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Abstract

For a nonlinear equation with several variable delays

ẋ(t) =

m
∑

k=1

fk(t, x(h1(t)), . . . , x(hl(t)))− g(t, x(t)),

where the functions fk increase in some variables and decrease in the others, we obtain conditions
when a positive solution exists on [0,∞), as well as explore boundedness and persistence of solutions.
Finally, we present sufficient conditions when a solution is unbounded. Examples include the
Mackey-Glass equation with non-monotone feedback and two variable delays; its solutions can be
neither persistent nor bounded, unlike the well studied case when these two delays coincide.

Keywords: nonlinear delay differential equations, a global positive solution, persistent,
permanent and unbounded solutions, population dynamics models, Mackey-Glass equation
AMS Subject Classification: 34K25, 34K60, 92D25, 34K23

1. Introduction

Many mathematical models of population dynamics can be written in the form of a scalar
equation

ẋ(t) = f(x(t− τ))− x(t), (1.1)

where f is a nonnegative continuous function describing reproduction or recruitment, τ is a positive
number describing delay. Usually these models have a unique positive equilibrium K, and there
is a well-developed theory on the global stability of the positive equilibrium of (1.1). This theory
was applied to many well-known models described by Eq. (1.1) such as Nicholson’s blowflies delay
equation and Mackey-Glass equations.

Eq. (1.1) can be extended to the case when both the delay and the intrinsic growth rate are
variable

ẋ(t) = r(t) [f(x(h(t))) − x(t)] , (1.2)

where h(t) ≤ t and r(t) > 0 are Lebesgue measurable. Global stability results for Eq. (1.2) with
applications to population dynamics can be found in [15, 16, 18, 19, 20, 21, 23, 24] and references
therein, see also [7, 8, 9, 10].
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Another generalization of (1.1) is the model with several production terms and nonlinear mor-
tality

ẋ(t) =

m
∑

k=1

fk(t, x(h1(t)), . . . , x(hl(t)))− g(t, x(t)), (1.3)

where fk, g are nonnegative continuous functions. This equation with some applications was studied,
for example, in [3, 5, 8, 17, 25].

For all mentioned above equations usual assumptions are the following: the function fk is either
monotone or unimodal, g(t, u) is monotone increasing in u, there is only one delay involved in fk,
and a positive equilibrium is unique. However, it is possible to consider more general models, for
example, the modified Nicholson equation

ẋ(t) =
m
∑

k=1

ak(t)x(hk(t))e
−λkx(gk(t)) − b(t)x(t), t ≥ 0, (1.4)

and the modified Mackey-Glass type equation

ẋ(t) =

m
∑

k=1

ak(t)x(hk(t))

1 + xnk(pk(t))
−
(

b(t)− c(t)

1 + xn(t)

)

x(t), t ≥ 0. (1.5)

There are also many generalizations of Eqs. (1.1)-(1.5) to the case of distributed delays and
integro-differential equations [6, 11, 12, 22, 26].

Let us illustrate the idea that the presence of several delays instead of one delay can create
a new type of dynamics. As Example 1.1 illustrates, an equation which was stable for coinciding
delays can become unstable, once the two delays are different.

Example 1.1. Consider the modified Mackey-Glass equation with two delays

ẋ(t) =
2x(h(t))

1 + x2(g(t))
− x(t), t ≥ 0. (1.6)

The unique positive equilibrium is x = 1, the function f(x) = 2x/(1 +x2) is increasing on [0, 1], so
any positive solution of the equation

ẋ(t) =
2x(h(t))

1 + x2(h(t))
− x(t), t ≥ 0 (1.7)

satisfies lim
t→∞

x(t) = 1, see, for example, [10, 12]. Consider (1.6) with piecewise constant arguments

h(·), g(·). Denote a = ln(59/24) ≈ 0.8994836 and b = ln(134/15) ≈ 2.1897896 and let

ϕ(t) = 6.4− 5.9e−(t+a+b), t ∈ [−a− b,−b], ϕ(t) =
1

17
+

67

17
e−(t+b), t ∈ [−b, 0],

then ϕ(−a− b) = 0.5, ϕ(−b) = 4, ϕ(0) = 1
17 +

67
17

15
134 = 0.5. Assume for n = 0, 1, 2, . . .

h(t) =











[

t
a+b

]

− b, t ∈ [n(a+ b), n(a+ b) + a),
[

t
a+b

]

− a− b, t ∈ [n(a+ b) + a, (n + 1)(a + b)),
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where [t] is the integer part of t,

g(t) =











[

t
a+b

]

− a− b, t ∈ [n(a+ b), n(a+ b) + a),
[

t
a+b

]

− b, t ∈ [n(a+ b) + a, (n + 1)(a+ b)).

Then the solution is (a + b)-periodic, the equation is ẋ(t) = 32
5 − x(t) on [n(a + b), n(a + b) + a),

x(n(a+b)) = 1
2 and ẋ(t) = 1

17 −x(t) on [n(a+b)+a, (n+1)(a+b)), x(n(a+b)+a) = 4. Thus, with
two delays, the equilibrium K = 1 of Eq. (1.6) is not globally asymptotically stable, unlike (1.7).

As Example 1.1 illustrates, an equation which was stable for the coinciding delays can have
oscillating solutions with a constant amplitude which do not tend to the positive equilibrium.
According to Example 5.8, two different delays can lead not only to sustainable oscillations but
also to unbounded solutions.

The purpose of the present paper is to consider a general nonlinear delay equation which includes
(1.4), (1.5) as particular cases and study the following properties of these equations: existence and
uniqueness of a positive global solution, persistence, permanence, as well as existence of unbounded
solutions. To the best of our knowledge, equations with such mixed types of nonlinearities have
not been studied before.

Compared to most of the previous publications, we consider two modifications: the production
function is a sum of several functions, and each fk involves several delays. The situation when
several (sometimes incomparable) delays are included, is quite common, for example, transmission
and translation delays in gene regulatory systems. Motivated by this, we apply the general results
to some well-known population dynamics equations.

The paper is organized as follows. After introducing some relevant assumptions and definitions
in Section 2, we justify existence of a global positive solution in Section 3. Section 4 deals with
sufficient conditions when all positive solutions are bounded. In Section 5, we investigate persistence
of solutions and also consider their permanence. Section 6 explores positive unbounded solutions,
and Section 7 involves brief discussion.

2. Preliminaries

Definition 2.1. We will say that f(t, u1, . . . , ul) is a Caratheodory function if in its domain it
is continuous in u1, . . . , ul for almost all t and is locally essentially bounded in t for any u1, . . . , ul.

The function f(t, u1, . . . , ul) is a locally Lipschitz function if for any interval [a, b] there
exist positive constants αk([a, b]) such that

|f(t, u1, . . . , ul)− f(t, v1, . . . , vl)| ≤
l
∑

k=1

αk([a, b])|uk − vk|, uk, vk ∈ [a, b], k = 1, . . . , l, t ≥ 0.

In this paper we consider the scalar nonlinear equation with several delays

ẋ(t) =
m
∑

k=1

fk(t, x(h1(t)), . . . , x(hl(t))) − g(t, x(t)), t ≥ 0 (2.1)

under the following conditions:

3



(a1) fk : [0,∞) × R
l → [0,∞), g : [0,∞) × R → [0,∞) are Caratheodory and locally Lipschitz

functions, fk(t, 0, . . . , 0) = 0, g(t, 0) = 0;
(a2) hj , j = 1 . . . , l, are Lebesgue measurable functions, hj(t) ≤ t, limt→∞ hj(t) = ∞.
Together with Eq. (2.1) consider an initial condition

x(t) = ϕ(t), t ≤ 0, (2.2)

where
(a3) ϕ : (−∞, 0] → R is a nonnegative Borel measurable bounded function, ϕ(0) > 0.

Definition 2.2. The solution of problem (2.1),(2.2) is an absolutely continuous on [0,∞) function
satisfying (2.1) almost everywhere for t ≥ 0 and condition (2.2) for t ≤ 0.

