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Abstract

Given a number of Extended Chebyshev (EC) spaces on adjacent intervals, all of the same
dimension, we join them via convenient connection matrices without increasing the dimension.
The global space is called a Piecewise Extended Chebyshev (PEC) Space. In such a space
one can count the total number of zeroes of any non-zero element, exactly as in each EC-
section-space. When this number is bounded above in the global space the same way as in its
section-spaces, we say that it is an Extended Chebyshev Piecewise (ECP) space. A thorough
study of ECP-spaces has been developed in the last two decades in relation to blossoms, with
a view to design. In particular, extending a classical procedure for EC-spaces, ECP-spaces
were recently proved to all be obtained by means of piecewise generalised derivatives. This
yields an interesting constructive characterisation of ECP-spaces. Unfortunately, except for low
dimensions and for very few adjacent intervals, this characterisation proved to be rather difficult
to handle in practice. To try to overcome this difficulty, in the present article we show how to
reinterpret the constructive characterisation as a theoretical procedure to determine whether or
not a given PEC-space is an ECP-space. This procedure is then translated into a numerical
test, whose usefulness is illustrated by relevant examples.

Keywords: Extended Chebyshev (piecewise) spaces, connection matrices, Bernstein-type bases,
(piecewise) generalised derivatives, blossoms, geometric design

AMS subject classification: 65D05, 65D17

1 Introduction

By their ability to ensure unisolvence of Hermite interpolation problems or, equivalently, by the
bound on the number of zeroes of their non-zero elements, Extended Chebyshev spaces are known
as the most natural generalisations of polynomial spaces, and for this reason they are old tools in
Approximation Theory [10, 34]. In that direction they are generally defined by means of generalised
derivatives associated with systems of weight functions, which permits to extend to them various well-
known notions of the polynomial framework, e.g., generalised divided differences [31] and associated
Newton-type decompositions, Taylor formulæ, . . . [31, 34, 12].

Initiated by H. Pottmann [33], the theory of Chebyshevian blossoming has permitted a deeper
understanding of Extended Chebyshev spaces and Chebyshevian splines ( i.e., splines with pieces
taken from the same Extended Chebyshev space and with ordinary continuity at the knots [2, 3]),
while enhancing their resemblance with polynomial (spline) spaces in connection with geometric
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design. The present paper is not at all a paper on blossoms, but it would not exist without the
fundamental contribution of these powerful and elegant tools. In any situation where blossoms
arise, the major difficulty consists in proving their pseudoaffinity in each variable which extends the
well-known affinity in each variable of polynomial blossoms. Once this proven, the classical design
algorithms are somehow inherent in Chebyshevian blossoms which also guarantee shape preserva-
tion of the resulting Bernstein bases [18]. As a recent important progress arising from blossoms,
let us mention the complete description of all possible systems of weight functions which can be
associated with a given Extended Chebyshev space on a closed bounded interval [25]. Moreover the
geometrical nature of Chebyshevian blossoms makes them ideal tools to express geometric contact
between parametric curves. This naturally produces blossoms for Chebyshevian splines with similar
properties and consequences, e.g., geometric design algorithms, B-spline bases, shape preservation.

Unlike polynomials, Extended Chebyshev spaces explicitly or implicitly involve shape parameters
and this explains why they offer more possibilities in the control of shapes of curves and surfaces. To
take full advantage of the Chebyshevian framework, it is useful to consider Piecewise Chebyshevian
splines, that is, splines with pieces taken from different Extended Chebyshev spaces all of the same
dimension, the continuity between consecutive pieces being controlled by connection matrices. These
splines were first considered by P.J. Barry in [1], see also [15, 16, 32] and [8, 7] for geometrically
continuous polynomial splines. To be of interest for applications, and in particular for geometric
design, such a spline space S is expected to possess a B-spline basis – in the usual sense of a normalised
basis composed of minimally supported splines– and this feature should be maintained after knot
insertion. As a matter of fact, this requirement was proved to be equivalent to the existence of
blossoms in the space S [17, 19, 24]. Moreover, for an efficient control of the shapes, the B-spline
bases are additionally expected to be totally positive. This property can automatically be derived
from the properties of blossoms, and in particular from their pseudoaffinity. This explains why the
terminology “ S is good for design” was adopted whenever the spline space S possesses blossoms. It
should be mentioned that the interest of Piecewise Chebyshevian spline spaces good for design is
not limited to design: they also naturally produce multiresolution analyses with associated piecewise
Chebyshevian wavelets [13], they permit approximation by Schoenberg-type operators [27], they have
useful applications in Isogeometric Analysis [14], . . .

In the present article we focus on the special case where all interior knots have zero multiplicities,
the corresponding spline spaces being referred to as Piecewise Extended Chebyshev spaces (PEC). The
first motivation to consider this case is that zero multiplicities can efficiently be used to strengthen
the shape effects [11]. The second motivation lies in the fact that determining the class of all piecewise
Chebyshevian spline spaces which are good for design amounts to determining the class of all PEC-
spaces which are good for design. Indeed, it was recently proved that a piecewise Chebyshevian
spline space is good for design if and only if it is based on a PEC-space good for design, that
is, possessing blossoms [19, 24]. It is known that a given PEC-space E which contains constants
possesses blossoms if and only if the PEC-space obtained from E by differentiation is an Extended
Chebyshev piecewise space (ECP) in the sense that the global bound on the number of zeroes
is exactly the same as in each of its section-spaces. The presence of blossoms in E can also be
characterised by the existence of systems of weight functions associated with the section-spaces,
relative to which the continuity conditions are expressed by identity matrices [23]. Given that we
know how to obtain all possible systems of weight functions associated with the section-spaces, this
characterisation naturally provides us with a procedure to determine whether or not a given PEC-
space is good for design. Nevertheless, in general this procedure proves to be all the more difficult
to carry out in practice as zero multiplicities allow no freedom between consecutive sections. This
motivated the search for a an effective numerical procedure as a replacement, to which the present
work is devoted.

The paper is organised as follows. The necessary background is presented in Section 2, with
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special insistence on Bernstein and Bernstein-like bases and their behaviour under possible piecewise
generalised derivatives associated with piecewise weight functions according to a process similar to
the non-piecewise case. In Section 3, these results are first reinterpreted as a theoretical test to
answer the question: is a given PEC-space an ECP-space?, which is in turn transformed into a
numerical test. What we actually test is: can we repeatedly diminish the dimension via piecewise
generalised derivatives? We illustrate this test by relevant examples in Section 4, in particular with
a view to design with shape parameters. We conclude the paper with some comments on both the
usefulness and the limits of the numerical procedure.

2 Background

In this section we briefly survey the main results on (n+ 1)-dimensional piecewise spaces obtained
from (n+ 1)-dimensional section-spaces on adjacent intervals joined by connecting left/right deriva-
tives at the interior knots by appropriate matrices. These results were proved in many earlier articles
by the third author to which we refer the reader to, e.g., [20, 22, 23, 28] and other references therein.
This survey is deliberately presented in a way to facilitate the next section.

2.1 Piecewise spaces via connection matrices

Throughout this article we consider a fixed interval [a, b], a < b, and a fixed sequence T = (t1, . . . , tq)
of q > 1 knots interior to [a, b], with

t0 := a < t1 < · · · < tq < tq+1 := b.

We will deal with piecewise functions on ([a,b];T), defined separately on each [t+k , t
−
k+1]. Given

two such piecewise functions F,G on ([a,b];T), the equality F = G means that F (x) = G(x) for
all x ∈ [a, b] \ {t1, . . . , tq}, and that both F (t−k ) = G(t−k ) and F (t+k ) = G(t+k ), for k = 1, . . . , q.
This will be summarised by saying that F (xε) = G(xε) for all x ∈ [a, b], ε having the meaning of
both −,+ if x ∈]a, b[. One can similarly consider positive piecewise functions on ([a,b];T), and so
forth. Whenever necessary we will allow the integer q to be zero to come back to the non-piecewise
situation.

Throughout the article, D will stand for the (possibly left/right) ordinary differentiation, and 1I
for the constant function 1I(x) = 1 for all x, on any interval.

With a view to defining piecewise spaces, take:

– a sequence Ek, 0 6 k 6 q, of section-spaces: for each k, Ek ⊂ Cn([tk, tk+1]) is an (n + 1)-
dimensional W-space on [tk, tk+1] ( i.e., the Wronskian of a basis of Ek never vanishes on [tk, tk+1],
or any Taylor interpolation in (n+ 1) data at any x ∈ [tk, tk+1] has a unique solution in Ek);

– a sequence M1, . . . ,Mq of connection matrices of order (n+ 1) : each Mk is lower triangular with
positive diagonal entries.

