and ψ̃k

l (t) = ψ
k
l (s(t)). From (1)-(2), (17)-(18) and

(34)-(35), we have

˙̃x(t) = θif(x̃(t), ξ
i), t ∈ [i− 1, i), i = 1, . . . , n, (37a)

˙̃
ψk

l (t) =
i∑

j=1

δjkθi
∂f(x̃(t), ξi)

∂x
ψ̃k

l (t) + δikθi
∂f(x̃(t), ξi)

∂ξil
,

t ∈ [i− 1, i), i = 1, 2, . . . , n, (37b)

where k = 1, 2, . . . , n and l = 1, 2, with initial and intermediate conditions

x̃(i) =

{
x0, if i = 0,

x̃(i−), if i = 1, 2, . . . , n,
(38a)

ψ̃k
l (i) =

{
0, if i = 0,

ψ̃k
l (i−), if i = 1, 2, . . . , n.

(38b)

We denote the solutions of (37)-(38) by x̃(·|θ, ξ) and ψ̃k
l (·|θ, ξ), l = 1, 2, k =

1, . . . , n.
Now, in terms of θ, constraint (9) can be written as

n∑
j=1

θj ≤ (1 + β)τ∗n. (39)

Furthermore, constraints (30) and (33) become

ω0 ≤ x0
1 +

i∑
j=1

θjξ
j∗
1 cos ξj∗2 ≤ 1

2π, i = 0, 1, . . . , n, (40)
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and

0 ≤ x0
2 +

i∑
j=1

tan ξj∗2 ln

[
csc(x̃1(j − 1|θ, ξ∗)) + cot(x̃1(j − 1|θ, ξ∗))

csc(x̃1(j|θ, ξ∗)) + cot(x̃1(j|θ, ξ∗))

]
≤ 2π,

i = 0, 1, . . . , n. (41)

Similarly, the target error sensitivity function (28) becomes

J̃(θ) = 4
n∑

k=1

2∑
l=1

[
(x̃(n|θ, ξ∗)− xf )⊤ψ̃k

l (n|θ, ξ∗)
]2
. (42)

Based on the time-scaling transformation defined by equations (34) and (35),
Problem (D) can be transformed into the following equivalent problem with
fixed switching points.

Problem (E). Given an optimal solution (τ ∗, ξ∗) for Problem (A) and the
dynamic system (37)-(38) with ξ = ξ∗, choose an admissible segment length
vector θ ∈ Θ such that the target error sensitivity function (42) is minimized
subject to the inequality constraints (39), (40) and (41).

Problem (E) is a standard problem that can be solved using existing gradient-
based optimization techniques. However, to do this, the gradients of the cost
and constraints are required. These gradients are derived in the next section.

5. Gradient computation

Define

g1(θ) =

n∑
j=1

θj , (43)

gi+2(θ) = x0
1 +

i∑
j=1

θjξ
j∗
1 cos ξj∗2 , i = 0, 1, . . . , n, (44)

gi+n+3(θ) = x0
2 +

i∑
j=1

tan ξj∗2 ln

[
csc(x̃1(j − 1|θ, ξ∗)) + cot(x̃1(j − 1|θ, ξ∗))

csc(x̃1(j|θ, ξ∗)) + cot(x̃1(j|θ, ξ∗))

]
,

i = 0, 1, . . . , n. (45)

Then the constraints in Problem (E) can be written as follows:

g1(θ) ≤ (1 + β)τ∗n,

ω0 ≤ gi+2(θ) ≤ 1
2π, i = 0, 1, . . . , n,

0 ≤ gi+n+3(θ) ≤ 2π, i = 0, 1, . . . , n.
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The gradients of constraint functions gi(·), i = 1, 2 . . . , n+2, are easily obtained:

∂g1(θ)

∂θq
= 1,

∂gi+2(θ)

∂θq
=

{
ξq∗1 cos ξq∗2 , if q ≤ i,

0, otherwise,
i = 0, 1, . . . , n.

The gradients of gi+n+3(·), i = 0, 1, . . . , n, are more challenging because these
constraints depend on x̃1(·|θ, ξ∗). From (37a) and (38a),

x̃1(t|θ, ξ∗) = x0
1 +

i−1∑
j=1

θjξ
j∗
1 cos ξj∗2 + θiξ

i∗
1 cos ξi∗2 (t− i+ 1),

t ∈ [i− 1, i], i = 1, 2, . . . , n.