Instead of the initial point t = 0 we can consider any initial point t = t0 > 0. In Definition 2.2
the interval [0,∞) can be substituted by the maximum interval (0, c), with c > 0, or (t0, c), c > t0
where the solution exists. However, in the present paper we only consider the case when a global
positive solution exists on [0,∞). Sufficient conditions for existence of a positive solution on [0,∞)
are discussed in the next section.

3. Existence of a Positive Solution on [0,∞)

Let us first justify that if (a1)-(a3) are satisfied then the positive local solution of (2.1), (2.2)
exists and is unique.

Denote by L2([t0, t1]) the space of Lebesgue measurable real-valued functions x(t) such that

Q =

∫ t1

t0

(x(t))2 dt < ∞, with the usual norm ‖x‖L2([t0,t1]) =
√
Q, by C([t0, t1]) the space of

continuous on [t0, t1] functions with the sup-norm.
The following result from the book of Corduneanu [13, Theorem 4.5, p. 95] will be applied. We

recall that an operator N is causal (or Volterra) if for any two functions x and y and each t the
fact that x(s) = y(s), s ≤ t, implies (Nx)(s) = (Ny)(s), s ≤ t.

Lemma 3.1. [13] Consider the equation

y′(t) = (Ly)(t) + (N y)(t), t ∈ [t0, t1], y(t0) = y0, (3.1)

where L : C([t0, t1]) → L2([t0, t1]) is a linear bounded causal operator, N : C([t0, t1]) → L2([t0, t1])
is a nonlinear causal operator which satisfies

‖Nx−N y‖L2([t0,t1]) ≤ λ‖x− y‖C([t0,t1])

for λ sufficiently small. Then there exists a unique absolutely continuous on [t0, t1] solution of
(3.1).

Let us note that in Lemma 3.1, L and N are causal operators and thus can include delays.
They are defined on C([t0, t1]) which corresponds to delay equations with the zero initial function
for t < t0. For an arbitrary initial function and t0 = 0, in the proof of Theorem 3.2 we reduce the
problem to the zero initial function and t ≥ 0 only.

Theorem 3.2. Suppose (a1)-(a3) hold. Then there exists a unique local positive solution of (2.1),
(2.2).
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Proof. In order to reduce (2.1), (2.2) to the equation which will be considered for t ≥ 0, we rewrite
this problem as

ẋ(t) =

m
∑

k=1

fk(t, x
h1(t) + ϕh1

(t), . . . , xhl(t) + ϕhl
(t))− g(t, x(t)), (3.2)

where

xhj (t) =

{

x(hj(t)), hj(t) > 0,
0, hj(t) ≤ 0,

, ϕhj
(t) =

{

ϕ(hj(t)), hj(t) ≤ 0,
0, hj(t) > 0.

We can consider (3.2) for t ≥ 0 only (which corresponds to the zero initial condition).

Denote (Lx)(t) ≡ 0, (Nx)(t) =

m
∑

k=1

fk(t, x
h1(t)+ϕh1

(t), . . . , xhl(t)+ϕhl
(t))−g(t, x(t)). We have

for any t0 > 0

‖Nx−N y‖L2([0,t0]) ≤
∥

∥

∥

∥

∥

m
∑

k=1

fk(·, xh1(·) + ϕh1
(·), . . . , xhl(·) + ϕhl

(·))

−
m
∑

k=1

fk(·, yh1(·) + ϕh1
(·), . . . , yhl(·) + ϕhl

(·))
∥

∥

∥

∥

∥

L2([0,t0])

+‖g(·, x(·)) − g(·, y(·))‖L2([0,t0])

≤
m
∑

k=1

l
∑

j=1

αj
k‖xhj(·)− yhj (·)‖L2([0,t0]) + β‖x− y‖L2([0,t0]),

where αj
k = αj

k([0, t0]), β = β([0, t0]) are local Lipschitz constants for fk and g, respectively.
Then

‖Nx−N y‖L2([0,t0]) ≤





m
∑

k=1

l
∑

j=1

αj
k + β





√
t0‖x− y‖C2([0,t0]).

Hence if t0 is sufficiently small, the constant λ = (
∑m

k=1

∑l
j=1 α

j
k + β)

√
t0 is also sufficiently small.

Thus by Lemma 3.1 there exists a unique solution of problem (2.1), (2.2) on [0, t0]. Since x(0) > 0,
for small t0 this solution is positive, which concludes the proof.

Theorem 3.3. Suppose conditions (a1)-(a3) are satisfied and at least one of the following assump-
tions holds:

(a41) for any [a, b] there exists ε > 0 such that hj(t) ≤ b− ε for t ∈ [a, b], j = 1, . . . , l;

(a42) 0 ≤ fk(t, u1, . . . , ul) ≤
l
∑

j=1

akj(t)uj + bk(t), where akj, bk are locally integrable functions;

(a43) for x sufficiently large g(t, x) −
m
∑

k=1

fk(t, u1, . . . , ul) ≥ ax > 0, x ≥ uj , j = 1, . . . , l.

Then problem (2.1), (2.2) has a unique positive global solution on [0,∞).

Proof. By Theorem 3.2 there exists a unique local positive solution of this problem. Suppose [0, c) is
a maximum interval of existence for this solution. Since ẋ(t) ≥ −g(t, x(t)), x(0) > 0 and g(t, 0) = 0,
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we have x(t) > z(t) ≡ 0, t ∈ [0, c), where z is a solution of ż(t) = −g(t, z(t)), z(0) = 0, and the
solution z is unique due to the local Lipschitz condition for g as a part of (a1).

If c = +∞ the theorem is proved. Suppose c < ∞.
Let us first verify that lim inf

t→c−
x(t) > 0. By (a1) and continuity of the solution on [0, c], there

exists M > 0 such that g(t, x(t)) ≤ M , t ∈ [0, c]. Following the above argument, we obtain ẋ(t) ≥
−g(t, x(t)) > −M and x(t) > x(0)e−Mc, which implies lim inft→c− x(t) > 0. Thus lim sup

t→c−
x(t) =

+∞.
In fact, assuming the contrary that lim supt→c− x(t) < +∞ then, by (a3), there exists M0 > 0

such that 0 ≤ x(t) ≤ M0 on [0, c) and ϕ(t) ≤ M0. Since fk(·, u1, . . . , ul) and g(·, u) are locally
Lipschitz, they are locally essentially bounded for t ∈ [0, c], u, uj ∈ [0,M0], thus ẋ is also essentially
bounded on [0, c).

The solution satisfies

x(t) = x(0) +

∫ t

0
ẋ(s) ds, x(c) = x(0) +

∫ c

0
ẋ(s) ds,

thus the solution can be defined for t ≥ c and [0, c) is not the maximum interval of existence. Thus,
when justifying existence, we only need to prove boundedness of a solution on any finite interval.

Consider now the three cases.
1) Suppose (a41) holds. Then there exists t0 < c such that hj(t) ≤ t0, t ∈ [0, c), thus |x(hj(t))| ≤

maxt∈[0,t0] |x(t)| < ∞, hence

0 < x(t) ≤ |x(0)|+
m
∑

k=1

∫ c

0
sup
0≤s≤t

fk (s, x(h1(s)), . . . , x(hl(s))) ds = A < ∞, t ∈ [0, c),

and therefore lim supt→c− x(t) = +∞ is impossible.
2) Suppose (a42) holds. Then

ẋ(t) ≤
m
∑

k=1





l
∑

j=1

akj(t)x(hj(t)) + bk(t)



 .

If limt→c− x(t) = +∞ then there is t0 ∈ (0, c) such that

x(t0) = max
s≤t0

x(s). (3.3)

Since x(t) is positive on (0, c), on [t0, c) it does not exceed the solution of the equation

ż(t) =

m
∑

k=1





l
∑

j=1

akj(t)z(hj(t)) + bk(t)



 , z(t) = x(t), t ≤ t0.

The function z(t) is monotone nondecreasing on [t0, c), and from (3.3),

z(t) = max
0≤s≤t

z(s), z(t) ≥ z(hj(t)), t ∈ [t0, c), j = 1, . . . , l.