These ingredients provide us with an (n+ 1)-dimensional Piecewise W- space (for short, PW-space)
on ([a,b];T), defined as the set E of all piecewise functions F on ([a,b];T) such that

1) for k = 0, . . . , q, there exists a function Fk ∈ Ek such that F coincides with Fk on [t+k , t
−
k+1];

2) for k = 1, . . . , q, the following connection condition is fulfilled:(
F (t+k ), F ′(t+k ), . . . , F (n)(t+k )

)T
= Mk

(
F (t−k ), F ′(t−k ), . . . , F (n)(t−k )

)T
. (1)
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This is the most natural and the largest framework to define piecewise spaces by connecting left/right
derivatives at the interior knots. In such a space, the Wronskian of any basis never vanishes on
([a,b];T).

At this stage, it is necessary to mention some important technical points for which we refer to
[22].

Remark 2.1. Given a piecewise function ω, assumed to be piecewise Cn and positive on ([a,b];T), the
set ωE := {ωF | F ∈ E} is an (n+ 1)-dimensional PW-space on ([a,b];T), in which the connection
matrices (lower triangular with positive diagonal elements) are given by (see Lemma 39 of [22])

Cn(ω, t+k ) Mk Cn(ω, t−k )−1, k = 0, . . . , q,

where, for x ∈ [a, b] and ε ∈ {−,+}, Cn(ω, xε) =
(
Cn(w, xε)p,q

)
06p,q6n

stands for the lower triangular

square matrix of order (n+ 1) defined by

Cn(ω, xε)p,q := (pq ) w(p−q)(xε), 0 6 q 6 p 6 n.

Remark 2.2. The PW-space E contains constants if and only if, firstly each section-space contains
constants, and secondly the first column of each connection matrix is equal to (1, 0, . . . , 0)T . If so,
clearly E ⊂ C0([a, b]) and, if n > 1, the space DE is a PW-space on ([a,b];T). The connection
matrices in DE are simply obtained by deleting the first row and column in each Mk.

Remark 2.3. Assume that, in the (n+1)-dimensional PW-space E, we can find an element w0 which
is positive on ([a,b];T). Then, denoting by L0 the piecewise division by w0, the space L0E contains
constants. Combining the previous two reminders shows that, if n > 1, the space DL0E is an n-
dimensional PW-space on ([a,b];T). Therefore, the first order piecewise differential operator DL0

(also named piecewise generalised derivative) diminishes the dimension by one within the class of all
PW-spaces on ([a,b];T). The existence of such a dimension diminishing procedure is thus subject
to the existence of a piecewise function w0 ∈ E positive on ([a,b];T). This existence is not at all
guaranteed, see Section 2.3.3.

Due to the assumptions on the connection matrices, for any integer p, 0 6 p 6 n, and any
k = 1, . . . , q, a piecewise function F in the PW-space E vanishes exactly p times at t+k if and only if
it vanishes exactly p times at t−k . We can therefore count the total number of zeroes of any element
of E, including multiplicities up to (n+ 1). We denote it by Zn+1(F ).

Definition 2.4. The PW-space E is said to be an Extended Chebyshev Piecewise space (for short,
ECP-space) on ([a, b];T) when Zn+1(F ) 6 n for any non-zero F ∈ E.

Equivalently, E is an ECP-space on ([a,b];T) if, for any positive integers µ1, . . . , µr summing to
(n+ 1), for any pairwise distinct a1, . . . , ar ∈ [a, b], any convenient ε1, . . . , εr ∈ {−,+}, and any real
numbers αi,j , i = 1, . . . , r, j = 0, . . . , µi−1, the Hermite interpolation problem

find U ∈ E such that U (j)(aεii ) = αi,j for 0 6 j 6 µi − 1 and for i = 1, . . . , r,

has a unique solution in E. Clearly, if E is an ECP-space on ([a,b];T), then, for k = 0, . . . , q,
any non-zero element Fk ∈ Ek satisfies Zn+1(Fk) 6 n, which means that the section-space Ek is
an Extended Chebyshev space (EC-space) on [tk, tk+1]. Conversely, that each section-space is an
EC-space on its own interval does not imply that E is an ECP-space on ([a,b];T). This justifies the
introduction of the following intermediate definition.

Definition 2.5. The PW-space E is said to be a Piecewise Extended Chebyshev space (for short,
PEC-space) on ([a, b];T) when for k = 0, . . . , q, the section-space Ek is an EC-space on [tk, tk+1].
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It is important to mention that, in the situation described in Remark 2.3, a piecewise version of
Rolle’s theorem says that (see Lemma 38 of [22])

Zn(DL0F ) > Zn+1(F )− 1 for any F ∈ E. (2)

Accordingly, if DL0E is an (n-dimensional) ECP-space on ([a,b];T), then E in turn is an ECP-
space on ([a,b];T). Equivalently, the class of all ECP-spaces on ([a,b];T) is closed under continuous
integration as well as under multiplication by (sufficiently piecewise differentiable) positive piecewise
functions on ([a,b];T). A system of piecewise weight functions on ([a,b];T) is a sequence (w0, . . . , wn)
of piecewise functions on ([a,b];T), such that, for i = 0, . . . , n, wi is positive and Cn−i on each
[t+k , t

−
k+1], k = 0, . . . , q. With such a system one can associate piecewise generalised derivatives

L0, . . . , Ln defined in a recursive way as follows:

L0F :=
F

w0
, LiF :=

1

wi
DLi−1F, 1 6 i 6 n. (3)

By ECP (w0, . . . , wn) we denote the set of all piecewise functions which are piecewise Cn on ([a, b];T)
and such that LnF is constant on [a, b], with the additional requirement that

LiF (t+k ) = LiF (t−k ) for i = 0, . . . , n− 1, and for k = 1, . . . , q.

According to the previous observations, the space ECP (w0, . . . , wn) is an (n+ 1)-dimensional ECP-
space on ([a, b];T). In the special case q = 0, we recover the well-known procedure to build an
(n+ 1)-dimensional EC-space on [a, b] from a system (w0, . . . , wn) of weight functions on [a, b]. The
EC-space in question is denoted by EC(w0, . . . , wn).

We conclude this section with two observations.

Remark 2.6. Suppose that n = 0. Then, the one-dimensional PW-space E on ([a,b];T) is as well a
PEC-space on ([a,b];T) or an ECP-space on ([a,b];T). This is clear from the connection conditions
(1) and from the fact that being a one-dimensional W-space on [tk, tk+1] is the same as being a
one-dimensional EC-space on [tk, tk+1]. Accordingly, any non-zero U ∈ E keeps the same strict sign
on ([a,b];T). Equivalently we can state that any one-dimensional PW-space E on ([a,b];T) can be
written as E = ECP (wn) where wn is a piecewise function on ([a,b];T) which is continuous and
positive on each [t+k , t

−
k+1].

Remark 2.7. On account of the previous remark, the class of all spaces of the form ECP (w0, . . . , wn)
coincides with the class of all PW-spaces on ([a,b];T) in which the dimension diminishing procedure
explained in Remark 2.3 can be iterated until dimension one.

2.2 Bernstein-type bases

We consider again the (n + 1)-dimensional PW-space E on ([a,b];T) defined in the previous sub-
section. Due to the assumptions on the connection matrices, for any F ∈ E and any k = 1, . . . , q,
F (t+k ) > 0 if and only F (t−k ) > 0. Along with the fact that we can count the exact numbers of zeroes
at any point in [a, b], this makes the following definitions relevant.

Definition 2.8. Given any c, d ∈ [a, b], c < d, and given B0, . . . , Bn ∈ E, we say that (B0, . . . , Bn)
is a Bernstein-like basis relative to (c, d) if, for each i = 0, . . . , n, Bi vanishes exactly i times at c
and exactly (n− i) times at d. We say that it is a positive Bernstein-like basis relative to (c, d) when
each Bi additionally satisfies Bi(x

ε) > 0 for any x ∈]c, d[.

Definition 2.9. A basis (B0, . . . , Bn) in E is said to be normalised if
∑n
i=0Bi = 1I. A Bernstein

basis relative to (c, d) is a positive Bernstein-like basis relative to (c, d) which is normalised.
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The importance of such bases for ECP-spaces is summarised in the theorem below.

Theorem 2.10. Let E be an (n+ 1)-dimensional PW-space on ([a,b];T), assumed to contain con-
stants, with n > 1. Then, the following properties are equivalent:

(i) the space DE is an ECP-space on ([a,b];T);

(ii) for any c, d ∈ [a, b], c < d, DE possesses a Bernstein-like basis relative to (c, d);

(iii) for any c, d ∈ [a, b], c < d, E possesses a normalised Bernstein-like basis relative to (c, d);

(iv) blossoms exist in E.

