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Abstract The Kirchhoff index of a connected graph is the sum of resistance distances
between all unordered pairs of vertices in the graph. It found considerable applications in
a variety of fields. In this paper, we determine the minimum Kirchhoff index among the
unicyclic graphs with fixed number of vertices and matching number, and characterize
the extremal graphs.

1 Introduction

The resistance distance was introduced by Klein and Randić [8] as a distance function on
a graph. Let G be a simple connected graph with vertex set V (G) and edge set E(G).
The resistance distance between vertices u and v of G, denoted by rG(u, v), is defined as
the effective resistance between nodes u and v of the electrical network for which nodes
correspond to the vertices of G and each edge of G is replaced by a resistor of unit
resistance (one ohm).

The Kirchhoff index of a connected graph G is defined as [1]

Kf(G) =
∑

{u,v}⊆V (G)

rG(u, v).
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It is also named as total effective resistance [6]. This graph invariant found applications
in chemistry, electrical network, Markov chains, averaging networks, experiment design,
and Euclidean distance embeddings, see [7, 1, 6].

The (ordinary) distance between vertices u and v of a graph G, denoted by dG(u, v),
is the length of a shortest path connecting them in G. Recall that the Wiener index of G
is defined as [4, 5] W (G) =

∑
{u,v}⊆V (G) dG(u, v). It has been shown [8] that rG(u, v) ≤

dG(u, v) with equality if and only if there is a unique path connecting u and v in G. As a
consequence, the Kirchhoff index for a tree is equal to its Wiener index, which has been
extensively studied (see [4]). Thus the Kirchhoff index is primarily of interest in the case
of cycle-containing graphs.

Zhou and Trinajstić [13, 14] established various lower and upper bounds for the Kirch-
hoff index, see also [15]. Among the n-vertex connected graphs, Lukovits et al. [9] showed
that the complete graph Kn is the unique graph with minimum Kirchhoff index, and Pala-
cios [10] showed that the path Pn is the unique graph with maximum Kirchhoff index.
The maximum and minimum Kirchhoff indices among the unicyclic graphs have been
determined by Yang and Jiang [11], see also [12].

A matching M of the graph G is a subset of E(G) such that no two edges in M share
a common vertex. A matching M of G is said to be maximum, if for any other matching
M ′ of G, |M ′| ≤ |M |. The matching number of G is the number of edges of a maximum
matching in G. For a matching M of a graph G, if the vertex v ∈ V (G) is incident
with an edge of M , then v is said to be M -saturated. Moreover, if every vertex of G is
M -saturated, then M is a perfect matching of G.

Zhou and Trinajstić [16] determined the graphs with minimum Wiener index and
Kirchhoff index respectively among the connected graphs with fixed number of vertices
and matching number. Du and Zhou [3] determined the graphs with minimum Wiener
index among the trees and unicyclic graphs respectively with fixed number of vertices and
matching number.

In this paper, we determine the minimum Kirchhoff index among the unicyclic graphs
with fixed number of vertices and matching number, and characterize the extremal graphs.
It is of interest to point out that among the unicyclic graphs with fixed number of vertices
and matching number, the graphs with minimum Kirchhoff index are different from those
with minimum Wiener index (see [3]).

2 Preliminaries and Lemmas

For a graph G with v ∈ V (G), G−v denotes the graph resulting from G by deleting v (and
its incident edges). For an edge uv of the graph G (the complement of G, respectively),
G − uv (G + uv, respectively) denotes the graph resulting from G by deleting (adding,
respectively) uv.
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For u ∈ V (G), let KfG(u) =
∑

v∈V (G)

rG(u, v). Then

Kf(G) =
1

2

∑
u∈V (G)

KfG(u).

Let Cn be the cycle on n ≥ 3 vertices, whose vertices are labeled consecutively by
v1, v2, . . . , vn.

For two vertices vi, vj ∈ V (Cn) with i < j, by Ohm’s law, we have

rCn(vi, vj) =
(j − i) · [n− (j − i)]

n
. (1)

Furthermore, for fixed n, rCn(vi, vj) is increasing for j − i ≤ bn
2
c. For v1 ∈ V (Cn), by Eq.

(1), we have

KfCn(v1) =
n∑

i=2

rCn(v1, vi) =
n∑

i=2

(i− 1) · [n− (i− 1)]

n
=
n2 − 1

6
, (2)

and thus

Kf(Cn) =
1

2
· n ·KfCn(v1) =

n3 − n
12

. (3)

For a unicyclic graph G with the unique cycle Ck, G − E(Ck) consists of k vertex-
disjoint trees T1, T2, . . . , Tk, where vi ∈ V (Ti) for i = 1, 2, . . . , k. These trees are called
the branches of G, and vi is called the root of the branch Ti in G for i = 1, 2, . . . , k.

Now we define the graph U(k, t, i, j) which will be used frequently later. For integers
k, t, i, j with k ≥ 3, k ≥ t ≥ 0, i ≥ 0, j ≥ 0, let U(k, t, i, j) be the graph obtained from
the cycle Ck as follows:

(a) choose t consecutive vertices in the cycle Ck;

(b) attach t pendent vertices each to one of the t chosen vertices in (a);

(c) attach i pendent vertices and j paths on two vertices to a central vertex of the t
chosen vertices in (a).

Clearly, U(k, t, i, j) has k + t + i + 2j vertices. In particular, let U(k, t) = U(k, t, 0, 0)
for integers k, t with k ≥ 3 and k ≥ t ≥ 0. For example, U(3, 1, 0, 3), U(3, 2, 2, 1) and
U(3, 3, 1, 1) are shown in Fig. 1.

Let dG(v) be the degree of v in G.
For integers n and m with 2 ≤ m ≤ bn

2
c, let U(n,m) be the set of unicyclic graphs with

n vertices and matching number m. For integer m ≥ 2, we can partition U(2m,m)\{C2m}
into two subsets as follows:
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Figure 1: The graphs U(3, 1, 0, 3), U(3, 2, 2, 1) and U(3, 3, 1, 1).

(i) the set of graphs of maximum degree three in U(2m,m) obtainable by attaching
some pendent vertices to a cycle, which is denoted by U1(m);

(ii) the set of graphs in U(2m,m) containing some pendent vertex whose unique neighbor
is of degree two, which is denoted by U2(m).

2.1 The Kirchhoff index of graphs in U1(m) with small m

First we want to determine the minimum Kirchhoff index among the graphs in U1(m)
with 2 ≤ m ≤ 8.

Lemma 2.1. Let G ∈ U1(m) with the unique cycle Ck and t pendent vertices, where
k + t = 2m, k ≥ 3 and k ≥ t ≥ 1.

(i) For t = 1, 2, 3, k − 4, k − 2, k, (k, t) = (10, 4), (k, t) = (11, 5), or (k, t) = (12, 4), we
have

Kf(G) ≥ 1

12

(
k3 + 2k2t+ 12kt− k + 2t3 + 12t2 − 16t+

t2 − t4

k

)
with equality if and only if G ∼= U(k, t).