6



Thus x(t) ≤ y(t), where y is a solution of the equation

ẏ(t) = a(t)y(t) + b(t), y(t0) = x(t0), a(t) :=

m
∑

k=1

l
∑

j=1

akj(t), b(t) :=

m
∑

k=1

bk(t), t ∈ [t0, c).

Hence

x(t) ≤ y(t) ≤
∫ c

t0

b(s) exp

{∫ c

t0

a(τ) dτ

}

ds+ x(t0) exp

{∫ c

t0

a(τ) dτ

}

= A < ∞, t ≤ c,

since akj and bk are integrable on [t0, c], and therefore there is a positive solution on [0,∞).
3) Suppose (a43) holds. Since (a43) is satisfied for x large enough, we can find A > 0 such that

the inequality in (a43) holds for x ≥ uj ≥ A, j = 1, . . . ,m. Let us choose M ≥ 2A, M ≥ A +
sup
t≤0

ϕ(t). The function g is locally Lipschitz, thus there is α > 0 such that |g(t, x)−g(t, y)| ≤ α|x−y|,
x, y ∈ [0,M ], for any t. We recall that there is aA such that g(t, x)−∑m

k=1 fk(t, u1, . . . , ul) ≥ aA > 0
for x ≥ uj ≥ A.

Denote ε = min{aA/(2α), A} then for x, y ∈ [0,M ], |x− y| < ε,

g(t, y) ≥ g(t, x) − |g(t, x) − g(t, y)| ≥ g(t, x) − α|x− y| ≥ g(t, x) − αε ≥ g(t, x) − aA
2
.

Therefore for y ≥ uj − ε, j = 1, . . . , l, x, y ∈ [0,M ], |x− y| ≤ ε

g(t, y) −
m
∑

k=1

fk(t, u1, . . . , ul) ≥ aM/2 > 0. (3.4)

If x(t) ≥ M for some t ∈ (0, c), denote

t0 = inf {t ∈ [0, c] |x(t) = M } , t1 = sup {t ∈ [0, t0] |x(t) = M − ε} .

By definition t0 > t1 > 0, and from continuity of x, x(t1) = M − ε, x(t0) = M , x(hj(t)) < M ,
t < t0, j = 1, . . . , l and x(t) ∈ (M − ε,M), t ∈ (t1, t0). However, (3.4) implies

ẋ(t) =

m
∑

k=1

fk(t, x(h1(t)), . . . , x(hl(t))) − g(t, x(t)) ≤ −aM/2 < 0, t ∈ (t1, t0),

thus x(t1) > x(t0), which contradicts to the assumption x(t1) = M − ε < x(t0) = M . Thus
x(t) ≤ M , t ∈ [0, c]; in fact, the inequality is satisfied for any t. Hence a positive solution exists on
[0,∞).

Remark 3.4. The conditions of Theorem 3.3 and [6, Theorem 2.2] are independent.

Example 3.5. For the equation
ẋ(t) = x2(t− τ), τ > 0 (3.5)

condition (a41) holds and (a42), (a43) fail. It is interesting to note that the equation ẋ(t) = x2

with the initial condition x(0) = x0 > 0 has the solution x(t) = 1/(x−1
0 − t) which only exists on

[0, 1/x0).

7



For the equation
ẋ(t) = x(t− | sin t|), (3.6)

condition (a42) holds and (a41), (a43) fail.
For the equation

ẋ(t) =
x2(t− | sin t|)
1 + x2(t)

− x3(t) (3.7)

condition (a43) holds and (a41), (a42) fail.
By Theorem 3.3, problems for Eqs. (3.5)-(3.7) with an initial function satisfying (a3), have a

unique positive global solution.

For the rest of the paper, we everywhere assume that problem (2.1), (2.2) has a unique positive
global solution on [0,∞).

4. Boundedness of Solutions

Let us consider conditions under which all global solutions of (2.1), (2.2) are bounded.

Theorem 4.1. Suppose conditions (a1)-(a3) hold. Let also one of the following conditions be
satisfied:

(a) fk(t, u1, . . . , ul) are strictly monotone increasing in u1, . . . , ul,

lim sup
u→∞

∑m
k=1 fk(t, u, . . . , u)

g(t, u)
< 1

uniformly in t;
(b) fk(t, u1, . . . , ul) are strictly monotone increasing in uj for some j ∈ {1, 2, . . . , l} and

lim sup
uj→∞

∑m
k=1 fk(t, u1, . . . , ul)

g(t, uj)
< 1

uniformly in t, u1, . . . , uj−1, uj+1 . . . , ul.
Then any solution of problem (2.1), (2.2) is bounded.
If the following condition holds:
(c) fk(t, u1, . . . , ul) are strictly monotone increasing in u1, . . . , un for some n ∈ {1, 2, . . . , l} and

there exists M0 > 0 such that for any M1 ≥ M0, . . . ,Ml−n ≥ M0

lim sup
u→∞

∑m
k=1 fk(t, u, . . . , u,M1, . . . ,Ml−n)

g(t, u)
< 1

uniformly in t, then there is no solution x of problem (2.1),(2.2) such that lim
t→∞

x(t) = ∞.

Proof. Suppose that condition (a) holds and x is an unbounded solution of problem (2.1), (2.2).
Let A > supt≤0 ϕ(t) > 0 be a large number such that for some σ > 0,

∑m
k=1 fk(t, u, . . . , u) ≤

(1 − σ)g(t, u) for u > A. As x is unbounded, for any fixed M > A there exist points t such that
x(t) ≥ M . Denote

t1 = inf{t ≥ 0|x(t) ≥ M},

8



then t1 > 0 as M > A > supt≤0 ϕ(t) > 0 and x(t) < M for t ≤ t1. Let

t0 = sup{t ≤ t1|x(t) ≤ A}.

Since x(t) < A for t ≤ 0, we have t0 > 0; by definition, t0 < t1. Also, x(t) ≥ A on [t0, t1] with
A = x(t0) < x(t1) = M .

Since fk are increasing in uj and x(hj(t)) < M on (−∞, t1), we have

m
∑

k=1

fk(t, x(h1(t)), . . . , x(hl(t)))− g(t, x(t))

<
m
∑

k=1

fk(t,M, . . . ,M)− g(t, x(t))

≤ (1− σ)g(t,M) − g(t, x(t))

≤ g(t,M) − g(t, x(t)), t ∈ [t0, t1].

Thus the solution x(t) of (2.1),(2.2) on [t0, t1] does not exceed the solution of the initial value
problem for the ordinary differential equation

ẏ(t) = g(t,M) − g(t, y(t)), y(t0) = A < M, (4.1)

i.e. x(t) ≤ y(t), t ∈ [t0, t1]. However, the solution of (4.1) satisfies y(t) < M , t ≥ t0. In fact,
assuming the contrary, we obtain that y(t∗) = M for some t∗ > t0, and there are two solutions
through (t∗,M): y and the one identically equal to M . This contradicts to the assumption of the
local Lipschitz condition which implies uniqueness. Thus x(t1) ≤ y(t1) < M , and the contradiction
with x(t1) = M proves boundedness of the solution x of (2.1),(2.2).

If condition (b) holds, the proof is similar to the previous case. Let for some σ > 0,
∑m

k=1 fk(t, u1, . . . , ul) ≤
(1− σ)g(t, uj) for uj > A. Defining A,M, t0, t1 as previously, we obtain

m
∑

k=1

fk(t, x(h1(t)), . . . , x(hl(t))) − g(t, x(t))

<

m
∑

k=1

fk(t, x(h1(t)), . . . , x(hj−1(t)),M, x(hj+1(t)), x(hl(t)))− g(t, x(t))

≤ (1− σ)g(t,M) − g(t, x(t))

≤ g(t,M) − g(t, x(t)), t ∈ [t0, t1].