The equivalence (i) ⇔ (ii) in Theorem 2.10 permits to identify all ECP-spaces on ([a,b];T) in
the larger class of all PW-spaces on ([a,b];T) by the presence of Bernstein-like bases. For q = 0,
its similarly characterises EC-spaces on [a, b] among all W-spaces on [a, b], see [21]. Applied to the
section-spaces of E, this yields the following characterisation.

Corollary 2.11. Le E be an (n + 1)-dimensional PW-space on ([a,b];T). Then, the following
properties are equivalent:

(i) the space E is a PEC-space on ([a,b];T);

(ii) for any k = 0, . . . , q, and any c, d ∈ [tk, tk+1], c < d, E possesses a Bernstein-like basis relative
to (c, d).

The latter theorem and corollary call for a number of important comments below.

Remark 2.12. As is classical, see [21], if n > 1, and if the PW-space E possesses a normalised
Bernstein-like basis (B0, . . . , Bn) relative to (a, b), then this basis generates a Benstein-like basis
relative to (a, b) in the space DE, say (V0, . . . , Vn−1), via the following formulæ

Vi = D
(
Bi+1 + · · ·+Bn

)
= −D

(
B0 + · · ·+Bi

)
, i = 0, . . . , n− 1. (4)

The passage (4) from normalised Bernstein-like bases to Bernstein-like bases explains the implication
(iii)⇒ (ii) in Theorem 2.10. Moreover, from the expansion U =

∑n
i=0 αiBi of a function U ∈ E, we

can derive the following expansion of the piecewise function DU ∈ DE

DU =

n−1∑
i=0

(αi+1 − αi)Vi. (5)

Remark 2.13. When (i) of Theorem 2.10 holds, then all Bernstein-like bases in (ii) of the same
theorem can be assumed to be positive in the sense of Definition 2.8. The same is valid for all
Bernstein-like bases in (ii) of Corollary 2.11. This is why positivity is often directly included in
the definition of Bernstein-like bases. Nevertheless, positivity is not at all needed to prove the
implication (ii) ⇒ (i) of either Theorem 2.10 or Corollary 2.11, see [21]. In the present paper, it is
important to separate the requirement on the zeroes and the positivity requirement in view of the
next section.

Remark 2.14. Assume that (i) of Theorem 2.10 holds. Then, according to (iv), blossoms exist in
E. Without giving the precise geometrical definition of blossoms, we simply remind the reader that
each function F ∈ Ed (d > 1) “blossoms” into a function f : [a, b]n → IRd, called the blossom of F .
The three main properties satisfied by blossoms (symmetry, pseudoaffinity in each variable, diagonal
property) are the reasons why we can develop a corner cutting de Casteljau-type algorithm for the
evaluation of the blossom f at any (x1, . . . , xn) ∈ [a, b]n as a convex combination (with coefficients
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independent of F ) of the points f(a[n−i], b[i]), i = 0, . . . , n, called the Bézier points of F relative to
(a, b). The notation x[j] is used with the meaning of x repeated j times. In particular, this yields:

f(x[n]) = F (x) =

n∑
i=0

Bi(x)f(a[n−i], b[i]),

n∑
i=0

Bi(x) = 1, x ∈ [a, b].

It follows that (B0, . . . , Bn) is the Bernstein basis of E. That it is generated by a corner cutting
algorithm guarantees the total positivity of the Bernstein basis ( i.e., for any a 6 x0 < x1 < · · · <
xn 6 b, each minor of the matrix

(
Bi(xj)

)
06i,j6n

is non-negative). Concerning the importance of

total positivity for geometric design, see [8, 17, 4]. Readers interested in the precise geometrical
definition of blossoms can refer to [33, 15] for instance.

Clearly, the property (i) of Theorem 2.10 implies that E itself is an ECP-space on ([a,b];T) (note
that the converse if not true). This justifies the definition below.

Definition 2.15. A PW-space E on ([a,b];T) is said to be an ECP-space good for design on ([a,b];T)
when it contains constants and when DE is an ECP-space on ([a,b];T).

Following from Remark 2.14 we can state (for details, see [17])

Theorem 2.16. Let E be an (n + 1)-dimensional ECP-space good for design on ([a,b];T). Then,
the normalised Bernstein-like basis of E relative to (a, b) is its Bernstein basis relative to (a, b) and
it is its optimal normalised totally positive basis.

2.3 Dimension diminishing via piecewise generalised derivatives

Throughout the present section we assume that n > 1. In Remark 2.3 we have mentioned that
diminishing the dimension within the class of all PW-spaces on ([a,b];T) was not always possible.
By contrast, this is always possible in the smaller class of all ECP-spaces on ([a,b];T). Below
we describe how to proceed. We also examine the same question in the intermediate class of all
PEC-spaces on ([a,b];T).

2.3.1 Within the class of all ECP-spaces on ([a,b];T)

For the proof of the theorem below readers are referred to [25, 28]. We simply mention that it is
based both on Theorem 2.10 and on the properties of blossoms in the ECP-space good for design
on ([a,b];T) obtained by continuous integration.

Theorem 2.17. Let E be an (n+1)-dimensional ECP-space on ([a,b];T), and let (V0, . . . , Vn) denote
a positive Bernstein-like basis relative to (a, b). Given a piecewise function w0 =

∑n
i=0 αiVi ∈ E, the

following properties are equivalent:

(i) α0, . . . , αn are all positive;

(ii) w0 is positive on ([a,b];T), and if L0 denotes the piecewise division by w0, the (n + 1)-
dimensional space L0E is an ECP-space good for design on ([a,b];T).

Property (ii) of Theorem 2.17 means that the n-dimensional PW-space DL0E is an ECP-space
on ([a,b];T). In other words, when (i) holds, the first order piecewise differential operator DL0

diminishes the dimension by one within the class of all ECP-spaces on ([a,b];T). Iterating the
process leads to

Corollary 2.18. Any (n+1)-dimensional ECP-space on ([a,b];T) is of the form ECP (w0, . . . , wn),
where (w0, . . . , wn) is a system of piecewise weight functions on ([a,b];T).
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On account of Definition 2.15, Corollary 2.18 obviously implies that any (n + 1)-dimensional
ECP-space good for design on ([a,b];T) is of the form ECP (1I, w1, . . . , wn).

Remark 2.19. As a consequence of Theorem 2.17, as soon as n > 1, the dimension diminishing
process produces infinitely many different n-dimensional ECP-spaces DL0E.

Remark 2.20. Assuming that (i) of Theorem 2.17 holds, clearly the Bernstein basis (B0, . . . , Bn)
relative to (a, b) in the space L0E is given by

Bi :=
αiVi
w0

, i = 0, . . . , n.

This basis generates in turn a positive Bernstein-like basis (V 0, . . . , V n−1) relative to (a, b) in the
ECP-space DL0E via (4). This recursive construction of bases will be essential in the next section.

2.3.2 Within the class of all PEC-spaces on ([a,b];T)

Observe that, if q = 0, Theorem 2.17 describes how to diminish the dimension in the class of all
EC-spaces E on [a, b], that is, all possible first steps to write E as E = EC(w0, . . . , wn). We would
like to draw the reader’s attention that this is not valid for EC-spaces on intervals which are not
assumed to be closed and bounded.

Here we assume that E is a PEC-space on ([a,b];T). How can we similarly diminish the dimen-
sion within the class of all PEC-spaces on ([a,b];T)? This is recalled in Proposition below, as a
straightforward consequence of the non-piecewise version of Theorem 2.17.

Let us first observe that, a priori, we do not have a global (positive) Bernstein-like basis (that
is, relative to (a, b)) in the space E. By contrast, as recalled in Corollary 2.11 and Remark 2.13 we
know that, for each k = 0, . . . , q, the space E possesses a positive Bernstein-like basis relative to
(tk, tk+1). We denote such a basis by (Vk,0, Vk,1, . . . , Vk,n) and we refer to it as a kth local positive
Bernstein-like basis in E.

Proposition 2.21. Assume that E is an (n+ 1)-dimensional PEC-space on ([a,b];T). Consider a
piecewise function w0 ∈ E, expanded in the local positive Bernstein-like bases of E as

w0 =

n∑
r=0

δk,rVk,r, k = 0, . . . , q. (6)

Then, the following two properties are equivalent

(i) all coefficients δk,r, r = 0, . . . , n, k = 0, . . . , q, are positive;

(ii) w0 is positive on ([a,b];T) and if L0 denotes the division by w0, DL0E is an (n-dimensional)
PEC-space on ([a,b];T).

It is important to emphasise that, in the PEC context, the existence of a function w0 satisfying
(i) is not guaranteed, see Subsection 2.3.3.

Remark 2.22. Assuming that (i) of Proposition 2.21 holds, the passage from local positive Bernstein-
like bases in E to local Bernstein bases in L0E, and then to local positive Bernstein-like bases in
DL0E can be described by local versions of Remark 2.20.

