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Abstract The Kirchhoff index of a connected graph is the sum of resistance distances
between all unordered pairs of vertices in the graph. It found considerable applications in
a variety of fields. In this paper, we determine the minimum Kirchhoff index among the
unicyclic graphs with fixed number of vertices and matching number, and characterize
the extremal graphs.

1 Introduction

The resistance distance was introduced by Klein and Randi¢ [§] as a distance function on
a graph. Let G be a simple connected graph with vertex set V(G) and edge set E(G).
The resistance distance between vertices u and v of G, denoted by rg(u,v), is defined as
the effective resistance between nodes v and v of the electrical network for which nodes
correspond to the vertices of G and each edge of G is replaced by a resistor of unit
resistance (one ohm).

The Kirchhoff index of a connected graph G is defined as [I]

KfG) = > raluv).

{u,w}CV(G)
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It is also named as total effective resistance [6]. This graph invariant found applications
in chemistry, electrical network, Markov chains, averaging networks, experiment design,
and Euclidean distance embeddings, see [7 [11 [6].

The (ordinary) distance between vertices u and v of a graph G, denoted by dg(u,v),
is the length of a shortest path connecting them in G. Recall that the Wiener index of G
is defined as [4, 5] W(G) = 32, ,;cv () de(u, v). 1t has been shown [8] that r¢(u,v) <
dc(u,v) with equality if and only if there is a unique path connecting v and v in G. As a
consequence, the Kirchhoff index for a tree is equal to its Wiener index, which has been
extensively studied (see [4]). Thus the Kirchhoff index is primarily of interest in the case
of cycle-containing graphs.

Zhou and Trinajsti¢ [13| [14] established various lower and upper bounds for the Kirch-
hoff index, see also [I5]. Among the n-vertex connected graphs, Lukovits et al. [9] showed
that the complete graph K, is the unique graph with minimum Kirchhoff index, and Pala-
cios [10] showed that the path P, is the unique graph with maximum Kirchhoff index.
The maximum and minimum Kirchhoff indices among the unicyclic graphs have been
determined by Yang and Jiang [I1], see also [12].

A matching M of the graph G is a subset of E(G) such that no two edges in M share
a common vertex. A matching M of G is said to be maximum, if for any other matching
M’ of G, |M’| < |M]. The matching number of G is the number of edges of a maximum
matching in G. For a matching M of a graph G, if the vertex v € V(G) is incident
with an edge of M, then v is said to be M-saturated. Moreover, if every vertex of G is
M-saturated, then M is a perfect matching of G.

Zhou and Trinajsti¢ [16] determined the graphs with minimum Wiener index and
Kirchhoff index respectively among the connected graphs with fixed number of vertices
and matching number. Du and Zhou [3] determined the graphs with minimum Wiener
index among the trees and unicyclic graphs respectively with fixed number of vertices and
matching number.

In this paper, we determine the minimum Kirchhoff index among the unicyclic graphs
with fixed number of vertices and matching number, and characterize the extremal graphs.
It is of interest to point out that among the unicyclic graphs with fixed number of vertices
and matching number, the graphs with minimum Kirchhoff index are different from those
with minimum Wiener index (see [3]).

2 Preliminaries and Lemmas

For a graph G with v € V(G), G —v denotes the graph resulting from G by deleting v (and
its incident edges). For an edge uv of the graph G (the complement of G, respectively),
G — uwv (G + uv, respectively) denotes the graph resulting from G by deleting (adding,
respectively) wv.



For u € V(Q), let K fg(u) = > rg(u,v). Then

Kf(G) =5 > Kfau).

ueV(G)

Let C, be the cycle on n > 3 vertices, whose vertices are labeled consecutively by
V1,V2,...,Up.
For two vertices v;,v; € V(C,,) with ¢ < j, by Ohm’s law, we have

G=i):In— (-0

n

(1)

e, (v, U])

Furthermore, for fixed n, r¢, (v, v;) is increasing for j —¢ < [§]. For v; € V(C,), by Eq.
(1), we have

K fe, (v1) Zrc V1, ;) —Z@_l)'[?;_(i_m =n26_1, (2)

and thus

3 _
KF(C) = 5 Kfe, (o) = "2 g

For a unicyclic graph G with the unique cycle Cy, G — E(C}) consists of k vertex-
disjoint trees T4, T5, ..., Ty, where v; € V(T;) for i = 1,2,..., k. These trees are called
the branches of G, and v; is called the root of the branch TZ inGfori=1,2,... k.

Now we define the graph U(k,t,4,7) which will be used frequently later. For integers
k.t,i,j withk >3, k>t>0,1>0,5>0,let U(k,t,i,j) be the graph obtained from
the cycle C}, as follows:

(a) choose t consecutive vertices in the cycle Cy;
(b) attach t pendent vertices each to one of the ¢ chosen vertices in (a);

(c) attach i pendent vertices and j paths on two vertices to a central vertex of the ¢
chosen vertices in (a).

Clearly, U(k,t,i,j) has k +t + i + 2j vertices. In particular, let U(k,t) = (k; t,0,0)
for integers k,t with £ > 3 and & > ¢t > 0. For example, U(3,1,0,3), U(3,2 ) and
U(3,3,1,1) are shown in Fig.

Let dg(v) be the degree of v in G.

For integers n and m with 2 < m < | 3], let U(n, m) be the set of unicyclic graphs with
n vertices and matching number m. For integer m > 2, we can partition U(2m, m)\{Can }
into two subsets as follows:



U(3.1,0.3) (3,2.2,1) U(3,3,L1)

Figure 1: The graphs U(3,1,0,3), U(3,2,2,1) and U(3,3,1,1).
(1) the set of graphs of maximum degree three in U(2m,m) obtainable by attaching
some pendent vertices to a cycle, which is denoted by U; (m);
(77) the set of graphs in U(2m, m) containing some pendent vertex whose unique neighbor

is of degree two, which is denoted by Us(m).

2.1 The Kirchhoff index of graphs in U;(m) with small m

First we want to determine the minimum Kirchhoff index among the graphs in U;(m)
with 2 <m <8.

Lemma 2.1. Let G € Uy(m) with the unique cycle Cy and t pendent vertices, where
k+t=2m, k>3 and k>t>1.

(1) Fort=1,2,3,k—4,k—2,k, (k,t) = (10,4), (k,t) = (11,5), or (k,t) = (12,4), we
have

1 2 — 1
Kf(G) > 5 (k3+2k2t+12kt—k+2t3+12t2—16t+ k )
with equality if and only if G = U(k,t).

