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Abstract

In this work two active set type methods are considered in order to solve a mathematical problem

which describes the frictionless contact between a deformable body and a perfectly rigid obstacle,

the so-called Signorini Problem. These methods are the primal dual active set method and the

projection iterative method. Our aim, here, is to analyse these two active set type methods and

to carry out a comparison with the well-known augmented Lagrangian method by considering two

representative contact problems in the case of large and small deformation. After presenting the

mechanical formulation in the hyperelasticity framework, we establish weak formulations of the

problem and the existence result of the weak solution is recalled. Then, we give the finite element

approximation of the problem and a description of the numerical methods is presented. The main

result of this work is to provide a convergence result for the projection iterative method. Finally, we

present numerical simulations which illustrate the behavior of the solution and allow the comparison

of the numerical methods.
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1. Introduction

Various contact boundary conditions have been used to model contact phenomena, both in

engineering and mathematics in the literature; see for instance [10, 11, 24, 25, 27] and the references

therein for the mathematical analysis and [12, 17, 20, 21, 28] for the numerical analysis. One

of the most popular remains the so-called Signorini condition, introduced in [26], which describes

the contact with a perfectly rigid foundation. Expressed in terms of unilateral constraints for the

displacement field, this condition leads to a nonlinear and nonsmooth mathematical problem. To

overcome these difficulties, several methods were used. For instance, Alart and Curnier presented in

[1] an augmented Lagrangian formulation combined with a Generalized Newton method to solve non

differentiable but continuous equations arising from frictional contact problems. Over the last few

years, several other methods emerged. Amongst them, the active set strategies have been relatively

popular for the last decade or so. The aim of this kind of method is to find the correct subset A
of all nodes that are currently in contact with the perfectly rigid obstacle; those nodes are called

active while the others are inactive, see [16, 18] and references therein for more details. Also, one

of the most interesting aspects of such a method is that it does not require the use of the Lagrange

multipliers and, therefore, could facilitate the implementation of the algorithm and improve the

condition number of the system. Indeed, since the boundary conditions on the contact boundary

for the active nodes are directly enforced, we only get to solve a series of problems with simple

boundary conditions, such as Dirichlet, Neumann or Robin boundary condition, based on the active

set type method used. The purpose of the present work is to study and compare two active set

type methods, the primal dual active set method and the projection iterative method, in the case

of large and small deformation theories. The first one is the primal dual active set method used in

various works such as [15, 16] and [18] and the reference therein. In [16], the Authors study a class of

semismooth Newton methods for quadratic minimization problems to non negativity constraints in

which global and local non-linear convergence results of the resulting primal dual active set strategy

were established under strong assumptions on the matrix of the linearized systems. The proof is

based on the M-matrix properties of the discrete operator; while such a statement is true for the

Laplace operator it is not for the discrete elasticity operator, as the authors admitted. Furthermore,

in that work, only linear elasticity problems with unilateral boundary constraints are considered.

The work in [18] is devoted to provide an inexact primal dual active set approach to solve non-

linear multibody contact problems for linear elasticity. The non-linearity of such problems arise

only from the non penetration conditions for the involved bodies in contact. The second active set

type method was used for instance in [29] to solve the so-called Signorini problem for the Laplace

equations and to obtain a convergence analysis of the method. This active set method is based on

a fixed point equation and can be formulated as a projection iterative algorithm. The projection

iterative method consists to solve a sequence of Dirichlet or Robin boundary conditions according

to a contact criteria in order to find the correct sets of active and inactive contact nodes. Our aim

in this work is twofold. First, we present and analyse the active set type methods compared to the

well-known augmented Lagrangian approach to solve a Signorini contact problem for hyperelasticity.

Furthermore, we extend the convergence result obtained in [29] for the projection iterative method

to a Signorini problem in the case of linear elasticity. Next we provide a numerical comparison of

the different methods by considering simulations on two-dimensional test problems: one in the small

deformation framework, the Hertz contact problem, and one in the large deformation framework, the

contact between a hyperelastic ring and a rigid foundation under strong compressions. In particular,

we analyze and compare the numerical convergence of the different methods with respect to several

parameters such as the number of degrees of freedom or the number of iterations. By doing so, we

also illustrate the behavior of the solution related to the contact condition.

The rest of the paper is structured as follows. In Section 2 we describe the contact conditions

and introduce the mechanical problem in the large deformation framework. Then we introduce the

notation and some preliminary material, list the assumptions on the data and state the variational
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formulation of the problem in the hyperelasticity framework. In Section 3, we provide the finite

element approximation of the variational formulation. After reformulating the problem into a min-

imization one, an augmented Lagrangian method is recalled to treat the unilateral constraints. In

Section 4, we describe the two active set type methods used to solve unilateral contact problems

in hyperelasticity: the primal dual active set method and the projection iterative method. The

Section 5 is devoted to the convergence analysis of the projection iterative method to the solution

of the Signorini Problem, in the small deformation hypothesis. After that, in Section 6 we present

several numerical simulations to illustrate and compare the behavior of the two active set type meth-

ods. Finally, in Section 7, we conclude by recalling the results obtained and discussing about the

conceivable works in the continuation of this one.

2. Formulations of the contact problem

The purpose of this section is to present both the mechanical problem and the variational for-

mulation in the framework of hyperelasticity.

2.1. Hyperelastic contact model

The physical setting of the mechanical problem is as follows. A hyperelastic body occupies a

bounded domain Ω ⊂ R
d (d = 1, 2, 3) with a Lipschitz continuous boundary Γ, divided into three

disjoint measurable parts Γ1, Γ2 and Γ3 such that meas (Γ1) > 0. The notation x = (xi) for a

typical point in Ω ∪ Γ is used and we denote by ν = (νi) the outward unit normal at Γ. Here

and below the indices i, j, k, l run between 1 and d and, unless stated otherwise, the summation

convention over repeated indices is used. We denote by M
d the space of second order tensors on R

d

or, equivalently, the space of square matrices of order d. The inner product and norm on R
d and

M
d are defined by

u · v = uivi , ‖v‖ = (v · v) 1
2 ∀u,v ∈ R

d,

Π · τ = Πijτij , ‖τ‖ = (τ · τ ) 1
2 ∀Π, τ ∈ M

d.

We use the notation u and Π for the displacement field and the first Piola-Kirchoff stress tensor,

respectively. Also, we denote by uν and uτ the normal stress and tangential components of u on Γ

given by vν = v · ν, vτ = v− vνν. Finally, Πν and Πτ will represent the normal and the tangential

stress on Γ, defined by Πν = (Πν) · ν and Πτ = Πν − Πνν. Furthermore, an index that follows a

comma represents the partial derivative with respect to the corresponding component of the spatial

variable x, e.g. ui,j = ∂ui/∂xj . Moreover, we recall that the divergence operator is defined by the

equality DivΠ = (Πij,j).

In the problems studied below, the material’s behavior is described with a hyperelastic constitutive

law. We recall that hyperelastic constitutive laws are characterized by the first Piola-Kirchhoff

tensor Π which derives from an internal hyperelastic energy density W : Ω × M
d
+ → R, Π =

∂
∂FW (x,F) = ∂FW (x,F), for all x ∈ Ω and F ∈ M

d. Here F is the deformation gradient defined by

F = I+∇u and ∂F represents the differential with respect to the variable F, see [8, 22] for details

on hyperelasticity. In what follows, we consider the contact without friction of a hyperelastic body

with a perfectly rigid obstacle, the so-called foundation. The hyperelastic body is in equilibrium

under the action of body forces of density f0 and surface tractions of density f2 which act on Γ2.

We also assume that the body is fixed on Γ1 and may come in contact over Γ3 with the foundation.