2.3.3 Concluding remarks

The three classes of PW-, PEC-, ECP-spaces on ([a,b];T) are closed under continuous integration on
[a, b] and under multiplication by positive piecewise functions on ([a,b];T) (assumed to be sufficiently
piecewisely differentiable).
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Only in the largest class of PW-spaces on ([a,b];T) diminishing by one the dimension via a
piecewise generalised derivative is equivalent to finding a positive piecewise function w0 in the
considered space. In each of the two other classes the positivity requirement is not sufficient in
general to remain in the same class. Simple counterexamples can be found in [25] for instance.

Only in the smallest class of ECP-spaces on ([a,b];T) the dimension diminishing process via
piecewise generalised derivatives is always possible. This can be easily illustrated by the following
classical example. Given h > 0, take t0 := −h, t1 := 0, t2 := h, and [a, b] := [t0, t2]. Let E be the
space spanned over [a, b] by the two functions cos, sin. It can be considered as well as a PW-space on
([a,b];T), with T := (t1), with section-spaces its restrictions E0,E1 to [t0, t1] and [t1, t2], respectively,
and with the identity connection matrix of order two at t1. As is well known, each section-space
is an EC-space on its interval if and only if h < π. This is therefore the necessary and sufficient
condition for E to be a PEC-space on ([a,b];T). Now, E can also be described as the set of all
functions on [a, b] which are of the form α cos(x − β), for some α, β ∈ IR. Accordingly, a non-zero
w0 exists in E if and only if h < π

2 , that is, if and only if E is an EC on [a, b], or equivalently, if and
only if E an ECP-space on ([a,b];T). Note that, here, when 2h < π, the requirement (i) of Theorem
2.17 is equivalent to w0 being positive because the space is two-dimensional.

3 How to test if a given PW-space is an ECP-space

Among all PW-spaces on ([a,b];T) containing constants, we would like to be able to recognize those
which are ECP-space good for design on ([a,b];T). On account of Definition 2.15 this amounts to
being able to answer the following question: an (n+ 1)-dimensional PW-space E on ([a,b];T) being
given:

is E an ECP-space on ([a,b];T)? (7)

Trying to answer Question (7) is the object of the present section.

3.1 The guiding principles

Clearly, on account of the (q+1) different section-spaces and of the presence of connection matrices,
as soon as q > 1, this question is difficult to answer, even in rather low dimensions. Still, in Remark
2.7 we have given an interesting general theoretical answer to (7): the given PW-space E is an
ECP-space on ([a,b];T) if and only if we are able to iteratively build first order piecewise differential
operators so as to diminish the dimension by one at each step, until we reach dimension one. This
will be our guiding principle.

The problem is that, in the large class of PW-spaces, we have no constructive way to test if it
is possible to find such piecewise differential operators. Now, a first necessary condition to give a
positive answer to (7) is that each section-space should be an EC-space on its own interval. How to
test this point is another problem for which we refer to [5, 26, 6] for instance. Therefore, from now
on we will directly assume that E is a given (n+ 1)-dimensional PEC-space on ([a,b];T). The
interest of working in this framework is that we will have at our disposal local positive Bernstein-like
bases, see Subsection 2.3.2. Proposition 2.21 shows that these local bases are practical tools to test
whether or not a given function w0 ∈ E enables us to diminish the dimension within the class of all
PEC-spaces on ([a,b];T).

Now, how to select the functions w0 ∈ E which should be tested? As a matter of fact, the possible
candidates will be selected by analogy with the case where we do know that E is an ECP-space on
([a,b];T), that is, by analogy with (i) of Theorem 2.17. Nonetheless, in order to imitate condition
(i) of Theorem 2.17, we first need to have at our disposal a basis (V0, . . . , Vn) in E which resembles
a positive Bernstein-like relative to (a, b). This point will thus be a preliminary requirement before
trying to diminish the dimension.
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Finally, though (i) of Theorem 2.17 offers infinitely many different possibilities to select a function
w0, it will actually be sufficient to test one single appropriately chosen function w0 ∈ E. The various
steps of the test will be based on specific properties in ECP-spaces on ([a,b];T) that we present in
the next subsection.

3.2 Useful necessary conditions

Throughout the present subsection we assume that E is an ECP-space on ([a,b];T). Let (V0, . . . , Vn)
be a given positive Bernstein-like basis relative to (a, b) in the space E. It will be convenient to refer
to it as the initial global positive Bernstein-like basis.

3.2.1 Some properties of the global Bernstein-like basis

Below we point out a few properties of the basis (V0, . . . , Vn) which directly follow from the definition
of positive Bernstein-like bases. We state them as lemmas because they will serve to build the test
later on.

For each i = 0, . . . , n, we know that the function Vi is positive on ]a, b[ and that it vanishes i
times at a and (n− i) times at b. Its Taylor expansions at a and b show that

Lemma 3.1. The global positive Bernstein-like basis (V0, . . . , Vn) satisfies

Vi
(i)(a) > 0 and (−1)n−i Vi

(n−i)(b) > 0, i = 0, . . . , n. (8)

We refer to (8) as the endpoint positivity conditions.

For k = 0, . . . , q, let (Vk,0, . . . , Vk,n) denote a given kth local positive Bernstein-like basis in E.
We can then consider the expansions of the global basis (V0, . . . , Vn) in the local ones, which we
denote as

Vi =

n∑
r=0

γi,k,rVk,r, k = 0, . . . , q, i = 0, . . . , n. (9)

Without loss of generality we can assume that the global basis (V0, . . . , Vn) is derived from the global

Bernstein basis in the (n + 2)-dimensional ECP-space Ê good for design on ([a,b];T) obtained by
continuous integration of E, via the classical procedure (4). The de Casteljau evaluation algorithm

for blossoms in Ê and the local formulæ (5) yield the following result (for details see Proposition 6.8
of [30]):

Lemma 3.2. The coefficients of the expansions (9) satisfy

γi,0,0 = γi,0,1 = · · · = γi,0,i−1 = 0; γi,0,r > 0 for r = i, . . . , n,

γi,k,r > 0 for r = 0, . . . , n, when 1 6 k 6 q − 1,

γi,q,r > 0 for r = 0, . . . , i, γi,q,i+1 = · · · = γi,q,n−1 = γi,q,n = 0.

(10)

3.2.2 One specific construction of piecewise generalised derivatives

In Remark 2.19 we have reminded the reader that, if n > 1, the space E generates infinitely many
different n-dimensional ECP-spaces DL0E on ([a,b];T) via the dimension diminishing process de-
scribed in Theorem 2.17. In this subsection we will describe one specific systematic way to build a
system (w0, . . . , wn) of piecewise weight functions on ([a,b];T) such that E = ECP (w0, w1, . . . , wn).
According to Theorem 2.17, since the function

w0 := V0 + V1 + · · ·+ Vn. (11)
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has clearly positive coordinates in the global positive Bernstein-like basis, it can be taken as a first
piecewise weight function on ([a,b];T). If L0 denotes the piecewise division by w0, we know that
the global Bernstein basis in L0E is given by

Bi =
Vi
w0
, i = 0, . . . , n. (12)

Moreover, according to (4), the sequence (V 0, V 1, . . . , V n−1) defined by

V i := D(Bi+1 + · · ·+Bn), i = 0, . . . , n− 1, (13)

is a global positive Bernstein-like basis in the ECP-space DL0E on ([a,b];T). Then,

w1 := V 0 + V 1 + · · ·+ V n−1 (14)

is taken as the next piecewise weight function, and with L1 defined as in (3), the n-dimensional
space L1E is an ECP-space good for design on ([a,b];T) and so forth. This describes one simple
systematic procedure to write E as E = ECP (w0, . . . , wn).

3.2.3 Iterated local expansions

In the previous iterative construction of the system (w0, . . . , wn) of piecewise weight functions on
([a,b];T), all global bases are derived form the initial global positive Bernstein-like basis. The
procedure induces a simultaneous iterated construction of local bases from the initial local posi-
tive Bernstein-like bases. As a consequence, the local expansions of the successive global positive
Bernstein-like bases can be derived from the initial one (9). One step of this iteration is subsequently
described in detail.