(ii) For integers k, t with k ≥ 3, k ≥ t ≥ 1, and v ∈ V (G), we have

KfG(v) ≥ f(k, t)

with equality if and only if G ∼= U(k, t), and v is a central vertex of the t vertices of
degree three in U(k, t), where

f(k, t) =

{
1
12

(2k2 + 3t2 + 12t− 5− t3−t
k

) if t is odd,
1
12

(2k2 + 3t2 + 12t− 2− t3+2t
k

) if t is even.
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Proof. First we prove (i). The cases t = 1, k−2, k are trivial. Suppose that t 6= 1, k−2, k.
Let S(G) = {v ∈ V (Ck) : dG(v) = 3}, and let σ(G) =

∑
{vi,vj}⊆S(G)

rG(vi, vj). Clearly,

|S(G)| = t.
If t = 2, say S(G) = {v1, vs}, then

σ(G) = rG(v1, vs) ≥
1 · (k − 1)

k
= σ(U(k, 2))

with equality if and only if v1 and vs are adjacent in G, i.e., G ∼= U(k, 2).
If t ≥ 3, then by Eq. (1), we have

σ(U(k, t)) = rG(v1, v2) + rG(v1, v3) + · · ·+ rG(v1, vt)

+rG(v2, v3) + rG(v2, v4) + · · ·+ rG(v2, vt)

+ · · ·+ rG(vt−1, vt)

=
t−1∑
i=1

t∑
j=i+1

rG(vi, vj)

=
t−1∑
i=1

t∑
j=i+1

(j − i) · [k − (j − i)]
k

=
t−1∑
i=1

t−i∑
j=1

j · (k − j)
k

=
t−1∑
i=1

i∑
j=1

j · (k − j)
k

= =
1

12k
t(t− 1)(t+ 1)(2k − t). (4)

Suppose that t = 3. Then k is odd as G has perfect matching. By symmetry, we may
assume that S(G) = {v1, vi, vj} with 1 < i < j, and dG(v1, vi) ≤ dG(v1, vj). Obviously,
i ≤ k+1

2
. If j ≤ k+1

2
, then note that dG(v1, vj) ≥ 2, and by Eq. (1), we have

σ(G) = rG(v1, vi) + rG(v1, vj) + rG(vi, vj)

≥ 1 · (k − 1)

k
+

2 · (k − 2)

k
+

1 · (k − 1)

k
= σ(U(k, 3))

with equality if and only if i = 2 and j = 3, i.e., G ∼= U(k, 3). If j = k, then we have
i = 2 since dG(v1, vi) ≤ dG(v1, vj), i.e., G ∼= U(k, 3). Note that j 6= k− 1 as G has perfect
matching. If k+3

2
≤ j ≤ k − 2, then dG(v1, vj) ≥ 3, and by Eq. (1), we have

σ(G) = rG(v1, vi) + rG(v1, vj) + rG(vi, vj)

≥ 1 · (k − 1)

k
+

3 · (k − 3)

k
+

1 · (k − 1)

k
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>
1 · (k − 1)

k
+

2 · (k − 2)

k
+

1 · (k − 1)

k
= σ(U(k, 3)).

Now it follows that σ(G) ≥ σ(U(k, 3)) with equality if and only if G ∼= U(k, 3).
Suppose that t = k − 4 ≥ 4. Suppose to the contrary that G 6∼= U(k, k − 4).

Then there are two pairs of adjacent vertices of degree two on the cycle Ck in G, sep-
arated by a ≥ 1 consecutive vertices vi1 , vi2 , . . . , via of degree three and b ≥ 1 consec-
utive vertices vj1 , vj2 , . . . , vjb of degree three on the cycle Ck, where dCk

(vi1 , vj1) = 3,
dCk

(via , vjb) = 3, and a + b = k − 4. Assume that a ≥ b. Denote by w the pendent
neighbor of vj1 in G. Consider G′ = G − {vj1w} + {vw}, where v is the neighbor of
vi1 with degree two on the cycle. Note that S(G) = {vi1 , vi2 , . . . , via , vj1 , vj2 , . . . , vjb} and
S(G′) = {vi1 , vi2 , . . . , via , v, vj2 , . . . , vjb}. If b ≥ 2, then by Eq. (1), we have

a∑
s=1

rG(vj1 , vis)−
a∑

s=1

rG′(v, vis) =
1

k

a+2∑
i=3

i(k − i)− 1

k

a∑
i=1

i(k − i),

b∑
s=2

rG(vj1 , vjs)−
b∑

s=2

rG′(v, vjs) =
1

k

b−1∑
i=1

i(k − i)− 1

k

b+1∑
i=3

i(k − i),

and thus

σ(G)− σ(G′)

=
∑

x∈S(G)\{vj1}

rG(vj1 , x)−
∑

x∈S(G′)\{v}

rG′(v, x)

=

(
a∑

s=1

rG(vj1 , vis) +
b∑

s=2

rG(vj1 , vjs)

)

−

(
a∑

s=1

rG′(v, vis) +
b∑

s=2

rG′(v, vjs)

)

=

(
a∑

s=1

rG(vj1 , vis)−
a∑

s=1

rG′(v, vis)

)

+

(
b∑

s=2

rG(vj1 , vjs)−
b∑

s=2

rG′(v, vjs)

)

=

(
1

k

a+2∑
i=3

i(k − i)− 1

k

a∑
i=1

i(k − i)

)

+

(
1

k

b−1∑
i=1

i(k − i)− 1

k

b+1∑
i=3

i(k − i)

)
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=
4

k
(a− b+ 1) > 0.

If b = 1, then by similar arguments as above, we have σ(G) − σ(G′) = 4a
k
> 0. Thus

σ(G) > σ(G′) for b ≥ 1. By repeating the transformation from G to G′, we may finally
get σ(G) > σ(U(k, k − 4)). Thus if t = k − 4, then σ(G) ≥ σ(U(k, k − 4)) with equality
if and only if G ∼= U(k, k − 4).

Suppose that (k, t) = (10, 4). Then there are exactly four possibilities for G, and by
suitable labeling, we may assume that S(G) = {v1, v2, v3, v4}, {v1, v2, v3, v6}, {v1, v2, v5, v6},
or {v1, v2, v5, v8}. By direct calculation, we have

σ(G) =


8 if S(G) = {v1, v2, v3, v4},
52
5

if S(G) = {v1, v2, v3, v6},
56
5

if S(G) = {v1, v2, v5, v6},
12 if S(G) = {v1, v2, v5, v8},

and thus σ(G) ≥ 8 with equality if and only if G ∼= U(10, 4).
Suppose that (k, t) = (11, 5). Then there are exactly five possibilities for G, and

by suitable labeling, we may assume that S(G) = {v1, v2, v3, v4, v5}, {v1, v2, v3, v4, v7},
{v1, v2, v3, v6, v7}, {v1, v2, v3, v6, v9}, or {v1, v2, v5, v8, v9}. By direct calculation, we have

σ(G) =



170
11

if S(G) = {v1, v2, v3, v4, v5},
202
11

if S(G) = {v1, v2, v3, v4, v7},
218
11

if S(G) = {v1, v2, v3, v6, v7},
226
11

if S(G) = {v1, v2, v3, v6, v9},
234
11

if S(G) = {v1, v2, v5, v8, v9},

and thus σ(G) ≥ 170
11

with equality if and only if G ∼= U(11, 5).
Suppose that (k, t) = (12, 4). Then there are exactly eight possibilities for G, and by

suitable labeling, we may assume that S(G) = {v1, v2, v3, v4}, {v1, v2, v3, v6}, {v1, v2, v3, v8},
{v1, v2, v5, v6}, {v1, v2, v7, v8}, {v1, v2, v5, v8}, {v1, v2, v5, v10}, or {v1, v4, v7, v10}. By direct
calculation, we have

σ(G) =



25
3

if S(G) = {v1, v2, v3, v4},
34
3

if S(G) = {v1, v2, v3, v6},
37
3

if S(G) = {v1, v2, v3, v8},
37
3

if S(G) = {v1, v2, v5, v6},
41
3

if S(G) = {v1, v2, v7, v8},
14 if S(G) = {v1, v2, v5, v8},
41
3

if S(G) = {v1, v2, v5, v10},
15 if S(G) = {v1, v4, v7, v10},
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and thus σ(G) ≥ 25
3

with equality if and only if G ∼= U(12, 4).
Combining all the above cases, and by Eq. (4), we can deduce that

σ(G) ≥ σ(U(k, t)) =
1

12k
t(t− 1)(t+ 1)(2k − t)

with equality if and only if G ∼= U(k, t) for t = 1, 2, 3, k − 4, k − 2, k, (k, t) = (10, 4),
(k, t) = (11, 5), or (k, t) = (12, 4). For 1 ≤ i ≤ k with dG(vi) = 3, let ui be the pendent
neighbor of vi in G.