Again, comparing the solution x(t) of (2.1),(2.2) on [t0, t1] with the solution of (4.1) satisfying
y(t1) < M , we obtain the contradiction x(t) ≤ y(t1) < M with the assumption x(t1) = M .

Finally, assume that condition (c) holds. Let x be a solution of problem (2.1),(2.2) satisfying
lim
t→∞

x(t) = ∞. Since lim
t→∞

hk(t) = ∞, k = 1, . . . , l, there exists t2 ≥ 0 such that x(hn+1(t)) ≥
M0, . . . , x(hl(t)) ≥ M0 for t ≥ t2.

In addition, there is a number A, A > supt≤0 ϕ(t) > 0, A > supt∈[0,t2] x(t) > 0 such that

m
∑

k=1

fk(t, u, . . . , u,M1, . . . ,Ml−n) ≤ (1− σ)g(t, u), u ≥ A, M1 ≥ M0, . . . ,Ml−n ≥ M0.
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Fixing M > A and choosing t1 > t0 > t2 as previously such that x(t) < M for x < t1, x(t0) = A
and x(t) ∈ (A,M) for t ∈ [t0, t1], we notice that

m
∑

k=1

fk(t, x(h1(t)), . . . , x(hl(t)))− g(t, x(t))

<

m
∑

k=1

fk(t,M, . . . ,M, x(hn+1(t)), . . . , x(hl(t)))− g(t, x(t))

≤ (1− σ)g(t,M) − g(t, x(t))

≤ g(t,M)− g(t, x(t)), t ∈ [t0, t1].

Comparing the solution x(t) of (2.1),(2.2) on [t0, t1] with the solution of (4.1) satisfying y(t1) < M ,
we obtain a contradiction x(t) ≤ y(t1) < M to the assumption x(t1) = M . Thus there are no
solutions which tend to +∞ as t → ∞.

Remark 4.2. The proof of Theorem 4.1 implies that its conditions can be relaxed to

m
∑

k=1

fk(t, u, . . . , u) < g(t, u)

for any t and u large enough in (a),

m
∑

k=1

fk(t, u1, . . . , ul) < g(t, uj)

for any t, u1, . . . , uj−1, uj+1 . . . , ul as mentioned in (b) and

m
∑

k=1

fk(t, u, . . . , u,M1, . . . ,Ml−n) < g(t, u)

for any t and for any u large enough in (c).

Example 4.3. Consider Eq. (1.5), where ak(t) ≥ 0, b(t) ≥ c(t) ≥ 0, b(t) − c(t) ≥ β > 0 are
Lebesgue measurable bounded functions, for functions hk, gk condition (a2) holds, nk ≥ 0, n ≥ 0.
Here condition (a42) of Theorem 3.3 holds, thus there exists a global positive solution of problem
(1.5), (2.2).

Denote fk(t, u, v) = ak(t)u/(1+vnk ), g(t, u) = b(t)u− c(t)u
1+un . The functions fk(t, u, v) are strictly

monotone increasing in u. We have

m
∑

k=1

fk(t, u, v)

g(t, u)
≤

m
∑

k=1

ak(t)

b(t)− c(t)
.

Let

lim sup
t→∞

∑m
k=1 ak(t)

b(t)− c(t)
< 1,
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then there exists t0 > 0 such that sup
t≥t0

∑m
k=1 ak(t)

b(t)− c(t)
< 1. Shifting in Theorem 4.1 (b) the initial point

to t0 and noticing that a continuous solution is bounded on [0, t0], we conclude that all solutions of
Eq. (1.5) are bounded.

Evidently, condition (c) of Theorem 4.1 holds without any additional conditions. Hence there
is no solution satisfying lim

t→∞
x(t) = ∞.

Example 4.4. Consider the equation

ẋ(t) = a(t)x(t− h)x(t− g)−
(

b(t)− c(t)

1 + xn(t)

)

x2(t), (4.2)

where a(t) ≥ 0, b(t) ≥ c(t) ≥ 0, b(t) − c(t) ≥ β > 0, a, b, c are Lebesgue measurable bounded
functions, h > 0, g > 0, n ≥ 0. Here condition (a41) of Theorem 3.3 holds, thus there exists a
global positive solution of problem (4.2), (2.2).

Denote f(t, u, v) = a(t)uv, g(t, u) =
(

b(t)− c(t)
1+un

)

u2. The function f is monotone increasing

in both u and v. We have

f(t, u, u)

g(t, u)
=

a(t)

b(t)− c(t)
1+un

≤ a(t)

b(t)− c(t)
.

Hence if

lim sup
t→∞

a(t)

b(t)− c(t)
< 1

then there exists t0 > 0 such that sup
t≥t0

∑m
k=1 ak(t)

b(t)− c(t)
< 1. Shifting in Theorem 4.1 (a) the initial point

to t0 and noticing that the solution is bounded on [0, t0], we conclude that all solutions of Eq. (4.2)
are bounded.

We will give another statement on boundedness where monotonicity is not required.

Theorem 4.5. Suppose conditions (a1)-(a3) hold, g(t, u) ≥ a0(t)u for all u ≥ 0 and

0 ≤ fk(t, u1, . . . , ul) ≤
l
∑

j=1

Akj(t)uj +Bk for all uj ≥ 0,

where a0(t) ≥ 0, Bk ≥ 0, Akj : [0,∞) → [0,∞) are locally essentially bounded functions.
If the linear equation

ẋ(t) = −a0(t)x(t) +

m
∑

k=1

l
∑

j=1

Akj(t)x(hj(t)) (4.3)

is exponentially stable, then any positive solution of problem (2.1), (2.2) is bounded.

Proof. If x is a solution of (2.1), (2.2) then

ẋ(t) ≤ −a0(t)x(t) +

m
∑

k=1

l
∑

j=1

Akj(t)x(hj(t)) +

m
∑

k=1

Bk.
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Hence x(t) ≤ y(t) by [1, Corollary 2.2], where y is a solution of the linear equation

ẏ(t) = −a0(t)y(t) +

m
∑

k=1

l
∑

j=1

Akj(t)y(hj(t)) +

m
∑

k=1

Bk, y(t) = x(t), t ≤ 0.

Since Eq. (4.3) is exponentially stable, y is a bounded function. Hence x is also a bounded function.

Example 4.6. Consider again Eq. (1.5) with the same conditions and notations as in Example 4.3.
We have fk(t, u, vk) ≤ ak(t)u, g(t, u) ≥ (b(t)− c(t))u, u ≥ 0. Hence if the linear equation

ẋ(t) = −(b(t)− c(t))x(t) +

l
∑

k=1

ak(t)x(hk(t))

is exponentially stable, all solutions of Eq. (1.5) are bounded. In particular, the condition lim inf
t→∞

(b(t)−

c(t)) > 0,lim sup
t→∞

∑l
k=1 ak(t)

b(t)−c(t) < 1 implies boundedness (see, for example, [4, Corollary 1.4]).

Corollary 4.7. Suppose conditions (a1)-(a3) hold, g(t, u) ≥ a0u > 0 for u > 0, and

lim sup
uj→∞,j=1,...,l

fk(t, u1, . . . , ul) ≤ Bk.

Then any solution of problem (2.1), (2.2) is bounded.

Example 4.8. Consider the Mackey-Glass type equation

ẋ(t) =

m
∑

k=1

ak(t)| sin(x(hk(t)))|
1 + xn1(h1(t)) + · · ·+ xnl(hl(t))

−
(

b(t) +
c(t)

1 + xn(t)

)

x(t), t ≥ 0, (4.4)

where ak, b, c are nonnegative essentially bounded on [0,∞) functions, b(t) + c(t) ≥ β > 0, nj ≥ 0,
n > 0. Here condition (a43) of Theorem 3.3 holds, thus there exists a global positive solution of
problem (4.4), (2.2). Denote

fk(t, u, u1, . . . , ul) =
ak(t)| sinu|

1 + un1

1 + · · ·+ unl

l

, g(t, u) = b(t)u+
c(t)u

1 + un
.

Hence g(t, u) ≥ βu, and the functions fk(t, u, u1, . . . , ul) are bounded. By Corollary 4.7, all solutions
of Eq. (4.4) are bounded.

