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Error estimates with explicit constants for the Sinc approximation

over infinite intervals✩
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Abstract

The Sinc approximation is a function approximation formula that attains exponential convergence

for rapidly decaying functions defined on the whole real axis. Even for other functions, the Sinc

approximation works accurately when combined with a proper variable transformation. The con-

vergence rate has been analyzed for typical cases including finite, semi-infinite, and infinite inter-

vals. Recently, for verified numerical computations, a more explicit, “computable” error bound

has been given in the case of a finite interval. In this paper, such explicit error bounds are derived

for other cases.
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interval, error bound
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1. Introduction

The “Sinc approximation” is a function approximation formula that can be expressed as

F(x) ≈
N

∑

k=−M

F(kh)S (k, h)(x), x ∈ R, (1.1)

where S (k, h)(x) is the so-called Sinc function, defined by

S (k, h)(x) =
sin[π(x/h − k)]

π(x/h − k)
,

and M, N, h are selected according to the given positive integer n. It is well known that the

approximation formula (1.1) can converge exponentially when combined with an appropriate vari-

able transformation. Furthermore, it has been shown that the approximation formula (1.1) is nearly

optimal for functions in some Hardy spaces [1, 2]. Motivated by this fact, many researchers have
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studied applications of the Sinc approximation (see Stenger [3, 4], Lund–Bowers [5], Sugihara–

Matsuo [6], and references therein).

As stated above, to attain exponential convergence, an appropriate variable transformation

t = ψ(x) is required. In this regard, depending on the target interval (a, b) and the function f ,

Stenger [3] considered the following four typical cases:

1. (a, b) = (−∞, ∞) and | f (t)| decays algebraically as t → ±∞,

2. (a, b) = (0, ∞) and | f (t)| decays algebraically as t →∞,

3. (a, b) = (0, ∞) and | f (t)| decays (already) exponentially as t → ∞,

4. The interval (a, b) is finite.

In all four cases, Stenger gave the concrete transformations to be employed:

ψSE1(x) = sinh x, ψSE2(x) = ex, ψSE3(x) = arcsinh(ex), ψSE4(x) =
b − a

2
tanh

(

x

2

)

+
b + a

2
.

These are called conformal maps in the literature. After applying the variable transformation

t = ψSEi(x), we may set F(x) = f (ψSEi(x)) and use the Sinc approximation (1.1). As a result, we

have the following approximation for f (t):

f (t) ≈
N

∑

k=−M

f (ψSEi(kh))S (k, h)(ψ−1
SEi

(t)), (1.2)

which is referred to as the “SE-Sinc approximation” in this paper. Stenger [3] demonstrated the

exponential convergence of the approximation (1.2) by giving error analyses in the following form:

sup
t∈(a, b)

∣

∣

∣

∣

∣

∣

∣

f (t) −
N

∑

k=−M

f (ψSEi(kh))S (k, h)(ψ−1
SEi

(t))

∣

∣

∣

∣

∣

∣

∣

≤ C
√

n e−
√
πdµn, (1.3)

where µ and d are positive parameters of the analytic properties of f , and C is a constant indepen-

dent of n.

In recent decades, several authors [6, 7, 8] have pointed out that the performance of the Sinc ap-

proximation can be improved by replacing the original variable transformations with the following

ones:

ψDE1(t) = ψSE1

(

π

2
sinh t

)

, ψDE2(t) = ψSE2

(

π

2
sinh t

)

, ψDE3†(t) = et−exp(−t), ψDE4(t) = ψSE4 (π sinh t) .