The frictionless contact conditions are based on the unilateral contact conditions without friction
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and can be written following the Karush-Kuhn-Tucker conditions on Γ3:

uν ≤ 0, (2.1)

Πν ≤ 0, (2.2)

uνΠν = 0, (2.3)

Πτ = 0. (2.4)

With these preliminaries, the formulation of the contact problem we consider in this work is as

follows.

Problem P. Find a displacement field u : Ω → R
d and a stress field Π : Ω → M

d such that

Π = ∂FW (F) in Ω, (2.5)

DivΠ+ f0 = 0 in Ω, (2.6)

u = 0 on Γ1, (2.7)

Πν = f2 on Γ2, (2.8)

uν ≤ 0, Πν ≤ 0, uνΠν = 0 on Γ3, (2.9)

Πτ = 0 on Γ3. (2.10)

Here and below, in order to simplify the notation, we do not indicate explicitly the dependence

of various functions on the spatial variable x. Equation (2.5) represents the hyperelastic constitutive

law of the material. Equation (2.6) is the equation of equilibrium in the static case. Conditions

(2.7) and (2.8) represent the displacement and traction boundary conditions, respectively. Finally,

conditions (2.9) and (2.10) represent the frictionless contact conditions with unilateral constraint

previously described in this section. Note that the conditions (2.9) are equivalent to the following

subdifferential inclusion (cf [23])

−Πν ∈ ∂ΨIR−(uν) on Γ3, (2.11)

where ∂ represents the subdifferential operator in the sense of the convex analysis and ΨA denotes

the indicator function of the set A ⊂ R.

2.2. Variational formulation

In order to derive the variational formulation of Problem P, also called in the literature the

Signorini Problem, further notation and some preliminary material are needed. Everywhere in this

paper, the standard notations for Sobolev and Lebesgue spaces associated to Ω and Γ are used. The

following spaces are considered

V = {v ∈ H1(Ω;Rd) : v = 0 on Γ1}, H = L2(Ω;Rd).

These are real Hilbert spaces endowed with their standard inner products (u,v)V and (Π, τ )H and

their associated norms ‖ · ‖V and ‖ · ‖H , respectively. Note that V ⊂ H ⊂ V ∗ is an evolution triple,

with all embeddings being continuous, compact and dense. The duality pairing between V ∗ and

V will be denoted by 〈u,v〉V ∗×V . Also, recall that H1 = H1(Ω)d algebraically and topologically.

Completeness of the space (V, ‖ · ‖V ) follows from the assumption meas(Γ1) > 0, which allows the
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use of Korn’s inequality. We also recall that there exists c0 > 0 which depends on Ω, Γ1 and Γ3 such

that

‖v‖L2(Γ3)d ≤ c0‖v‖V for all v ∈ V. (2.12)

Inequality (2.12) represents a consequence of the Sobolev trace theorem. It is well known that the

weak solution of problem P can be defined from a variational inequality [17, 20], or can be obtained

equivalently from a minimization problem on a convex set, see [6, 13]. In this section, a saddle

point formulation within the form of a hybrid variational formulation is considered. In this case,

the Lagrange multiplier λν related to the contact stress verifies an extended subdifferential inclusion

derived from the pointwise subdifferential inclusion defined in (2.11). Note that, for convenience,

the Lagrange multiplier λν is taken as equal to −Πν . To this end, a trace space is defined by

Xν = { vν |Γ3
: v ∈ V } equipped with its usual norms. We denote by X ′

ν the duals of the spaces

Xν . Moreover, we denote by 〈·, ·〉X′

ν
,Xν

the corresponding duality pairing mapping. Then a function

ϕν : Xν → (−∞,+∞] is introduced, defined by

ϕν(vν) =

∫

Γ3

ΨIR−(vν) dΓ ∀ vν ∈ Xν .

Therefore, the pointwise inclusion condition (2.11) leads to the extended subdifferential inclusion

λν ∈ ∂ϕν(uν) in X ′
ν . (2.13)

For an element v ∈ H1, v is still written for the trace of v. Also, for a regular stress function Π the

following Green’s formula holds:
∫

Ω

Π : ∇v dx+

∫

Ω

DivΠ · v dx =

∫

Γ

Πν · v da for all v ∈ H1. (2.14)

Moreover, in the study of the mechanical problem (2.5)–(2.10) we assume that the body forces and

tractions densities have the regularity

f0 ∈ L2(Ω)d, f2 ∈ L2(Γ2)
d. (2.15)

Now we turn to the hybrid variational formulation of Problem P. To this end, we introduce the non

linear hyperelastic operator A : V → V ∗, and the element f defined by

〈A(u),v〉V ∗×V =

∫

Ω

Π : ∇v dx ∀u, v ∈ V, (2.16)

(f ,v)V = (f0,v)H + (f2,v)L2(Γ2), ∀v ∈ V. (2.17)

We use Green’s formula (2.14) and definition (2.17) to see that

〈A(u),v〉V ∗×V = (f ,v)V +

∫

Γ3

Πνvν da+

∫

Γ3

Πτ · vτ da.

Then by using the Lagrange multiplier λν , related to the normal contact stress Πν , and the condition

(2.10), we obtain the variational formulation of the frictionless contact problem P in terms of two

unknown fields.

Problem PV . Find a displacement field u and a normal stress field λ = λνν such that

u ∈ V, 〈A(u),v〉V ∗×V + 〈λν , vν〉X′

ν
,Xν

= (f ,v)V ∀v ∈ V, (2.18)

λν ∈ ∂ϕν(uν) in X ′
ν . (2.19)

A pair (u,λ) which satisfies (2.18), (2.19) and the hyperelastic constitutive law in the form Π =

∂FW (F) is called a weak solution to the frictionless contact problem P.

The solvability of the Problem PV can be obtained by using an existence result for a three

dimensional hyperelastic Signorini contact problem, provided in [8, p. 381]. The result recalled

below is based on the polyconvexity and the coerciveness of the stored density energy W .
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Theorem 2.1. (existence result for a Signorini contact problem) Let Ω be a domain in R
3,

and let W : Ω×M
3
+ → R

+ be a stored energy function with the following properties:
(a) Polyconvexity: For almost all x ∈ Ω, there exists a convex function W(x, ·) : M3×M

3×R
+∗ → R

such that
W(x,F, CofF, detF) = W (x,F) for all F ∈ M

3
+; (2.20)

the function W(·,F,H, δ) : Ω → R is measurable for all (F,H, δ) ∈ M
3 ×M

3 × R
+∗.

(b) lim
detF→0+

W (x,F) = +∞, for almost all x ∈ Ω.

(c) Coerciveness: There exist constants α, β, p, q, r such that

α > 0, p ≥ 2, q ≥ p

p− 1
, r > 1, (2.21)

W (x,F) ≥ α(‖F‖p + ‖CofF‖q + ‖detF‖r) + β (2.22)

for almost all x ∈ Ω and for all F ∈ M
3.

Let Γ1,Γ2 and Γ3 be disjoint relatively open subset of Γ with meas(Γ1) > 0 and meas({Γ − (Γ1 ∪
Γ2 ∪ Γ3)}) = 0, and let u0 : Γ1 → R

3 be a measurable function such that the set

Φ = {v ∈ W 1,p(Ω); Cof ∇v ∈ Lq(Ω), det ∇v ∈ Lr(Ω),

v = u0 on Γ1, det ∇v > 0 a.e. in Ω}

is nonempty. Let the linear form L defined by L(v) = (f ,v)V be continuous on W 1,p(Ω). Finally,

let I(v) =

∫

W (x,∇v(x))dx +

∫

Γ3

ΨIR−(vν) dΓ − L(v), and assume that inf
v∈Φ

I(v) < +∞. Then

there exists at least one function u such that

v ∈ Φ and I(v) = inf
v∈Φ

I(v). (2.23)

Remark 1. The solvability of problem PV can be obtained directly by applying the Theorem 2.1 in
the case where p = 2, q = 2, r = 2 and u0 = 0. It is easy to see that problem PV with d = 3 can be
derived from the minimization problem (2.23), see [2, 8, 22].