By Eqs. (3) and (2), we have

Kf(G) =
∑

{vi,vj}⊆V (Ck)

rG(vi, vj) +
∑

ui∈V (G)\V (Ck)

∑
vj∈V (Ck)

rG(ui, vj)

+
∑

{ui,uj}⊆V (G)\V (Ck)

rG(ui, uj)

=
k3 − k

12
+

∑
vi∈S(G)

∑
vj∈V (Ck)

(1 + rG(vi, vj)) +
∑

{vi,vj}⊆S(G)

(2 + rG(vi, vj))

=
k3 − k

12
+

∑
vi∈S(G)

(k +KfCk
(vi)) + 2

(
t

2

)
+

∑
{vi,vj}⊆S(G)

rG(vi, vj)

=
k3 − k

12
+ t

(
k +

k2 − 1

6

)
+ 2

(
t

2

)
+ σ(G)

≥ k3 − k
12

+ t

(
k +

k2 − 1

6

)
+ 2

(
t

2

)
+

1

12k
t(t− 1)(t+ 1)(2k − t)

=
1

12

(
k3 + 2k2t+ 12kt− k + 2t3 + 12t2 − 16t+

t2 − t4

k

)
with equality if and only if G ∼= U(k, t) for t = 1, 2, 3, k − 4, k − 2, k, (k, t) = (10, 4),
(k, t) = (11, 5), or (k, t) = (12, 4).

Next we prove (ii). Let v ∈ V (G). For vi ∈ V (Ck), clearly KfG(v∗i ) − KfG(vi) =
2m− 2 > 0, where dG(vi) = 3, and v∗i is the unique neighbor of vi in G outside Ck. Thus
we may assume that v = vi ∈ V (Ck). By Eq. (1), it is easily seen that

∑
vj∈S(G)

rG(vi, vj) ≥


0 + 2

(t−1)/2∑
i=1

i·(k−i)
k

if t is odd

0 + 2
(t−2)/2∑
i=1

i·(k−i)
k

+ t/2·(k−t/2)
k

if t is even

=

{
1
12

(3t2 − 3− t3−t
k

) if t is odd
1
12

(3t2 − t3+2t
k

) if t is even

with equality if and only if the t vertices in S(G) are consecutive on Ck, i.e., G ∼= U(k, t),
and vi is a central vertex of the t vertices of degree three in U(k, t). For vi ∈ V (Ck), by
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Eq. (2), we have

KfG(vi) = KfCk
(vi) +

∑
uj∈V (G)\V (Ck)

rG(vi, uj)

=
k2 − 1

6
+

∑
vj∈S(G)

(1 + rG(vi, vj))

=
k2 − 1

6
+ t+

∑
vj∈S(G)

rG(vi, vj)

≥

{
k2−1

6
+ t+ 1

12
(3t2 − 3− t3−t

k
) if t is odd

k2−1
6

+ t+ 1
12

(3t2 − t3+2t
k

) if t is even

=

{
1
12

(2k2 + 3t2 + 12t− 5− t3−t
k

) if t is odd
1
12

(2k2 + 3t2 + 12t− 2− t3+2t
k

) if t is even

= f(k, t)

with equality if and only if G ∼= U(k, t), and vi is a central vertex of the t vertices of
degree three in U(k, t). �

If G ∈ U1(m) with the unique cycle Ck and t pendent vertices, where 2 ≤ m ≤ 8,
then t = 1, 2, 3, k − 4, k − 2, k, (k, t) = (10, 4), (k, t) = (11, 5), or (k, t) = (12, 4). Now by
Lemma 2.1 (i), we have

Lemma 2.2. If G is a graph in U1(m) with the minimum Kirchhoff index, where 2 ≤
m ≤ 8, then G ∼= U(k, t) with k + t = 2m, k ≥ 3 and k ≥ t ≥ 1.

2.2 The Kirchhoff index of graphs in U2(m) with small m

The following result will be useful for comparing the Kirchhoff indices of graphs.
For simplicity, let |G| = |V (G)| for a graph G.

Lemma 2.3. [12] Let G and H be two connected graphs with u ∈ V (G) and w ∈ V (H).
Let GuH be the graph obtained from G and H by identifying u ∈ V (G) with w ∈ V (H).
Then

Kf(GuH) = Kf(G) +Kf(H) + (|H| − 1)KfG(u) + (|G| − 1)KfH(w).

Let Pn be the path on n vertices.
If u is a pendent vertex being adjacent to a vertex v of degree two in the graph G, then

the path of G induced by the vertices u and v is said to be a pendent P2 of G. Clearly,
every graph in U2(m) has at least one pendent P2.

For a given graph G ∈ U2(m), starting from G, deleting the pendent P2’s repeatedly,
until there is no pendent P2, the resulting graph is denoted by Ḡ. Let n̄ = |Ḡ|. Clearly,
Ḡ ∈ U1( n̄

2
) ∪ {Cn̄}.
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Now we determine the minimum Kirchhoff index among the graphs in U2(m) with
3 ≤ m ≤ 8.

Lemma 2.4. If G is a graph in U2(m) with the minimum Kirchhoff index, where 3 ≤
m ≤ 8, then G ∼= U(k, t, 0, j) with k + t+ 2j = 2m, k ≥ 3, k ≥ t ≥ 1 and j ≥ 1.

Proof. Let G ∈ U2(m), and k be the length of the unique cycle of G.
Denote by the deleting process from G to Ḡ as follows:

G = G1 → G2 → · · · → Gr−1 → Gr = Ḡ,

where Gi+1 is the (unicyclic) graph obtained from Gi by deleting a pendent P2, where
1 ≤ i ≤ r − 1. Note that n̄+ 2(r − 1) = 2m.

Recall thatGr = Ḡ ∈ U1( n̄
2
)∪{Cn̄}. By Lemma 2.2, we haveKf(Gr) ≥ Kf(U(k, t, 0, 0)),

where k + t = n̄. Moreover, by Lemma 2.1 (ii) and Lemma 2.3, we have Kf(Gr−1) ≥
Kf(U(k, t, 0, 1)) with equality if and only if Gr−1

∼= U(k, t, 0, 1). Again by Lemma 2.1
(ii) and Lemma 2.3, we have Kf(Gr−2) ≥ Kf(U(k, t, 0, 2)) with equality if and only
if Gr−2

∼= U(k, t, 0, 2). Repeating the arguments, finally we can deduce that Kf(G) =
Kf(G1) ≥ Kf(U(k, t, 0, r − 1)) with last equality if and only if G ∼= U(k, t, 0, r − 1).

Then the result follows easily. �

2.3 The effect on the Kirchhoff index of graphs under the dele-
tion of some vertices

First we introduce a unicyclic graph.
Let Un,m = U(5, 1, n− 2m,m− 3), where 3 ≤ m ≤ bn

2
c, see Fig 2. It is easily checked

that

Kf(Un,m) = n2 + nm− 5n− 3m+ 4. (5)

 

2 1n m




  



3m








Figure 2: The graph Un,m.

Next we establish a lower bound of KfG(u), where G ∈ U(n,m) and u ∈ V (G).
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Lemma 2.5. Let G ∈ U(n,m) with the unique cycle Ck, where n ≥ 6, m ≥ 3, k ≥ 3. If
Ti ∼= P1 or P2 for 2 ≤ i ≤ k, then for u ∈ V (T1),

KfG(u) ≥ n+m− 4

with equality if and only if G ∼= Un,m, and u is the vertex of maximum degree in Un,m.

Proof. Let M be a maximum matching of G. First we establish an upper bound of
dG(u). Let

A1 = {xy ∈ E(G) \M : either x = u or y = u},

A2 = {xy ∈ E(G) \M : x, y 6= u and xy ∈ E(Ck)},

A3 = {xy ∈ E(G) \M : x, y 6= u and xy 6∈ E(Ck)}.

