
Radiative transfer with delta-Eddington-type phase functions

Weimin Han,
Department of Mathematics, University of Iowa, Iowa City, IA 52242, U.S.A., Phone: 
1-319-335-0770, Fax: 1-319-335-0627

Feixiao Long,
Biomedical Imaging Center, Department of Biomedical Engineering, Rensselaer Polytechnic 
Institute, Troy, New York 12180, U.S.A

Wenxiang Cong,
Biomedical Imaging Center, Department of Biomedical Engineering, Rensselaer Polytechnic 
Institute, Troy, New York 12180, U.S.A

Xavier Intes, and
Biomedical Imaging Center, Department of Biomedical Engineering, Rensselaer Polytechnic 
Institute, Troy, New York 12180, U.S.A

Ge Wang
Biomedical Imaging Center, Department of Biomedical Engineering, Rensselaer Polytechnic 
Institute, Troy, New York 12180, U.S.A

Abstract

The radiative transfer equation (RTE) arises in a wide variety of applications, in particular, in 

biomedical imaging applications associated with the propagation of light through the biological 

tissue. However, highly forward-peaked scattering feature in a biological medium makes it very 

challenging to numerically solve the RTE problem accurately. One idea to overcome the difficulty 

associated with the highly forward-peaked scattering is through the use of a delta-Eddington phase 

function. This paper is devoted to an RTE framework with a family of delta-Eddington-type phase 

functions. Significance in biomedical imaging applications of the RTE with delta-Eddington-type 

phase functions are explained. Mathematical studies of the problems include solution existence, 

uniqueness, and continuous dependence on the problem data: the inflow boundary value, the 

source function, the absorption coefficient, and the scattering coefficient. Numerical results are 

presented to show that employing a delta-Eddington-type phase function with properly chosen 

parameters provides accurate simulation results for light propagation within highly forward-

peaked scattering media.
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1 Introduction

The radiative transfer equation (RTE) arises in a wide variety of applications, such as 

astrophysics ([23]), atmosphere and ocean ([27, 32]), heat transfer ([21]), neutron transport 

([7, 9]), optical molecular imaging ([22, 29]), and so on. Recently, there is much interest in 

analysis and numerical simulation of the RTE and its related inverse problems, motivated by 

applications in biomedical optics ([2, 3, 5, 11, 12, 13, 14, 15, 24, 26]).

Photon propagation in biological or engineered tissues can be well described by the radiative 

transport equation (RTE). However, the direct solution of the RTE is computationally 

expensive because of the dimensionality of the equation and the complexity of the phase 

function. It is rather common in practice that the diffusion approximation is based upon to 

enable optical molecular tomographic techniques that reveal optically labeled molecular and 

cellular activities in vivo. A majority of such studies target small animal models of human 

diseases and 3D tissue engineering constructs of regenerative functionalities. Photon 

propagation in these media is strongly affected by scattering. When samples are not large, 

characteristic forward scattering is observable and responsible for substantial components in 

the measurement. Inspired by this observation, Delta-Eddington-type phase functions were 

proposed to model the underlying physics, simplify the solution of the RTE, and 

successfully applied in multiple applications. Therefore, it is desirable and timely to 

generalize this approach and establish its theoretical foundation.

The RTE for the complicated process of absorption and scattering of light within the 

biological medium is

(1.1)

Here, X is a domain in ℝ3 occupied by the biological medium and Ω is the unit sphere in ℝ3 

for the directions of the photon propagation. A generic point in X is denoted by x whereas a 

generic point in Ω is denoted by ω. The symbol ∇ stands for the gradient with respect to the 

spatial variable x. The unknown function u(x, ω) is the angular flux at the point x in the 

direction ω. The RTE (1.1) contains two medium parameters, the total cross-section μt(x) 

and the scattering cross-section μs(x), that are related by μt = μa +μs with μa being the 

absorption cross-section. The integral operator S is given by the formula

(1.2)

where the phase function  is non-negative and is normalized:
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or equivalently,

The function f(x, ω) represents a source density.

The phase function p describes the scattering property of the biological medium. The precise 

form of the phase function is usually unknown for applications, and a benchmark choice is 

the Henyey-Greenstein phase function (cf. [16]):

where the parameter g ∈ (−1, 1) is the anisotropy factor of the scattering medium. For 

isotropic scattering, g = 0; for forward scattering, g > 0; and for backward scattering, g < 0. 