These are called the “Double-Exponential (DE) transformations,” and were originally introduced

by Takahasi–Mori [9] for numerical integration. In addition, in case 3, another DE transformation

ψDE3(t) = log(1 + e(π/2) sinh t)

has been proposed [10] so that the inverse function can be explicitly written by using elementary

functions (whereas ψDE3†(t) cannot). The combination of the DE transformation and (1.1) is called

the “DE-Sinc approximation.” The error analyses for i = 1, 2, 3, 4 have been given [8] as

sup
t∈(a, b)

∣

∣

∣

∣

∣

∣

∣

f (t) −
n

∑

k=−n

f (ψDEi(kh))S (k, h)(ψ−1
DEi

(t))

∣

∣

∣

∣

∣

∣

∣

≤ C e−πdn/ log(4dn/µ), (1.4)
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and for ψDE3†(t), also given [8] as

sup
t∈(0,∞)

∣

∣

∣

∣

∣

∣

∣

f (t) −
n

∑

k=−n

f (ψDE3†(kh))S (k, h)(ψ−1
DE3†(t))

∣

∣

∣

∣

∣

∣

∣

≤ C e−πdn/ log(πdn/µ) . (1.5)

The main objective of this study is to refine these error analyses into more useful forms. It

should be emphasized that the error analyses (1.3), (1.4), and (1.5) are not just asymptotic (≃),

but are strict inequalities (≤). Hence, if the constants C are given in a more explicit, computable

form, we can use the term on the right-hand side as a rigorous error bound, which is quite useful

for verified numerical computations. In fact, the explicit form of C was revealed in case 4 (the

interval is finite) [11]. This study reveals the explicit form of C in cases 1–3 (the interval is not

finite).

As a second objective, this paper improves the DE transformation in case 3. Instead of ψDE3(t)

or ψDE3†(t),

ψDE3‡(t) = log(1 + eπ sinh t)

is employed in this paper, which was originally proposed for numerical integration [12]. The error

is also given as

sup
t∈(0,∞)

∣

∣

∣

∣

∣

∣

∣

f (t) −
n

∑

k=−n

f (ψDE3‡(kh))S (k, h)(ψ−1
DE3‡(t))

∣

∣

∣

∣

∣

∣

∣

≤ C e−πdn/ log(2dn/µ), (1.6)

with the explicit constant C. The convergence rate of (1.6) is better than that of (1.4) or (1.5).

Furthermore, in the same manner as for numerical integration [12], it can be shown that ψDE3‡ is

the best possible variable transformation in case 3 (although this is not discussed in this paper).

The remainder of this paper is organized as follows. In Section 2, existing error analyses

and new explicit error bounds (the main result) are stated. Numerical examples are presented in

Section 3. Proofs of all the theorems stated in this paper are given in Section 4. Section 5 draws

together our conclusions.

2. Existing error analyses and new error estimates with explicit constants

In this section, after reviewing existing results, new error bounds for the SE- and DE-Sinc

approximations are stated. Let us first introduce some notation. Let Dd be a strip domain defined

by Dd = {ζ ∈ C : | Im ζ | < d} for d > 0. Furthermore, let D−
d
= {ζ ∈ Dd : Re ζ < 0} and

D+
d
= {ζ ∈ Dd : Re ζ ≥ 0}. In this section, d is assumed to be a positive constant with d < π/2.

Let ψ(Dd) denote the image of Dd given by the map ψ, i.e., ψ(Dd) = {z = ψ(ζ) : ζ ∈ Dd}. Let

I1 = (−∞, ∞), I2 = I3 = (0, ∞), and let us define the following three functions:

E1(z; γ) =
1

(1 + z2)γ/2
,

E2(z;α, β) =
zα

(1 + z2)(α+β)/2
,

E3(z;α, β) =

(

z

1 + z

)α

e−βz .

We write Ei(z; γ, γ) as Ei(z; γ) for short.
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2.1. Existing error analyses and new error estimates for the SE-Sinc approximation

Existing error analyses for the Sinc approximation combined with ψSE1, ψSE2, and ψSE3 are writ-

ten in the following form (Theorems 2.1 and 2.2).