(17) For integers k,t with k>3, k>t >1, andv € V(G), we have

KfG(U) > f(k’t)

with equality if and only if G = U(k,t), and v is a central vertex of the t vertices of
degree three in U(k,t), where

L(2k2 4+ 32 + 12t — 2 — £22)  if t is even.

12 k

f(kjt):{%(2k2+3t2+12t— — 22ty ift s odd,



Proof. First we prove (i). The casest = 1, k—2, k are trivial. Suppose that ¢t # 1,k—2, k.
Let S(G) = {v € V(C%) : dg(v) = 3}, and let o(G) = >, rg(vi,v;). Clearly,
{viv; }CS(G)
|S(G)] =t.
If t =2, say S(G) = {v1,vs}, then
1-(k—1)
k

with equality if and only if v; and v, are adjacent in G, i.e., G = U(k,2).
If t > 3, then by Eq. , we have

o0(G) = rg(vy,vs) > =o(U(k,2))

o(U(k,t)) = re(vi,v) +rag(vy,vs) + -+ rg(vr, v)
+ra(va, v3) + 1 (ve, v4) + - - - + ra(va, vy)
++rg(veg, vy)

= i Z rG(vi, v))

i=1 j=i+1

i=1 j=1

1
= =—1tt—-1)(t+1)(2k —1). 4
St = 1)+ 1)(2k 1 (@
Suppose that ¢ = 3. Then k is odd as G has perfect matching. By symmetry, we may
assume that S(G) = {vy,v;,v;} with 1 < i < j, and dg(vi, v;) < dg(vi,v;). Obviously,
7 < % Ifj < %, then note that dg(vi, v;) > 2, and by Eq. , we have

o(G) = rg(v,v)+re(v,vy) + ra(vi,vj)
1-(k—=1) 2-(k—=2) 1-(k—-1)
T
= o(U(k,3))

with equality if and only if i = 2 and j = 3, i.e., G 2 U(k,3). If j = k, then we have
i = 2 since dg(v1,v;) < dg(vi,vj), i.e., G = U(k,3). Note that j # k — 1 as G has perfect
matching. If 2 < j <k — 2, then dg(vi,v;) > 3, and by Eq. , we have

o(G) = rg(v,v)+re(v,vy) + re(vi,v;)
1-(k—=1) 3-(k—=3) 1-(k—1)
e



Lo(k=1) 2-(h=2) 1-(k—1)
R
— (UK, 3)).

>

Now it follows that o(G) > o(U(k, 3)) with equality if and only if G = U(k, 3).

Suppose that ¢ = kK —4 > 4. Suppose to the contrary that G 2 U(k,k — 4).
Then there are two pairs of adjacent vertices of degree two on the cycle Cy in G, sep-
arated by a > 1 consecutive vertices v;,v;,,...,v;, of degree three and b > 1 consec-
utive vertices vj,,vj,,...,v;, of degree three on the cycle Cj, where d¢, (v, v5,) = 3,
de, (vi,,v5,) = 3, and a +b = k — 4. Assume that ¢ > b. Denote by w the pendent
neighbor of v; in G. Consider G' = G — {v;,w} + {vw}, where v is the neighbor of
v;, with degree two on the cycle. Note that S(G) = {vi,, viy, ..., iy, 5y, Vs, - - -, V5, } and
S(G') = {viy, Vig, -, Viy, U, Vjy, ..., 05+ If 0> 2, then by Eq. , we have

a a 1 a+2 ' - 1 a - '
ng(vjl,vis)—ZrG/(v,vis):EZz(k—z)—E i(k —1),
s=1 s=1 =3 i=1

b b = | b
> ravi, ) = Y rarlv,vg) = z > ik —i) - Ezi(k — i),
5=2 5=2 i=1 i=3

and thus
o(G) — o(G)
= Z ra(vj,, ) — Z ra (v, x)
z€S(G)\{v;, } z€S(G)\{v}

s=1 s=2
= (ZTG(%UZS)—ZTG'(%UZS)>
s=1 s=1
b b
+ ra(vj,vj,) — Z ra (v, U]s))
s=2 s=2
1 a+2 . 1 a
= (E;Z(k — i) — e 2 i(k — z))
b—1 b+1
1 1
+1 =) i(k—i)—— z(k:—z))
<k i=1 k i=3
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If b = 1, then by similar arguments as above, we have o(G) — ¢(G') = ¢ > 0. Thus
0(G) > o(G) for b > 1. By repeating the transformation from G to G’, we may finally
get 0(G) > o(U(k,k —4)). Thus if t = k — 4, then o(G) > o(U(k,k — 4)) with equality
if and only if G = U(k, k — 4).

Suppose that (k,t) = (10,4). Then there are exactly four possibilities for G, and by
suitable labeling, we may assume that S(G) = {v1, v, v3, 04}, {v1, v, v3, 06}, {v1, Vo, U5, V6 },

or {vy, v, v5,vs}. By direct calculation, we have

8 if S(G) = {v1,v9,v3, 04},
o) = 5 FS(G) = {vnva v},
= lf S(G) - {U17U27U57U6}7
12 if S(G) = {v1, va, vs, vs},

and thus o(G) > 8 with equality if and only if G = U(10,4).

Suppose that (k,t) = (11,5). Then there are exactly five possibilities for G, and
by suitable labeling, we may assume that S(G) = {vy,ve,vs,v4,v5}, {v1, 09, v3,v4, 07},
{v1,v9, v3, V6, v7}, {1, V2, V3, V6, V9 }, Or {V1, V2, V5, U8, v9}. By direct calculation, we have

(170 if S(@

11 {Ul,UQ,Ug,U4,U5},
202 if §(@

11 {U17027U37U4,U7}

(G) =
(G) =
o(G) =< 28 if S(Q) = {vy, va,v3, V5, V7 },
(G) =
(G) =

11

226
T lfS G — {UlaUQav37U67U9}

24 §(G

\ 11

{vla V2, Vs, Ug, 09}7

and thus o(G) > 1 with equality if and only if G = U(11,5).

Suppose that (k,t) = (12,4). Then there are exactly eight possibilities for G, and by
suitable labeling, we may assume that S(G) = {v1, ve, vs, v4}, {v1, Ve, v3, v}, {v1, Ve, U3, vs},
{v1,v9,v5, 06}, {v1,v2,v7,08}, {v1, 09, U5, 08}, {v1, V9, v5,v10}, Or {1, v4,v7,v10}. By direct
calculation, we have

(2 if S(G) = {v1,v2,v3, v4},
it S(G) = {1, v2, 03,06},
3 if S(G) = {v1, ve,v3, 05},
o) =43 HES(G) = {orvav5, v}
4 if S(G) = {v1, vz, v7, 08},
14 if S(G) = {v1, v, vs,v8},
G if S(G) = {1, v9, 05,010},
(@) =

{Uh V4, V7, UIO}



and thus 0(G) > 2 with equality if and only if G = U(12,4).
Combining all the above cases, and by Eq. , we can deduce that

(@) > o(U(k, 1)) = ét(t )+ 1)(2k =)

with equality if and only if G = U(k,t) for t = 1,2,3,k — 4,k — 2, k, (k,t) = (10,4),
(k,t) = (11,5), or (k,t) = (12,4). For 1 < i < k with dg(v;) = 3, let u; be the pendent
neighbor of v; in G.