Let us note that Theorem 4.1 cannot be applied to (4.4), as the functions fk(t, u, u1, . . . , ul) are
not monotone increasing in u.

5. Persistence of Solutions

We proceed now to persistence and permanence of solutions. As previously, we everywhere
assume that problem (2.1), (2.2) has a unique positive global solution on [0,∞).

Definition 5.1. A positive solution x(t) is persistent if lim inf
t→∞

x(t) > 0 and is permanent if it

is also bounded.
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Theorem 5.2. Suppose that conditions (a1)-(a3) are satisfied.
(a) If fk(t, u1, . . . , ul) are strictly monotone increasing in u1, . . . , ul and

lim inf
u→0+

∑m
k=1 fk(t, u, . . . , u)

g(t, u)
> 1

uniformly on t ∈ [0,∞) then any solution x of (2.1), (2.2) satisfies lim inf
t→∞

x(s) > 0.

(b) If fk(t, u1, . . . , ul) are strictly monotone increasing in u1, . . . , un for some n ∈ {1, . . . , l},
monotone decreasing in un+1, . . . , ul, and there exists M0 > 0 such that for any 0 < M1, . . . ,Ml−n ≤
M0 we have

lim inf
u→0+

∑m
k=1 fk(t, u, . . . , u,M1, . . . ,Ml−n)

g(t, u)
> 1

uniformly on t ∈ [0,∞), then there is no solution x of (2.1), (2.2) satisfying lim
t→∞

x(s) = 0.

Proof. First assume that the assumption in (a) holds. Suppose that x is a solution of (2.1), (2.2)
such that lim inf

t→∞
x(t) = 0.

The solution is positive, we can consider t0 such that hk(t) > 0 for t > t0, and reduce ourselves to
t > t0. Then there exist σ > 0 and b > 0 small enough such that

∑m
k=1 fk(t, u, . . . , u) ≥ (1+σ)g(t, u)

for u ∈ (0, b).
Let us note that, as the solution is positive, min

t∈[0,t0]
x(t) > 0 and thus we can choose m < a < b

such that also 0 < m < a < min
t∈[0,t0]

x(t).

As lim inf
t→∞

x(t) = 0, there exist points t such that x(t) ≤ m. Denote

t2 = inf{t ≥ t0|x(t) ≤ m},

then t2 > t0 and x(t) > m for t ∈ [0, t2). Let

t1 = sup{t ≤ t2|x(t) ≥ a}.

The inequality x(t) > a for t ∈ [0, t0] implies t1 > t0; by definition, t1 < t2. We have m ≤ x(t) ≤ a
on [t1, t2] with a = x(t1) > x(t2) = m.

Since fk are increasing in uj and x(hj(t)) > m on (t0, t2),

m
∑

k=1

fk(t, x(h1(t)), . . . , x(hl(t)))− g(t, x(t))

>

m
∑

k=1

fk(t,m, . . . ,m)− g(t, x(t))

≥ (1 + σ)g(t,m) − g(t, x(t))

≥ g(t,m)− g(t, x(t)), t ∈ [t1, t2].

Thus the solution x(t) of (2.1),(2.2) on [t1, t2] is not less than the solution of the initial value
problem for the ordinary differential equation

ẏ(t) = g(t,m)− g(t, y(t)), y(t1) = a > m, (5.1)
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i.e. x(t) ≥ y(t), t ∈ [t1, t2]. However, the solution of (5.1) satisfies y(t) > m, t ≥ t1. In fact,
assuming the contrary, we obtain that y(t∗) = m for some t∗ > t1, and there are two solutions
through (t∗,m): y and the one identically equal to m. This is impossible as g is locally Lipschitz
which implies uniqueness. Thus x(t2) ≥ y(t2) > m which contradicts to the assumption x(t2) = m.
Hence all solutions are persistent.

Next, let us assume that the conditions in (b) hold and x(t) → 0 as t → ∞. Let t̄ be such that
x(t) ≤ M0 for t ≥ t̄ and t0 ≥ t̄ such that hj(t) ≥ t̄ for t ≥ t0, j = 1, . . . , l.

Thus x(hj(t)) ≤ M0 for t ≥ t0. Next, there are σ > 0 and a > 0 small enough such that
∑m

k=1 fk(t, u, . . . , u,M1, . . . ,Ml−n) ≥ (1 + σ)g(t, u) for u ∈ (0, a) and any 0 < M1, . . . ,Ml−n ≤ M0.
Let 0 < m < a; as x(t) → 0, there is a t such that x(t) ≤ m. Introducing

t2 = inf{t ≥ t0|x(t) ≤ m}, t1 = sup{t ≤ t2|x(t) ≥ a},
we notice that x(hj(t)) < M0, m < x(t) < a for t ∈ [t1, t2], x(t1) = a > x(t2) = m. Therefore

m
∑

k=1

fk(t, x(h1(t)), . . . , x(hl(t))) − g(t, x(t))

>

m
∑

k=1

fk(t,m, . . . ,m, xn+1(hn+1(t)), . . . , x(hl(t))) − g(t, x(t))

≥ (1 + σ)g(t,m) − g(t, x(t))

≥ g(t,m) − g(t, x(t)), t ∈ [t1, t2].

Thus the solution x(t) of (2.1),(2.2) on [t1, t1] is not less than the solution of the initial value
problem (5.1) which, as in case (a), satisfies y(t2) > m. Hence x(t2) ≥ y(t2) > m, the contradiction
with x(t2) = m yields that the solution does not tend to zero.

Remark 5.3. The proof of Theorem 5.2 implies that its conditions in fact can be relaxed to

m
∑

k=1

fk(t, u, . . . , u) > g(t, u)

for any t ∈ [0,∞) and u > 0 small enough in (a) and

m
∑

k=1

fk(t, u, . . . , u,M1, . . . ,Ml−n) > g(t, u)

for any t ∈ [0,∞), u > 0 small enough and 0 < M1, . . . ,Ml−n ≤ M0 in (b).

Example 5.4. Consider Eq. (1.5) with the same conditions as in Example 4.3. We also use the
same notations as in Example 4.3. For Eq. (1.5), we have

lim inf
u→0+

∑m
k=1 fk(t, u, v)

g(t, u)
≥

m
∑

k=1

ak(t)

b(t)(1 + vnk)

There exist M0 > 0 and t0 ≥ 0 such that the condition lim inf
t→∞

m
∑

k=1

ak(t)

b(t)
> 1 implies

m
∑

k=1

ak(t)

b(t)(1 +Mnk)
> 1
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for M ≤ M0 and t ≥ t0. In Theorem 5.2 (b) we shift the initial point to t0 and notice that the bounds

of the positive solution on [0, t0] do not influence the asymptotics. Hence for lim inf
t→∞

m
∑

k=1

ak(t)

b(t)
> 1,

there is no solution x of Eq. (1.5) satisfying lim
t→∞

x(s) = 0.

Further we illustrate in Example 5.8 that the conditions in Theorem 5.2 (b) are not sufficient
to establish permanence of solutions.

Example 5.5. Consider Eq. (4.2) with the same conditions as in Example 4.4. We also use the
same notations as in Example 4.4. For Eq. (4.2), we have

lim inf
u→0+

f(t, u, u)

g(t, u)
≥ a(t)

b(t)
.

Let lim inf
t→∞

a(t)
b(t) > 1, then inft≥t0

a(t)
b(t) > 1 for some t0 ≥ 0. Shifting the initial point to t0 in

Theorem 5.2 (a) and noticing that the solution is positive on [0, t0], we conclude that lim inf
t→∞

a(t)
b(t) > 1

implies that all solutions of Eq. (4.2) are persistent.
Therefore if

lim inf
t→∞

a(t)

b(t)
> 1, lim sup

t→∞

a(t)

b(t)− c(t)
< 1

then Eq. (4.2) is permanent.

Everywhere above, we only assumed that (a2) is satisfied, i.e. the arguments of x tend to ∞ as
t → ∞. In the following theorem we assume a stronger condition that the delays are bounded.