Clearly, A1, A2, A3 are pairwise disjoint, and E(G) \M = A1 ∪ A2 ∪ A3. Thus

|E(G) \M | = n−m = |A1|+ |A2|+ |A3|. (6)

Note that

(a) |A1| ≥ dG(u)− 1 with equality if and only if u is M -saturated;

(b) |A2| ≥ bk−2
2
c if u lies on the unique cycle Ck of G, and

|A2| ≥ bk+1
2
c if u lies outside the unique cycle Ck of G;

(c) |A3| ≥ 0.

It follows from Eq. (6) that if u lies on the unique cycle Ck of G, then n−m ≥ (dG(u)−
1) +

⌊
k−2

2

⌋
, i.e.,

dG(u) ≤ n−m+ 1−
⌊
k − 2

2

⌋
(7)

with equality if and only if the corresponding equalities in (a), (b), (c) hold, while if u
lies outside the unique cycle Ck of G, then n−m ≥ (dG(u)− 1) +

⌊
k+1

2

⌋
, i.e.,

dG(u) ≤ n−m+ 1−
⌊
k + 1

2

⌋
(8)

with equality if and only if the corresponding equalities in (a), (b), (c) hold.
Case 1. u lies on the unique cycle Ck of G.
Subcase 1.1. k is odd and Ti ∼= P1 for 2 ≤ i ≤ k.

By Eq. (2) and inequality (7), we have

KfG(u) = KfCk
(u) +

∑
x∈V (G)\V (Ck)

rG(u, x)

11



≥ k2 − 1

6
+ [(dG(u)− 2) + 2(n− k − dG(u) + 2)]

= −dG(u) +
1

6
k2 − 2k + 2n+

11

6

≥ −
(
n−m+ 1− k − 3

2

)
+

1

6
k2 − 2k + 2n+

11

6

=
1

6
(k2 − 9k + 6n+ 6m− 4)

with equality if and only if G ∼= U(k, 1, n− 2m,m− k+1
2

) with odd k, and u is the vertex
of maximum degree in U(k, 1, n− 2m,m− k+1

2
).

Subcase 1.2. k is even and Ti ∼= P1 for 2 ≤ i ≤ k, or there is at least one of Ti such that
Ti ∼= P2 for 2 ≤ i ≤ k.

Obviously, rG(u, v) ≥ 1 + 2·(k−2)
k
≥ 2, where v is the unique pendent neighbor of vi

with 3 ≤ i ≤ k − 1 if Ti ∼= P2. On the other hand, we also note that if k is odd, then
Ti ∼= P2 for some i with 2 ≤ i ≤ k, and thus either |A2| > bk−2

2
c = k−3

2
or |A3| > 0, by

Eq. (6), we have n−m ≥ (dG(u)− 1) + k−3
2

+ 1, i.e.,

dG(u) ≤ n−m− k − 3

2
. (9)

Let a be the number of pendent vertices attached to v2 or vk in G, where 0 ≤ a ≤ 2.
Then by Eq. (2), and inequalities (7) and (9), we have

KfG(u) = KfCk
(u) +

∑
x∈V (G)\V (Ck)

rG(u, x)

≥ k2 − 1

6
+

[
(dG(u)− 2) +

(
1 +

1 · (k − 1)

k

)
a+ 2(n− k − a− dG(u) + 2)

]
= −a

k
− dG(u) +

1

6
k2 − 2k + 2n+

11

6

≥

{
− 2

k
−
(
n−m+ 1− k−2

2

)
+ 1

6
k2 − 2k + 2n+ 11

6
if k is even

− 2
k
−
(
n−m− k−3

2

)
+ 1

6
k2 − 2k + 2n+ 11

6
if k is odd

=

{
1
6
(k2 − 9k + 6n+ 6m− 1− 12

k
) if k is even

1
6
(k2 − 9k + 6n+ 6m+ 2− 12

k
) if k is odd

≥ 1

6
(k2 − 9k + 6n+ 6m− 4).

IfKfG(u) = 1
6
(k2−9k+6n+6m−4), then a = 2, k = 4 and dG(u) = n−m+1−k−2

2
= n−m.

However, a = 2 and k = 4 imply that either |A2| > 1 or |A3| > 0, and thus by Eq. (6),
we have n−m > dG(u). Therefore KfG(u) > 1

6
(k2 − 9k + 6n+ 6m− 4).

Case 2. u lies outside the unique cycle Ck of G.

12



Note that for v 6∈ V (Ck) ∪ V (T1), rG(u, v) ≥ 2 + 1·(k−1)
k

> 2. Let b be the number of
neighbors of u on Ck, where b = 0, 1. Now by Eq. (2) and inequality (8), we have

KfG(u) = KfCk
(u) +

∑
x∈V (G)\V (Ck)

rG(u, x)

≥
(
k +

k2 − 1

6

)
+ [(dG(u)− b) + 2(n− k − dG(u) + b)]

= b− dG(u) +
1

6
k2 − k + 2n− 1

6

≥ 0−
(
n−m+ 1−

⌊
k + 1

2

⌋)
+

1

6
k2 − k + 2n− 1

6

>
1

6
(k2 − 9k + 6n+ 6m− 4).

Now combining Cases 1 and 2, we have

KfG(u) ≥ 1

6
(k2 − 9k + 6n+ 6m− 4)

with equality if and only if G ∼= U(k, 1, n− 2m,m− k+1
2

) with odd k, and u is the vertex
of maximum degree in U(k, 1, n− 2m,m− k+1

2
). Thus

KfG(u) ≥ 1

6
(k2 − 9k + 6n+ 6m− 4) ≥ 1

6
(52 − 9 · 5 + 6n+ 6m− 4)

= n+m− 4

with equalities if and only if G ∼= U(5, 1, n − 2m,m − 3) = Un,m, and u is the vertex of
maximum degree in Un,m. �

Now we present a stronger version of lemma 2.5.

Lemma 2.6. Let G be a unicyclic graph with n vertices and matching number at least m,
where n ≥ 6, m ≥ 3. For u ∈ V (G),

KfG(u) ≥ n+m− 4

with equality if and only if G ∼= Un,m, and u is the vertex of maximum degree in Un,m.

Proof. Let G be a unicyclic graph with a vertex u ∈ V (G) such that

KfG(u) = min{KfH(x) : H ∈ U(n, r), x ∈ V (H), r ≥ m}. (10)

Assume that u ∈ V (T1). Let M be a maximum matching of G. Suppose that |Ti| ≥ 3
for some i with 2 ≤ i ≤ k, where k is the length of the unique cycle of G. Then there
is some edge, say xy, in Ti outside M . Assume that the vertices x and u lie in the same
component of G − xy. Let G1 = G − xy + uy. Clearly, M is also a matching of G1,

13



and thus G1 has matching number at least m. However, KfG1(u) < KfG(u), which is a
contradiction. Thus |Ti| = 1, 2, i.e., Ti ∼= P1 or P2 for 2 ≤ i ≤ k. By Lemma 2.5, we have

KfG(u) ≥ n+ r − 4 ≥ n+m− 4

with equalities if and only if G ∼= Un,m, and u is the vertex of maximum degree in Un,m.
�

The following result turns out to be of rather important for the proof of our main
results.

Lemma 2.7. Let G ∈ U(n,m) with a pendent vertex x being adjacent to vertex y, and
let z be the neighbor of y different from x if dG(y) = 2, where n ≥ 6, m ≥ 3. Then

Kf(G)−Kf(G− x) ≥ 2n+m− 6

with equality if and only if G ∼= Un,m, and x is a pendent neighbor of the vertex of
maximum degree in Un,m. Moreover, if dG(y) = 2, then

Kf(G)−Kf(G− x− y) ≥ 5n+ 2m− 19

with equality if and only if G ∼= Un,m.