Therefore, the gradients of gi+n+3(·), i = 0, 1, . . . , n, are given by

∂gi+n+3(θ)

∂θq
=

i∑
j=1

tan ξj∗2

{
csc(x̃1(j))

∂x̃1(j)

∂θq
− csc(x̃1(j − 1))

∂x̃1(j − 1)

∂θq

}
,

where

∂x̃1(j)

∂θq
=

{
ξq∗1 cos ξq∗2 , if q ≤ j,

0, if q > j,
j = 0, 1, . . . , n,

and

∂x̃1(j − 1)

∂θq
=

{
ξq∗1 cos ξq∗2 , if q ≤ j − 1,

0, if q > j − 1,
j = 1, 2, . . . , n.

Now, for the gradients of the sensitivity function (42), consider the following
costate system:

λ̇(t) = −
n∑

k=1

2∑
l=1

i∑
j=1

δjkθi

(
∂

∂x

(
∂f(x̃(t), ξi∗)

∂x
ψ̃k

l (t)

))⊤

µk,l(t)

−
n∑

k=1

2∑
l=1

δikθi

(
∂

∂x

(
∂f(x̃(t), ξi∗)

∂ξil

))⊤

µk,l(t)− θi

(
∂f(x̃(t), ξi∗)

∂x

)⊤

λ(t),

t ∈ [i− 1, i), i = 1, 2, . . . , n, (46a)

µ̇k,l(t) = −
i∑

j=1

δjkθi

(
∂f(x̃(t), ξi∗)

∂x

)⊤

µk,l(t),

t ∈ [i− 1, i), i = 1, 2, . . . , n, (46b)
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where k = 1, 2, . . . , n, and l = 1, 2, with the terminal conditions:

λ(n) = 8
n∑

k=1

2∑
l=1

ψ̃k
l (n|θ, ξ∗)ψ̃k

l (n|θ, ξ∗)⊤(x̃(n|θ, ξ∗)− xf ), (47a)

µk,l(n) = 8(x̃(n|θ, ξ∗)− xf )ψ̃k
l (n|θ, ξ∗)⊤(x̃(n|θ, ξ∗)− xf ). (47b)

Let λ(·|θ) and µk,l(·|θ), k = 1, . . . , n, l = 1, 2, denote the solutions of the costate
system (46)-(47). The following theorem gives the gradient of the sensitivity
function (42) with respect to θ.

Theorem 4. For each q = 1, 2, . . . , n,

∂J̃(θ)

∂θq
=

q∑
k=1

2∑
l=1

∫ q

q−1

µk,l(t|θ)⊤ ∂f(x̃(t), ξq∗)

∂x
ψ̃k

l (t)dt

+
2∑

l=1

∫ q

q−1

µq,l(t|θ)⊤ ∂f(x̃(t), ξq∗)

∂ξql
dt+

∫ q

q−1

λ(t|θ)⊤f(x̃(t), ξq∗)dt.

Proof. Let ϖ : [0, n] → R5 and uk,l : [0, n] → R5, k = 1, . . . , n, l = 1, 2, be
arbitrary functions that are continuous and differentiable almost everywhere.
Then, the sensitivity function (42) can be expressed as follows:

J̃(θ) = 4

n∑
k=1

2∑
l=1

[
(x̃(n)− xf )⊤ψ̃k

l (n)
]2

+
n∑

i=1

∫ i

i−1

ϖ(t)⊤
[
θif(x̃(t), ξ

i∗)− ˙̃x(t)
]
dt

+
n∑

k=1

2∑
l=1

n∑
i=1

∫ i

i−1

uk,l(t)⊤

×
[ i∑

j=1

δjkθi
∂f(x̃(t), ξi∗)

∂x
ψ̃k

l (t) + δikθi
∂f(x̃(t), ξi∗)

∂ξil
− ˙̃
ψk

l (t)

]
dt,

where we have omitted the arguments θ and ξ∗ in x̃(·|θ, ξ∗) and ψ̃k
l (·|θ, ξ∗) for

brevity. Applying integration by parts gives

J̃(θ) = 4
n∑

k=1

2∑
l=1

[
(x̃(n)− xf )⊤ψ̃k

l (n)
]2

−ϖ(n)⊤x̃(n) +ϖ(0)⊤x0

+
n∑

i=1

∫ i

i−1

[
θiϖ(t)⊤f(x̃(t), ξi∗) + ϖ̇(t)⊤x̃(t)

]
dt−

n∑
k=1

2∑
l=1

uk,l(n)⊤ψ̃k
l (n)