Theorem 5.6. Suppose conditions (a1)-(a3) are satisfied, fk(t, u1, . . . , ul) are monotone increas-
ing in u1, . . . , un for some n ∈ {1, . . . , l}, monotone decreasing in un+1, . . . , ul, and there exist
constants τ > 0, A > 0, µ > 0, M > 0, 0 < β < B such that t − τ < hj(t) ≤ t, j = 1, . . . , l,
m
∑

i=1

fi(t, u1, . . . , ul) ≤ Auj , uj > 0, for some j ∈ {1, . . . , n}, 0 < βu ≤ g(t, u) ≤ Bu for u > 0. If

there exists M > 0 such that

lim sup
t→∞

∑m
i=1 fi(t, u, . . . , u,M, . . . ,M)

g(t, u)
< 1 (5.2)

uniformly on u ∈ [M,∞) then any solution x of (2.1),(2.2) is bounded, with the upper bound

lim sup
t→∞

x(t) ≤ Me2(A+B)τ . (5.3)

If there exists µ > 0 such that

lim inf
t→∞

∑m
i=1 fi(t, u, . . . , u, µ, . . . , µ)

g(t, u)
> 1 (5.4)

uniformly on u ∈ [0, µ] then any solution x of (2.1), (2.2) is persistent, and

lim inf
t→∞

x(t) ≥ µe−2Bτ . (5.5)
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Proof. Let x be a solution of (2.1),(2.2). First we will prove that x is bounded and obtain an
eventual upper estimate for x, then we justify permanence and present an eventual lower estimate.
As a preliminary work, possible growth and decrease of x is estimated.

Let us consider t∗ large enough such that for some t̃,
∑m

i=1 fi(t, u, . . . , u,M, . . . ,M)

g(t, u)
≤ α < 1, t ≥ t̃, u ≥ M,

and hk(t) ≥ t̃ for t ≥ t∗ (we can take t∗ = t̃ + τ). Denote t1 = t∗ + τ , tj = t∗ + jτ . The solution
is positive and continuous, so it is possible to introduce a series of maximum and minimum values
on [tj−1, tj ]:

mj = min
t∈[tj−1,tj ]

x(t), Mj = max
t∈[tj−1,tj ]

x(t), j ∈ N.

Let x(t∗j−1) = Mj−1, where t∗j−1 ∈ [tj−2, tj−1]. Also, ẋ(t) ≥ −g(t, x(t)) ≥ −Bx(t), thus

x(t) ≥ x(t∗j−1)e
−B(t−t∗j−1

) = Mj−1e
−B(t−t∗j−1

) ≥ Mj−1e
−2Bτ , t ∈ [tj−1, tj ],

since t− t∗j−1 ≤ tj − tj−2 = 2τ . Thus, mj ≥ Mj−1e
−2Bτ .

Next, let us develop an upper estimate. By the assumptions of the theorem, the solution satisfies
x(tj−1) ≤ Mj−1 and

ẋ(t) =

m
∑

k=1

fk(t, x(h1(t)), . . . , x(hl(t)))− g(t, x(t)) <

m
∑

k=1

fk(t, x(h1(t)), . . . , x(hl(t)))

≤ Ax(hj(t)) ≤ Amax

{

Mj−1, max
s∈[tj−1,t]

x(s)

}

, t ∈ [tj−1, tj ].

Hence x(t) is less than the solution of the initial value problem ẋ(t) = Ax(t), x(tj−1) = Mj−1,
which is Mj−1 exp(A(t− tj−1)), therefore

Mj ≤ Mj−1e
Aτ , x(t) ≤ Mj−1e

2Aτ , t ∈ [tj, tj+1]. (5.6)

For the sake of contradiction, let us assume that the solution x is unbounded, i.e. for any
M > Me2(A+B)τ , where M is described in the conditions of the theorem, there is an interval
[tj , tj+1] where the inequality x(t) ≥ M is attained for the first time. Hence there exists t∗ where
x(t∗) = M and ε > 0 such that t ∈ [t∗ − ε, t∗] ⊂ [tj, tj+1] and x(t) = sups∈[0,t] x(s), t ∈ [t∗ − ε, t∗].

According to estimate (5.6), M > Me2(A+B)τ implies Mj−1 ≥ Me2Bτ , while mj ≥ Mj−1e
−2Bτ

yields that mj ≥ M and also x(t) ≥ M on [tj−1, t
∗]. Thus, all x(hi(t)) ≥ M for t ∈ [tj , tj+1],

i = 1, . . . , l, and for t ∈ [t∗ − ε, t∗],

ẋ(t) =
m
∑

i=1

fi(t, x(h1(t)), . . . , x(hl(t)))− g(t, x(t))

≤
m
∑

i=1

fk(t, x(t), . . . , x(t),M, . . . ,M)− g(t, x(t))

≤ αg(t, x(t)) − g(t, x(t)) = −(1− α)g(t, x(t)) < 0,

which contradicts to the assumption x(t∗ − ε) ≤ x(t∗) = M . Thus, the solution is bounded with
the eventual upper bound of Me2(B+A)τ .
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Next, let us proceed to persistence and assume that for t ≥ t∗ − τ ,

∑m
i=1 fi(t, u, . . . , u, µ, . . . , µ)

g(t, u)
≥ C > 1, t ≥ t̃, 0 ≤ u ≤ µ,

and introduce tj , mj and Mj as previously. If lim inf
t→∞

x(t) = 0 then there exist t∗ large enough

and ε small enough such that x(t) = mins∈[0,t] x(s) and x(t) < µe−2Bτ on [t∗ − ε, t∗] ⊂ [tj , tj+1].
As previously, we obtain x(t) < µ on [tj−1, t

∗], so x(hi(t)) < µ, i = 1, . . . , l, t ∈ [t∗ − ε, t∗]. On
[t∗ − ε, t∗], we have x(hj(t)) < µ, x(t) < µ and

ẋ(t) =

m
∑

i=1

fi(t, x(h1(t)), . . . , x(hl(t))) − g(t, x(t))

≥
m
∑

i=1

fk(t, x(t), . . . , x(t), µ, . . . , µ)− g(t, x(t))

≥ Cg(t, x(t)) − g(t, x(t)) = (C − 1)g(t, x(t)) > 0,

which contradicts to the assumption x(t∗ − ε) ≥ x(t∗). Thus, the solution is also persistent and
satisfies (5.5).

Example 5.7. Consider the Mackey-Glass equation

ẋ(t) =
a(t)x(h(t))

1 + xn(p(t))
− b(t)x(t), (5.7)

where a and b are Lebesgue measurable bounded functions satisfying 0 ≤ α ≤ a(t) ≤ A, 0 < β ≤
b(t) ≤ B, t−h(t) ≤ τ , t− p(t) ≤ τ , n > 0. The bounds for a(t) and b(t) guarantee that lim sup

t→∞

a(t)
b(t)

is finite. Thus inequality (5.2) is satisfied for any M > M0, where

M0 =











1, lim sup
t→∞

a(t)
b(t) ≤ 1,

lim sup
t→∞

(

a(t)
b(t) − 1

) 1

n
, lim sup

t→∞

a(t)
b(t) > 1.

Thus, all solutions of (5.7) are bounded, with the eventual upper bound of Me2(A+B)τ . Assume
now that in addition

lim inf
t→∞

a(t)

b(t)
> 1. (5.8)

Inequality (5.4) is valid for any 0 < µ < µ0, where

µ0 = lim inf
t→∞

(

a(t)

b(t)
− 1

) 1

n

.

Hence, if condition (5.8) holds, then any positive solution x is persistent with

lim inf
t→∞

x(t) ≥ µ0e
−2Bτ .

Moreover, condition (5.8) implies permanence of all positive solutions of Eq. (5.7).
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The following example illustrates the fact that boundedness of delays in Theorem 5.6 is required
to conclude that all solutions of Eq. (2.1) are bounded and persistent.