By Egs. and , we have

Kf(G) = > relvv)+ Y > rolw,v)

{vi,v;}YCV(Ck) w €V(G)\V(Cy) v;€V(Ck)

+ Z ra(ui, uy)

{uiu; FEV(GN\V(Cr)

_ "“1;’“+ SOY Utrelvno)+ S @+ra(viuy)

v, €5(G) v;€V(Cy) {viv;}ES(G)
k3 —k t
= 3 + Z (k+ K feo,(v;)) +2 5 + Z ra(vi, v;)
U»L'GS(G) {Ui7vj}gS(G)

k3 —k kE*—1 t
= +t(k+ 5 >+2(2)+0(G)

k3 —k k2 —1 t 1
> - . _
T (k 6 ) 2(2) Tt~ D+ 12k =1)

L (3 2 3 2 -t
= E(k + 2kt + 12kt — k + 2t° + 12¢° — 16t + 2 )
with equality if and only if G = U(k,t) for t = 1,2,3,k — 4,k — 2, k, (k,t) = (10,4),
(k,t) = (11,5), or (k,t) = (12,4).

Next we prove (ii). Let v € V(G). For v; € V(Cy), clearly K fo(v) — K fa(v;) =
2m — 2 > 0, where dg(v;) = 3, and v} is the unique neighbor of v; in G outside Cy. Thus
we may assume that v = v; € V(C). By Eq. (I, it is easily seen that

(t-1)/2

042 Y =i if ¢ is odd
> relviy) > Wy
v;€5(G) 0+2 > z'(kk_’) + t/Q'(kk_t/Z) if t is even
=1

k

L (312 — a2t if ¢ is even

_ {%(3252 —3—£2) iftis odd
k

with equality if and only if the ¢ vertices in S(G) are consecutive on Cy, i.e., G = U(k,t),
and v; is a central vertex of the ¢ vertices of degree three in U(k,t). For v; € V(C}), by

8



Eq. , we have

Kfo(vi) = Kfo(vi)+ Z ra(vi, uj)

uj €V(G)\V (Cy)

= Pl S tre(onny))

6
v ES(G)

k2 —1
= 6 +t+ Z TG(’UZ‘,U]')
vjES(G)

{k21 Ft+ B3 -3 224 if tis odd

6

Bl p g4 L3 — e if ¢ is even

A%

B {%(2k2+3t2+12t_5_t37t) if ¢ is odd

L(2k% + 362 + 12t — 2 — T2 if ¢ is even

= f(k’t)

with equality if and only if G = U(k,t), and v; is a central vertex of the t vertices of
degree three in U(k,t). W

If G € Uyj(m) with the unique cycle Cy and t pendent vertices, where 2 < m < 8,
thent =1,2,3,k — 4,k — 2, k, (k,t) = (10,4), (k,t) = (11,5), or (k,t) = (12,4). Now by
Lemma [2.1] (i), we have

Lemma 2.2. If G is a graph in Uy(m) with the minimum Kirchhoff index, where 2 <
m < 8, then G = U(k,t) withk+t=2m, k>3 and k>t > 1.

2.2 The Kirchhoff index of graphs in Uy(m) with small m

The following result will be useful for comparing the Kirchhoff indices of graphs.
For simplicity, let |G| = |V (G)| for a graph G.

Lemma 2.3. [12] Let G and H be two connected graphs with u € V(G) and w € V(H).
Let GuH be the graph obtained from G and H by identifying v € V(G) with w € V(H).
Then

Kf(GuH) = Kf(G)+ Kf(H) + ([H| = 1) Kfo(u) + (IG] = 1) K fu(w).

Let P, be the path on n vertices.

If v is a pendent vertex being adjacent to a vertex v of degree two in the graph G, then
the path of G induced by the vertices v and v is said to be a pendent P, of G. Clearly,
every graph in Uy(m) has at least one pendent P;.

For a given graph G' € Us(m), starting from G, deleting the pendent P,’s repeatedly,
until there is no pendent P, the resulting graph is denoted by G. Let 7 = |G/|. Clearly,
G e Uy (%) U{Cs}.



Now we determine the minimum Kirchhoff index among the graphs in Uy(m) with
3 <m <&

Lemma 2.4. If G is a graph in Uy(m) with the minimum Kirchhoff index, where 3 <
m <8, then G = U(k,t,0,5) withk+t+2j=2m, k>3, k>t>1andj> 1.

Proof. Let G € Uy(m), and k be the length of the unique cycle of G.
Denote by the deleting process from G to G as follows:

G=G,—-Gy—= - =G, =G, =G,

where G, is the (unicyclic) graph obtained from G; by deleting a pendent P,, where
1 <i<r—1. Note that n + 2(r — 1) = 2m.

Recall that G, = G € Uy(3)U{Cx}. By Lemma[2.2, we have K f(G,) > K f(U(k,t,0,0)),
where k + ¢t = n. Moreover, by Lemma (ii) and Lemma [2.3] we have K f(G,_1) >
Kf(U(k,t,0,1)) with equality if and only if G,_; = U(k,t,0,1). Again by Lemma
(ii) and Lemma [2.3) we have K f(G,_o) > Kf(U(k,t,0,2)) with equality if and only
if G,_o = U(k,t,0,2). Repeating the arguments, finally we can deduce that K f(G) =
Kf(Gy) > Kf(U(k,t,0,7 — 1)) with last equality if and only if G = U(k,¢,0,r — 1).

Then the result follows easily. W

2.3 The effect on the Kirchhoff index of graphs under the dele-
tion of some vertices

First we introduce a unicyclic graph.
Let Upm = U(5,1,n —2m, m — 3), where 3 <m < | 7], see Fig . It is easily checked
that

Kf(Upm) =n*+nm —5n — 3m + 4. (5)

Figure 2: The graph U, ,.

Next we establish a lower bound of K fg(u), where G € U(n,m) and u € V(G).