Remark 2. In the case of linear elasticity, if we assume that the elasticity operator is a strongly
monotone Lipschitz continuous operator on the space V (which is not true for hyperelasticity) then,
as proved in [27, p. 126], for each f ∈ V there is a unique weak solution to the contact problem PV .

3. Variational approximation and Lagrangian method

This section is devoted to provide a discrete minimization approach in order to solve the varia-

tional problem PV . To this end, first the discretization of the variational Problem PV is presented

and next, the augmented Lagrangian approach based on an optimization formulation is recalled.

3.1. Discretization step

Let Ω be a polyhedral domain. Moreover, let {T h} be a regular family of triangular finite element

partitions of Ω that are compatible with the boundary decomposition Γ = Γ1 ∪ Γ2 ∪ Γ3, i.e., if one

side of an element Tr ∈ T h has more than one point on Γ, then the side lies entirely on Γ1, Γ2 or Γ3.

The space V is approximated by the finite dimensional space V h ⊂ V of continuous and piecewise

affine functions, that is,

V h = {vh ∈ [C(Ω)]d : vh|Tr ∈ [P1(Tr)]
d ∀Tr ∈ T h,

vh = 0 at the nodes on Γ1 },
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where P1(Tr) represents the space of polynomials of degree less or equal to one in Tr and h > 0

denotes the spatial discretization parameter. For the discretization of the Lagrange multiplier space

X ′
ν , we use discontinuous piecewise constant functions as it is done in [3, 19]. The discrete Lagrange

multiplier space is denoted by Y h
ν . Thus, let us consider the following discrete variational problem.

Problem Ph
V . Find a discrete displacement field uh and a discrete normal stress field λh = λh

νν

such that

uh ∈ V h, 〈A(uh),vh〉V ∗×V + 〈λh
ν , v

h
ν 〉X′

ν
,Xν

= (f ,vh)V ∀vh ∈ V h, (3.1)

λh
ν ∈ ∂ϕν(u

h
ν ) in Y h

ν . (3.2)

For details about the discrete formulation, we refer, e.g., to [4, 5, 21, 28].

3.2. Minimization formulation and augmented Lagrangian method

The discrete weak solutions of Problem Ph
V can also be obtained from a minimization problem

on a convex set which leads to an unconstrained augmented Lagrangian method. This method was

described in detail in [1, 21, 28]. The starting point of this formulation is to consider the following

optimization problem.

uh = argmin
vh∈V h

{

J(vh) + ϕν(v
h
ν )
}

, (3.3)

where J(vh) is the hyperelastic strain energy potential defined by

J(vh) =
1

2
〈A(vh),vh〉V ∗×V − (f ,vh)V . (3.4)

Therefore, with the formalism of the standard Lagrangian, the problem (3.4) is equivalent to the

minmax problem

(uh, λh
ν ) ∈ arg(min

vh

max
γh
ν
∈IR+

{L(vh, γh
ν )}), (3.5)

where λh
ν ∈ Y h ∩ R

+ stands for the Lagrange multiplier while γh
ν is the virtual Lagrange variable,

which represents the normal contact stress. The Lagrangian function L is defined by

L(vh, γh
ν ) = J(vh) + 〈vhν , γh

ν 〉Xν×X′

ν

. (3.6)

We use now an augmented Lagrangian approach which permits to derive a smooth minimization

problem without constraints. At this point, the regularized augmented Lagrangian expression is

given by

Lr(v
h, γh

ν ) = J(vh)− 1

2r
‖γh

ν ‖2 +
1

2r
[γh

ν + rvhν ]
2
+, (3.7)

with r > 0, a penalty factor and [.]+, the positive part of an element of R i.e. [a]+ = max(a, 0) for

a ∈ R . Then the following augmented Lagrangian minimization problem is obtained

(uh, λh
ν ) ∈ arg(min{Lr(v

h, γh
ν )}),where vh ∈ V hand γh

ν ∈ Y h
ν . (3.8)

Assuming that J is continuously differentiable with respect to v and strictly convex, Lr is contin-

uously differentiable with respect to vh and γh
ν and therefore, a saddle-point (uh, λh

ν ) verifies the

following stationary condition

∇uh,λh
ν
Lr(u

h, λh
ν ) = 0. (3.9)

It leads to a system of non linear equations of the form























∇uh Lr(u
h, λh

ν ) = ∇uhJ(uh) + [λh
ν + ruh

ν ]+ν = 0,

∇λh
ν
Lr(u

h, λh
ν ) = −1

r

{

λh
ν − [λh

ν + ruh
ν ]+

}

= 0.
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Note that from now on, in order to simplify the notation, we do not indicate explicitly the spatial

discretization parameter on the unknown fields. We denote by u and λ the vectors representing

the generalized vectors of displacement and Lagrange multiplier, defined by u = {ui}N
h

Tot

i=1 and

λ = {λi}N
h

Γ3

i=1 , respectively, with Nh
Tot, the number of nodes of the discretization of Ω and Nh

Γ3
,

the number of nodes of the discretization of Γ3. Here, u
i represents the value of the corresponding

function uh at the ith nodes of T h while λi denotes the value of the corresponding function λh = λh
νν

at the ith nodes arising from the discretization of the contact interface Γ3 denoted by Γh
3 . Therefore,

by adopting a vector form, we have the following system of non linear equations:

Problem PL. Find a displacement field u ∈ R
d×Nh

Tot and a normal stress field λ = λνν ∈ R
d×Nh

Γ3

such that

G(u) + F(u, λν) = 0d×Nh

Tot
+Nh

Γ3

, (3.10)

where G(u) ∈ R
d×Nh

Tot × R
Nh

Γ3 is the hyperelastic part and F(u,λ) ∈ R
d×Nh

Tot × R
Nh

Γ3 is the non
differentiable contact part defined as follows

G(u) =

(

A(u)− f

0Nh

Γ3

)

and F(u, λν) =







[λν + ruν ]+ν

−1

r

{

λν − [λν + ruν ]+

}






,

here 0Nh

Γ3

is the zero of RNh

Γ3 and 0d×Nh

Tot
+Nh

Γ3

is the zero of Rd×Nh

Tot
+Nh

Γ3 .

The solution of the non linear Problem PL is based on a generalized Newton method which permits

to treat both variables (u,λ) simultaneously. Now, by considering the pair x = (u,λ), the iterative

scheme of index k can be summarized as follows.

(i) Choose x0, set k = 0.

(ii) Set x(k+1), such that

x(k+1) = x(k) − (Kk + Lk)
−1(G(x(k)) + F(x(k))), Lk ∈ ∂F(x(k)), (3.11)

where ∂F(x(k)) is the generalized Jacobian of F at x(k) and Kk is the Jacobian of G at x(k).

(iii) If ‖x(k+1) − x(k)‖ ≤ ǫ and ‖RL(x(k))‖ ≤ ǫ then stop, else goto (ii).

Here, ǫ represents a small value and RL(x(k)) is the nonlinear operator belonging to R
d×Nh

Tot×R
Nh

Γ3 ,

defined by

RL(x(k)) = G(u(k)) + F(u(k),λ(k)).