Example 5.8. Consider the equation

ẋ(t) =
a(t)x(h(t))

1 + x2(g(t))
− x(t) (5.9)

with piecewise constant h(t) and g(t). Let us note that the equation ẋ+ x(t) = A, x(t0) = x0 has
the solution x(t) = (x0 − A) exp{−(t − t0)} + A, so for any B between A and x0 there is a finite
t1 > t0 such that x(t1) = B, t1 = t0 + ln((x0 −A)/(B −A)).

Let t1 < t2 < . . . be a sequence of positive numbers such that

a(t) =

{

2, t ∈ [t2k, t2k+1),
6, t ∈ [t2k+1, t2k+2),

h(t) =

{

t2k−1, t ∈ [t2k, t2k+1),
t2k, t ∈ [t2k+1, t2k+2),

g(t) =

{

t2k, t ∈ [t2k, t2k+1),
t2k−1, t ∈ [t2k+1, t2k+2),

where t0 = 0, x(t0) = 1, t−1 = −1, x(t−1) = ϕ(−1) = 1
4 . We justify that we can find ti such that

x(t2k) = 2k, x(t2k+1) = 2−k−1, k ∈ N.

In fact, on [0, t1] we have x(h(t)) =
1
4 , x(g(t)) = 1, a(t) = 2, the initial value problem is ẋ(t)+x(t) =

1
4 , x(0) = 1, so we can find t1 such that x(t1) =

1
2 .

On [t1, t2], x(h(t)) = 1, x(g(t)) = 1
4 , a(t) = 6, the initial value problem is ẋ(t) + x(t) =

6/(1 + 1/16) > 2, x(t1) = 1/2, so there is t2 such that x(t2) = 2.
Let us proceed to the induction step. If x(t2k) = 2k, x(t2k+1) = 2−k−1 then on [t2k, t2k+1] we

have the initial value problem

ẋ(t) + x(t) =
2 · 2−k−1

1 + 22k
< 2−k−2, k ∈ N, x(t2k) = 2k,

thus there exists t2k+1 such that x(t2k+1) = 2−k−2. On [t2k+1, t2k+2], we have the initial value
problem

ẋ(t) + x(t) =
6 · 2k

1 + 2−2k−2
> 2k+1, k ∈ N, x(t2k+1) = 2−k−2,

hence there is t2k+2 such that x(t2k+2) = 2k+1, which concludes the induction step. Here both b and
a are bounded, separated from zero, a/b ≥ 2 > 1, g and h satisfy (a2) but the solution is neither
bounded nor persistent. In this example, the delays h and g are unbounded.

6. Unbounded Solutions

Let us consider the case when positive solutions are unbounded.

Theorem 6.1. Suppose fk(t, u1, . . . , ul), k = 1, . . . ,m are increasing functions in u1, . . . , ul for
any t, there is K0 > 0 such that for any K ≥ K0 there exists aK > 0 such that

inf
t≥0

[

m
∑

k=1

fk(t,K, . . . ,K)− g(t,K)

]

≥ aK .
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For any K ≥ K0, if ϕ(t) > K for t ≤ 0 then the solution of (2.1), (2.2) satisfies

lim sup
t→∞

x(t) = +∞.

Proof. Suppose that x is a solution of Eq. (2.1) such that x(t) > K ≥ K0, t ≤ 0.
First, let us prove that x(t) > K0 for any t ≥ 0. Assume that it is not so and there exists t0 > 0

such that x(t) > K ≥ K0, t ∈ [0, t0), x(t0) = K0. In some left neighbourhood [t0 − ε, t0) of t0 we
have K0 < x(t) and |g(t, x(t)) − g(t,K0)| < aK0

/2. Hence

ẋ(t) =

m
∑

k=1

fk(t, x(h1(t)), . . . , x(hl(t))) − g(t, x(t))

≥
m
∑

k=1

fk(t,K0, . . . ,K0)− g(t,K0) + g(t,K0)− x(t, x(t))

≥ aK0
− aK0

/2 = aK0
/2 > 0, t ∈ (t0 − ε, t0),

which implies

K0 = x(t0) = x(t0 − ε) +

∫ t0

t0−ε

ẋ(s) ds ≥ x(t0 − ε) + (aK/2)ε > K0.

The contradiction proves x(t) > K0 for any t ≥ 0.
Next, let us define

K1 = sup

{

u > K0

∣

∣

∣

∣

∣

inf
t≥0,x∈[K0,u]

[

m
∑

k=1

fk(t,K0, . . . ,K0)− g(t, x)

]

≥ 1

2
aK0

}

,

K∗
1 = sup

{

u > K0

∣

∣

∣

∣

∣

inf
t≥0,x∈[K0,u]

[

m
∑

k=1

fk(t,K0, . . . ,K0)− g(t, x)

]

≥ 0

}

.

Either K1 = +∞ or K∗
1 = +∞ would imply that

ẋ(t) ≥
m
∑

k=1

fk(t,K0, . . . ,K0)− g(t, x) > 0

and thus x(t) is increasing for any t; if K∗
1 = +∞ then it is increasing with the guaranteed rate

ẋ(t) ≥ 1
2aK0

, and the solution is obviously unbounded.
By (a1), g is locally Lipschitz, hence there exists α = α([K0, 2K0]) such that

inf
t≥0

|g(t, u) − g(t, y)| ≤ α|u− y|, u, y ∈ [K0, 2K0].

Denote σ := min
{aK0

2α
,K0

}

. Thus, for x ∈ [K0,K0 + σ] we have

inf
t≥0

[

m
∑

k=1

fk(t,K0, . . . ,K0)− g(t, x)

]

≥ inf
t≥0

[

m
∑

k=1

fk(t,K0, . . . ,K0)− g(t,K0)

]

− |g(t,K0)− g(t, x)|

≥ aK0
− α|x−K0| ≥ aK0

− α
aK0

2α
= aK0

− 1

2
aK0

=
aK0

2
.
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Therefore K1 ≥ K0 + σ. Similarly, K∗
1 ≥ K1 + σ.

As long as x(t) ∈ (K0,K1], we have ẋ(t) ≥ 1
2aK0

, thus x(t) > K1 for some t; moreover, x(t) > K1

for t large enough. In fact, assuming that there is an interval [t1 − ε, t1) where x(t) ∈ (K1,K
∗
1 )

while x(t1) = K1, we notice that, due to the fact that x(t) > K0 for t ≥ 0,

ẋ(t) =

m
∑

k=1

fk(t, x(h1(t)), . . . , x(hl(t))) − g(t, x(t))

≥ f(t,K0, . . . ,K0)− g(t, x(t)) ≥ 0

for t ∈ [t1 − ε, t1], which excludes the possibility x(t1 − ε) > x(t1). Thus, x(t) > K1 for x large
enough, say, for t > t∗1.

Further, we consider t large enough such that hi(t) > t∗1 for any i = 1, . . . , l. Denote

K2 = sup

{

u > K1

∣

∣

∣

∣

∣

inf
t≥0,x∈[K1,u]

[

m
∑

k=1

fk(t,K1, . . . ,K1)− g(t, x(t))

]

≥ 1

2
aK1

}

.

Similarly to the previous argument we verify that x(t) > K2 for t large enough, denote Kn, n ∈ N

and repeat this procedure. Thus there is an increasing sequence of positive numbers K1 < K2 <
· · · < Kn < . . . , if finite, and points t1 ≤ t2 ≤ · · · ≤ tn ≤ . . . such that x(t) ≥ Kn for x ≥ tn and

inf
t≥0

[

m
∑

k=1

fk(t,Kn, . . . ,Kn)− g(t,Kn−1)

]

=
1

2
aKn−1

.

If at least one of Kn is infinite, the solution tends to infinity, as explained earlier. In addition, for
limn→∞Kn = +∞, the solution is unbounded. Assuming that lim

n→∞
Kn = d < +∞ and proceeding

to the limit in n in the above inequality, we obtain

inf
t≥0

[

m
∑

k=1

fk(t, d, . . . , d)− g(t, d)

]

=
1

2
ad,

which contradicts to the assumption of the theorem that this infimum is not less than ad.