Take k ∈ {0, . . . , q}. On account of (9), the kth local expansion of the piecewise weight function
w0 introduced in (11) is

w0 =

n∑
r=0

δk,rVk,r, with δk,r :=

n∑
i=0

γi,k,r. (15)

In L0E, the kth local Bernstein basis (Bk,0, . . . , Bk,n) is thus given by

Bk,r :=
δk,rVk,r
w0

, r = 0, . . . , n. (16)

The functions
V k,r := D(Bk,r+1 + . . .+Bk,n), r = 0, . . . , n− 1, (17)

form a kth local positive Bernstein-like basis in DL0E. This local basis will be used to obtain the
kth local expansion

V i =

n−1∑
r=0

γi,k,rV k,r, i = 0, . . . , n− 1, (18)

of the global positive Bernstein-like basis (V 0, . . . , V n−1) of DL0E obtained in (13). We know that
this expansion will be derived from the expansion of the function Bi+1 + . . . + Bn in the local
Bernstein basis (Bk,0, . . . , Bk,n) via formula (5). Now, from (12), (9), and (16) we can write:

Bi+1 + . . .+Bn =
1

w0
(Vi+1 + · · ·+ Vn) =

1

w0

 n∑
j=i+1

γj,k,r
w0Bk,r
δk,r

 . (19)

Accordingly, (5) yields

γi,k,r =

∑n
j=i+1 γj,k,r+1

δk,r+1
−
∑n
j=i+1 γj,k,r

δk,r
, 0 6 i, r 6 n− 1. (20)
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3.3 The numerical test

Throughout this section we assume that E is an (n + 1)-dimensional PEC-space on ([a,b];T). For
k = 0, . . . , q, we denote by (Vk,0, . . . , Vk,n) a given kth local positive Bernstein-like basis in E (see
Corollary 2.11 and Remark 2.13).

3.3.1 Step 0

For E to be an ECP-space on ([a,b];T) it is necessary that E possess a global Bernstein-like basis
satisfying the endpoint positivity conditions (8) and whose local expansions satisfy (10).

• Part 1- The first part of the test is:

1) Given i = 0, . . . , n, does there exist a piecewise function Vi ∈ E satisfying the n Hermite
interpolating conditions

Vi(a) = V ′i (a) = · · · = V
(i−1)
i (a) = 0, Vi(b) = V ′i (b) = · · · = V

(n−i−1)
i (b) = 0, (21)

along with

V
(i)
i (a) = 1 if i 6

⌊n
2

⌋
, V

(n−i)
i (b) = (−1)n−i if i >

⌊n
2

⌋
? (22)

To this end, for each i = 0, . . . , n, we set up the linear system of size (q + 1)(n+ 1) satisfied by
the coefficients γi,k,r, k = 0, . . . , q, r = 0, . . . , n, of the local expansions (9) of the piecewise Vi we
are looking for. The q(n + 1) equations expressing the connection conditions (1) are completed by
the (n + 1) conditions (21) and (22). We should observe that the n equations due to (21) are as
follows:

γi,0,0 = γi,0,1 = · · · = γi,0,i−1 = 0, γi,q,i+1 = · · · = γi,q,n−1 = γi,q,n = 0, (23)

and the last one due to (22) can be written as:

γi,0,i =
1

V0,i
(i)(a)

if i 6
⌊n

2

⌋
, γi,q,i =

(−1)n−i

Vq,i
(n−i)(b)

if i >
⌊n

2

⌋
. (24)

In case there exists an integer i such that the system in the unknowns γi,k,r, k = 0, . . . , q,
r = 0, . . . , n, has no solution, we can definitively say that E is not an ECP-space on ([a,b];T).

Assume that the answer to Question 1) is positive for each i = 0, . . . , n. Then the sequence
(V0, . . . , Vn) is a basis of E, and it satisfies half of the endpoint positivity conditions (8). It is
therefore a good candidate to be a global positive Bernstein-like basis but we cannot yet assert that
it is indeed such a basis.

• Part 2: What we test now is:

2) Do all sequences (γi,k,0, . . . , γi,k,n), i = 0, . . . , n, k = 0, . . . , q, satisfy (10)?

A negative answer to Question 2) means that E is not an ECP-space on ([a,b];T). Assume that
we obtain a positive answer. Then, the local expansions prove that (V0, . . . , Vn) is a global positive
Bernstein-like basis in E. Moreover, we can assert that

δk,r :=

n∑
i=0

γi,k,r > 0 for each r = 0, . . . , n, and for each k = 0, . . . , q.

Accordingly, the positive piecewise function

w0 := V0 + V1 + · · ·+ Vn ∈ E,

satisfies (i) of Proposition 2.21 since it can be expanded as in (15). The corresponding space DL0E
is thus an n-dimensional PEC-space on ([a,b];T).
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3.3.2 Iteration of the test

Let us assume that the two questions 1) and 2) above have received positive answers. Then, we can
iterate the test, that is, we can apply it to the n-dimensional PEC-space DL0E on ([a,b];T).

Before starting the iteration, it is necessary to give further comments on the passage from E to
L0E, for which we can copy and paste every single formula of Sections 3.2.2 and 3.2.3. In particular,
the basis (B0, . . . , Bn) defined in (12) is a global Bernstein basis in the PEC-space L0E. The section-
spaces of L0E being EC-spaces good for design on their intervals, for each k = 0, . . . , q, the basis
(Bk,0, . . . , Bk,n) introduced in (16) is its kth local Bernstein basis. Similarly, the functions V k,r,
r = 0, . . . , n − 1, defined by (17) form a kth local positive Bernstein-like basis in the PEC-space
DL0E.

By contrast, it should be observed that, in the PEC-space DL0E, the basis
(
V 0, V 1, . . . , V n−1

)
defined in (13) is not necessarily a global positive Bernstein-like basis. Here, we can only assert
that it is a global Bernstein-like basis. Nevertheless, it automatically satisfies the adapted end point
positivity conditions (8) due to the positivity of the piecewise function w0.

Accordingly, the first part of the test is useless. We only have to apply the second part, thus
applying Question 2) to all coefficients γi,k,r in the expansions (18). As in Section 3.2.3, we know
that these coefficients are given by (20), the δ’s being taken from (15). If the answer is negative, we
stop the test: E is not an ECP-space on ([a,b];T). Otherwise we continue the dimension diminishing
procedure.

Similarly, if, at some further iteration, Question 2) is answered negatively, the test stops: E is
not an ECP-space on ([a,b];T). Suppose that we can perform n such dimension diminishing steps
with positive answers to Question 2) at each step, via positive piecewise functions w0, w1, . . . , wn−1
on ([a,b];T), successively defined in accordance with (11) and (14). After these n steps, we obtain a
one-dimensional PEC-space on ([a,b];T), DLn−1E – where Ln−1 is defined as in (3) – possessing a
global Bernstein-like basis, say V0, satisfying the endpoint positivity conditions V0(a) > 0. V0(b) > 0.
From Remark 2.6 we know that DLn−1E = ECP (wn) where wn := V0 is our last piecewise weight
function. Then, we can state that E = ECP (w0, . . . , wn). In retrospect we can say that each global
Bernstein-like basis in the process is indeed a global positive Bernstein-like basis. Accordingly, the
test is successful as soon as we reach dimension two with a positive answer to Question 2).

3.3.3 Implementation

Following the theoretical description given in Subsections 3.3.1 and 3.3.2, the implementation of the
numerical test comprises the following steps.

• T0: This part of the test corresponds to Step 0.

T0.1 Given i = 0, . . . , n, if the square matrix of order (q+ 1)(n+ 1) involved in the computation of
the coefficients γi,k,r, k = 0, . . . , q, r = 0, . . . , n, is nearly-singular or/and very ill-conditioned,
we stop the test: in that case the system is not solvable or the solution cannot be computed
with sufficient accuracy. Otherwise we solve the system. If all the functions Vi, i = 0, . . . , n
can be computed, we proceed to T0.2.

T0.2 Test if all γi,k,r other than those in (23) and (24) are positive. If the test fails, stop. Otherwise,

with p = 0 and γ
{0}
i,k,r := γi,k,r for k = 0, . . . , q, i, r = 0, . . . , n compute (see (20) and (15))

γ
{p+1}
i,k,r =

∑n−p
j=i+1 γ

{p}
j,k,r+1∑n−p

j=0 γ
{p}
j,k,r+1

−
∑n−p
j=i+1 γ

{p}
j,k,r∑n−p

j=0 γ
{p}
j,k,r

, 0 6 i, r 6 n− p− 1, k = 0, . . . , q, (25)

and proceed to T1.
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• T1: This part of the test corresponds to the dimension diminishing process. To describe it, for

some integer p, 1 6 p 6 n − 1, consider real numbers γ
{p}
i,k,r, i, r = 0, . . . , n − p, k = 0, . . . , q, such

that
γ
{p}
i,0,0 = · · · = γ

{p}
i,0,i−1 = 0 < γ

{p}
i,0,i, γ

{p}
i,q,i > 0 = γ

{p}
i,q,i+1 = · · · = γ

{p}
i,q,n−p.

T1.1 Test if all other γ
{p}
i,k,r are positive. As soon as the positivity test fails, stop.

T1.2 If T1.1 is successful, compute γ
{p+1}
i,k,r , i, r = 0, . . . , n− p− 1, k = 0, . . . , q, according to formula

(25). Return to T1.1 with p replaced by (p+ 1).