Theorem 2.1 (Stenger [3, Theorem 4.2.5]). Assume that f is analytic in ψSE1(Dd), and that there

exist positive constants K, α, and β such that

| f (z)| ≤ K|E1(z;α)| (2.1)

for all z ∈ ψSE1(D
−
d

), and

| f (z)| ≤ K|E1(z; β)| (2.2)

for all z ∈ ψSE1(D
+

d
). Let µ = min{α, β}, let h be defined as

h =

√

πd

µn
, (2.3)

and let M and N be defined as















M = n, N = ⌈αn/β⌉ (if µ = α),

N = n, M = ⌈βn/α⌉ (if µ = β).
(2.4)

Then, there exists a constant C1, independent of n, such that

sup
t∈I1

∣

∣

∣

∣

∣

∣

∣

f (t) −
N

∑

k=−M

f (ψSE1(kh))S (k, h)(ψ−1
SE1

(t))

∣

∣

∣

∣

∣

∣

∣

≤ C1

√
n e−
√
πdµn . (2.5)

Theorem 2.2 (Stenger [3, Theorem 4.2.5]). The following is true for i = 2, 3. Assume that f is

analytic in ψSEi(Dd), and that there exist positive constants K, α, and β such that

| f (z)| ≤ K|Ei(z;α, β)| (2.6)

for all z ∈ ψSEi(Dd). Let µ = min{α, β}, let h be defined as in (2.3), and let M and N be defined as

in (2.4). Then, there exists a constant Ci, independent of n, such that

sup
t∈Ii

∣

∣

∣

∣

∣

∣

∣

f (t) −
N

∑

k=−M

f (ψSEi(kh))S (k, h)(ψ−1
SEi

(t))

∣

∣

∣

∣

∣

∣

∣

≤ Ci

√
n e−
√
πdµn . (2.7)

This paper explicitly estimates the constant Ci in (2.5) and (2.7) as follows.

Theorem 2.3. Let the assumptions in Theorem 2.1 be fulfilled. Furthermore, let ν = max{α, β}.
Then, inequality (2.5) holds with

C1 =
2ν+1K
√

πdµ



















2
√

πdµ(1 − e−2
√
πdµ){cos d}ν

+ 1



















.
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Theorem 2.4. Let the assumptions in Theorem 2.2 be fulfilled. Then, inequality (2.7) holds with

C2 =
2K

√

πdµ



















2
√

πdµ(1 − e−2
√
πdµ){cos d}(α+β)/2

+ 1



















,

C3 =
2K

√

πdµ



















21+(α+β)/2

√

πdµ(1 − e−2
√
πdµ){cos(d/2)}α+β

+ 1



















.

2.2. Existing error analyses and new error estimates for the DE-Sinc approximation

Existing error analyses for the Sinc approximation with ψDE1, ψDE2, ψDE3, and ψDE3† are written in

the following form (Theorems 2.5 and 2.6).

Theorem 2.5 (Tanaka et al. [8, Theorems 3.2, 3.3, 3.5]). The following is true for i = 1, 2, 3.

Assume that f is analytic in ψDEi(Dd), and that there exist positive constants K and µ such that

| f (z)| ≤ K|Ei(z; µ)| for all z ∈ ψDEi(Dd). Then, there exists a constant Ci, independent of n, such

that

sup
t∈Ii

∣

∣

∣

∣

∣

∣

∣

f (t) −
n

∑

k=−n

f (ψDEi(kh))S (k, h)(ψ−1
DEi

(t))

∣

∣

∣

∣

∣

∣

∣

≤ Ci e−πdn/ log(4dn/µ),

where

h =
log(4dn/µ)

n
. (2.8)

Remark 1. Strictly speaking, in case 3, the range of d is not 0 < d < π/2 (assumed at the

beginning of this section), but 0 < d < Im ζ0 ≃ 1.4045, where ζ0 = arcsinh(2 i+ 2
π

log(1− 1
e
)). This

is because the denominator of E3(z;α, β) is zero at z = ψDE3(ζ0). To address this issue, this paper

employs the function zµ e−µz in Theorem 2.9 instead of E3(z; µ).