Remark 3. This method requires the consideration of additional immaterial nodes associated to
the Lagrange multipliers, for the treatment of the contact operator F(u,λ). The construction of
these fictitious nodes depends on the contact element used for the geometrical discretization of the
interface Γ3. In the case of the numerical examples presented in Section 6, the discretization is
based on “node-to-rigid” contact element, which is composed by one node of Γh

3 and one Lagrange
multiplier node.

4. Active set type methods

The aim of this section is to present the main traits of two active set type methods used to

solve unilateral contact problems without friction between a hyperelastic body and a rigid obstacle.

These two methods are the primal dual active set method and the projection iterative method. See

[18] and [29] for a presentation of the methods in the case of linear elasticity and Laplace equations,

respectively. Then, in each case, we present the method and detail the associated iterative algorithm

for the hyperelastic Signorini problem.
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4.1. Primal dual active set

The primal dual active set type method can be seen as a semismooth Newton method based on

the reformulation of conditions (2.9), see [16]. As a matter of fact, the unilateral contact conditions

(2.9) can be formulated in terms of a fixed point problem, as mentioned in [7]. Let us recall and

prove this result.

Proposition 4.1. Let γ > 0, the unilateral contact conditions (2.9) are equivalent to:

Πν = −[−Πν + γuν ]+ on Γ3. (4.1)

Proof. Let’s assume that (2.9) hold. Then, either uν < 0 or uν = 0. First, if uν < 0, (2.3) implies
that Πν = 0. So

−[−Πν + γuν ]+ = −[γuν ]+ = 0 and Πν = 0 =⇒ Πν = −[−Πν + γuν ]+.

Suppose now that uν = 0 and Πν < 0

−[−Πν + γuν ]+ = −[−Πν ]+ = Πν .

Conversely, if (4.1) holds, it implies that (2.2) holds. Next, if Πν = 0 we have

−[γuν ]+ = 0,

which means that uν < 0, since γ > 0. At last, if Πν < 0, −Πν + γuν > 0 and

Πν = −[−Πν + γuν ]+ = Πν − γuν ,

so γuν = 0 and, since γ > 0, uν = 0. Therefore (2.1) and (2.3) hold, which concludes the proof.

Now, let (u,λ) be the solution of the discrete variational problem Ph
V , with λν the Lagrange

multiplier introduced in the previous part and defined by λν = −Πν . The Problem Ph
V can be

rewritten in a discrete algebraic form with the condition (4.1) for the Lagrange multiplier. Then, it

leads to consider the system of non linear equations of the following form

R(u,λ) =





Ru(u,λ) = A(u) + λνν − f

Rλ(u,λ) = λν − [λν + γuν ]+



 =





0

0



 , (4.2)

where, R(u,λ) is the generalized non linear operator belonging to R
d×Nh

Tot × R
Nh

Γ3 . Therefore, by

adopting the semismooth Newton formalism, the solution (u,λ) can be formulated as follows:

(i) Choose (u(0),λ(0)), set k = 0.

(ii) Set (u(k+1),λ(k+1)) such that

Gu(u(k),λ(k))δu(k) = −Ru(u(k),λ(k)), (4.3)

∆Rλ(u(k),λ(k)) = −Rλ(u(k),λ(k)), (4.4)

u(k+1) = u(k) + δu(k), (4.5)

λ(k+1) = λ(k) + δλ(k), (4.6)

where Gu(u(k),λ(k)) stands for the differential of Ru with respect to the variable u(k) as follows

Gu(u(k),λ(k)) =
∂Ru(u(k),λ(k))

∂u(k)
,

and ∆Rλ(u(k),λ(k)) represents the total differential of the complementarity function Rλ with

respect to the variables u(k) and λ(k) as follows

∆Rλ(u(k),λ(k)) =
∂Rλ(u(k),λ(k))

∂(u(k),λ(k))
(δu(k), δλ(k)).
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(iii) If ‖(u(k+1),λ(k+1))− (u(k),λ(k))‖ ≤ ǫ and ‖R(u(k),λ(k))‖ ≤ ǫ then stop, else goto (ii).

The main traits of this method is to consider separately the solution of Ru(u,λ) = 0 and the

fixed point λν = [λν + γuν ]+ which is determined by equation (4.4). Let us denote by S the set

of all nodes of the finite element mesh belonging to Γh
3 and p a node of S. After some calculus of

variations, it is easy to see that the equation (4.4) leads directly to enforce uν,p = 0 if the nodes

p ∈ S are in status of contact by checking an active set condition that is λν,p + γuν,p ≥ 0 for all

p ∈ S. Furthermore, equation (4.4) leads also to the condition λν,p = 0 in the case of non contact,

see [15, 16] for more details. Thereby, let us consider the active subset A of contact nodes defined

by A = {p ∈ S : λν,p + γuν,p ≥ 0}, and the associated inactive subset: I = S \ A. Now, we turn to

the description of the iterative active set algorithm of index k.

(i) Choose (u(0),λ(0)), set k = 0.

(ii) Set Ak+1 = {p ∈ S : λ
(k)
ν,p + γu

(k)
ν,p ≥ 0}, Ik+1 = S \ Ak+1.

(iii) Find (u(k+1), λ(k+1)) such that

u(k+1) = u(k) − [Gu(u(k),λ(k))]−1Ru(u(k),λ(k))

u(k+1)
ν,p = 0 for all p ∈ Ak+1, (4.7)

λ(k+1)
ν,p = 0 for all p ∈ Ik+1. (4.8)

(iv) If ‖(u(k+1),λ(k+1))− (u(k),λ(k))‖ ≤ ǫ, ‖R(u(k+1),λ(k+1))‖ ≤ ǫ and Ak+1 = Ak then stop, else

goto (ii).

We recall that the aim of the active set type strategy is to find the correct subset A of all nodes

that are currently in contact with the perfectly rigid obstacle.

Remark 4. Unlike the augmented Lagrangian approach, another traits of the active set type method
is the non-use of additional nodes for the determination of the normal contact stress. The computa-
tion of λ(k+1)

ν,p for all p ∈ Ak+1 is obtained a posteriori by using the solution u(k+1) in the equation

A(u(k+1)) + λ
(k+1)
ν ν = f . Nevertheless, we can note a similarity with the augmented Lagrangian

method. Indeed, the second equation of (4.2) corresponds exactly to the second equation of (3.10).

4.2. Projection iterative method

In this part, a projection iterative algorithm based on a fixed point equation is presented. Note

that in (4.1) we used a reformulation of the unilateral contact conditions in the term of a nonlinear

complementary problem function. Here, in order to obtain the adequate fixed point equation, this

function can be used slightly differently to obtain another formulation of (2.9). Indeed, let c > 0,

the Signorini boundary conditions (2.9) are equivalent to the following fixed point problem:

uν = −[−uν + cΠν ]+ on Γ3. (4.9)

Remark that the equivalence between (4.9) and (4.1) can be easily proved by similar arguments that

those used in Section 4.1. Then, the discrete variational problem Ph
V can be rewritten in another

equivalent discrete algebraic form, as follows

A(u) + λνν = f , (4.10)

uν,p + [−uν,p − cλν,p]+ = 0 for all p ∈ S. (4.11)

Using (4.11), an implicit scheme of index k on S is used and it can be formulated as follows

u(k+1)
ν,p = −[−u(k)

ν,p − cλ(k+1)
ν,p ]+, for all p ∈ S. (4.12)

Note that an explicit scheme for the numerical treatment of (4.11) could also be used, but with all

the drawbacks inherent in this type of method.
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Now, we turn to the description of the projection iterative algorithm (see [29] for a presentation

in the case of Laplace equations with a unilateral constraint).

(i) Choose (u(0),λ(0)), set k = 0.

(ii) Set Ak+1 = {p ∈ S : u
(k)
ν,p + cλ

(k)
ν,p ≥ 0}, Ik+1 = S \ Ak+1.