10



Lemma 2.5. Let G € U(n,m) with the unique cycle Cy, where n > 6, m > 3, k > 3. If
T, =2 P, or Py for 2 <i <k, then foru e V(11),

Kfou)>n+m—4
with equality if and only if G = Uy, and u is the vertex of maximum degree in U, p,.

Proof. Let M be a maximum matching of G. First we establish an upper bound of
dg(u). Let
Ay ={xy € E(G)\ M : either x = u or y = u},

Ay ={zy € E(G)\ M : z,y # v and zy € E(Cy)},
As={zy € E(G)\ M : z,y # v and zy & E(Cy)}.
Clearly, Ay, Ay, A are pairwise disjoint, and E(G)\ M = A; U Ay U Az. Thus

[E(G)\ M| =n—m=[Ai| +[As| + [43]. (6)
Note that
(a) |A1] > dg(u) — 1 with equality if and only if u is M-saturated;

(b) |As| > |552] if u lies on the unique cycle Cy of G, and
|As| > | 1] if u lies outside the unique cycle Cj of G;

(c) |As] > 0.

It follows from Eq. (6 that if u lies on the unique cycle Cy of G, then n —m > (dg(u) —
1)+ [52], ie.,

do(u) <n—m+1— {%J (1)

with equality if and only if the corresponding equalities in (a), (b), (c¢) hold, while if u
lies outside the unique cycle Cy of G, then n —m > (dg(u) — 1) + |52 ], ie.,

dG(u)Sn—m+1—{%J (8)

with equality if and only if the corresponding equalities in (a), (b), (c¢) hold.
Case 1. u lies on the unique cycle C} of G.
Subcase 1.1. kisoddand T; &2 P, for 2 <3 < k.

By Eq. and inequality @, we have

Kfo(w) = Kfg )+ > rolu,x)

zeV(G\V(Cr)

11



k?—1

+ [(dg<u) — 2) + 2(n — k- dg(u) + 2)]

6
1 11
k—3 1 11
> —(n-m+1-""2) 4+ 2k2—2k+2n+ —
> (n m + 5 >+6 + n—|—6

1
= 6(1{:2—9k+6n—|—6m—4)

with equality if and only if G = U(k,1,n — 2m, m — %) with odd k, and w is the vertex
of maximum degree in U(k,1,n — 2m, m — %)

Subcase 1.2. k is even and T; & P; for 2 < i < k, or there is at least one of T} such that
T, =P, for 2 <3<k,

Obviously, r¢(u,v) > 1+ # > 2, where v is the unique pendent neighbor of v;
with 3 < i < k—1if T; 2 P,. On the other hand, we also note that if k£ is odd, then
T; = P, for some ¢ with 2 < i < k, and thus either |4y > [%552] = 552 or |45] > 0, by
Eq. @, we have n —m > (dg(u) — 1) + 52 + 1, ie,

do(u) < n—m—¥. ()

Let a be the number of pendent vertices attached to vy or v in GG, where 0 < a < 2.

Then by Eq. , and inequalities @ and @D, we have

Kfo(w) = Kfgw+ > rolu,x)

zeV(G)\V(Cy)

K2 —1 1-(k—1

> 6 —I—|:(dg(u)—2)—|-(14—%)&—1-2(71—]{—&—6161(11)—'—2)
a 1, 11

= —— k2 92k 492 ke
2 dg(u)+6k' k'—|- n+6

. _%—(n—m+1—%)+%k52—2k5+2n+% if k is even

2 (n—m-E53) 4 12 -2k 4 2n 4+ U if k is odd

(k* =9k +6n+6m —1 —22) if k is even

(k* — 9k + 6n + 6m +2 — 22) if k is odd

I
D~ —N—  ——
D= =

(k* — 9k + 61 + 6m — 4).

If K fo(u) = L(k*—9k-+6n+6m—4), then a = 2, k = 4 and dg(u) = n—m+1-52 = n—m.
However, a = 2 and k = 4 imply that either |4;| > 1 or [43| > 0, and thus by Eq. (0),
we have n —m > dg(u). Therefore K fo(u) > & (k* — 9k 4 6n 4 6m — 4).

Case 2. u lies outside the unique cycle C} of G.

12



Note that for v ¢ V(Cy) UV(TY), ra(u,v) > 2+ @ > 2. Let b be the number of
neighbors of u on C}, where b = 0,1. Now by Eq. and inequality , we have

Kfou) = Kfe,(w+ Y ro(ux)
z€V(G)\V(Ck)

> (k+ 26 )+[(dG(u)—b)+2(n—k—dg(u)+b)]

1 1

k+1 1, 1
_ _ I A 12 I — —
0 (n m -+ 1 L 5 J>+6k k+2n 5

v

1
> 6(k2—9k+6n+6m—4).

Now combining Cases 1 and 2, we have
1
K fa(u) > 6(k;? — 9k + 6n + 6m — 4)

with equality if and only if G = U(k,1,n — 2m, m — %) with odd k, and w is the vertex
of maximum degree in U(k,1,n — 2m, m — %) Thus

1
(k* =9k +6n+6m —4) > 6(52—9-5+6n+6m—4)

= n+m-—4

K fa(u) >

| =

with equalities if and only if G = U(5,1,n — 2m,m — 3) = U, ., and u is the vertex of
maximum degree in U, ,,,. M

Now we present a stronger version of lemma [2.5]

Lemma 2.6. Let G be a unicyclic graph with n vertices and matching number at least m,
where n > 6, m > 3. Foru € V(G),

Kfeu)>n+m—4
with equality if and only if G = Uy, and u is the vertex of mazimum degree in U, p,.
Proof. Let G be a unicyclic graph with a vertex u € V(G) such that
Kfo(u) =min{K fy(z) : H € U(n,r),z € V(H),r > m}. (10)

Assume that v € V(T1). Let M be a maximum matching of G. Suppose that |T;] > 3
for some ¢ with 2 < ¢ < k, where k is the length of the unique cycle of G. Then there
is some edge, say xy, in T; outside M. Assume that the vertices x and wu lie in the same
component of G — xy. Let G; = G — xy + uy. Clearly, M is also a matching of G,

13



and thus G; has matching number at least m. However, K fg, (u) < K fg(u), which is a
contradiction. Thus |T;| = 1,2, i.e., T; = Py or P, for 2 <i < k. By Lemma , we have

Kfe(u)>n+r—4>n+m—4

with equalities if and only if G = U, ,,,, and u is the vertex of maximum degree in U, ,.
|

The following result turns out to be of rather important for the proof of our main
results.