Theorem 2.6 (Tanaka et al. [8, Theorem 3.4]). Assume that f is analytic in ψDE3†(Dd), and that

there exist positive constants K and µ such that | f (z)| ≤ K|E3(z; µ)| for all z ∈ ψDE3†(Dd). Let h be

defined as h = log(πdn/µ)/n. Then, there exists a constant C, independent of n, such that (1.5)

holds.

As for case 1 (Theorem 2.5 with i = 1) and case 2 (Theorem 2.5 with i = 2), this paper not only

explicitly estimates the constants Ci, but also generalizes the approximation formula from
∑n

k=−n

to
∑N

k=−M as stated below.

Theorem 2.7. Assume that f is analytic in ψDE1(Dd), and that there exist positive constants K,

α, and β such that (2.1) holds for all z ∈ ψDE1(D
−
d

), and (2.2) holds for all z ∈ ψDE1(D
+

d
). Let

µ = min{α, β}, let ν = max{α, β}, let h be defined as in (2.8), and let M and N be defined as















M = n, N = n − ⌊log(β/α)/h⌋ (if µ = α),

N = n, M = n − ⌊log(α/β)/h⌋ (if µ = β).
(2.9)
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Furthermore, let n be taken sufficiently large so that n ≥ (ν e)/(4d) holds. Then, it holds that

sup
t∈I1

∣

∣

∣

∣

∣

∣

∣

f (t) −
N

∑

k=−M

f (ψDE1(kh))S (k, h)(ψ−1
DE1

(t))

∣

∣

∣

∣

∣

∣

∣

≤ C1 e−πdn/ log(4dn/µ),

where C1 is a constant independent of n, expressed as

C1 =
2ν+1K

πdµ

{

4

π(1 − e−πµ e /2){cos(π
2

sin d)}ν cos d
+ µ eπν/4

}

.

Theorem 2.8. Assume that f is analytic in ψDE2(Dd), and that there exist positive constants K, α,

and β such that (2.6) holds with i = 2 for all z ∈ ψDE2(Dd). Let µ = min{α, β}, let ν = max{α, β},
let h be defined as in (2.8), and let M and N be defined as in (2.9). Furthermore, let n be taken

sufficiently large so that n ≥ (ν e)/(4d) holds. Then, it holds that

sup
t∈I2

∣

∣

∣

∣

∣

∣

∣

f (t) −
N

∑

k=−M

f (ψDE2(kh))S (k, h)(ψ−1
DE2

(t))

∣

∣

∣

∣

∣

∣

∣

≤ C2 e−πdn/ log(4dn/µ),

where C2 is a constant independent of n, expressed as

C2 =
2K

πdµ

{

4

π(1 − e−πµ e /2){cos(π
2

sin d)}(α+β)/2 cos d
+ µ eπν/4

}

.

As for case 3 (Theorem 2.5 with i = 3 and Theorem 2.6), this paper employs the improved

variable transformation ψDE3‡ as described in the introduction, and gives the error estimates in a

similar form to Theorems 2.7 and 2.8.

Theorem 2.9. Assume that f is analytic in ψDE3‡(Dd), and that there exist positive constants K and

µ (µ ≤ 1) such that | f (z)| ≤ K|zµ e−µz | holds for all z ∈ ψDE3‡(Dd). Let h be defined as

h =
log(2dn/µ)

n
. (2.10)

Furthermore, let n be taken sufficiently large so that n ≥ (µ e)/(2d) holds. Then, inequality (1.6)

holds with

C =
K

π
1−µdµ

{

4

π(1 − e−πµ e){cos(π
2

sin d)}2µ{cos d}µ+1
+ µ21−µ eµ(π+2)/2

}

.

Remark 2. In Theorem 2.9, the sum of the approximation formula is not
∑N

k=−M , but
∑n

k=−n.

This is because the inequality bounding the function f is not | f (z)| ≤ K̃|zα e−βz |, but | f (z)| ≤
K|zµ e−µz |, which assumes α = β. This assumption, however, is made without loss of general-

ity, because by setting z = (α/β)w and g(w) = f ((α/β)w) in the former inequality, we obtain

|g(w)| ≤ K̃(α/β)α|wα e−αw |.