+
n∑

k=1

2∑
l=1

n∑
i=1

∫ i

i−1

[ i∑
j=1

δjkθiu
k,l(t)⊤

∂f(x̃(t), ξi∗)

∂x
ψ̃k

l (t)

+ δikθiu
k,l(t)⊤

∂f(x̃(t), ξi∗)

∂ξil
+ u̇k,l(t)⊤ψ̃k

l (t)

]
dt.
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Hence, by applying the definition of the Kronecker delta function, we obtain

J̃(θ) = 4
n∑

k=1

2∑
l=1

[
(x̃(n)− xf )⊤ψ̃k

l (n)
]2

−ϖ(n)⊤x̃(n) +ϖ(0)⊤x0

+
n∑

i=1

∫ i

i−1

[
θiϖ(t)⊤f(x̃(t), ξi∗) + ϖ̇(t)⊤x̃(t)

]
dt−

n∑
k=1

2∑
l=1

uk,l(n)⊤ψ̃k
l (n)

+
n∑

k=1

2∑
l=1

n∑
i=k

∫ i

i−1

θiu
k,l(t)⊤

∂f(x̃(t), ξi∗)

∂x
ψ̃k

l (t)dt

+
n∑

k=1

2∑
l=1

∫ k

k−1

θku
k,l(t)⊤

∂f(x̃(t), ξk∗)

∂ξkl
dt+

n∑
k=1

2∑
l=1

∫ n

0

u̇k,l(t)⊤ψ̃k
l (t)dt.

Differentiating this equation with respect to θq yields

∂J̃(θ)

∂θq
= 8

n∑
k=1

2∑
l=1

(x̃(n)− xf )⊤ψ̃k
l (n)

(
ψ̃k

l (n)
⊤ ∂x̃(n)

∂θq
+ (x̃(n)− xf )⊤

∂ψ̃k
l (n)

∂θq

)

−ϖ(n)⊤
∂x̃(n)

∂θq
−

n∑
k=1

2∑
l=1

uk,l(n)⊤
∂ψ̃k

l (n)

∂θq
+

∫ q

q−1

ϖ(t)⊤f(x̃(t), ξq∗)dt

+

q∑
k=1

2∑
l=1

∫ q

q−1

uk,l(t)⊤
∂f(x̃(t), ξq∗)

∂x
ψ̃k

l (t)dt

+
2∑

l=1

∫ q

q−1

uq,l(t)⊤
∂f(x̃(t), ξq∗)

∂ξql
dt

+
n∑

i=1

∫ i

i−1

[
θiϖ(t)⊤

∂f(x̃(t), ξi∗)

∂x
+ ϖ̇(t)⊤

]
∂x̃(t)

∂θq
dt

+
n∑

k=1

2∑
l=1

∫ n

0

u̇k,l(t)⊤
∂ψ̃k

l (t)

∂θq
dt

+

n∑
k=1

2∑
l=1

n∑
i=k

∫ i

i−1

θiu
k,l(t)⊤

∂f(x̃(t), ξi∗)

∂x

∂ψ̃k
l (t)

∂θq
dt

+
n∑

k=1

2∑
l=1

∫ k

k−1

θku
k,l(t)⊤

∂

∂x

(
∂f(x̃(t), ξk∗)

∂ξkl

)
∂x̃(t)

∂θq
dt

+
n∑

k=1

2∑
l=1

n∑
i=k

∫ i

i−1

θiu
k,l(t)⊤

∂

∂x

(
∂f(x̃(t), ξi∗)

∂x
ψ̃k

l (t)

)
∂x̃(t)

∂θq
dt.

Choosing ϖ(·) = λ(·|θ) and uk,l(·) = µk,l(·|θ), k = 1, . . . , n, l = 1, 2, and then
substituting (46)-(47) into the above equation completes the proof.
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6. Numerical example

In this section, we consider the example problem in [3], which relates to a
Ci-16-Cp146 well in the Liaohe oil field in China. The well consists of three
turn segments, each of which is between 10 and 100 meters long. The tool-face
angle in each turn segment should be between −50◦ and 50◦, and the radius of
curvature should be between 40 and 60 meters.