The test T1 starts at p = 1. For numerical reasons, all positivity tests are actually replaced by

γ
{p}
i,k,r > tol, where tol is a small positive number (in our experiments, tol = 1e − 30). When the

test stops either at T0 or at T1 for some p 6 n − 1, then, numerically speaking, we consider that
the space E is not an ECP-space on ([a,b];T). When the test successfully continues to T1 until
p = n− 1, numerically speaking, we consider that the space E is an ECP-space on ([a,b];T).

The following MATLAB function takes as input a matrix gamma of dimension (n+ 1)× (q+ 1)×
(n+ 1), where gamma(i,k,r)= γi,k,r are the coefficients in equation (9). It returns a variable test,
which is equal to zero if the test on the positivity of the local coefficients fails at some step. The
loops in the variables k, i, r iterate respectively over the intervals, the elements of the global bases
and the coefficients of their local expansions on each interval.

function test = ECP_test(gamma,tol)

n=size(gamma,1)-1;

q=size(gamma,2);

test=1;

p=0;

while (p<=n-1 & test)

np=n+1-p;

% loop over all intervals to test whether the local coefficients gamma(i,k,r)

% for the (n+1-j)-dimensional PEC-space satisfy (10)

for k=1:q

for i=1:np

for r=1+(k==1)*(i-1):np-(k==q)*(np-i)

if (gamma(i,k,r) < tol)

test=0;

return

end

end

end

end

% loop over all intervals to compute the local coefficients gamma(i,k,r)

% for the the (n-p)-dimensional PEC-space through (20)

for k=1:q

% sums in (20)

for i=np-1:-1:1

for r=1:np

gamma(i,k,r)=gamma(i,k,r)+gamma(i+1,k,r);

end

end

% divisions in (20)

for r=1:np

gamma1kr=gamma(1,k,r);

for i=2:np
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gamma(i-1,k,r)=gamma(i,k,r)/gamma1kr;

end

end

% differences in (20)

for i=1:np-1

for r=1:np-1

gamma(i,k,r)=gamma(i,k,r+1)-gamma(i,k,r);

end

end

end

p=p+1;

end

λ

µ
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Figure 1: Graphical illustration of the output of the numerical test for the THTH PEC-space in
Section 4.1.

4 Illustrations

In this section, we present the numerical test in two different situations corresponding to different
objectives. We will first consider an academic example with a view to illustrate the test itself. Then
we will show how it can be used to design with ECP-spaces.

4.1 Academic example

Here, we work with four five-dimensional section-spaces, that is, with n = 4 and q = 3. The
two section-spaces E0 and E2 are the trigonometric spaces spanned on [t0, t1] and [t2, t3] by the five
functions 1, x, x2, cosx, sinx, while E1 and E3 are the hyperbolic spaces spanned on [t1, t2] and [t3, t4]
by the functions 1, x, x2, coshx, sinhx. Moreover, in E, the three connection matrices M1,M2,M3

are the identity matrices of order five. Accordingly, the space E is a W-space on [a, b] = [t0, t4].
For the space E to be a PEC-space on ([a,b];T) we have to require that, for k = 0 and k = 2, the
length tk+1 − tk be less than the so-called critical length of five-dimensional trigonometric spaces,
which is approximately 8.98, see [5]. In that case, for short, we refer to E as a THTH PEC-space on
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E DL0E

k
=

0

1 3.3817 8.9847 2.6979 0.62437

0 1 4.8671 2.0399 0.59032

0 0 1 0.84793 0.37871

0 0 0 0.0035679 0.0036312

0 0 0 0 2.8565e− 06

0.22822 0.16682 0.12226 0.091739

0 0.067332 0.085013 0.087064

0 0 0.00063834 0.0016372

0 0 0 1.7886e− 06

k
=

1

0.62437 0.46973 0.20328 0.24318 0.16292

0.59032 0.95505 0.41134 0.60222 0.48348

0.37871 1.0734 1.6102 3.4078 3.1382

0.0036312 0.014855 0.040202 0.33095 0.41968

2.8565e− 06 1.4492e− 05 5.2756e− 05 0.00069584 0.0069185

0.20404 0.097174 0.036704 0.014351

0.19364 0.29561 0.086956 0.030893

0.0036412 0.011855 0.054563 0.028967

3.9781e− 06 1.7524e− 05 0.00012848 0.0014911

k
=

2

0.16292 0.024924 0.0078407 0.0061688 0.0037487

0.48348 0.19339 0.094695 0.16522 0.17542

3.1382 1.7563 0.65982 1.7289 2.7985

0.41968 0.35967 0.18827 0.37974 0.7234

0.0069185 0.010689 0.012989 0.040777 0.26258

0.028059 0.0024918 0.0054787 0.0017123

0.060401 −0.013313 0.032559 0.028646

0.056635 0.050919 −0.027658 0.06756

0.0029153 0.0089212 0.0040909 0.048678

k
=

3

0.0037487 0 0 0 0

0.17542 0.12345 0 0 0

2.7985 2.8763 1.1487 0 0

0.7234 0.81068 0.46275 1 0

0.26258 0.39133 0.32664 0.75473 1

0.00094577 0 0 0

0.015822 0.029382 0 0

0.037316 0.12123 0.5927 0

0.026886 0.075403 0.26157 0.56989

Table 1: Coefficients of the local expansion of the Bernstein-like bases for the THTH PEC-space in
Section 4.1, with (λ, µ) = (5, 1)

([a,b];T). In order to determine if E is an EC-space on [a, b], we actually apply the numerical test
to E, with

t1 − t0 = µ, t2 − t1 = t4 − t3 = λ, t3 − t2 = 5.

Fig. 1 shows the results of the test depending on the parameters λ, µ, sampled at equally spaced
values in the intervals λ ∈ [0.05, 6.5] and µ ∈ [0.05, 3.5] with sampling step 0.05. Each point (λ, µ)
is depicted in green if the algorithm ends successfully: in that case, experimentally the space E is
an EC-space on [a, b]. The white region (including the boundary of the green region) corresponds to
points (λ, µ) where the algorithm stops in either step of T0. In the pink region, the numerical test
stops after one iteration (that is, at T1, with p = 1).

To more precisely illustrate our numerical test, Table 1 concerns the point (λ, µ) = (5, 1), located
in the pink region. It lists the coefficients of the local expansions of global Bernstein-like bases: on
the left, in E, where the basis (V0, . . . , V4) is given by (21) and (22); on the right, in the four-
dimensional PEC-space DL0E built by generalised differentiation. In the left part of Table 1, all
required coefficients are positive, which means that the test can continue, and that DL0E is a PEC-
space on ([a,b];T). By contrast, in the right part of Table 1, we can see some negative coefficients.
Accordingly, the test stops at this stage: we conclude that, experimentally speaking, E is not an
ECP-space on ([a,b];T), that is, it is not an EC-space on [a, b]. Note that the local Bernstein-like
bases which have been used to compute these coefficients all satisfy conditions (21) and (22) where
a, b are replaced by tk, tk+1, respectively. This choice explains the five coefficients equal to 1 in the
left part of Table 1 (for k = 0 and k = 3).

Remark 4.1. From Subsections 3.3.1 and 3.3.2 we know that, if an (n+1)-dimensional PEC-space E
on ([a,b];T) is not an ECP-space on ([a,b];T), then the test necessarily stops either at T0 or at T1
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for some positive p 6 n− 1. In practice, in most of the many examples we have tested, with various
section-spaces, various kinds of connection matrices, and various dimensions, we could observe that
the test either stops at T0, or it successfully continues until the end. It was all the more essential
to exhibit an example contradicting this observation. The major interest of this example (which
may seem somewhat ill conceived at first sight) is thus to clearly point out that the existence of a
global Bernstein-like basis in the PEC-space E (resp. of a global Bernstein basis in the PEC-space
L0E) is not sufficient for E to be an ECP-space on ([a,b];T) (resp. for L0E to be an ECP-space
good for design on ([a,b];T)) even under the requirement that all convenient coefficients of its local
expansions be positive. It secondarily illustrates the possibility of constructing a global EC-space
from EC-section spaces. This example therefore also shows that, in a W-space on [a, b] (containing
constants), the presence of a positive Bernstein-like basis (a Bernstein basis) relative to (a, b) is not
sufficient for this space to be an EC-space (good for design) on [a, b]. See Theorem 2.10 and its
non-piecewise version.

4.2 Design with ECP-spaces

Here, we are interested in designing with ECP-spaces. We thus start with an (n + 1)-dimensional
PEC-space E on ([a,b];T), and we assume that it contains constants. Such a PEC-space E depends
on a number of shape parameters: the entries of the connection matrices plus, possibly, parameters
provided by the section-spaces themselves. We would like to determine whether or not E is an
ECP-space good for design on ([a,b];T). We know that this amounts to determining whether or
not the n-dimensional PEC-space DE on ([a,b];T) (in which the connection matrices are obtained
by deletion of the first rows and columns in those of E) is an ECP-space on ([a,b];T). Accordingly,
applied to DE, the numerical test can be used to experimentally identify regions of parameters where
E is an ECP-space good for design on ([a,b];T). Within such experimental regions, we can then try
to study how the shape parameters act on the curves for fixed Bézier points.