(iii) Find (u(k+1), λ(k+1)) such that

A(u(k+1)) + λ(k+1)
ν ν = f , (4.13)

u(k+1)
ν,p = 0 for all p ∈ Ak+1, (4.14)

u(k+1)
ν,p = u(k)

ν,p + cλ(k+1)
ν,p for all p ∈ Ik+1. (4.15)

(iv) If ‖(u(k+1), λ(k+1))− (u(k), λ(k))‖ ≤ ǫ, ‖R(u(k+1), λ(k+1))‖ ≤ ǫ and Ak+1 = Ak then stop, else

goto (ii).

Even if it was not referred to as an active set type method in [29], the algorithm fulfills the same

objective than the active set strategy presented in Section 4.2, that is to say to find the correct

subset A of all nodes in contact with the perfectly rigid obstacle. However, the establishment of

the subset I = S \ A changes according to the algorithm computed. In the primal dual active set

method, the inactive set is obtained by using homogeneous Neumann boundary condition while, in

the projection iterative method, the Robin condition u
(k+1)
ν,p = u

(k)
ν,p + cλ

(k+1)
ν,p for all p ∈ Ik+1 is

used instead. As a consequence, the non linear equation (4.13) can be solved by a linearized Newton

method in which the Robin condition (4.15) has to be included beforehand. It leads to a differential

of Ru(u(k),λ(k)) with respect to u(k) different from the case of the primal dual active set method.

Remark 5. We also insist on the fact that for the projection iterative method, it is not necessary
to consider additional fictitious nodes in the initial mesh as for the augmented Lagrangian method.
This particular trait represents one of the main advantages of the active set type methods.

5. Convergence analysis of the projection iterative method

Since the convergence of active set type methods remains a challenging and open problem in the

framework of hyperelasticity, in this section we investigate the convergence of the projection iterative

algorithm in the infinitesimal strain theory. Therefore, under the hypothesis of small displacement-

gradient theory, the first Piola-Kirchhoff tensor Π can be replaced by the Cauchy stress tensor σ,

since ‖u‖ << 1 and ‖∇u‖ << 1 (cf [8, p. 71]). In this part only, additional notations compatible

with the small strain theory are introduced. We denote by S
d the space of second order symmetric

tensor on R
d and we consider the space Q defined by

Q =
{

σ = (σij) : σij = σji ∈ L2(Ω)
}

.

Note that ε represents the linearized strain tensor in the small displacement-gradient theory

ε(v) = (εij(v)), εij(v) =
1

2
(vi,j + vj,i).

Then, we can consider an elastic constitutive law given by the following relation

σ = Eε(u). (5.1)

11



We also assume that the elasticity tensor E satisfies the following conditions.


















































(a) E : Ω× S
d → S

d.

(b) There exists LE > 0 such that

‖E(x, ε1)− E(x, ε2)‖ ≤ LE‖ε1 − ε2‖ ∀ ε1, ε2 ∈ S
d, a.e. x ∈ Ω.

(c) There exists mE > 0 such that

(E(x, ε1)− E(x, ε2)) · (ε1 − ε2) ≥ mE ‖ε1 − ε2‖2
∀ ε1, ε2 ∈ S

d, a.e. x ∈ Ω.

(d) The mapping x 7→ E(x, ε) is measurable on Ω, for any ε ∈ S
d.

(e) The mapping x 7→ E(x,0Sd) belongs to Q.

(5.2)

Remark 6. Note that the previous hypotheses were used in [27, p. 126] to prove the uniqueness of
the weak solution.

Let (., .) denote the extension of the usual L2(Γ) scalar product to H1/2(Γ)×H−1/2(Γ). In order

to establish the convergence analysis of the projection iterative method for the case of small strain

theory, we have to consider and to prove preliminary results presented in the form of two lemmas.

Lemma 5.1. Denote by (u,σ) the solution of the Signorini problem P, and (u(k+1),σ(k+1)) the
solution obtained at the iteration k + 1 of the projection iterative method we have

(σ(k+1)
ν , u(k)

ν − uν)Γ3
≥ (σ(k+1)

ν , u(k)
ν − u(k+1)

ν )Γ3
. (5.3)

Proof. With the complementary condition (2.3), we have

(σν , u
(k+1)
ν − uν)Γ3

= (σν , u
(k+1)
ν )Γ3

.

Also, since

u(k+1)
ν = −[−u(k)

ν + cσ(k+1)
ν ]+ ≤ 0 and σν ≤ 0,

we obtain that
(σν , u

(k+1)
ν − uν)Γ3

≥ 0. (5.4)

Applying now the Green formula, we have:
∫

Ω

(σ(k+1) − σ) · (ε(u(k+1))− ε(u)) dx =

∫

Γ

(σ(k+1) − σ)ν · (u(k+1) − u) da

−
∫

Ω

Div(σ(k+1) − σ) · (u(k+1) − u) dx.

By using (2.6), (2.7), (2.8) and (2.10) we obtain
∫

Ω

(σ(k+1) − σ) · (ε(u(k+1))− ε(u)) dx = (σ(k+1)
ν − σν , u

(k+1)
ν − uν)Γ3

, (5.5)

besides, with (5.2)(c) and (5.1)
∫

Ω

(σ(k+1) − σ) · (ε(u(k+1))− ε(u)) dx ≥ mE ‖u(k+1) − u‖2V ≥ 0, (5.6)

and, by combining (5.5) and (5.6),

(σ(k+1)
ν − σν , u

(k+1)
ν − uν)Γ3

≥ 0. (5.7)

Then, according to (5.4) and (5.7)

(σ(k+1)
ν , u(k+1)

ν − uν)Γ3
≥ (σν , u

(k+1)
ν − uν)Γ3

≥ 0.
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From there, we deduce Lemma 5.1

(σ(k+1)
ν , u(k)

ν − uν)Γ3
= (σ(k+1)

ν , u(k)
ν − u(k+1)

ν + u(k+1)
ν − uν)Γ3

≥ (σ(k+1)
ν , u(k)

ν − u(k+1)
ν )Γ3

.

Lemma 5.2. Denote by (u,σ) the solution of the Signorini problem P, and (u(k+1),σ(k+1)) the
solution obtained at the iteration k + 1 of the projection iterative method; then

‖u(k+1)
ν − uν‖2Γ3

≤ ‖u(k)
ν − cσ(k+1)

ν − uν‖2Γ3
− ‖u(k+1)

ν + cσ(k+1)
ν − u(k)

ν ‖2Γ3
. (5.8)

Proof. Let us consider K, a nonempty closed convex subset, x, a vector of K, and PK(x), the pro-
jector of x on K. Therefore, we have the following proposition proved in [27, p. 13]

(PK(x)− x, PK(x)− y) ≤ 0, ∀y ∈ K.

Here, we consider

PR+(−u(k)
ν + cσ(k+1)

ν ) = [−u(k)
ν + cσ(k+1)

ν ]+ = −u(k+1)
ν and y = −uν ≥ 0,

then we obtain
(u(k+1)

ν − (u(k)
ν − cσ(k+1)

ν ), u(k+1)
ν − uν)Γ3

≤ 0, (5.9)

so

‖u(k+1)
ν − uν‖2Γ3

= ‖u(k+1)
ν − (u(k)

ν − cσ(k+1)
ν ) + (u(k)

ν − cσ(k+1)
ν )− uν‖2Γ3

= ‖u(k+1)
ν − (u(k)

ν − cσ(k+1)
ν )‖2Γ3

+ ‖(u(k)
ν − cσ(k+1)

ν )− uν‖2Γ3

+2(u(k+1)
ν − (u(k)

ν − cσ(k+1)
ν ), (u(k)

ν − cσ(k+1)
ν )− uν)Γ3

= ‖(u(k)
ν − cσ(k+1)

ν )− uν‖2Γ3
− ‖u(k+1)

ν − (u(k)
ν − cσ(k+1)

ν )‖2Γ3

+2(u(k+1)
ν − (u(k)

ν − cσ(k+1)
ν ), u(k+1)

ν − uν)

≤ ‖(u(k)
ν − cσ(k+1)

ν )− uν‖2Γ3
− ‖u(k+1)

ν − (u(k)
ν − cσ(k+1)

ν )‖2Γ3
.