Remark 3. Theorems 2.1–2.4 assume that f is analytic in a simply connected domain. In contrast,

Theorems 2.5–2.9 assume that f is analytic in an infinitely sheeted Riemann surface. These two

assumptions are different; see Tanaka et al. [8, Figures 1–9] for details.
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3. Numerical Examples

In this section, some numerical results are presented. All computation programs were written

in C with double-precision floating-point arithmetic. The programs and computation results are

available at https://github.com/okayamat/sinc-errorbound-infinite.

First, let us consider the following three examples.

Example 1 (Case 1: function decays algebraically as t → ±∞). Consider the function

f1(t) =
1

1 + t2

√

1 + tanh2(arcsinh t),

which satisfies the assumptions in Theorem 2.3 with α = β = 2, d = π/4, and K = 3/2, and also

those in Theorem 2.7 with α = β = 2, d = π/6, and K = 3/2.

Example 2 (Case 2: function decays algebraically as t → ∞). Consider the function

f2(t) =

√
t

1 + t2

√

1 + tanh2(log t),

which satisfies the assumptions in Theorem 2.4 (i = 2) with α = 1/2, β = 3/2, d = π/4, and

K = 3/2, and also those in Theorem 2.8 with α = 1/2, β = 3/2, d = π/6, and K = 3/2.

Example 3 (Case 3: function decays exponentially as t → ∞). Consider the function

f3(t) = tπ/4 e−t,

which satisfies the assumptions in Theorem 2.4 (i = 3) with α = π/4, β = 3/4, d = 3.14/2, and

K = (1 + (π/2)2)π/8, and also those in Theorem 2.5 (i = 3) with µ = π/4, d = 1.40, and some

constant K > 0 (note that no explicit error bound is given). In addition, if we set g(u) = f3((π/4)u),

g satisfies the assumptions in Theorem 2.9 with µ = π/4, d = 3/2, and K = (π/4)π/4.

Numerical results are shown in Figures 1–3. In Figure 1, “Maximum Error” denotes the maxi-

mum value of the absolute error investigated at the following 403 points: t = 0, ±2−50, ±2−49.5, . . .,

±2−0.5, ±20, ±20.5, . . ., ±250. Similarly, Figures 2 and 3 present the maximum errors at 201 points

(positive points of those stated above). In each graph, we can see that the error estimate by the

presented theorem (dotted line) clearly bounds the actual error (solid line). Furthermore, in Fig-

ure 3, we can confirm that the proposed DE-Sinc approximation using ψDE3‡ converges faster than

the old DE-Sinc approximation using ψDE3 (“old DE” in the graph). Another DE transformation

ψDE3† is not employed, because ψ−1
DE3† is not easily computed.

Next, let us consider the following example, which is an unfavorable case for the DE-Sinc

approximation.

Example 4 (Case 1: function decays algebraically as t → ±∞). Consider the function

f4(t) =
1

1 + t2

√

cos(3 arcsinh t) + cosh(π),

which satisfies the assumptions in Theorem 2.3 with α = β = 2, d = π/3, and K = 2 cosh(π),

whereas it does not satisfy the assumptions in Theorem 2.7 as we cannot find any d > 0 such that

f4 is analytic in ψDE1(Dd) (we find α = β = 2, though).

7
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Figure 1: Approximation errors of f1 and their estimates.

 1e-15

 1e-12

 1e-09

 1e-06

 0.001

 1

 1000

 0  20  40  60  80  100  120  140

M
ax

im
um

 E
rr

or

n

Observed error (SE)
Error estimate (SE)

Observed error (DE)
Error estimate (DE)

Figure 2: Approximation errors of f2 and their estimates.
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Figure 3: Approximation errors of f3 and their estimates.
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Figure 4: Approximation errors of f4 and their estimates.