Proof. Note that KfG(x)−KfG(y) = n− 2. Then by Lemma 2.6, we have

Kf(G)−Kf(G− x) = KfG(x)

= KfG(y) + n− 2

≥ (n+m− 4) + n− 2 = 2n+m− 6

with equality if and only if G ∼= Un,m, and x is a pendent neighbor of the vertex of
maximum degree in Un,m.

If dG(y) = 2, then KfG(y)−KfG(z) = n− 4, and thus by Lemma 2.6, we have

Kf(G)−Kf(G− x− y) = KfG(x) +KfG(y)− 1

= 2KfG(z) + 3n− 11

≥ 2(n+m− 4) + 3n− 11 = 5n+ 2m− 19

with equality if and only if G ∼= Un,m. �

Lemma 2.8. [11] Let G be an n-vertex unicyclic graph with the unique cycle Ck, where
3 ≤ k ≤ n− 1. Then

Kf(G) ≥ 1

12
[−k3 + 2nk2 − (12n− 13)k + 12n2 − 14n]

with equality if and only if G ∼= U(k, 1, n− k − 1, 0).
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3 Results

First we consider the minimum Kirchhoff index of unicyclic graphs with perfect matching.

Theorem 3.1. Among the graphs in U(2m,m) with m ≥ 2, C2m for 2 ≤ m ≤ 4, U(8, 2)
for m = 5, U(8, 4) for m = 6, U(7, 7) for m = 7, and U2m,m for m ≥ 8 are the unique
graphs with the minimum Kirchhoff indices, which are equal to 1

6
(4m3−m) for 2 ≤ m ≤ 4,

817
8

for m = 5, 1351
2

for m = 6, 203 for m = 7, and 6m2 − 13m+ 4 for m ≥ 8.

Proof. Recall that U(2m,m) = U1(m) ∪ U2(m) ∪ {C2m}.
Case 1. 2 ≤ m ≤ 8.

The case m = 2 is obvious since U(4, 2) = {U(3, 1), C4}, where

Kf(U(3, 1)) = 6
1

3
> 5 = Kf(C4).

For 3 ≤ m ≤ 8, by Lemmas 2.2 and 2.4, the minimum Kirchhoff index of the graphs in
U(2m,m) is precisely achieved by some graph of the form U(k, t, 0, j), where k+ t+ 2j =
2m, k ≥ 3, k ≥ t ≥ 0 and j ≥ 0. In Tables 1–6 corresponding to m = 3, 4, . . . , 8,
we list these graphs and their Kirchhoff indices. We use (k, t; j) to represent the graph
U(k, t, 0, j) in these tables. From these tables, we find that

(1) U(6, 0, 0, 0) = C6 is the unique graph in U(6, 3) with the minimum Kirchhoff index,
which is equal to 171

2
;

(2) U(8, 0, 0, 0) = C8 is the unique graph in U(8, 4) with the minimum Kirchhoff index,
which is equal to 42;

(3) U(8, 2, 0, 0) = U(8, 2) is the unique graph in U(10, 5) with the minimum Kirchhoff
index, which is equal to 817

8
;

(4) U(8, 4, 0, 0) = U(8, 4) is the unique graph in U(12, 6) with the minimum Kirchhoff
index, which is equal to 1351

2
;

(5) U(7, 7, 0, 0) = U(7, 7) is the unique graph in U(14, 7) with the minimum Kirchhoff
index, which is equal to 203;

(6) U(5, 1, 0, 5) = U16,8 is the unique graph in U(16, 8) with the minimum Kirchhoff
index, which is equal to 284.

Case 2. m ≥ 9.
We prove the result by induction on m. Suppose that the result holds for all the

graphs in U(2m− 2,m− 1). Let G ∈ U(2m,m).
If G ∼= C2m, then by Eqs. (3) and (5), we have

Kf(G) =
1

6
(4m3 −m) > 6m2 − 13m+ 4 = Kf(U2m,m).
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Table 1: The Kirchhoff indices of the graphs U(k, t, 0, j) in U(6, 3).

Graphs (3, 1; 1) (3, 3; 0) (4, 0; 1) (4, 2; 0) (5, 1; 0) (6, 0; 0)

Kirchhoff indices 24 23 23 203
4

19 171
2

Table 2: The Kirchhoff indices of the graphs U(k, t, 0, j) in U(8, 4).

Graphs (3, 1; 2) (3, 3; 1) (4, 0; 2) (4, 2; 1) (4, 4; 0) (5, 1; 1)

Kirchhoff indices 532
3 531

3 53 501
4 48 48

Graphs (5, 3; 0) (6, 0; 1) (6, 2; 0) (7, 1; 0) (8, 0; 0)

Kirchhoff indices 454
5 481

6 44 43 42

Table 3: The Kirchhoff indices of the graphs U(k, t, 0, j) in U(10, 5).

Graphs (3, 1; 3) (3, 3; 2) (4, 0; 3) (4, 2; 2) (4, 4; 1) (5, 1; 2)

Kirchhoff indices 951
3 952

3 95 913
4 91 89

Graphs (5, 3; 1) (5, 5; 0) (6, 0; 2) (6, 2; 1) (6, 4; 0) (7, 1; 1)

Kirchhoff indices 88 85 905
6 861

3 831
2 86

Graphs (7, 3; 0) (8, 0; 1) (8, 2; 0) (9, 1; 0) (10, 0; 0)

Kirchhoff indices 821
7 88 817

8 821
3 821

2

Suppose that G ∈ U1(m). Recall that G is a graph of maximum degree three ob-
tainable by attaching some pendent vertices to a cycle Ck, where m ≤ k ≤ 2m − 1. If
k = m,m+ 1,m+ 2, then there are, respectively, m,m− 1,m− 2 pendent vertices in G
outside the cycle Ck, and thus by Lemma 2.1 (i), we have

Kf(G) ≥


1
3
(m3 + 6m2 − 4m) if k = m

1
3

(
m3 + 7m2 − 11m+ 6− 3

m+1

)
if k = m+ 1

1
3

(
m3 + 8m2 − 20m+ 30− 60

m+2

)
if k = m+ 2

> 6m2 − 13m+ 4 = Kf(U2m,m).

If m + 3 ≤ k ≤ 2m − 1, then by Lemma 2.8, Kf(G) ≥ 1
12
h(k), where h(k) = −k3 +

4mk2− (24m− 13)k+ 48m2− 28m. Clearly, h′(k) = −3k2 + 8mk− 24m+ 13. Note that
h′(m+3) = 5m2−18m−14 > 0 and h′(2m−1) = 4m2−20m+10 > 0. This implies that
h′(k) > 0 for m+ 3 ≤ k ≤ 2m− 1, i.e., h(k) is increasing for k with m+ 3 ≤ k ≤ 2m− 1.
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Table 4: The Kirchhoff indices of the graphs U(k, t, 0, j) in U(12, 6).

Graphs (3, 1; 4) (3, 3; 3) (4, 0; 4) (4, 2; 3) (4, 4; 2) (5, 1; 3)

Kirchhoff indices 149 150 149 1451
4 146 142

Graphs (5, 3; 2) (5, 5; 1) (6, 0; 3) (6, 2; 2) (6, 4; 1) (6, 6; 0)

Kirchhoff indices 1421
5 142 1451

2 1402
3 1401

6 136

Graphs (7, 1; 2) (7, 3; 1) (7, 5; 0) (8, 0; 2) (8, 2; 1) (8, 4; 0)

Kirchhoff indices 141 1384
7 1356

7 146 1395
8 1351

2

Graphs (9, 1; 1) (9, 3; 0) (10, 0; 1) (10, 2; 0) (11, 1; 0) (12, 0; 0)

Kirchhoff indices 142 1361
3 1461

2 1382
5 141 143

Table 5: The Kirchhoff indices of the graphs U(k, t, 0, j) in U(14, 7).