Using the above Lemmas, we can now prove the following theorem

Theorem 5.3. The sequence
{

u
(k)
ν

}

, defined in Section 4.2 by the projection iterative method,

converges to the unique solution uν of the Signorini problem as k → ∞.

Proof. First, by using the Lemma 5.2, we have

‖u(k+1)
ν − uν‖2Γ3

≤ ‖u(k)
ν − cσ(k+1)

ν − uν‖2Γ3
(5.10)

−‖u(k+1)
ν + cσ(k+1)

ν − u(k)
ν ‖2Γ3

≤ ‖u(k)
ν − uν‖2Γ3

− ‖u(k+1)
ν − u(k)

ν ‖2Γ3

−2(cσ(k+1)
ν , u(k)

ν − uν)− 2(cσ(k+1)
ν , u(k+1)

ν − u(k)
ν ),

then, by the Lemma 5.1,

‖u(k+1)
ν − uν‖2Γ3

≤ ‖u(k)
ν − uν‖2Γ3

− ‖u(k+1)
ν − u(k)

ν ‖2Γ3
. (5.11)
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Next, we consider S =

∞
∑

k=0

‖u(k+1)
ν − u(k)

ν ‖2Γ3

S ≤
∞
∑

k=0

(‖u(k)
ν − uν‖2Γ3

− ‖u(k+1)
ν − uν‖2Γ3

).

Since
{

u
(k)
ν

}

is bounded, with u
(∞)
ν = lim

k→∞
u
(k)
ν , we deduce

S ≤ ‖u(0)
ν − uν‖2Γ3

− ‖u(∞)
ν − uν‖2Γ3

< ∞. (5.12)

It means that the infinite sum of the terms of the sequence ‖u(k+1)
ν − u

(k)
ν ‖2Γ3

converges. We deduce
that

lim
k→∞

‖u(k+1)
ν − u(k)

ν ‖2Γ3
= 0. (5.13)

Therefore
{

u
(k)
ν

}

is a Cauchy sequence. Let the couple (u∗, σ∗) = (u
(∞)
ν , σ

(∞)
ν ), with u

(∞)
ν =

lim
k→∞

u
(k)
ν and σ

(∞)
ν = lim

k→∞
σ
(k)
ν . Such a couple verifies the fixed point problem (4.9) that is the

solution of the Signorini problem; therefore

u∗ = uν and σ∗ = σν , (5.14)

which concludes the proof.

Note that the Theorem 2.1 does not provide a coercivity assumption, or at least a strong mono-

tonicity assumption, for the Piola-Kirchhoff tensor Π, needed in (5.7). Therefore, whether Theorem

5.3 still holds in the case of large deformation framework remains, for now, an open question which

deserves to be investigated in the future.

6. Numerical simulations

The aim of this section is to present several numerical simulations which illustrate, amongst other,

the behavior of the numerical solutions of the two active set type methods described in Section

4 compared to the augmented Lagrangian method. Moreover, in order to conduct an objective

comparison of methods, the linearized subproblems resulting from each method are solved by the

same numerical algorithm, namely a conjugate gradient method with incomplete LU factorization

preconditioning. We carried out the numerical simulations based on two static frictionless contact

problems: the Hertz half-sphere contact problem and the compression of a hyperelastic ring against

a rigid foundation.

Note that the different numerical methods have been implemented in a Fortran computer code which

is based on a MODULar Finite Element library (MODULEF) developed by INRIA (Institut National

de Recherche en Informatique et en Automatique, Rocquencourt, France). For more details, we refer

to https://www.rocq.inria.fr/modulef/english.html.

6.1. Hertz half-sphere contact problem

Generally, it is quite difficult to find analytical solutions for contact problems, because of their

complexity, however there are several exceptions studied in the Hertz theory [14]. For this reason,

we describe in what follows the compression of a linear elastic half ball against a foundation that

is included in the Hertz theory. The physical setting is depicted in Figure 1. There, the following

notations are used:

Ω =
{

(x1, x2) ∈ R
2 : x2

1 + (x2 −R)2 ≤ R2, x2 ≤ R
}

,

Γ1 =
{

(x1, x2) ∈ R
2 : x1 = 0, x2 = R

}

,

Γ2 =
{

(x1, x2) ∈ R
2 : x2 = R, −R ≤ x1 ≤ R

}

,

Γ3 =
{

(x1, x2) ∈ R
2 : x2

1 + (x2 −R)2 = R2, x2 ≤ R
}

.
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The domain Ω represents the cross section of a three-dimensional deformable body subjected to

the action of traction in such a way that a plane deformation hypothesis is assumed. The horizontal

component of the displacement field vanishes on Γ1. Vertical traction of density f2 acts on the

boundary Γ2. No body forces are assumed to act on the body during the process. The body is in

contact without friction with an obstacle on the part Γ3 of its boundary. For the discretization,

we have control over a parameter Nh
Γ3

that describes the number of nodes on Γh
3 (the number of

nodes on Γh
2 is, therefore, chosen accordingly in order to obtain regular-enough elements). In the

configuration Nh
Γ3

= 256 depicted in Figure 1, 30356 elastic finite elements were used and the total

number of degrees of freedom is equal to 30810. We model the material’s behavior with an elastic

linear constitutive law in which the elasticity tensor E satisfies

(Eε)αβ =
Eκ

(1 + κ)(1− 2κ)
(ε11 + ε22)δαβ +

E

1 + κ
εαβ , 1 ≤ α, β ≤ 2.

Here E is the Young modulus, κ the Poisson ratio of the material and δαβ denotes the Kronecker

symbol.

For the computation below the following data were used:

E = 150N/m2, κ = 0.3,

f0 = (0, 0)N/m2, f2 = (0,−2)N/m on Γ2,

R = 8m, stopping criterion : ǫ = 10−5.

In Figure 2, the deformed configuration as well as the normal contact stresses on the boundary

Γ3 are plotted.

Accuracy of the methods comparing to the analytical solution. According to the Hertz

theory, it is possible to calculate the analytical solution given by the following normal pressure

distribution on Γ3:










if |x1| < b, pν = −
4Rf2y

πb2

√

b2 − x2
1 (contact),

else pν = 0 (no contact),

(6.1)

with b = 2

√

2R2f2y(1− κ2)

Eπ
. We present now the comparison between the numerical solutions,

obtained by the projection iterative method, the primal dual active set method, the augmented

Lagrangian method, and the analytical solution (6.1), given by the Hertz theory.

In Figure 3, we investigate the accuracy of the methods on Γ3 by plotting the normal contact

stress σν with respect to the abscissa for each method. We note that the analytical solution and

the numerical solutions are already almost indistinguishable. Therefore, as expected, the projection

iterative method and the primal dual active set method are reliable on this test case. In Figure 4, the

difference (∆Analytic) between the analytical solution and the normal contact stress σν obtained with

the 3 numerical methods are also plotted. Note that, while there is a very slight difference between

the projection iterative method and the augmented Lagrangian method, no difference is visible at

first sight between the primal dual active set method and the augmented Lagrangian method.