Lemma 2.7. Let G € U(n,m) with a pendent vertex x being adjacent to vertex y, and
let z be the neighbor of y different from x if da(y) = 2, where n > 6, m > 3. Then

Kf(G)—Kf(G—x)>2n+m—6

with equality if and only if G = U,,,, and x is a pendent neighbor of the vertex of
mazimum degree in U, .,. Moreover, if da(y) = 2, then

Kf(G)—Kf(G—x—y)>5n+2m—19
with equality if and only if G = U, .
Proof. Note that K fg(z) — K fo(y) = n — 2. Then by Lemma 2.6, we have
Kf(G) - Kf(G—-2) = Kfaz)

= Kfcly)+n—2
> (n+m—4)+n—-2=2n+m-—=6

with equality if and only if G = U,,,, and z is a pendent neighbor of the vertex of
maximum degree in U, ,,.

If de(y) = 2, then K fq(y) — K fa(z) = n — 4, and thus by Lemma 2.6 we have

Kf(G)-Kf(G-z—y) = Kfolz)+Kfaly) -1
= 2K fqg(2)+3n—11
> 2(n+m—4)+3n—11=5n+2m — 19

with equality if and only if G = U,,,,,. M

Lemma 2.8. [I1] Let G be an n-vertex unicyclic graph with the unique cycle Cy., where
3<k<n-—1. Then

1
Kf(G) = -]

with equality if and only if G = U(k,1,n — k —1,0).

—k + 2nk* — (12n — 13)k + 12n* — 14n)]
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3 Results

First we consider the minimum Kirchhoff index of unicyclic graphs with perfect matching.

Theorem 3.1. Among the graphs in U(2m,m) with m > 2, Cy,, for 2 <m < 4, U(8,2)
form =5, U(8,4) for m =6, U(7,7) for m =7, and Usy,m for m > 8 are the unique
graphs with the minimum Kirchhoff indices, which are equal to %(4m3 —m) for2 <m <4,
81% form =5, 135% for m =6, 203 for m =7, and 6m? — 13m + 4 for m > 8.

Proof. Recall that U(2m,m) = U;(m) U Ua(m) U {Cs, }.
Case 1. 2 <m <8.
The case m = 2 is obvious since U(4,2) = {U(3,1), Cy}, where

KFU(3,1)) = 6% 5= KF(CY).

For 3 <'m < 8, by Lemmas 2.2 and [2.4] the minimum Kirchhoff index of the graphs in
U(2m, m) is precisely achieved by some graph of the form U(k,t,0, j), where k 4+t 425 =
2m, k > 3, k>t > 0 and 5 > 0. In Tables 1-6 corresponding to m = 3,4,...,8,
we list these graphs and their Kirchhoff indices. We use (k,t;j) to represent the graph
U(k,t,0,7) in these tables. From these tables, we find that

(1) U(6,0,0,0) = Cg is the unique graph in U(6, 3) with the minimum Kirchhoff index,
which is equal to 17%;

(2) U(8,0,0,0) = Cy is the unique graph in U(8,4) with the minimum Kirchhoff index,
which is equal to 42;

(3) U(8,2,0,0) = U(8,2) is the unique graph in U(10,5) with the minimum Kirchhoff
index, which is equal to 81%;

(4) U(8,4,0,0) = U(8,4) is the unique graph in U(12,6) with the minimum Kirchhoff
index, which is equal to 135%;

(5) U(7,7,0,0) = U(7,7) is the unique graph in U(14,7) with the minimum Kirchhoff
index, which is equal to 203;

(6) U(5,1,0,5) = Ujgg is the unique graph in U(16,8) with the minimum Kirchhoff
index, which is equal to 284.

Case 2. m > 9.

We prove the result by induction on m. Suppose that the result holds for all the
graphs in U(2m — 2,m — 1). Let G € U(2m,m).

If G = Cs,,, then by Egs. and , we have

Kf(G) = é(4m3 —m) > 6m* —13m +4 = K f(Uspmm)-
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Table 1: The Kirchhoff indices of the graphs U(k,t,0, ) in U(6, 3).

Graphs (3,1;1)

(3,3;0)

(4,0;1)

(4,2;0)

(5,1;0)

(6,0;0)

Kirchhoff indices 24

23

23

3
203

19

17

1
2

Table 2: The Kirchhoff indices of the graphs U(k,t,0,7) in U(8,4).

Graphs (3,1;2) | (3,3;1) | (4,0;2) | (4,2;1) | (4,4;,0) | (5,151)
Kirchhoff indices || 532 53% 53 50% 48 48

Graphs (5,3;0) | (6,0;1) | (6,2;0) | (7,1;0) | (8,0;0)
Kirchhoff indices || 453 485 44 43 42

Table 3: The Kirchhoff indices of the graphs U(k,t,0, ) in U(10,5).

Graphs (3,1;3) | (3,3;2) | (4,0;3) | (4,2;2) | (4,4;1) | (5,1;2)
Kirchhoff indices || 953 952 95 912 91 89

Graphs (5,3;1) | (5,5;0) | (6,0;2) | (6,2;1) | (6,4;0) | (7,1;1)
Kirchhoff indices || 88 85 902 863 833 86

Graphs (7,3;0) | (8,0;1) | (8,2;0) | (9,1;0) | (10,0;0)
Kirchhoff indices || 821 88 81% 821 823

Suppose that G € Uy (m).

outside the cycle C}, and thus by Lemma (i), we have

(m? + 6m? — 4m)

Kf(G) > ¢35 (mP+7m?—11m+6— 25)

= Wl Wl

3

> 6m? —13m+4 = Kf(Usmm).

m—+2

Ifm+3 <k <2m—1, then by Lemma , Kf(G) > £h(k), where h(k) = —k* +
dmk? — (24m — 13)k + 48m? — 28m. Clearly, h'(k) = —3k* + 8mk — 24m + 13. Note that
h'(m+3) =5m?—18m—14 > 0 and A/(2m —1) = 4m? — 20m+ 10 > 0. This implies that
h'(k) > 0 for m+3 <k <2m—1,1ie., h(k) is increasing for k with m+3 <k <2m — 1.

16

itk=m
ifk=m+1
(m® +8m? —20m + 30 — -2%) if k=m+2

Recall that G is a graph of maximum degree three ob-
tainable by attaching some pendent vertices to a cycle C, where m < k < 2m — 1. If
k' =m,m + 1,m + 2, then there are, respectively, m, m — 1, m — 2 pendent vertices in GG




Table 4: The Kirchhoff indices of the graphs U(k,t,0,j) in U(12,6).