We first illustrate our purpose with n = 3, q = 2, and equispaced knots tk+1− tk = 1, k = 0, 1, 2.
Moreover, for q = 0, 1, 2, the section-space Ek is the cubic polynomial space on [tk, tk+1], and we
assume that the connection matrices M1,M2 are of the form:

M1 =


1 0 0 0
0 1 0 0
0 β 1 0
0 δ ε 1

 , M2 =


1 0 0 0
0 1 0 0

0 β 1 0

0 (βε− δ) ε 1

 , (26)

where β, δ, ε are free real parameters. Our four-dimensional PEC-space E is thus composed of
piecewise cubic functions on ([a,b];T), which are C1 on [a, b] and geometrically continuous in the
sense of continuity of the Frenet frames of order three and of the first two curvatures. Our choice
(26) also guarantees that the PEC-space E is closed under symmetry.

Subsequently we test four different situations where we only have to handle two free parameters.

Case (I): Here we assume that β = 0. We are thus dealing with C2 piecewise cubic functions. The
experimental domain of parameters (δ, ε) where the space E is an ECP-space good for design on
([a,b];T) is shown in Fig. 2, top, left. Experimentally, it can be described by δ = α(ε + 3) with
−2 < α < 2 and ε > −3. The shape effects obtained by varying (δ, ε) within the experimental green
region are illustrated in Fig. 3. For a given −2 < α < 2, we can see how the curve changes on the
line δ = α(ε + 3) when ε ranges over ] − 3,+∞[. It moves continuously from the red limit curve
obtained for ε = −3+ to the blue one obtained when ε→ +∞. The values of α which are presented
are α = −1.96 (left); 0 (middle); 1.96 (right). The sequence of subfigures efficiently indicates how
the shape effects progressively range from left to right as α goes from −2+ to 2−. To better point out
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the shape effects, it is deliberate that we have not used the same values of ε in the three subfigures,
because the speed of deformation varies depending on α.

Case (II): Here we assume that ε = 0. The experimental domain of parameters (δ, β) where the
space E is an ECP-space good for design on ([a,b];T) is shown in Fig. 2, top, right. Experimentally, it
can be described by δ = α(β+3) with−2 < α < 2 and β > −3. The shape effects obtained by varying
(δ, β) can be observed in Fig. 4, with, similarly to Case (I), from left to right α = −1.96; 0; 1.96. Here
too the values of the parameter β are selected differently depending on α so as to achieve sufficiently
significant variations in shape.
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Figure 2: “Good for design” regions (in green) for the PEC-spaces in Subsection 4.2.

Case (III): Here we assume that δ = 0. As shown in Fig. 2, bottom, left, the numerical test suggests
that the domain of parameters where the space E is an ECP-space good for design is described by
(β + 2)(ε+ 2) > −2 and β + ε+ 3 > 0. In Fig. 5, we show the shape effects along the two branches
of hyperbolas (the horizontal one in the left picture and the vertical one in the right picture). For
numerical reasons, we have to remain sufficiently far from the asymptotes. This is why in both
cases the selected pairs (β, ε) are taken from the hyperbola (β + 1.99)(ε + 1.99) = −2. The curves
in the middle picture represent pairs on the diagonal, that is, ε = β > −1.5. As can logically be
expected from the previous pictures, along the segment β + ε+ 3 = 0 (for instance, on the segment
β+ ε+ 2.9 = 0), there is hardly any change in the curves which all nearly coincide with the segment
joining the extreme Bézier points.

Case (IV): Here we assume that δ = βε
2 , or equivalently, that the matrices M1 and M2 are equal.

As shown in Fig. 2, bottom, right, the numerical test suggests that the domain of parameters where
the space E is an ECP-space good for design is described by (β+4)(ε+4) > 4 and β+4 > 0. In Fig. 6
we show the shape effects along the boundary of the domain. As in the previous case, for numerical
reasons, the corresponding pairs (β, ε) are selected on the hyperbola (β + 3.96)(ε + 3.96) = 4, the
left picture corresponding to its vertical half, and the right one to the horizontal half. The curves
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Figure 3: Design in the piecewise cubic ECP-space of Subsection 4.2, with β = 0 and δ = α(ε+ 3).
Left: α = −1.96, and from bottom to top, ε = −2.9974 (red); 1.6; 4.8; 8.4; 13.5; 24; 1000 (blue).
Middle: α = 0, ε = −2.9974 (red); −2.7;−2.3;−1.75;−0.8; 1.35; 1000 (blue). Right: α = 1.96,
ε = −2.9974 (red); −2.84;−2.59;−2.15;−1.17; 2.6; 4500 (blue).

Figure 4: Design in the piecewise cubic ECP-space of Subsection 4.2, with ε = 0 and δ = α(β + 3).
Left: α = −1.96, and from bottom to top, β = −2.9974 (red); 1.8; 6; 12; 23; 53.5; 1000 (blue).
Middle: α = 0, β = −2.9974 (red); −2.66;−2.26;−1.7;−0.8; 1.35; 1000 (blue). Right: α = 1.96,
β = −2.9974 (red); −2.8;−2.5;−2;−1; 1.9; 4500 (blue).

Figure 5: Design in the piecewise cubic ECP-space of Subsection 4.2, with δ = 0 and Left: (β +
1.99)(ε + 1.99) = −2, with β = −0.003 (red); 0.21; 0.55; 1.2; 2.6; 7; 20000 (blue). Middle: β = ε =
−1.499 (red); −1.38;−1.2;−0.9;−0.4; 0.65; 1000 (blue). Right: (β + 1.99)(ε + 1.99) = −2, with
ε = −0.003 (red); 0.21; 0.55; 1.2; 2.6; 7; 20000 (blue).
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Figure 6: Design in the piecewise cubic ECP-space of Subsection 4.2, with d = be
2 . Left: (β +

3.99)(ε + 3.99) = 4, with β = −1.99 (red); 75; 200; 400; 800; 2000; 75000 (blue). Middle: b = e =
−1.99 (red); −1.7;−1.37;−1;−0.4; 0.7; 50 (blue). Right: (β + 3.96)(ε+ 3.96) = 4, with ε = −1.99
(red); 75; 200; 400; 800; 2000; 75000 (blue).

Figure 7: G3 piecewise cubics with 3, 5, 7 sections, depending on the parameter β, with every-
where the same matrix. Left: β = −0.9 (red); −0.79;−0.66;−0.47;−0.2; 0.4; 10 (blue). Mid-
dle: β = −0.37 (red); −0.315;−0.25;−0.175;−0.07; 0.13; 10 (blue). Right: β = −0.195; (red)
−0.165;−0.13;−0.09;−0.04; 0.07; 10 (blue).

in the middle picture represent pairs on the diagonal, namely ε = β > −2.
In Fig. 7, the four-dimensional ECP-space E is again composed of piecewise cubics, with, from

left to right q = 2; 4 ; 6 interior knots. We take everywhere the connection matrix already used in
Case (IV), but we additionally assume that ε = 3β. We thus have G3 piecewise cubics (that is, C3

with respect to the arc-length) depending on only one parameter β. The test tells us where to choose
this parameter depending on the number of sections. For comparison, the dotted curve represents
the ordinary cubic, obtained here with β = 0. We can see both the efficiency of the parameter
β, how important it is for shape effects to allow negative values of the parameters, along with the
evolution when the number of section increases.

5 Concluding comments

We have presented a numerical test to determine whether a given PEC-space on ([a,b];T) is an
ECP-space on ([a,b];T), whose main application is to determine whether or not a PEC-space on
([a,b];T) which contains constants is an ECP-space good for design on ([a,b];T). The example of
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piecewise cubic PEC-spaces considered in Subsection 4.2 will serve as a basis for commenting on the
usefulness and the limits of this test.

5.1 Shape effects from ECP-spaces

The usefulness of the test is mainly justified by the practical interest of ECP-spaces for design.
Indeed, compared to polynomial spaces, and even to EC-spaces, the interest of using ECP-spaces
lies in the fact that they mix within the same space two different families of parameters: those
provided by their section-spaces (whose effects are known in the most classical examples) along with
those provided by the connection matrices (some effects of which can be foreseen, e.g., changes in
the curvatures). The interactions between these two families can be used to create new interesting
shape effects.