Performances of the algorithms. In Table 1, we give the number of iterations for the conver-

gence of the projection iterative method and the augmented Lagrangian method with respect to the

arbitrary positive parameter c used in Section 4.2 and with respect to the number of nodes of Γh
3 ,

Nh
Γ3
. In Table 2, we conduct the same study for the primal dual active set method with respect to

the arbitrary positive parameter γ used in Section 4.1.

According to Tables 1–2, as expected, the arbitrary positive parameters c and γ do not have a

significant effect on the number of iterations for the projection iterative method and the primal dual
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active set method. However, such statements are not exactly verified for the projection iterative

method in the cases where c is less than or equal to 10. This is due to the fact that the condition (4.15)

tends to the condition (4.8) when c tends to infinity. Furthermore, the number of iterations to reach

the convergence is identical for the primal dual active set method and the augmented Lagrangian

method, and a such trait comes from that the second equation of (4.2) corresponds exactly to the

second equation of (3.10). Besides, note that the number of iterations for the augmented Lagrangian

method and the two active set type methods is not degraded with the increasing of Nh
Γ3
.

Next, in Figure 5–7 we provide the evolution of the error Ek = ‖x(k)−x(k−1)‖2 with respect to the

iteration index k for each method, with c = γ = 104, and for 3 values of Nh
Γ3

(Nh
Γ3

= 128, 256, 512).

There is almost no difference between the curve obtained with the projection iterative method and

the curve obtained with primal dual active set. Also it seems that both methods have an error

evolution similar to that of the augmented Lagrangian method.

In Table 3, we provide the CPU time of the simulation for each method with respect to Nh
Γ3
. The

two active set type methods are faster by far, in term of CPU time, than the augmented Lagrangian

method. This behavior can be explained by the use of the Lagrange multipliers for the augmented

Lagrangian method which worsen the condition number of the linearized systems coming from the

Newton method and therefore this leads to an increase of the solution’s CPU time of the linearized

systems. Such a result must be highlighted by the actual size of the tangent linear system, i.e. the

number of degrees of freedom, in both cases with respect to the discretization considered:

• Nh
Γ3

= 128: 7921 dof for the augmented Lagrangian method compared to 7792 dof for the

active set type methods,

• Nh
Γ3

= 256: 31067 dof for the augmented Lagrangian method compared to 30810 dof for the

active set type methods,

• Nh
Γ3

= 512: 123065 dof for the augmented Lagrangian method compared to 122552 dof for the

active set type methods.

Note that, as already implied in the presentation of the algorithms, the tangent linear system arising

from the active set type methods is smaller since we do not use the Lagrange multiplier in those cases.

In fact, given the small differences between the primal dual active set method and the projection

iterative method, we can consider that they are equally fast, both in term of iteration and in term

of CPU time.

Evolution of the deformed meshes during the iterative process. We display now in Fig-

ures 8–9 the deformed meshes at different steps of convergence of the active set methods and the

augmented Lagrangian method. More precisely, the deformed configurations are plotted for the

iteration number 1, 3, 5 and 8. It is relevant to compare them since the three methods converge

with the same number of iterations for c = γ = 104. Unexpectedly, the deformed meshes during the

iterative process of the augmented Lagrangian method and the active set type methods are identical

to the point that they are stackable. This behavior can be explained by the fact that the contact

conditions (4.1) and (4.9) used for the two active set methods correspond exactly to the second

equation of the non linear system (3.10) arising from the augmented Lagrangian method.

Error estimates. At last, we provide and check the numerical convergence order of the active set

methods. In order to do that, a sequence of numerical solutions is computed by using triangulations

of the body according to the spatial discretization parameter h. Since the solutions are virtually

identical, we provide this numerical study for the projection iterative method. The numerical esti-

mated error values ‖u−uh‖V , denoted by Eh in Figure 10, are computed for several discretization

parameters of h. Here, the boundary Γ3 of Ω is divided into 1/h equal parts. The numerical solution

corresponding to h = 1/512 is taken as the “exact” solution, which is used to compute the errors of

the numerical solutions with 6 higher values of h. Therefore, the results obtained for the following

values of h : h = 1/64, h = 1/96, h = 1/128, h = 1/192, h = 1/256 and h = 1/384 are plotted. The
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numerical results are presented in Figure 10 where the dependence of the error estimate ‖u−uh‖V
with respect to h is plotted. According to Figure 10, the curve of the numerical error estimates

is asymptotically linear with respect to h, which is consistent with the theoretical error estimates

established in [5, 20] for the case of the small deformation theory.

6.2. Compression of a hyperelastic ring against a foundation

In this section, we consider a second representative application in order to assess the perfor-

mances of the active set type methods in the case of large deformation framework. It concerns an

academic frictionless contact problem based on the compression of a hyperelastic ring against a rigid

foundation. Details on the physical setting of the problem, depicted in Figure 11, are given below:

Ω =
{

(x1, x2) ∈ R
2 : R2

i ≤ x2
1 + (x2 −Re)

2 ≤ R2
e

}

,

Γ1 = AB, Γ2 = ∅,

Γ3 =
{

(x1, x2) ∈ R
2 : x2

1 + (x2 −Re)
2 = R2

e, x2 ≤
√
2Re

}

.

The domain Ω represents the cross section of a three-dimensional hyperelastic body subjected to

the action of displacement in such a way that the plane stress hypothesis is assumed. The foundation

is given by
{

(x1, x2) ∈ R
2 : x2 ≤ 0

}

. On the part Γ1, a vertical displacement u0 is imposed. No

forces are assumed to act on the hyperelastic body during the process. The body is in frictionless

contact with an obstacle on the part Γ3 of the boundary. For the discretization, we have control over

a parameter Nh
Γ that describes the number of nodes on Γ (the number of nodes on the thickness

of the ring is, therefore, chosen accordingly in order to obtain regular-enough elements). In the

configuration Nh
Γ = 256 depicted in Figure 11, the boundary Γ3 is divided in 192 equal parts, 6144

hyperelastic finite elements were used for a total number of degrees of freedom equal to 6656. The

compressible material response, considered here, is governed by a variant of the Ogden constitutive

law (see [9]) defined by the following energy density

W (C) = c1(I1 − 3) + c2(I2 − 3) + a(I3 − 1)− (c1 + 2c2 + a) ln I3.

Here I1, I2 and I3 represent the three invariants of the tensor C, with C = FTF. For the numerical

experiments, the data are:

u0 = (0,−14)m,

f0 = (0, 0)N/m2, f2 =

{

(0, 0)N/m ,

(0, 0)N/m ,

c1 = 0.5MPa, c2 = 0.5× 10−2MPa, a = 0.35MPa,

Ri = 9m, Re = 10m.

In Figure 12, the deformed configuration as well as the normal contact stresses on the contact

boundary Γ3 are plotted.

As in the previous Section 6.1, we present the comparison between the numerical solutions

obtained by the active set type methods and the augmented Lagrangian method with respect to the

numerical accuracy, convergence and performances of the methods.

First in Figure 13, we plot the normal contact stress Πν with respect to the abscissa on Γ3 for

the three mentioned methods. It is clear that the methods do not present any significant differences,

which leads us to say that the active set type methods are accurate even in the large deformation

framework on this numerical test compared to the augmented Lagrangian methods.

Now, in Tables 4–5, we study the evolution of the number of iterations needed for the convergence

of both the projection iterative method and the primal dual active set method compared to the
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augmented Lagrangian method. In the case of this hyperelastic contact example, the number of

iterations is more dependent to the value of c than in the case of the Hertz contact problem of

Section 6.1. We remark that, when c ≤ 10, the algorithm even fails to converge (Ncv). However,

according to Tables 4 and 5, for a large value of c, greater or equal to 104, the number of iterations

needed for the convergence of the projection iterative method becomes constant and, is substantially

equal to that obtained for the convergence of the primal dual active set method. Furthermore, we

remark that the values of γ hardly impact the number of iterations for the primal dual active set

method. Moreover, unlike the numerical example studied in Section 6.1, both the primal dual active

set method and the projection iterative method take extra iterations to converge, compared to the

augmented Lagrangian method.