For applications in biomedical imaging, the value of g is typically between 0.9 and 0.95. For 

this range of the value of g, the corresponding integral operator (1.2) presents numerical 

singularity, bringing in additional difficulty in numerically solving the RTE problem. The 

biological tissue scatters light strongly in the forward direction, and so it is natural to 

approximately model the effect of the strongly forward scattering through the inclusion of a 

delta function in the phase function. In this paper, we consider the RTE problem with a 

general delta-Eddington-type phase function of the following form

(1.3)

where p0 ∈ [−1, 1] is the weighting factor measuring the anisotropy of the photon scattering, 

δ is the Dirac delta function, and r(t) represents a remainder part of the phase function which 

is smooth and slowly varying. For strongly forward peaked media, p0 is less than but close to 

1:

where ε > 0 is a small number. Physical considerations dictate that the remainder function 

r(t) satisfies the following condition:

(1.4)
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The formula (1.3) includes as particular cases several phase functions proposed in the 

literature. We list some of them in the following.

The transport approximation ([10]) corresponds to the choice r(t) = 1, i.e., the phase function 

is the sum of a forward delta function and an isotropic scattering function.

The delta-Eddington phase function ([17])

(1.5)

corresponds to the choice

(1.6)

where g′ is an asymmetry factor of the phase function used to modulate the weakly 

anisotropic scattering. The phase function (1.5) is a linear combination of a forward delta 

function and a weakly anisotropic scattering function. Formally, the transport approximation 

is a special case of the delta-Eddington phase function with g′ = 0. Note that the condition 

(1.4) reduces to

Since the anisotropic scattering is weak, the asymmetry factor g′ of the phase function is a 

small positive number. Thus, for the phase function (1.5), we have the following 

characteristics:

(1.7)

In [8], for a reflection boundary condition, the boundary value problem of the RTE (1.1) 

with the phase function (1.5) is transformed to a system of two integral equations, which 

provides convenience to numerical treatment in some applications. Some other related 

references include [18, 6, 25].

The delta-M method ([30]) is an extension of the delta-Eddington approximation and has the 

following form for the remainder function:
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where N is a non-negative integer and Pn is the Legendre polynomial of degree n. The 

coefficients  are chosen so that the delta-M phase function has certain number of 

correct moments.

For the delta-Henyey-Greenstein phase function, the remainder function is ([20])

where g0 ∈ [0, 1) is chosen so that the delta-Henyey-Greenstein phase function has the 

correct values of the first couple of moments. The usefulness of this approach is that due to 

the presence of the delta function term in the phase function, the parameter g0 is expected to 

be much smaller than the anisotropy factor g of the scattering medium, and then the 

numerical treatment of the RTE with the delta-Henyey-Greenstein phase function can be 

conducted much more efficiently.

In this paper, we explore the solution existence, uniqueness and continuous dependence 

properties for the RTE (2.1) with the general delta-Eddington-type phase function (1.3), and 

provide numerical evidence that properly chosen values of the parameters in the phase 

function leads to accurate numerical simulation results. The rest of the paper is organized as 

follows. In Section 2, we state the boundary value problem of the RTE and introduce some 

function spaces needed in the mathematical study of the problem. In Section 3, we show 

rigorously the well-posedness of the problem. In Section 4, we present results from 

numerical experiments. The paper ends with a section of concluding remarks.

2 Preliminaries

We will assume that X is a domain in ℝ3 with a Lipschitz boundary ∂X. For each fixed 

direction ω ∈ Ω, introduce a new Cartesian coordinate system (z1, z2, s) by the relations x = 

z + sω, z = z1ω1 + z2ω2, where (ω1, ω2, ω) is an orthonormal basis of ℝ3, z1, z2, s ∈ R. 

With respect to this new coordinate system, we denote by Xω the projection of X on the 

plane s = 0 in ℝ3, and by Xω,z (z ∈ Xω) the intersection of the straight line {z + sω |s ∈ ℝ 
with X. We assume that the domain X is such that for any (ω, z) with z ∈ Xω, Xω,z is the 

union of a finite number of line segments:

Here si,± = si,±(ω, z) depend on ω and z, and xi,± := z + si,±ω are the intersection points of the 

line {z + sω | s ∈ ℝ } with ∂X. We assume supω,z N(ω, z) < ∞; this assumption is known as 

a generalized convexity condition in the literature ([28]). A convex domain X satisfies the 

generalized convexity condition, since supω,z N(ω, z) = 1. Consider the following subsets of 

∂X:
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and introduce the following incoming and outgoing boundaries as subsets of Γ = ∂X × Ω:

Consider a Dirichlet boundary value problem for the RTE (1.1), i.e. the following boundary 

value problem:

(2.1)

(2.2)