The expression “shape parameter” refers to a parameter which can be used to slightly mod-
ify/improve the shape of a curve while keeping its general aspect, determined by fixed control points.
This is expected to be an interactive process, and the designer should therefore be able to predict
how changing the parameter will affect the shape of the curve. In this regard, it is not reasonable to
deal with a great number of parameters at the same time. Now, concerning four-dimensional PEC-
spaces on ([a,b];T), each connection matrix is defined by six parameters, while each section space
provides us with up to 3 free shape parameters. The total amount of parameters can thus reach
6q+ 3(q+ 1) = 9q+ 3. Even with a small number of sections, we cannot expect to efficiently control
the shape deformations with such a number of parameters varying simultaneously. This is the reason
why, in order to present relevant examples of shape variations, we first have drastically reduced the
number of free connection parameters to three, via various arguments. Additional possibilities could
be obtained in the general case: for instance, requiring unit diagonals does not allow changes in
the first two curvatures, which could be interesting to produce special shape effects. We also have
deliberately limited ourselves to the simplest piecewise cubic case where no shape parameter comes
from the section-spaces themselves, at least after fixing the interior knots.

Even under such limitations, the samples of geometrically continuous piecewise cubic curves
presented in Figs. 3 to 7 give clear evidence of the amplitude of the shape effects by comparison
with known four-dimensional EC-spaces. For an efficient analysis of these effects, each of these
figures actually involves at most two free parameters. For example, we can go continuously from the
segment joining the first and last Bézier points to the control polygon itself, and this can even be
done in different ways depending on the parameters used (see Fig. 3 and 4, Left, compared to Fig. 5,
Middle). In each case, the intuitive prediction of the shape effects is made possible by investigating
the limit cases, which makes it necessary to first determine numerically the boundary of the “good
for design” region. In our examples we can also observe some redundancy in the shape effects, but
our purpose is not to investigate this in more details.

5.2 Theoretical ECP-spaces versus Numerical

Quite obviously, whenever possible, it should always be preferred to determine the exact region in
the space of all parameters within which the given PEC-space is an ECP-space for design. Not only
is this more satisfying mathematically speaking, but it also helps to understand what are the true
shape parameters, and it permits a more efficient use of the limit cases.

Assuming that q = 1, consider any four-dimensional PEC-space on ([a,b];T) containing con-
stants, with given section-spaces, the connection matrix at the unique interior knot t1 being the
matrix M1 in (26), but now with any diagonal positive entries α, γ, ζ. Then, the exact “good for
design” region in the space IR6 can always be deduced from Proposition 7.1 of [30]. Note that it
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also involves the possible parameters provided by the section-spaces, that is, up to 6 additional
parameters. This is an example where using the numerical test would not be so relevant.

By way of illustration, consider piecewise cubics with t2−t1 = t1−t0 = 1. Then, from Proposition
7.1 of [30] we can derive that the “good for design” region is defined by the following inequalities

ε+ 2(γ + ζ) > 0, −2(β + ε+ α+ 2γ + ζ) < δ <
(ε+ 2ζ)(β + 2α)

γ
+ 2(α+ ζ). (27)

In the symmetric case (that is, when α = γ = ζ = 1 and δ = βε/2), the conditions (27) reduce to
β + 4 > 0 and ε+ 4 > 0. Illustrations can be found in [30].

When increasing the number of four-dimensional sections, in principle an explicit exact descrip-
tion of the “good for design” region can be achieved by iteration, adding one more section-space at
each step, but the process can be laborious. Since this has not been explicitly done yet, the numer-
ical approach offers an interesting alternative. Obviously, the numerical test is even more useful for
higher dimensional section-spaces, where no explicit conditions have been obtained so far.

From the computational point of view, there is no problem in applying the test with different
higher dimensional section-spaces, whatever the number of parameters they involve, with the most
general connection matrices, depending on the interior knots. The limitation is of conceptual nature:
as already mentioned, too many parameters do not permit an intuitive handling of the corresponding
shape effects.

5.3 Piecewise Chebyshevian splines

As reminded in the introduction, a given Piecewise Chebyshevian spline space is good for design if
and only if it is based on an ECP-space good for design. Since the numerical test aims at determining
ECP-spaces good for design, it is natural to discuss its possible benefits in the study of splines.

Firstly, we would like to draw the reader’s attention to the fact that the numerical test presented
in this article is not an appropriate tool for determining when a given Piecewise Chebyshevian spline
space S is good for design.

To illustrate the previous statement, consider the four-dimensional piecewise cubic PEC-space
E on ([a,b];T), with q > 2 and knot spacing equal to 1, and with everywhere the same connection
matrix (26) obtained with δ = ε = 0. Now, for q = 2, numerically speaking, the space E is an
ECP-space good for design on ([a,b];T) if and only β > −3. When increasing the number of
sections, the “good for design” region of the parameter β remains of the form ]β0,+∞[, but β0
increases a lot. This is shown in Fig. 8, Left, where we can see the “good for design” region for
q = 2, 4, 6, 8 interior knots. This suggests that β0 tends to 0 when q → +∞. As a matter of fact,
this is confirmed when applying successively the test with 20, 40, 60 section-spaces: it indicates that
β0 lies in ]− 0.0979,−0.0978[, ]− 0.0247,−0.0246[, ]− 0.011,−0.0109[, respectively.

Let us now denote by S the spline space based on E obtained when each interior knot of T is
simple. In other words, S is composed of all C1 piecewise cubic splines S : [a, b] = [t0, tq+1] → IR
satisfying the connection conditions

S′′(t+k ) = βS′(tk) + S′′(t−k ), k = 1, . . . , q. (28)

From E ⊂ S we can only deduce that, for β > β0, the spline space S is good for design. For
comparison, let us now investigate S on the theoretical side. We know that S is good for design
if and only we can find generalised derivatives associated with its section-spaces with respect to
which the connection conditions (28) are expressed by the identity matrix [28]. While this beautiful
theoretical characterisation is difficult to exploit in practice for PEC-spaces, in the spline space S
it is straightforward to transform it into the very simple inequality β + 4 > 0, independently of
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the number of section-spaces, see [17, 29]. Accordingly, the theory developed in [28] tells us that,
independently of q, given any β > −4, we can build infinitely many piecewise cubic ECP-spaces E
good for design on ([a,b];T) so that E ⊂ S. For −4 < β 6 β0, none of them is equal to E. Without
going into details, we can even require E to have the same matrix as in Case (IV) everywhere.
Combining the theoretical condition β + 4 > 0 and the numerical results presented in Fig. 8, Right,
suggests that the corresponding “good for design” regions are defined by (β + 4)(ε + 4) > µ and
β + 4 > 0, the real number µ increasing from 4 to 16− as the number of section-spaces increases
from 3 to +∞.
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Figure 8: “Good for design regions” with increasing number of section-spaces and the same connec-
tion matrix everywhere. Left: δ = ε = 0. Right: δ = βε/2, with 3, 5, 7, 9 section-spaces.

In spite of the previous limitation, the numerical test can efficiently contributes to the spline
context. We shall now briefly explain why and how.

Considering splines with non-negative rather than positive interior multiplicities is not usual in
CAGD. Still, in the context of Piecewise Chebyshevian splines, it is absolutely natural, and this
already proved to efficiently locally increase the flexibility of the spline curves and therefore the
shape possibilities [11].

Clearly, the class of all Piecewise Chebyshevian spline spaces good for design with non-negative
multiplicities coincides with the class of all spline spaces good for design with only positive multiplic-
ities and with ECP-spaces good for design as section-spaces. Once a given PEC-space on ([a,b];T)
containing constants is known to be an ECP-space good for design on ([a,b];T), it can therefore
serve as one section-space on the interval [t0, tq+1], with a view to building Piecewise Chebyshevian
spline spaces good for design with positive multiplicities at the knots t0 and tq+1, now possibly con-
sidered as interior knots. We can then adapt to them necessary and sufficient conditions for spline
spaces with positive multiplicities to be good for design, if such conditions are available, which is
the case for four- and five-dimensional section-spaces (see, for instance, [17, 29]). We will show how
to more generally exploit this in a further paper, the numerical test being particularly suitable for
such applications.

5.4 Extensions

The numerical test presented here can easily be adapted to the larger context of PQEC-spaces
(Piecewise Quasi Extended Chebyshev spaces) on ([a,b];T) obtained when the section-spaces are
only assumed to be QEC-spaces (Quasi Extended Chebyshev spaces) on their intervals. The only
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two differences are as follows: firstly, the connections must be expressed in a slightly different way;
secondly, Bernstein(-like) bases have to be replaced by Quasi Bernstein(-like) bases (see [30] and
references therein). These differences are due to the fact that the section-spaces do not guarantee
unisolvent Taylor interpolation problems. As in the present paper, the underlying tools are blossoms
and their pseudoaffinity ([30] and references therein concerning QEC-spaces). A spline version of
the test can also be developed. Nevertheless, whenever possible, splines should preferably be treated
as explained in the second part of Subsection 5.3.
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