Next, we provide in Figures 14–16 the evolution of Ek = ‖x(k) − x(k−1)‖2 with respect to the

iteration index k for the augmented Lagrangian method and the active set methods for several

values of discretization (Nh
Γ = 128, 256, 512). Although the projection iterative method requires

some extra iterations to converge, it can be seen that the convergence of the projection iterative

method is smoother than the convergence of the primal dual active set method.

At last, we provide in Table 6 a comparison of the methods in term of CPU time to reach the

convergence with respect to the size of the problem. It leads us to say that the two active set type

methods have a faster convergence in term of CPU time than the augmented Lagrangian method.

This behavior is due to the fact that the two active set methods do not use any Lagrange multipliers.

As for the first numerical example (section 6.1), such a result must be highlighted by the actual size

of the tangent linear system, i.e. the number of degrees of freedom, in both cases with respect to

the discretization considered:

• Nh
Γ = 128: 1889 dof for the augmented Lagrangian method compared to 1792 dof for the active

set type methods,

• Nh
Γ = 256: 6849 dof for the augmented Lagrangian method compared to 6656 dof for the active

set type methods,

• Nh
Γ = 512: 25985 dof for the augmented Lagrangian method compared to 25600 dof for the

active set type methods.

This is why the avoidance of the Lagrange multipliers remains a solid argument to rather choose the

active set type methods over the augmented Lagrangian method.

7. Conclusion

This paper provides the analysis of two active set type methods through a classical problem

from the contact mechanics literature, that is to say the Signorini problem both in the case of the

large and small deformation. First, a variational formulation is derived from the mechanical prob-

lem and an existence result based on stored energy function properties is provided in the framework

of hyperelasticity. Then, we derived a numerical approximation of the problem and provided a

minimization formulation through the augmented Lagrangian formalism. After that, we presented

two active set type methods with their algorithms. Next, we investigated the convergence of the

projective iterative algorithm in the infinitesimal strain theory; the proof is based on considerations

about projection operators and the properties of the elasticity operator. Note that the same prop-

erties were used for the uniqueness of the weak solution in the small deformation theory. Then, we

presented several numerical simulations in order to compare the behavior of the two active set type

methods. We carried them out on two test problems, with the augmented Lagrangian method taken

as a reference: one in the small deformation framework with the Hertzian contact and one in the

large deformation framework with the compression of a hyperelastic ring against a rigid foundation.

While the results showed quite clearly that the active set type methods are effective on the first
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test case, both in term of convergence rate and in term of CPU time, the second test case must be

studied with caution. Indeed, these active set methods took more iterations than the augmented

Lagrangian to converge. However, both of them were faster in term of CPU time than the aug-

mented Lagrangian. Nevertheless, as already said, the fact that the active set type methods does

not require the use of the Lagrange multipliers cannot be neglected from an implementation point

of view. Therefore, for all these reasons, it seems consistent to consider an active set type method

over the augmented Lagrangian method.

At this point, we can already highlight some prospects which could be considered in the contin-

uation of this paper. From a theoretical point of view, we showed the convergence of the projection

iterative algorithm in the small deformation framework, using only the hypotheses needed for the

uniqueness of the weak solution in the same framework. Since we presented an existence result in

the large deformation framework based on several different hypotheses, a challenging prospect would

be to prove the convergence of this algorithm in this difficult case and this point remains for now

an open question, at the best of our knowledge. Besides, we only studied frictionless static contact

problem. It could be interesting to consider the challenging case of a frictional contact problem or

the dynamic case.
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Figure 1: Physical setting of the Hertz contact problem.

Figure 2: Deformed mesh and normal contact stresses on Γ3.
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Figure 3: Normal contact stress σν on Γ3.
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Figure 4: Evolution of ∆Analytic for the three methods
with respect to the abscissa (c = γ = 104).
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Projection iterative method Augm. Lagrangian

Nh
Γ3

c = 1 c = 10 c = 102 c = 103 c = 104

128 11 8 7 7 7 7
256 11 9 8 8 8 8
512 18 10 9 9 9 9

Table 1: Number of iterations for the convergence of the projection iterative method with respect to c and Nh
Γ3

.

Primal dual active set method Augm. Lagrangian

Nh
Γ3

γ = 1 γ = 10 γ = 102 γ = 103 γ = 104

128 7 7 7 7 7 7
256 8 8 8 8 8 8
512 9 9 9 9 9 9

Table 2: Number of iterations for the convergence of the primal dual active set method with respect to γ and Nh
Γ3

.
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Iteration index k

Ek

Figure 5: Evolution of Ek with respect to k for
Nh

Γ3
= 128 (c = γ = 104).

Iteration index k
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Figure 6: Evolution of Ek with respect to k for
Nh

Γ3
= 256 (c = γ = 104).

Iteration index k

E
k

Figure 7: Evolution of Ek with respect to k for
Nh

Γ3
= 512 (c = γ = 104).
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Nh
Γ3

Projection iterative Primal dual active set Augm. Lagrangian

128 5 4 7
256 29 29 54
512 208 205 472

Table 3: CPU time (in seconds) for each method with respect to Nh
Γ3

with c = 104 and γ = 104.
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Iteration 1
Contact nodes : 1 Contact nodes : 51

Iteration 3

Contact nodes : 35
Iteration 5

Contact nodes : 29
Iteration 8

Figure 8: Deformed meshes during the iterative process of the augmented Lagrangian method with Nh
Γ3

= 256.

Iteration 1
Active set nodes : 1 Active set nodes : 51

Active set nodes :29Active set nodes : 35

Iteration 3

Iteration 5 Iteration 8

Figure 9: Deformed meshes during the iterative process for the primal dual active set method/the projection
iterative method with Nh

Γ3
= 256.
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Figure 10: Estimated numerical errors.
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Figure 11: Physical setting of the hyperelastic contact problem.

Figure 12: Deformed mesh with normal contact stresses on Γ3.
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Figure 13: Normal contact stress Πν on Γ3.
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Projection iterative method Augm. Lagrangian

Nh
Γ c = 10 c = 102 c = 103 c = 104 c = 105 c = 106

128 Ncv 294 41 12 13 13 8
256 Ncv 171 45 14 19 16 9
512 Ncv 378 45 14 14 19 10

Table 4: Number of iterations for the convergence of the projection iterative method with respect to c and Nh
Γ
.

Primal dual active set method Augm. Lagrangian
Nh

Γ γ = 10 γ = 102 γ = 103 γ = 104 γ = 105 γ = 106

128 12 12 12 12 12 12 8
256 13 13 13 13 15 14 9
512 14 14 14 14 14 14 10

Table 5: Number of iterations for the convergence of the primal dual active set method with respect to γ and Nh
Γ
.

30



Iteration index k

E
k

Figure 14: Evolution of Ek with respect to k for
Nh

Γ
= 128 (c = γ = 104).
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Figure 15: Evolution of Ek with respect to k for
Nh

Γ
= 256 (c = γ = 104).
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Figure 16: Evolution of Ek with respect to k for
Nh

Γ
= 512 (c = γ = 104).
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Nh
Γ Projection iterative Primal dual active set Augm. Lagrangian

128 1 1 1
256 19 17 43
512 89 87 160

Table 6: CPU time (in seconds) for each method with respect to Nh
Γ

with c = 104 and γ = 104.
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