According to Okayama et al. [13], even in this case, the DE-Sinc approximation works almost

as well as the SE-Sinc approximation by choosing d = arcsin(dSE/π), where dSE denotes d in the

SE-Sinc approximation. Actually, as shown in Figure 4, the DE-Sinc approximation converges at

a similar rate to that of the SE-Sinc approximation. However, note that the error in the DE-Sinc

approximation cannot be estimated by Theorem 2.7, whereas Theorem 2.3 works well.

4. Proofs

4.1. In the case of the SE-Sinc approximation

First, the error of the SE-Sinc approximation (1.2) is estimated. Let us look at a sketch of the

proof. Let F(x) = f (ψSEi(x)) (recall that we employ t = ψSEi(x) for the variable transformation),

and evaluate the following term:

∣

∣

∣

∣

∣

∣

∣

f (t) −
N

∑

k=−M

f (ψSEi(kh))S (k, h)(ψ−1
SEi

(t))

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

F(x) −
N

∑

k=−M

F(kh)S (k, h)(x)

∣

∣

∣

∣

∣

∣

∣

,
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which is the error of the Sinc approximation (1.1). For the estimation, the following function space

plays an important role.

Definition 4.1. Let L, R, α, β, γ be positive constants, and let d be a constant with 0 < d < π/γ.

Then, LSE
L,R,α,β,γ

(Dd) denotes a family of functions F that are analytic in Dd, and for all ζ ∈ Dd and

x ∈ R, satisfy

|F(ζ)| ≤ L

|1 + e−γζ |α/γ|1 + eγζ |β/γ , (4.1)

|F(x)| ≤ R

(1 + e−γx)α/γ(1 + eγx)β/γ
. (4.2)

If F ∈ LSE
L,R,α,β,γ

(Dd), the error of the Sinc approximation is estimated as below. The proof is omitted

here because it is quite similar to that of the existing theorem for case 4 [11, Theorem 2.4].

Theorem 4.1. Let F ∈ LSE
L,R,α,β,γ

(Dd), let µ = min{α, β}, let h be defined as in (2.3), and let M and

N be defined as in (2.4). Then, setting ǫSE
n =

√
n e−
√
πdµn, we have

sup
x∈R

∣

∣

∣

∣

∣

∣

∣

F(x) −
N

∑

k=−M

F(kh)S (k, h)(x)

∣

∣

∣

∣

∣

∣

∣

≤ 2
√

πdµ

















2L
√

πdµ(1 − e−2
√
πdµ){cos(γd/2)}(α+β)/γ

+ R

















ǫSE
n .

In view of Theorem 4.1, the proof is completed by checking F ∈ LSE
L,R,α,β,γ

(Dd) for cases 1, 2,

and 3. Let us examine each case individually.

4.1.1. Proof in case 1 (Theorem 2.3)

The claim of Theorem 2.3 follows from the next lemma.

Lemma 4.2. Let the assumptions in Theorem 2.3 be fulfilled. Then, the function F(ζ) = f (ψSE1(ζ))

belongs to LSE
L,R,α,β,γ

(Dd) with L = 2νK/{cos d}(ν−µ)/2, R = 2νK, and γ = 2.

The proof is straightforward by the next result, because |F(ζ)| ≤ K|E1(ψSE1(ζ);α)| and |F(ζ)| ≤
K|E2(ψSE1(ζ); β)| coincide with the inequalities in the following lemma.

Lemma 4.3 (Okayama [12, in the proof of Lemma 5.1]). Assume that F is analytic in Dd with

0 < d < π/2, and that there exist positive constants K, α, β such that

|F(ζ)| ≤ K

|1 + e−2ζ |α/2|1 + e2ζ |α/2

holds for all ζ ∈ D
−
d

, and

|F(ζ)| ≤ K

|1 + e−2ζ |β/2|1 + e2ζ |β/2

holds for all ζ ∈ D+
d

. Then, F ∈ LSE
L,R,α,β,γ

(Dd) with L = 2νK/{cos d}(ν−µ)/2, R = 2νK, and γ = 2,

where µ = min{α, β} and ν = max{α, β}.
9



4.1.2. Proof in case 2 (Theorem 2.4 with i = 2)

The claim of Theorem 2.4 with i = 2 follows from the next lemma.