Graphs (3,1;4) | (3,3:3) | (4,0:4) | (4,2;3) | (4,42) | (5,1;3)
Kirchhoff indices || 149 150 149 145% 146 142
Graphs (5,3;2) | (5,5;1) | (6,0;3) | (6,2;2) | (6,4;1) | (6,6;0)
Kirchhoff indices || 1421 142 1453 1402 140¢ 136
Graphs (7,1;2) | (7,3;1) | (7,5;0) | (8,0;2) | (8,2;1) | (8,4;0)
Kirchhoff indices || 141 1381 1358 146 1392 1353
Graphs (9,1;1) | (9,3;0) | (10,051) | (10,2;0) | (11,1;0) | (12,0;0)
Kirchhoff indices || 142 1363 1465 1382 141 143

Table 5: The Kirchhoff indices of the graphs U(k,t,0, ) in U(14,7).

Graphs (3,1;5) | (3,3;4) | (4,0;5) | (4,2;4) | (4,4;3) | (5,1;4)
Kirchhoff indices || 2142 2163 215 2103 213 207
Graphs (5,3;3) | (5,5:2) | (6,0:4) | (6,2;3) | (6,4;2) | (6,6;1)
Kirchhoff indices || 2082 211 2123 207 2083 2083
Graphs (7,1;3) | (7,3;2) | (7,5;1) | (7,7;0) | (8,0;3) | (8,2;2)
Kirchhoff indices | 208 207 208 203 216 2093
Graphs (8,4;1) | (8,6;0) | (9,1;2) | (9,3;1) | (9,5;0) | (10,0;2)
Kirchhoff indices || 208 2042 2132 2095 2065 2223
Graphs (10,2;1) | (10,4;0) | (11,1;1) | (11,3;0) | (12,0;1) | (12,2;0)
Kirchhoff indices || 2141 2083 220 21255 2272 2175
Graphs (13,1;0) | (14,0;0)
Kirchhoff indices 223 227%

Thus

1 1
Kf(G) > Eh(m +3) = Z—l(m?’ +13m?* — 26m +4) > 6m* — 13m + 4 = K f(Uspm)-
Now suppose that G € Uy(m). Denote by x a pendent vertex in G whose unique
neighbor y is of degree two, and z the neighbor of y different from x in G. Obviously,
xy € M. Then G —z —y € U(2m — 2,m — 1), and thus by Lemma[2.7 and the induction
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Table 6: The Kirchhoff indices of the graphs U(k,t,0,j) in U(16,8).

Graphs (3,1;6) | (3,3;5) | (4,0;6) | (4,2;5) | (4,4;4) | (5,1;5)
Kirchhoff indices || 2923 2932 293 2884 292 284
Graphs (5,3;4) | (5,5;3) | (6,0;5) | (6,2;4) | (6,4;3) | (6,6;2)
Kirchhoff indices || 2862 292 2902 2851 2891 2922
Graphs (7,1;4) | (7,3;3) | (7,5;2) | (7,7;1) | (8,0;4) | (8,2;3)
Kirchhoff indices | 287 2872 2921 292 298 2911
Graphs (8,4;2) | (8,6;1) | (8,8;0) | (9,1;3) | (9,3;2) | (9,5;1)
Kirchhoff indices || 2921 2941 288 2971 2947 2953
Graphs (9,7;0) | (10,0;3) | (10,2;2) | (10,4;1) | (10,6;0) | (11,1;2)
Kirchhoff indices || 2925 3103 302 2993 296 311
Graphs (11,3;1) | (11,50) | (12,0;2) | (12,2;1) | (12,4;0) | (13,1;1)
Kirchhoff indices | 305& | 3003 3241 31455 3062 324
Graphs (13,3;0) | (14,0;1) | (14,2;0) | (15,1;0) | (16,0;0)
Kirchhoff indices || 31475 3353 3233 3323 340
hypothesis, we have
Kf(G) > Kf(G—z—y)+12m —19
> K f(Usm—2m-1)+ 12m — 19

6m* —13m + 4 = K f(Usym)

with equalities if and only if G = Uy, .
Then the result for m > 9 follows easily. W

The remainder of the paper will focus on the minimum Kirchhoff index among the
graphs in U(n, m), where n > 2m and m > 3.

Lemma 3.1. [2] Let G € U(n,m) \ {C,}, where n > 2m, m > 3. Then there is a
maximum matching M and a pendent vertex u of G such that u is not M -saturated.

For a given graph G € U(n,m) \ {C,}, where n > 2m, m > 3, by Lemma [3.1] there is
a maximum matching M and a pendent vertex which is not M-saturated, after deleting
this pendent vertex, we can get a graph in U(n — 1,m). Repeating the process until
it is exhausted, the resulting graph is denoted by G,. Note that Gy € U(2m,m). Let
ny = |Go|. Furthermore, for the vertex u € V(Gy) satisfying K f,(u) is minimum, let G}
be the graph obtained from Gq by attaching n — ny pendent vertices to w.
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Lemma 3.2. Let G € U(n,m) \ {C,,}, where n > 2m, m > 3.

(i) Then Kf(G) > Kf(Gg). In particular, if u is the unique vertex in Gy such that
K fo,(u) is minimum, then K f(G) > K f(G§) with equality if and only if G = G§.

(17) If Go 2 Upgm and K f(Go) > K f(Upnym), then Kf(G) > K f(Upm,)-

Proof. Similar to the proof of Lemma [2.4] and by Lemma repeatedly, (i) follows
easily. On the other hand, by Lemmas and 2.6 Kf(G;) > K f(Upn,m) follows from
the hypothesis that Gy 2 U,,.m and K f(Go) > K f(Uyym). Now together with K f(G) >
Kf(Gy), we can get Kf(G) > Kf(Upm). N

The following lemma reveal the possible graph with the minimum Kirchhoff index
among the graphs in U(n,m) \ {C,}, where n > 2m and 3 <m < 7.

Lemma 3.3. If G is a graph in U(n,m)\ {C,,} with the minimum Kirchhoff index, where
n>2m and 3 <m <7, then Gy 2 U(k,t,0,5) withk+t+2j=ng, k>3, k>t>0
and j > 0.

Proof. Let G € U(n,m)\{C,}. Denote by k the length of the unique cycle of G. Suppose
that there are ¢t pendent vertices of G whose unique neighbors are all on the unique cycle
of G. Note that Gy € U(2m,m), i.e., Gy € Uy(m) U Uy(m).

Case 1. Gy € U;(m).

First, by Lemma (i), we have K f(G) > K f(G}). Next, by Lemma [2.2] we have
Kf(Go) > Kf(U(k,t)) with equality if and only if Gy = U(k,t)), and thus by Lemma
(ii) and Lemmal[2.3] we have K f(Gj) > K f(U(k,t,1,0)) with equality if and only if G§j =
U(k,t,i,0)), where k+t+i=mnand i > 1. Now it follows that K f(G) > K f(U(k,t,4,0))
with equality if and only if G = U(k,t,1,0).