The start point for the horizontal well is defined by the vector

(x0
1, x

0
2, x

0
3, x

0
4, x

0
5) = (10.4◦, 228.18◦, 102.69m,−156.39m, 1673.15m),

where x0
1 is the initial inclination, x

0
2 is the initial azimuth, and (x0

3, x
0
4, x

0
5) is the

Cartesian coordinate vector of the start point. Furthermore, the target point is
defined by the vector

(xf
1 , x

f
2 , x

f
3 , x

f
4 , x

f
5 ) = (89.5◦, 205.5◦, 62.5m,−192.9m, 1718.0m),

where xf
1 is the final inclination, xf

2 is the final azimuth, and (xf
3 , x

f
4 , x

f
5 ) is the

Cartesian coordinate vector of the target point.
We first considered Problem (A) with α = 10. To solve this problem, we

applied the time-scaling transformation [12] to yield an equivalent problem with
fixed switching instants. The equivalent problem was then solved using the
software MISER 3 [5]. The optimal parameters obtained are given in Table 1,
and the corresponding path length is 74.4483m with a target error of 0.0481.

We next used the solution of Problem (A) reported in Table 1 to form Prob-
lem (E) with β = 0.2. This problem can also be solved using MISER 3 [5].
The optimal segment lengths for Problem (E) are listed in Table 2, where the
corresponding switching instants are denoted by ς∗i , i = 1, 2, 3. The optimal
well trajectory for Problem (E) has a total well length of 74.7222m and a target
error of 0.0564.

To compare the solutions of Problems (A) and (E), we randomly generated
200 perturbations of the nominal parameter vector ξ∗. For each i = 1, 2, . . . , 200,
the ith perturbed vector belongs to the set of all ξ ∈ R6 such that

0.0001(i− 1)∥ξ∗∥ ≤ ∥ξ − ξ∗∥ ≤ 0.0001i∥ξ∗∥.

The coefficient of ∥ξ∗∥ in the upper bound of this range is called the disturbance
percentage of the ith perturbed vector (note that the disturbance percentage
increases monotonically from 0.01% for i = 1 to 2% for i = 200). The target
errors of the optimal switching points from Problems (A) and (E) under the
200 randomly-selected perturbed vectors are shown in Figure 1. Note that
the red dashed curve (which corresponds to the solution from Problem (A))
predominantly lies above the blue solid curve (which corresponds to the solution
from Problem (E)). This indicates that the solution of Problem (E) is more
robust than the solution of Problem (A).

As another demonstration, for each i = 1, 2, . . . , 5, we generated 100 random
points from the disturbance region defined by the inequality

∥ξ − ξ∗∥ ≤ 0.01i∥ξ∗∥.

20



Here, 0.01i is called the disturbance radius percentage. Both the average target
error for each problem’s optimal solution and the relative frequency that each
problem’s solution gives the best result are recorded in Table 3. Again, as with
Figure 1, the results in Table 3 demonstrate that Problem (E) gives a more
robust solution than Problem (A).

7. Conclusion

This paper has considered an optimal path planning problem arising in the
design of horizontal oil wells. The aim of the problem is to strike a balance be-
tween minimizing target error and maximizing solution robustness with respect
to unwanted parameter disturbances. The problem is formulated as a dynam-
ic optimization problem governed by a switched system, where the switching
points must be chosen to minimize target error sensitivity subject to a bound
on the maximum path length. In closing, we note that the properties of the
soil may exert significant influence on the direction of the well path. Thus,
constructing appropriate constraints to penalize certain regions of the soil is an
interesting area to pursue for future research.
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Table 1: Optimal parameter values for Problem (A) in the numerical example.

Turn Segment

Parameter Notation i = 1 i = 2 i = 3

Curvature radius (m) 1/ξi∗1 40.0000 59.9880 59.9840
Tool-face angle (degrees) ξi∗2 −6.2682 49.9963 −43.7018

Segment length (m) τ∗i − τ∗i−1 24.5479 15.9807 33.9198

Table 2: Optimal segment lengths for Problem (E) in the numerical example.

Turn Segment

i = 1 i = 2 i = 3

Segment length (m) ς∗i − ς∗i−1 24.5122 16.2908 33.9192

Table 3: Target error for the solutions of Problems (A) and (E) under parameter disturbances.

Average Target Error Best Result Percentage

Disturbance Radius Problem (A) Problem (E) Problem (A) Problem (E)

0% 0.0481 0.0564 — —
1% 0.0988 0.0910 25% 75%
2% 0.2352 0.2010 14% 86%
3% 0.5323 0.4902 6% 94%
4% 0.7525 0.7010 4% 96%
5% 1.0028 0.9406 3% 97%
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Figure 1: Target error variation for the solutions of Problems (A) and (E) under parameter
disturbances.
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