We need some function spaces in studying the boundary value problem (2.1)–(2.2). Let

(2.3)

be the Hilbert space of measurable functions on X × Ω with the inner product

and the norm . The solution u of the boundary value problem (2.1)–(2.2) will 

be sought from the space

(2.4)

This space is denoted as H1,2(X × Ω) in [1], and is a Hilbert space with the inner product

and the norm . We also need function spaces L2(Γ±) on Γ±. They are Hilbert 

spaces of functions v on Γ± with inner products

and corresponding norms . We have the following statement for the trace of 

functions in V ([1, Lemma 2.2]). If v ∈ V and , then  and for 

some constant c depending only on X,
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(2.5)

The statement remains valid by switching Γ+ and Γ−.

3 Well-posedness of the problem

This section is devoted to a well-posedness analysis of the boundary value problem (2.1)–

(2.2) with the phase function (1.3). Without loss of generality, we prove the well-posedness 

result for the case where X is a convex domain in ℝ3. This allows us to simplify various 

expressions and to focus on the essentials in the argument. All the discussions in the rest of 

the paper can be extended to the general case where the domain X satisfies the generalized 

convexity condition. Under the convexity assumption on X, for each ω ∈ Ω and z ∈ Xω, 

Xω,z := {z + sω | s ∈ (s−, s+)} is a line segment, where s± = s±(ω, z) depend on ω and z, and 

x± := z + s±ω are the intersection points of the line {z + sω | s ∈ ℝ} with ∂X.

Theorem 3.1

Assume 0 < p0 < 1, (1.4), μa, μs ∈ L∞(X), μa, μs ≥ 0 a.e. in X, and

(3.1)

Then, given

(3.2)

the problem (2.1)–(2.2) with the phase function (1.3) has a unique solution u ∈ V, and

(3.3)

Moreover, the solution depends continuously on all the data.

Proof—We define modified scattering parameter  and the modified total attenuation 

parameter  as follows:

Then with the phase function (1.3), we can rewrite the RTE (2.1) as

(3.4)
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where

(3.5)

Let us convert the boundary value problem (3.4) and (2.2) to a fixed-point formulation. In 

the following, we write s± instead of s±(ω, z) wherever there is no danger for confusion. We 

write the equation (3.4) as

(3.6)

and multiply it by an integrating factor  to obtain

Integrate this equation from s− to s:

Thus,

(3.7)

where

Reversing the above procedure, we can derive (3.6), and then (2.1)–(2.2), from (3.7).

Let  be the space of L2(X × Ω) functions with the weighted norm

This weighted norm is equivalent to the norm ‖v‖Q for v ∈ Q. Hence,  is also a Hilbert 

space. We will show the operator A:  is a contraction. We start with the inequality
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The assumption (3.1) implies

Since

we have

Now

we obtain

Integrating the above inequality first with respect to z ∈ Xω and then with respect to ω ∈ Ω, 

we have thus proved the inequality

(3.8)

Furthermore, we have

Note that

and
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Thus,

i.e.,

(3.9)

Combining (3.8) and (3.9), we see that the operator A:  is contractive and

(3.10)

By an application of the Banach fixed-point theorem (cf. [4, p. 209] or [33]), we conclude 

that the equation (3.7) has a unique solution , i.e., u ∈ Q. We further deduce from the 

equation (3.4) that ω·∇u(x, ω) ∈ Q. Therefore, the solution u ∈ V. Using (3.10),

Thus,

and furthermore, by (3.4) we have the bound (3.3)

The Lipschitz continuity of the solution with respect to the source function f ∈ Q and the 

inflow value function uin ∈ L2(Γ−) follows from (3.3).

Finally consider continuous dependence of the solution on the optical parameters μt and μs. 

Let (μt,1, μs,1) and (μt,2, μs,2) be two sets of the parameters satisfying the stated assumptions, 

and let u1 ∈ V and u2 ∈ V be the solutions of the corresponding boundary value problems. 

The difference e := u1 − u2 satisfies the equation

together with the homogeneous boundary condition on Γ−. Applying (3.3), we have
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So we have local Lipschitz continuous dependence of the solution with respect to the optical 

parameters in the L2(X) norm. ■

Note that the condition (3.1) is trivially satisfied as long as the absorption effect cannot be 

ignored.

We now provide a positivity property for the model (3.4) and (2.2). This property is required 

for the model to be physically meaningful.

Proposition 3.2

Keep the assumptions stated in Theorem 3.1. If f ≥ 0 a.e. in X × Ω and uin ≥ 0 a.e. on Γ−, 

then for the solution of the problem (3.4) and (2.2), u ≥ 0 a.e. in X × Ω.