Graphs (3, 1; 5) (3, 3; 4) (4, 0; 5) (4, 2; 4) (4, 4; 3) (5, 1; 4)

Kirchhoff indices 2142
3 2161

3 215 2103
4 213 207

Graphs (5, 3; 3) (5, 5; 2) (6, 0; 4) (6, 2; 3) (6, 4; 2) (6, 6; 1)

Kirchhoff indices 2082
5 211 2121

6 207 2085
6 2081

3

Graphs (7, 1; 3) (7, 3; 2) (7, 5; 1) (7, 7; 0) (8, 0; 3) (8, 2; 2)

Kirchhoff indices 208 207 208 203 216 2093
8

Graphs (8, 4; 1) (8, 6; 0) (9, 1; 2) (9, 3; 1) (9, 5; 0) (10, 0; 2)

Kirchhoff indices 208 2047
8 2132

3 2095
9 2061

9 2221
2

Graphs (10, 2; 1) (10, 4; 0) (11, 1; 1) (11, 3; 0) (12, 0; 1) (12, 2; 0)

Kirchhoff indices 2141
5 2081

2 220 212 9
20 2272

3 217 7
12

Graphs (13, 1; 0) (14, 0; 0)

Kirchhoff indices 223 2271
2

Thus

Kf(G) ≥ 1

12
h(m+ 3) =

1

4
(m3 + 13m2 − 26m+ 4) > 6m2 − 13m+ 4 = Kf(U2m,m).

Now suppose that G ∈ U2(m). Denote by x a pendent vertex in G whose unique
neighbor y is of degree two, and z the neighbor of y different from x in G. Obviously,
xy ∈M . Then G− x− y ∈ U(2m− 2,m− 1), and thus by Lemma 2.7 and the induction
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Table 6: The Kirchhoff indices of the graphs U(k, t, 0, j) in U(16, 8).

Graphs (3, 1; 6) (3, 3; 5) (4, 0; 6) (4, 2; 5) (4, 4; 4) (5, 1; 5)

Kirchhoff indices 2921
3 2932

3 293 2881
4 292 284

Graphs (5, 3; 4) (5, 5; 3) (6, 0; 5) (6, 2; 4) (6, 4; 3) (6, 6; 2)

Kirchhoff indices 2863
5 292 2905

6 2851
3 2891

2 2922
3

Graphs (7, 1; 4) (7, 3; 3) (7, 5; 2) (7, 7; 1) (8, 0; 4) (8, 2; 3)

Kirchhoff indices 287 2873
7 2921

7 292 298 2911
8

Graphs (8, 4; 2) (8, 6; 1) (8, 8; 0) (9, 1; 3) (9, 3; 2) (9, 5; 1)

Kirchhoff indices 2921
2 2941

8 288 2971
3 2947

9 2955
9

Graphs (9, 7; 0) (10, 0; 3) (10, 2; 2) (10, 4; 1) (10, 6; 0) (11, 1; 2)

Kirchhoff indices 2925
9 3101

2 302 299 3
10 296 311

Graphs (11, 3; 1) (11, 5; 0) (12, 0; 2) (12, 2; 1) (12, 4; 0) (13, 1; 1)

Kirchhoff indices 305 1
11 300 5

11 3241
3 314 1

12 3062
3 324

Graphs (13, 3; 0) (14, 0; 1) (14, 2; 0) (15, 1; 0) (16, 0; 0)

Kirchhoff indices 314 7
13 3351

2 3233
7 3321

3 340

hypothesis, we have

Kf(G) ≥ Kf(G− x− y) + 12m− 19

≥ Kf(U2m−2,m−1) + 12m− 19

= 6m2 − 13m+ 4 = Kf(U2m,m)

with equalities if and only if G ∼= U2m,m.
Then the result for m ≥ 9 follows easily. �

The remainder of the paper will focus on the minimum Kirchhoff index among the
graphs in U(n,m), where n > 2m and m ≥ 3.

Lemma 3.1. [2] Let G ∈ U(n,m) \ {Cn}, where n > 2m, m ≥ 3. Then there is a
maximum matching M and a pendent vertex u of G such that u is not M-saturated.

For a given graph G ∈ U(n,m) \ {Cn}, where n > 2m, m ≥ 3, by Lemma 3.1, there is
a maximum matching M and a pendent vertex which is not M -saturated, after deleting
this pendent vertex, we can get a graph in U(n − 1,m). Repeating the process until
it is exhausted, the resulting graph is denoted by G0. Note that G0 ∈ U(2m,m). Let
n0 = |G0|. Furthermore, for the vertex u ∈ V (G0) satisfying KfG0(u) is minimum, let G∗0
be the graph obtained from G0 by attaching n− n0 pendent vertices to u.
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Lemma 3.2. Let G ∈ U(n,m) \ {Cn}, where n > 2m, m ≥ 3.

(i) Then Kf(G) ≥ Kf(G∗0). In particular, if u is the unique vertex in G0 such that
KfG0(u) is minimum, then Kf(G) ≥ Kf(G∗0) with equality if and only if G ∼= G∗0.

(ii) If G0 6∼= Un0,m and Kf(G0) ≥ Kf(Un0,m), then Kf(G) > Kf(Un,m).

Proof. Similar to the proof of Lemma 2.4, and by Lemma 2.3 repeatedly, (i) follows
easily. On the other hand, by Lemmas 2.3 and 2.6, Kf(G∗0) > Kf(Un,m) follows from
the hypothesis that G0 6∼= Un0,m and Kf(G0) ≥ Kf(Un0,m). Now together with Kf(G) ≥
Kf(G∗0), we can get Kf(G) > Kf(Un,m). �

The following lemma reveal the possible graph with the minimum Kirchhoff index
among the graphs in U(n,m) \ {Cn}, where n > 2m and 3 ≤ m ≤ 7.

Lemma 3.3. If G is a graph in U(n,m)\{Cn} with the minimum Kirchhoff index, where
n > 2m and 3 ≤ m ≤ 7, then G0

∼= U(k, t, 0, j) with k + t + 2j = n0, k ≥ 3, k ≥ t ≥ 0
and j ≥ 0.

Proof. Let G ∈ U(n,m)\{Cn}. Denote by k the length of the unique cycle of G. Suppose
that there are t pendent vertices of G whose unique neighbors are all on the unique cycle
of G. Note that G0 ∈ U(2m,m), i.e., G0 ∈ U1(m) ∪ U2(m).
Case 1. G0 ∈ U1(m).

First, by Lemma 3.2 (i), we have Kf(G) ≥ Kf(G∗0). Next, by Lemma 2.2, we have
Kf(G0) ≥ Kf(U(k, t)) with equality if and only if G0

∼= U(k, t)), and thus by Lemma 2.1
(ii) and Lemma 2.3, we have Kf(G∗0) ≥ Kf(U(k, t, i, 0)) with equality if and only if G∗0

∼=
U(k, t, i, 0)), where k+ t+ i = n and i ≥ 1. Now it follows that Kf(G) ≥ Kf(U(k, t, i, 0))
with equality if and only if G ∼= U(k, t, i, 0).
Case 2. G0 ∈ U2(m).

Recall that, starting from G0, deleting the pendent P2’s repeatedly, until there is
no pendent P2, the resulting graph is denoted by Ḡ0. Let n̄0 = |Ḡ0|. Clearly, Ḡ0 ∈
U1( n̄0

2
) ∪ {Cn̄0}.

Suppose that u is a vertex in Ḡ0 satisfying KfḠ0
(u) is minimum, and let H be the

graph obtained from Ḡ0 by attaching i pendent vertices and j paths on two vertices to u.
Similar to the proof of Lemma 2.4, and by Lemma 2.3 repeatedly, Kf(G) ≥ Kf(H)

follows easily.
On the other hand, recall that Ḡ0 ∈ U1( n̄0

2
)∪{Cn̄0}, by Lemma 2.2, we have Kf(Ḡ0) ≥

Kf(U(k, t)) with equality if and only if Ḡ0
∼= U(k, t)), where k + t = n̄0, and thus by

Lemma 2.1 (ii) and Lemma 2.3, we have Kf(H) ≥ Kf(U(k, t, i, j)) with equality if and
only if H ∼= U(k, t, i, j), where k + t+ i+ 2j = n.