Example 6.2. Consider Eq. (4.2) with the same conditions as in Example 4.4 and in addition

inf
t≥0

[a(t)− b(t)] ≥ α > 0. (6.1)

We also use the same notations f(t, u, v) = a(t)uv, g(t, u) =
(

b(t)− c(t)
1+un

)

u2 as in Example 4.4.

This leads to f(t,K,K) − g(t,K) ≥ (a(t) − b(t))K2 ≥ αK2 ≥ αK0 > 0 for K ≥ K0. Thus a
solution of (4.2) with any positive initial function ϕ(t) ≥ K0 is unbounded by Theorem 6.1, for any
K0 > 0.

Consider a modification of (4.2)

ẋ(t) = a(t)xβ(t− h)xγ(t− g)−
(

b(t)− c(t)

1 + xn(t)

)

x2(t),

where a(t) ≥ 0, b(t) ≥ c(t) ≥ 0, b(t) − c(t) ≥ b0 > 0, a, b, c are Lebesgue measurable bounded
functions, h > 0, g > 0, β, γ, n ≥ 0, β + γ ≥ 2, and (6.1) is satisfied. By the same calculations as
before any solution with the initial function ϕ(t) ≥ K0 > 1 is unbounded.
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Example 6.3. Consider the linear equation with several delays

ẋ(t) =
m
∑

k=1

ak(t)x(hk(t))− b(t)x(t),

where ak(t) ≥ 0, b(t) ≥ β > 0, ak, b : [0,∞) → [0,∞) and hk(t) ≤ t are Lebesgue measurable
bounded functions. Assume that

lim inf
t→∞

∑m
k=1 ak(t)

b(t)
> 1.

Denote fk(t, u) = ak(t)u, g(t, u) = b(t)u. Then there exist t0 ≥ 0 and α > 1 such that

∑m
k=1 ak(t)

b(t)
≥

α for t ≥ t0, and
∑m

k=1 ak(t)− b(t) ≥ (1− α)b(t) ≥ (1− α)β for t ≥ t0. Hence

m
∑

k=1

fk(t,K)− g(t,K) =

(

m
∑

k=1

ak(t)− b(t)

)

K ≥ (1− α)βK

for any K ≥ K0 > 0. Then a solution with any initial function, with a positive lower bound, is
unbounded by Theorem 6.1.

7. Discussion

In the present paper, we have studied existence of global positive solutions for nonlinear equa-
tion (1.3) with several delays, as well as boundedness and persistence of these solutions. The
results were applied, for example, to the Mackey-Glass equation of population dynamics with non-
monotone feedback [10]. However, they can also be applied to some other models, including the
Nicholson’s blowflies equation with two delays

ẋ(t) = P (t)x(h(t))e−x(g(t)) − δ(t)x(t)

which in the case when variable delays are equal h(t) = g(t) was studied, for example, in [7, 11, 12].
Permanence of solutions of equations of type (1.3) was recently explored in [14] and [17]. Com-

pared to [14, 17], we consider a more general model: in particular, it is not always assumed that f
is increasing in all u-arguments, as well as continuity in t. Also, (H3) in [14, p. 86] is a special case
of conditions of the present paper. On the other hand, in [14, 17], solution bounds are obtained
and more advanced asymptotic properties, such as stability, are discussed.

Equation (1.3) is a special case of the equation with a distributed delay

ẋ(t) =
m
∑

k=1

fk

(

t,

∫ t

h1(t)
x(s)dsR1(t, s), . . . ,

∫ t

hl(t)
x(s)dsRl(t, s)

)

− g(t, x(t)), (7.1)

while the integro-differential equation

ẋ(t) =

m
∑

k=1

fk

(

t,

∫ t

h1(t)
K1(t, s)x(s)ds, . . . ,

∫ t

hl(t)
Kl(t, s)x(s)ds

)

− g(t, x(t)), (7.2)

is another particular case of Eq. (7.1). All conditions for boundedness, persistence, permanence
and existence of unbounded solutions, obtained here for (1.3) can be extended to (7.1) and (7.2),
using the ideas of the proofs of the present paper.
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Equations with several delays involved in a nonlinear function is a challenging object with
properties quite different from the case when these delays coincide, and we have presented several
examples to outline this difference. However, so far only existence of a positive global solution,
persistence and boundedness have been explored. It is interesting to investigate other qualitative
properties for Eqs. (1.3), (7.1) and (7.2), such as oscillation, stability and existence of periodic or
almost periodic solutions.

One of the main results in this paper is Theorem 5.6, where we obtain a priori estimations of
solutions for equation (1.3). Such estimations were used in [9] to obtain global asymptotic stability
results for various types of nonlinear delay differential equations. We expect that this technique
can be applied to obtain explicit global stability results for Eqs. (1.4) and (1.5).

We conclude this discussion by noticing that there are many equations which have a different
form than (1.3), for example, the equation ẋ(t) = f(t, x(h(t)))− g(t, x(r(t))) with the delay in the
negative term, and the logistic-type equation

ẋ(t) = r(t)x(h(t))[1 − x(g(t))]. (7.3)

Compared to (7.3), the Hutchinson equation, which is a standard delay-type logistic equation, has
h(t) ≡ t. Another delay versions of the logistic equation were considered in [2, 3].

However, it is known that Eq. (7.3) does not even necessarily have a global positive solution. It
would be interesting to develop a technique to study such new classes of delay differential equations
including (7.3).
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[3] L. Berezansky, J. Baštinec, J. Dibĺık and Z. Šmarda, On a delay population model with
quadratic nonlinearity Adv. Difference Equ. 2012:230 (2012), 9 p.

[4] L. Berezansky and E. Braverman, On stability of some linear and nonlinear delay differential
equations, J. Math. Anal. Appl., 314 (2006), no. 2, 391–411.

[5] L. Berezansky and E. Braverman, Global linearized stability theory for delay differential equa-
tions, Nonlinear Anal. 71 (2009), 2614–2624.

[6] L. Berezansky and E. Braverman, On multistability of equations with a distributed delay,
monotone production and the Allee effect, J. Math. Anal. Appl. 415 (2014), 873–888.

22



[7] L. Berezansky, E. Braverman and L. Idels, Nicholson’s blowflies differential equations revisited:
main results and open problems, Appl. Math. Model. 34 (2010), 1405–1417.

[8] L. Berezansky, E. Braverman and L. Idels, The Mackey-Glass model of respiratory dynamics:
review and new results, Nonlinear Anal. 75 (2012), 6034–6052.

[9] L. Berezansky, E. Braverman and L. Idels, Mackey-Glass model with monotone feedback re-
visited, Appl. Math. Comput. 219 (2013), 4892-4907.

[10] L. Berezansky, E. Braverman and L. Idels, Mackey-Glass model of hematopoiesis with non-
monotone feedback: Stability, oscillation and control, Appl. Math. Comput. 219 (2013), 6268–
6283.

[11] E. Braverman and D. Kinzebulatov, Nicholson’s blowflies equation with a distributed delay,
Can. Appl. Math. Quart. 14 (2) (2006), 107–128.

[12] E. Braverman and S. Zhukovskiy, Absolute and delay-dependent stability of equations with a
distributed delay, Discrete Contin. Dyn. Syst. A 32 (2012), 2041–2061.

[13] C. Corduneanu, Functional Equations with Causal Operators. Stability and Control: Theory,
Methods and Applications, 16. Taylor & Francis, London, 2002.

[14] T. Faria, A note on permanence of nonautonomous cooperative scalar population models with
delays, Appl. Math. Comput. 240 (2014), 82–90.

[15] T. Faria and J. Oliveira, Boundedness and global exponential stability for delayed differential
equations with applications, Appl. Math. Comput. 214 (2009), 487–496.

[16] K. Gopalsamy, Stability and Oscillation in Delay Differential Equations of Population Dynam-
ics, Kluwer Academic Publishers, Dordrecht, Boston, London, 1992.
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