Lemma 4.4. Let the assumptions in Theorem 2.4 be fulfilled with i = 2. Then, the function F(ζ) =

f (ψSE2(ζ)) belongs to LSE
L,R,α,β,γ

(Dd) with L = K, R = K, and γ = 2.

Proof. From inequality (2.6) with i = 2, (4.1) and (4.2) immediately hold with L = R = K and

γ = 2.

4.1.3. Proof in case 3 (Theorem 2.4 with i = 3)

The claim of Theorem 2.4 follows from the next lemma.

Lemma 4.5. Let the assumptions in Theorem 2.4 be fulfilled with i = 3. Then, the function F(ζ) =

f (ψSE3(ζ)) belongs to LSE
L,R,α,β,γ

(Dd) with L = 2(α+β)/2K, R = K, and γ = 1.

For the proof, let us prepare some useful inequalities (Lemmas 4.6 and 4.7).

Lemma 4.6 (Okayama [12, Lemma 5.4]). For all ζ ∈ Dπ/2 and x ∈ R, we have
∣

∣

∣

∣

∣

∣

arcsinh(eζ)

1 + arcsinh(eζ)

∣

∣

∣

∣

∣

∣

≤
√

2

∣

∣

∣

∣

∣

∣

eζ

1 + eζ

∣

∣

∣

∣

∣

∣

,

arcsinh(ex)

1 + arcsinh(ex)
≤ ex

1 + ex
.

Lemma 4.7 (Okayama [12, Lemma 5.5]). For all ζ ∈ Dπ/2 and x ∈ R, we have

1

| eζ +
√

1 + e2ζ |
≤
√

2

|1 + eζ | ,

1

ex +

√
1 + e2x

≤ 1

1 + ex
.

By using the lemmas above, Lemma 4.5 can be proved as follows.

Proof. From inequality (2.6) with i = 3, it follows that

|F(ζ)| ≤ K

∣

∣

∣

∣

∣

∣

arcsinh(eζ)

1 + arcsinh(eζ)

∣

∣

∣

∣

∣

∣

α ∣

∣

∣

∣

∣

∣

1

eζ +
√

1 + e2ζ

∣

∣

∣

∣

∣

∣

β

.

From Lemmas 4.6 and 4.7, it holds that

|F(ζ)| ≤ K

∣

∣

∣

∣

∣

∣

√
2

1 + e−ζ

∣

∣

∣

∣

∣

∣

α ∣

∣

∣

∣

∣

∣

√
2

1 + eζ

∣

∣

∣

∣

∣

∣

β

= 2(α+β)/2K

∣

∣

∣

∣

∣

1

1 + e−ζ

∣

∣

∣

∣

∣

α ∣

∣

∣

∣

∣

1

1 + eζ

∣

∣

∣

∣

∣

β

for all ζ ∈ Dd. For x ∈ R, it holds that

|F(x)| ≤ K

(

1

1 + e−x

)α (

1

1 + ex

)β

.

This completes the proof.
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4.2. In the case of the DE-Sinc approximation

Next, the error of the DE-Sinc approximation is estimated. In this case, we again estimate the

error of the Sinc approximation (1.1) in view of the following term:

∣

∣

∣

∣

∣

∣

∣

f (t) −
N

∑

k=−M

f (ψDEi(kh))S (k, h)(ψ−1
DEi

(t))

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

F(x) −
N

∑

k=−M

F(kh)S (k, h)(x)

∣

∣

∣

∣

∣

∣

∣

,

where we set F(x) = f (ψDEi(x)). Because of differences in the variable transformation, instead of

LSE
L,R,α,β,γ

(Dd), we require the following function space.

Definition 4.2. Let L, R, α, β be positive constants, and let d be a constant with 0 < d < π/2.