Case 2. Gy € Uy(m).

Recall that, starting from Gq, deleting the pendent Py’s repeatedly, until there is
no pendent P, the resulting graph is denoted by Go. Let 1y = |Gy|. Clearly, Gy €
UL (%) U{Cr } ,

Suppose that u is a vertex in G satisfying K fg,(v) is minimum, and let H be the
graph obtained from G, by attaching i pendent vertices and j paths on two vertices to .

Similar to the proof of Lemma and by Lemma repeatedly, Kf(G) > K f(H)
follows easily.

On the other hand, recall that Gy € Uy (2 )U{C, }, by Lemma , we have K f(Go) >
K f(U(k,t)) with equality if and only if Gy = U(k,t)), where k + ¢t = 19, and thus by
Lemma [2.1] (ii) and Lemma [2.3| we have K f(H) > K f(U(k,t,i,j)) with equality if and
only if H = U(k,t,i,j), where k +t+ i+ 2j =n.

Now it follows that K f(G) > Kf(U(k,t,i,j)) with equality if and only if G =
U(k,t,i,7).

Combining Cases 1 and 2, we have K f(G) > K f(U(k,t,i,j)) with equality if and
only if G 2 U(k,t,i,7), and G =2 U(k,t,i,7) implies that Go = U(k,¢,0,7). N
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Now we determine the minimum Kirchhoff index among the unicyclic graphs with
given matching number.

Theorem 3.2. Among the graphs in U(n,m) with 2 <m < |%5],

(1) form =2, C, forn = 4,5, U(4,1,n —5,0) for 6 < n < 11, U(3,1,8,0) and
U(4,1,7,0) forn =12, and U(3,1,n — 4,0) for n > 13 are the unique graphs with
the minimum Kirchhoff indices, which are equal to "31;" forn =45, %(an —bn—2)
for 6 <n <11, 113 for n =12, and %(3712 —8n+3) forn > 13;

(77) for m = 3, C,, forn = 6,7 and U, 3 for n > 8 are the unique graphs with the
manimum Kirchhoff indices, which are equal to "31;" forn =6,7 and n> —2n —5
forn > 8;

(131) for m = 4, Cg forn =38, U(7,1,1,0) and Cy for n =9, U(7,1,2,0) for n = 10,
U(6,2,3,0) and U(7,1,3,0) forn =11, U(6,2,n — 8,0) for n = 12,13, Uy 4 and
U(6,2,6,0) forn =14, and U, ,,, forn > 15 are the unique graphs with the minimum
Kirchhoff indices, which are equal to 42 for n = 8, 60 forn = 9, 79 for n = 10,
100 forn =11, %(3712 —n —52) forn=12,13, 174 for n = 14, and n* —n — 8 for
n > 15;

() form =5, U(8,2) forn =10, U(7,3,n—10,0) for 11 <n <13, Uyys, U(6,2,4,1)
and U(7,3,4,0) for n = 14, and U, 5 for n > 15 are the unique graphs with the
manimum Kirchhoff indices, which are equal to 81% forn =10, %(7712 + 12n — 245)
for 11 <n <13, 185 for n = 14, and n* — 11 for n > 15;

(v) form =6, U(8,4,n —12,0) for n = 12,13, Uy, U(6,2,2,2) and U(7,3,2,1) for
n = 14, and U, for n > 15 are the unique graphs with the minimum Kirchhoff
indices, which are equal to i(4n2 + 19n — 262) forn = 12,13, 196 for n = 14, and
n?+n — 14 for n > 15;

(vi) form =7, U(7,7) forn =14 and U, 7 for n > 15 are the unique graphs with the
minimum Kirchhoff indices, which are equal to 203 for n = 14 and n?*+ 2n — 17 for
n > 15;

(vii) form > 8, Uy, for n > 16 is the unique graph with the minimum Kirchhoff indez,
which is equal to n* +nm — 5n — 3m + 4.

Proof. The result for n = 2m follows from Theorem [3.1] Suppose that n > 2m. Let
G € U(n,m).
Case 1. m = 2.

Clearly, the girth of G is 3,4,5 for n = 5, and 3,4 for n > 6. Then by Lemma [2.8 we
have

Kf(G) Z min{Kf(U(3, 17 1’ O))’ Kf(U(4’ 1))7 Kf(OS)}
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2 1
= min{ 125,115,107 = 10
mm{ 5 3, }

for n =5, and
= min{%(BnQ—8n+3),%(2n2—5n—2)}

for n > 6. Thus C5 forn =5, U(4,1,n—5,0) for 6 <n <11, U(3,1,8,0) and U(4,1,7,0)
for n = 12, and U(3,1,n — 4,0) for n > 13 are the unique graphs in U(n,2) with the
minimum Kirchhoff indices.
Case 2. m = 3.

If G =C,, then n =7, and by Eq. (3], we have K f(G) = 28.

Suppose that G 2 C,. If Gy = Uss, then by Lemma (i), we have K f(QG)
K f(U,3) with equality if and only if G = U, 3. Suppose that Gy 2 Uss. If Kf(Gy)
K f(Us3), then by Lemma [3.2] (ii), we have K f(G) > K f(U,3). If K f(Gy) < Kf(Uﬁg),
then by Lemma and Table 1, we assume that Gy = Cs, and thus by Lemma (i),
we have K f(G) 2 Kf(U(6,1,n—7,0)) with equality if and only if G = U(6,1,n — 7 0).

Therefore for n = 7,

2
>

Kf(G) = min{K f(Uys), Kf(U(6,1)), K f(C7)} = min {30, 29%, 28} =928

with equality if and only if G = C7, and for n > 8§,

= min{n —2n—-95,n —Zn—ﬁ} =n*—2n -5
6 2

with equality if and only if G = U, 3.
Case 3. m =4.

If G =C,, then n =9, and by Eq. (3)), we have K f(G) = 60.

Suppose that G 2 C,. If Gy = Uy, then by Lemma (i), we have Kf(G) >
K f(U,4) with equality if and only if G = U, 4. Suppose that Gy 2 Us4. If Kf(Go) >
K f(Us,), then by Lemma [3.2] (i), we have K f(G) > K f(Uy4). If K f(Go) < K f(Usa),
then by Lemma3.3Jand Table 2, we assume that Gy = U(5,3,0 0),U(6,2,0,0),U(7,1,0,0)
or U(8,0,0,0), and thus by Lemma [3.2] (i), we have

Kf(G) > min{Kf(U(5,3,n—38,0)), Kf(U(6,2,n—8,0)),
KFf(U(T,1,n—8,0)), Kf(U(8,0,n —8,0))}.