Now it follows that Kf(G) ≥ Kf(U(k, t, i, j)) with equality if and only if G ∼=
U(k, t, i, j).

Combining Cases 1 and 2, we have Kf(G) ≥ Kf(U(k, t, i, j)) with equality if and
only if G ∼= U(k, t, i, j), and G ∼= U(k, t, i, j) implies that G0

∼= U(k, t, 0, j). �
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Now we determine the minimum Kirchhoff index among the unicyclic graphs with
given matching number.

Theorem 3.2. Among the graphs in U(n,m) with 2 ≤ m ≤ bn
2
c,

(i) for m = 2, Cn for n = 4, 5, U(4, 1, n − 5, 0) for 6 ≤ n ≤ 11, U(3, 1, 8, 0) and
U(4, 1, 7, 0) for n = 12, and U(3, 1, n− 4, 0) for n ≥ 13 are the unique graphs with
the minimum Kirchhoff indices, which are equal to n3−n

12
for n = 4, 5, 1

2
(2n2−5n−2)

for 6 ≤ n ≤ 11, 113 for n = 12, and 1
3
(3n2 − 8n+ 3) for n ≥ 13;

(ii) for m = 3, Cn for n = 6, 7 and Un,3 for n ≥ 8 are the unique graphs with the

minimum Kirchhoff indices, which are equal to n3−n
12

for n = 6, 7 and n2 − 2n − 5
for n ≥ 8;

(iii) for m = 4, C8 for n = 8, U(7, 1, 1, 0) and C9 for n = 9, U(7, 1, 2, 0) for n = 10,
U(6, 2, 3, 0) and U(7, 1, 3, 0) for n = 11, U(6, 2, n − 8, 0) for n = 12, 13, U14,4 and
U(6, 2, 6, 0) for n = 14, and Un,m for n ≥ 15 are the unique graphs with the minimum
Kirchhoff indices, which are equal to 42 for n = 8, 60 for n = 9, 79 for n = 10,
100 for n = 11, 1

3
(3n2 − n− 52) for n = 12, 13, 174 for n = 14, and n2 − n− 8 for

n ≥ 15;

(iv) for m = 5, U(8, 2) for n = 10, U(7, 3, n− 10, 0) for 11 ≤ n ≤ 13, U14,5, U(6, 2, 4, 1)
and U(7, 3, 4, 0) for n = 14, and Un,5 for n ≥ 15 are the unique graphs with the
minimum Kirchhoff indices, which are equal to 817

8
for n = 10, 1

7
(7n2 + 12n− 245)

for 11 ≤ n ≤ 13, 185 for n = 14, and n2 − 11 for n ≥ 15;

(v) for m = 6, U(8, 4, n − 12, 0) for n = 12, 13, U14,6, U(6, 2, 2, 2) and U(7, 3, 2, 1) for
n = 14, and Un,6 for n ≥ 15 are the unique graphs with the minimum Kirchhoff
indices, which are equal to 1

4
(4n2 + 19n− 262) for n = 12, 13, 196 for n = 14, and

n2 + n− 14 for n ≥ 15;

(vi) for m = 7, U(7, 7) for n = 14 and Un,7 for n ≥ 15 are the unique graphs with the
minimum Kirchhoff indices, which are equal to 203 for n = 14 and n2 + 2n− 17 for
n ≥ 15;

(vii) for m ≥ 8, Un,m for n ≥ 16 is the unique graph with the minimum Kirchhoff index,
which is equal to n2 + nm− 5n− 3m+ 4.

Proof. The result for n = 2m follows from Theorem 3.1. Suppose that n > 2m. Let
G ∈ U(n,m).
Case 1. m = 2.

Clearly, the girth of G is 3, 4, 5 for n = 5, and 3, 4 for n ≥ 6. Then by Lemma 2.8, we
have

Kf(G) ≥ min{Kf(U(3, 1, 1, 0)), Kf(U(4, 1)), Kf(C5)}
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= min

{
12

2

3
, 11

1

2
, 10

}
= 10

for n = 5, and

Kf(G) ≥ min{Kf(U(3, 1, n− 4, 0)), Kf(U(4, 1, n− 5, 0))}

= min

{
1

3
(3n2 − 8n+ 3),

1

2
(2n2 − 5n− 2)

}
for n ≥ 6. Thus C5 for n = 5, U(4, 1, n−5, 0) for 6 ≤ n ≤ 11, U(3, 1, 8, 0) and U(4, 1, 7, 0)
for n = 12, and U(3, 1, n − 4, 0) for n ≥ 13 are the unique graphs in U(n, 2) with the
minimum Kirchhoff indices.
Case 2. m = 3.

If G ∼= Cn, then n = 7, and by Eq. (3), we have Kf(G) = 28.
Suppose that G 6∼= Cn. If G0

∼= U6,3, then by Lemma 3.2 (i), we have Kf(G) ≥
Kf(Un,3) with equality if and only if G ∼= Un,3. Suppose that G0 6∼= U6,3. If Kf(G0) ≥
Kf(U6,3), then by Lemma 3.2 (ii), we have Kf(G) > Kf(Un,3). If Kf(G0) < Kf(U6,3),
then by Lemma 3.3 and Table 1, we assume that G0 = C6, and thus by Lemma 3.2 (i),
we have Kf(G) ≥ Kf(U(6, 1, n− 7, 0)) with equality if and only if G ∼= U(6, 1, n− 7, 0).

Therefore for n = 7,

Kf(G) ≥ min{Kf(U7,3), Kf(U(6, 1)), Kf(C7)} = min

{
30, 29

1

3
, 28

}
= 28

with equality if and only if G ∼= C7, and for n ≥ 8,

Kf(G) ≥ min{Kf(Un,3), Kf(U(6, 1, n− 7, 0))}

= min

{
n2 − 2n− 5, n2 − 7

6
n− 23

2

}
= n2 − 2n− 5

with equality if and only if G ∼= Un,3.
Case 3. m = 4.

If G ∼= Cn, then n = 9, and by Eq. (3), we have Kf(G) = 60.
Suppose that G 6∼= Cn. If G0

∼= U8,4, then by Lemma 3.2 (i), we have Kf(G) ≥
Kf(Un,4) with equality if and only if G ∼= Un,4. Suppose that G0 6∼= U8,4. If Kf(G0) ≥
Kf(U8,4), then by Lemma 3.2 (ii), we have Kf(G) > Kf(Un,4). If Kf(G0) < Kf(U8,4),
then by Lemma 3.3 and Table 2, we assume thatG0 = U(5, 3, 0, 0), U(6, 2, 0, 0), U(7, 1, 0, 0)
or U(8, 0, 0, 0), and thus by Lemma 3.2 (i), we have

Kf(G) ≥ min{Kf(U(5, 3, n− 8, 0)), Kf(U(6, 2, n− 8, 0)),

Kf(U(7, 1, n− 8, 0)), Kf(U(8, 0, n− 8, 0))}.

Now the result for m = 4 follows from Table 7 easily.
Case 4. m = 5.

If G ∼= Cn, then n = 11, and by Eq. (3), we have Kf(G) = 110.
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Table 7: The graphs in U(n, 4) and their Kirchhoff indices.