Proof—From (3.7),

By the assumptions, F ≥ 0 a.e. in X × Ω. Let us prove that this implies AF ≥ 0 a.e. in X × Ω. 

By definition of A,

Thus, AF ≥ 0 a.e. in X × Ω, and then for any positive integer j, AjF ≥ 0 a.e. in X × Ω. 

Therefore, u ≥ 0 a.e. in X × Ω. ■

4 Numerical results

We report numerical simulation results on an example. For this example, we use a 

homogeneous cubic phantom with the geometric dimensions 10 × 10 × 8 mm3, with 

coordinates [−5, 5]×[−5, 5]×[−8, 0], and assign values of the optical parameters for the 

phantom as follows: μa = 0.1 mm−1, μs = 15 mm−1, the anisotropy factor g = 0.9 and 

refractive index 1.0. The detectors are distributed at the bottom surface of the phantom, as 

shown in Figure 1. A Gaussian beam whose center located at the position (0, 0, 0) is used to 

simulate photon propagation inside media. The Gaussian beam has intensity distribution

where σ controls the beam width and is set to be 0.5.
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Using the Henyey-Greenstein (H-G) scattering phase function, radiative transport equation 

(RTE) simulator and Monte Carlo simulation are implemented respectively to simulate 

photons propagation in the object and the photon fluence is recorded by virtual detectors on 

the surface of the object. In our example, a mesh-based Monte Carlo (MC) with wide-filed 

sources simulation ([31]) was employed with 108 photons. Meanwhile, the delta-Eddington 

scattering phase function (1.5) is used to simulate photon propagation. According to our 

theoretical analysis, the parameters of the delta-Eddington (D-E) phase function stay in the 

range (1.7). The coefficients of the corresponding Legendre polynomial series for the 

remainder function r(t) are a0 = 1 and a1 = g′. Here, we choose the anisotropy factor g = 0.9, 

and take the parameters as p0 = 0.85 and g′ = 0.12 in the delta-Eddington phase function. 

Based on the delta-Eddington scattering phase function, RTE is performed to acquire the 

photon fluence on the surface of the object. Figure 2 gives the comparison of the photon 

fluences between the two scattering phase functions. The photon fluence on the surface of 

the phantom is in good agreement with the counterpart obtained from the Monte Carlo 

simulation with the Henyey-Greenstein scattering phase function.

To illustrate the accuracy of the proposed method, the comparison of the light field 

propagated in the object is also performed. Contours of logarithm of photon density 

distribution in the phantom acquired from the solutions of RTE with the delta-Eddington 

phase function are shown in Figure 3. The photon fluence in the phantom is also in excellent 

agreement with the counterpart obtained from the Monte Carlo simulation with the Henyey-

Greenstein scattering phase function.

5 Concluding remarks

In this paper, we introduce a family of delta-Eddington-type phase functions for the radiative 

transfer equation (RTE). A proper selection of the delta-Eddington phase function can lead 

to much simplification in solving the RTE, and is thus of fundamental importance for 

applications in biomedical optics. A rigorous mathematical theory is developed for the RTE 

with a general delta-Eddington-type phase function. Numerical experiments show that with a 

proper choice of the parameter, the RTE with a generalized delta-Eddington phase function 

is able to provide accurate simulation results for light propagation within highly forward-

peaked scattering media.
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Figure 1. 
3D cube with μa = 0.1 mm−1, μs = 15 mm−1 and g = 0.9. For delta-Eddington phase function, 

p0 = 0.85, g′ = 0.12. The internal source is located at (0, 0, −1). (a) The mesh of 3D cube; 

(b) The detector distribution at the bottom surface of the phantom.
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Figure 2. 
Comparison between RTE and Monte Carlo (MC). (a) Comparison of normalized fluence 

obtained from RTE with Henyey-Greenstein phase function and MC simulation; (b) 

Comparison of normalized fluence obtained from RTE with delta-Eddington function and 

MC simulation.
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Figure 3. 
Contours of logarithm of photon density acquired by solving; RTE with the delta-Eddington 

phase function. The solid curves represent the solution to RTE and the dashed curves 

represent the Monte Carlo (MC) results. (a) Oyz-plane. The values from innermost curve to 

the outer curve are −1, − 2, −3, and −4, respectively. (b) Ozx-plane. The values form 

innermost curve to the outer curve are −1, −2, −3, and −4, respectively. (c) The plane z = 

−4mm. The values from innermost curve to the outer curve are −3, −3.5, and −4, 

respectively.
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