Now the result for m = 4 follows from Table 7 easily.
Case 4. m = 5.
If G = C,, then n = 11, and by Eq. (@), we have K f(G) = 110.
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Table 7: The graphs in U(n,4) and their Kirchhoff indices.

Graphs Kirchhoff indices
n 9 10 11 12 13 14 15
Una n?-n—-8 64 82 102 124 148 174 202

2 2 2 3 1 4 2
n?—2%n—15 622 81 1013 124L 1481 1752 204

2 1 52 2 1 2 1 2

n?—21 60 79 100 123 148 175 204

n*+3n—-34 605 81 1031 128 1541 183 2131

Suppose that G % C,. If Gy = Ujgs, then by Lemma (i), we have K f(G) >
K f(U,5) with equality if and only if G = U, 5. Suppose that Gy 2% Ujps. If Kf(Gy) >
K f(Uyo), then by Lemma 3.2] (ii), we have K f(G) > K f(Uy5). If K f(Go) < K f(Uros),
then by Lemma3.3|and Table 3, we assume that Gy = U(5,3,0,1), U(5,5,0,0), U(6,2,0,1),
U(6,4,0,0), U(7,1,0,1), U(7,3,0,0), U(8,0,0,1), U(8,2,0,0), U(9,1,0,0) or U(10,0,0,0),
and thus by Lemma [3.2] (i), we have
Kf(U(6747 n— 107 0))7 Kf(U<77 17 n— 107 1))7 Kf(U(7> 37 n— 107 0))7
Kf(U(8,0,n—10,1)), Kf(U(8,2,n—10,0)), Kf(U(9,1,n — 10,0)),
Kf(U(10,0,n — 10,0))}.
Now the result for m = 5 follows from Table 8 easily.
Case 5. m = 6.
If G = C,, then n =13, and by Eq. (3), we have K f(G) = 182.
Suppose that G 2 C,. If Gy = Ujzp, then by Lemma (i), we have K f(G) >
K f(U,¢) with equality if and only if G = U, 6. Suppose that Gy % Uias. If Kf(Go) >
K f(Ui26), then by Lemma[3.2] (i), we have K f(G) > K f(Uy). If K f(Go) < K f(Usa6),
then by Lemma3.3|and Table 4, we assume that Gy = U(6,2,0,2), U(6,4,0,1), U(6,6,0,0),
U(7,1,0,2), U(7,3,0,1), U(7,5,0,0), U(8,2,0,1), U(8,4,0,0), U(9,3,0,0), U(10,2,0,0)
or U(11,1,0,0), and thus by Lemma [3.2] (i), we have
Kf(U(77 17 n— 127 2))7 Kf(U(77 37 n— 127 1))7 Kf(U(77 57 n— 127 0))7
Kf(U(87 2a n— 127 1))7 Kf(U<8> 47 n— 127 O))? Kf(U(ga 37 n— 127 O))>
Kf(U(10,2,n —12,0)), K f(U(11,1,n — 12,0))}.

Now the result for m = 6 follows from Table 9 easily.
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Table 8: The graphs in U(n,5) and their Kirchhoff indices.

Graphs Kirchhoff indices
n 11 12 13 14 15
Un,s n? —11 110 133 158 185 214

U(5,3,n—10,1) | n®+3n—18 1093 1331 158% 186% 216

U(5,5,n —10,0 n?+2n — 35 108 133 160 189 220

U6,2,n—10,1) | n*+3n—-% 108 1312 1573 185 2142

209 1 1 5 2
U(6,4,n—10,0) | n®+n—209 1061 131% 158 1862 2172

2 12 245 6 4 2 5

U(8,0,n — 10, 1
U8

n?+3n—37 1113 137 1645 194 2253

n—10,0) | n?+Yn—35 1051 1303 158 1873 2183

( )
(, )
( )
( )
U(7,1,n—10,1) | n?>+n—24 108 132 158 186 216
(7, )
( )
(8, )
U( )

9,1,n—10,0) | n®+ Pn-51 1062 133 1615 1912 224

U(10,0,n —10,0) | n? +Ln - 145 100 1371 168 2005 235
Cn 110

Case 6. m=17.

If G = C,, then n =15, and by Eq. (3), we have K f(G) = 280.

Suppose that G 2 C,. If Gy = Uys7, then by Lemma (i), we have K f(G) >
K f(U,7) with equality if and only if G = U, 7. Suppose that Gy % Uys7. If Kf(Go) >
K f(Uy47), then by Lemma[3.2] (i), we have K f(G) > K f(Uynz). If K f(Go) < K f(Unaz),
then by Lemma and Table 5, we assume that Gy = U(7,7,0,0), U(8,6,0,0) or
U(9,5,0,0), and thus by Lemma [3.2] (i), we have

Kf(G) > min{Kf(U(7,7,n—14,0)), Kf(U(8,6,n — 14,0)), K f(U(9,5,n — 14,0))}.

Now the result for m = 7 follows from Table 10 easily.
Case 7. m > 8.
It G = C,, then n =2m + 1, and by Egs. and , we have

1
Kf(Coymar) = §(2m3 +3m? +m) > 6m* —8m = K f(Uspmi1m)-

Suppose that G % C,,. By Theorem 3.1 K f(Go) > K f(Unym). Furthermore, if Gy =
Ung.m, then by Lemma 3.2 (i), we have Kf( ) > K f(Uy,,m) with equality if and only if
G = Upm, and if Gy & Uno,m7 then by Lemma (ii), we have Kf(G) > Kf(U,m).
Then the result for m > 8 follows easily. W
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Table 9: The graphs in U(n,6) and their Kirchhoff indices.

UB,2,n—12,1) | n?+Zn -3 168 1983 2303

8

n?+¥n 131 1651 197 2303

U(8,4,n — 12,0

Graphs Kirchhoff indices
n 13 14 15
Ung n?+n—14 168 196 226
U6,2,n—12,2) | n?+5n—-2 167¢ 196 2263
U6,4,n—12,1) | n?+4n— 2T 168 1972 2292
U(6,6,n—12,0) | n*+n—-64 1652 1971 231
U(7,1,n—12,2) | n?>+2n—27 168 197 228
U(7,3,n—12,1) | n®>+Y2n—38 1662 196 2272
U(7,5,n—12,0) | n®>+ #n—63 1652 197 2302
( )
( )
( )

U9,3,n—12,0) | n?+P$n—69 1665 1983 2323

U(10,2,n —12,0) | n® + £n— 42 1693 2031 2383
(

U11,1,n—12,0) | n®24+81—99 174 209 246

Ci3 182
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