Graphs
Kirchhoff indices

n 9 10 11 12 13 14 15

Un,4 n2 − n− 8 64 82 102 124 148 174 202

U(5, 3, n− 8, 0) n2 − 2
5n− 15 622

5 81 1013
5 1241

5 1484
5 1752

5 204

U(6, 2, n− 8, 0) n2 − 1
3n−

52
3 602

3 791
3 100 1222

3 1471
3 174 2022

3

U(7, 1, n− 8, 0) n2 − 21 60 79 100 123 148 175 204

U(8, 0, n− 8, 0) n2 + 3
2n− 34 601

2 81 1031
2 128 1541

2 183 2131
2

C9 60

Suppose that G 6∼= Cn. If G0
∼= U10,5, then by Lemma 3.2 (i), we have Kf(G) ≥

Kf(Un,5) with equality if and only if G ∼= Un,5. Suppose that G0 6∼= U10,5. If Kf(G0) ≥
Kf(U10,5), then by Lemma 3.2 (ii), we have Kf(G) > Kf(Un,5). If Kf(G0) < Kf(U10,5),
then by Lemma 3.3 and Table 3, we assume thatG0 = U(5, 3, 0, 1), U(5, 5, 0, 0), U(6, 2, 0, 1),
U(6, 4, 0, 0), U(7, 1, 0, 1), U(7, 3, 0, 0), U(8, 0, 0, 1), U(8, 2, 0, 0), U(9, 1, 0, 0) or U(10, 0, 0, 0),
and thus by Lemma 3.2 (i), we have

Kf(G) ≥ min{Kf(U(5, 3, n− 10, 1)), Kf(U(5, 5, n− 10, 0)), Kf(U(6, 2, n− 10, 1)),

Kf(U(6, 4, n− 10, 0)), Kf(U(7, 1, n− 10, 1)), Kf(U(7, 3, n− 10, 0)),

Kf(U(8, 0, n− 10, 1)), Kf(U(8, 2, n− 10, 0)), Kf(U(9, 1, n− 10, 0)),

Kf(U(10, 0, n− 10, 0))}.

Now the result for m = 5 follows from Table 8 easily.
Case 5. m = 6.

If G ∼= Cn, then n = 13, and by Eq. (3), we have Kf(G) = 182.
Suppose that G 6∼= Cn. If G0

∼= U12,6, then by Lemma 3.2 (i), we have Kf(G) ≥
Kf(Un,6) with equality if and only if G ∼= Un,6. Suppose that G0 6∼= U12,6. If Kf(G0) ≥
Kf(U12,6), then by Lemma 3.2 (ii), we have Kf(G) > Kf(Un,6). If Kf(G0) < Kf(U12,6),
then by Lemma 3.3 and Table 4, we assume thatG0 = U(6, 2, 0, 2), U(6, 4, 0, 1), U(6, 6, 0, 0),
U(7, 1, 0, 2), U(7, 3, 0, 1), U(7, 5, 0, 0), U(8, 2, 0, 1), U(8, 4, 0, 0), U(9, 3, 0, 0), U(10, 2, 0, 0)
or U(11, 1, 0, 0), and thus by Lemma 3.2 (i), we have

Kf(G) ≥ min{Kf(U(6, 2, n− 12, 2)), Kf(U(6, 4, n− 12, 1)), Kf(U(6, 6, n− 12, 0)),

Kf(U(7, 1, n− 12, 2)), Kf(U(7, 3, n− 12, 1)), Kf(U(7, 5, n− 12, 0)),

Kf(U(8, 2, n− 12, 1)), Kf(U(8, 4, n− 12, 0)), Kf(U(9, 3, n− 12, 0)),

Kf(U(10, 2, n− 12, 0)), Kf(U(11, 1, n− 12, 0))}.

Now the result for m = 6 follows from Table 9 easily.

22



Table 8: The graphs in U(n, 5) and their Kirchhoff indices.

Graphs
Kirchhoff indices

n 11 12 13 14 15

Un,5 n2 − 11 110 133 158 185 214

U(5, 3, n− 10, 1) n2 + 3
5n− 18 1093

5 1331
5 1584

5 1862
5 216

U(5, 5, n− 10, 0) n2 + 2n− 35 108 133 160 189 220

U(6, 2, n− 10, 1) n2 + 2
3n−

61
3 108 1312

3 1571
3 185 2142

3

U(6, 4, n− 10, 0) n2 + 11
6 n− 209

6 1061
3 1311

6 158 1865
6 2172

3

U(7, 1, n− 10, 1) n2 + n− 24 108 132 158 186 216

U(7, 3, n− 10, 0) n2 + 12
7 n− 245

7 1046
7 1294

7 1562
7 185 2155

7

U(8, 0, n− 10, 1) n2 + 5
2n− 37 1111

2 137 1641
2 194 2251

2

U(8, 2, n− 10, 0) n2 + 19
8 n− 335

8 1051
4 1305

8 158 1873
8 2183

4

U(9, 1, n− 10, 0) n2 + 10
3 n− 51 1062

3 133 1611
3 1912

3 224

U(10, 0, n− 10, 0) n2 + 11
2 n− 145

2 109 1371
2 168 2001

2 235

C11 110

Case 6. m = 7.
If G ∼= Cn, then n = 15, and by Eq. (3), we have Kf(G) = 280.
Suppose that G 6∼= Cn. If G0

∼= U14,7, then by Lemma 3.2 (i), we have Kf(G) ≥
Kf(Un,7) with equality if and only if G ∼= Un,7. Suppose that G0 6∼= U14,7. If Kf(G0) ≥
Kf(U14,7), then by Lemma 3.2 (ii), we have Kf(G) > Kf(Un,7). If Kf(G0) < Kf(U14,7),
then by Lemma 3.3 and Table 5, we assume that G0 = U(7, 7, 0, 0), U(8, 6, 0, 0) or
U(9, 5, 0, 0), and thus by Lemma 3.2 (i), we have

Kf(G) ≥ min{Kf(U(7, 7, n− 14, 0)), Kf(U(8, 6, n− 14, 0)), Kf(U(9, 5, n− 14, 0))}.

Now the result for m = 7 follows from Table 10 easily.
Case 7. m ≥ 8.

If G ∼= Cn, then n = 2m+ 1, and by Eqs. (3) and (5), we have

Kf(C2m+1) =
1

3
(2m3 + 3m2 +m) > 6m2 − 8m = Kf(U2m+1,m).

Suppose that G 6∼= Cn. By Theorem 3.1, Kf(G0) ≥ Kf(Un0,m). Furthermore, if G0
∼=

Un0,m, then by Lemma 3.2 (i), we have Kf(G) ≥ Kf(Un,m) with equality if and only if
G ∼= Un,m, and if G0 6∼= Un0,m, then by Lemma 3.2 (ii), we have Kf(G) > Kf(Un,m).
Then the result for m ≥ 8 follows easily. �
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Table 9: The graphs in U(n, 6) and their Kirchhoff indices.

Graphs
Kirchhoff indices

n 13 14 15

Un,6 n2 + n− 14 168 196 226

U(6, 2, n− 12, 2) n2 + 5
3n−

70
3 1671

3 196 2262
3

U(6, 4, n− 12, 1) n2 + 17
6 n− 227

6 168 1975
6 2292

3

U(6, 6, n− 12, 0) n2 + 14
3 n− 64 1652

3 1971
3 231

U(7, 1, n− 12, 2) n2 + 2n− 27 168 197 228

U(7, 3, n− 12, 1) n2 + 19
7 n− 38 1662

7 196 2275
7

U(7, 5, n− 12, 0) n2 + 32
7 n− 63 1653

7 197 2304
7

U(8, 2, n− 12, 1) n2 + 27
8 n− 359

8 168 1983
8 2303

4

U(8, 4, n− 12, 0) n2 + 19
4 n− 131

2 1651
4 197 2303

4

U(9, 3, n− 12, 0) n2 + 46
9 n− 69 1664

9 1985
9 2322

3

U(10, 2, n− 12, 0) n2 + 32
5 n− 412

5 1694
5 2031

5 2383
5

U(11, 1, n− 12, 0) n2 + 8n− 99 174 209 246

C13 182
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