Then, LDE
L,R,α,β(Dd) denotes a family of functions F that are analytic in Dd, and for all ζ ∈ Dd and

x ∈ R, satisfy

|F(ζ)| ≤ L

|1 + e−π sinh ζ |α/2|1 + eπ sinh ζ |β/2
, (4.3)

|F(x)| ≤ R

(1 + e−π sinh x)α/2(1 + eπ sinh x)β/2
. (4.4)

If F ∈ LDE
L,R,α,β

(Dd), the errors of the Sinc approximation are estimated as below. The proofs are

omitted because they are quite similar to that of the existing theorem for case 4 [11, Theorem 2.11].

Theorem 4.8. Let F ∈ LDE
L,R,α,β

(Dd), let µ = min{α, β}, let ν = max{α, β}, let h be defined as

in (2.8), and let M and N be defined as in (2.9). Furthermore, let n be taken sufficiently large so

that n ≥ (ν e)/(4d) holds. Then, setting ǫDE
n = e−πdn/ log(4dn/µ), we have

sup
x∈R

∣

∣

∣

∣

∣

∣

∣

F(x) −
N

∑

k=−M

F(kh)S (k, h)(x)

∣

∣

∣

∣

∣

∣

∣

≤ 2

πdµ

[

4L

π(1 − e−πµ e /2){cos(π
2

sin d)}(α+β)/2 cos d
+ µR eπν/4

]

ǫDE
n .

In view of Theorem 4.8, our main task here is to check the assumption that F ∈ LDE
L,R,α,β

(Dd). The

next lemma is useful for the proofs.

Lemma 4.9 (Okayama et al. [11, Lemma 4.22]). Let x, y ∈ R with |y| < π/2. Then, it holds that

∣

∣

∣

∣

∣

1

1 + eπ sinh(x+i y)

∣

∣

∣

∣

∣

≤ 1

(1 + eπ sinh(x) cos y) cos(π
2

sin y)
,

∣

∣

∣

∣

∣

1

1 + e−π sinh(x+i y)

∣

∣

∣

∣

∣

≤ 1

(1 + e−π sinh(x) cos y) cos(π
2

sin y)
.

4.2.1. Proof in case 1 (Theorem 2.7)

The claim of Theorem 2.7 follows from the next lemma.

Lemma 4.10. Let the assumptions in Theorem 2.7 be fulfilled. Then, the function F(ζ) = f (ψDE1(ζ))

belongs to LDE
L,R,α,β(Dd) with L = 2νK/{cos(π

2
sin d)}(ν−µ)/2 and R = 2νK.
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The proof is straightforward by the next result, because |F(ζ)| ≤ K|E1(ψDE1(ζ);α)| and |F(ζ)| ≤
K|E2(ψDE1(ζ); β)| coincide with the inequalities in the following lemma.

Lemma 4.11 (Okayama [12, in the proof of Lemma 5.9]). Assume that F is analytic in Dd with

0 < d < π/2, and that there exist positive constants K, α, β such that

|F(ζ)| ≤ K

|1 + e−π sinh ζ |α/2|1 + eπ sinh ζ |α/2

holds for all ζ ∈ D−
d

, and

|F(ζ)| ≤ K

|1 + e−π sinh ζ |β/2|1 + eπ sinh ζ |β/2

holds for all ζ ∈ D+
d

. Then, F ∈ LDE
L,R,α,β

(Dd) with L = 2νK/{cos(π
2

sin d)}(ν−µ)/2 and R = 2νK, where

µ = min{α, β} and ν = max{α, β}.

4.2.2. Proof in case 2 (Theorem 2.8)

The claim of Theorem 2.8 follows from the next lemma.

Lemma 4.12. Let the assumptions in Theorem 2.8 be fulfilled. Then, the function F(ζ) = f (ψDE2(ζ))

belongs to LDE
L,R,α,β

(Dd) with L = K and R = K.

Proof. From inequality (2.6) with i = 2, (4.3) and (4.4) immediately hold with L = R = K.

4.2.3. Proof in case 3 (Theorem 2.9)

In contrast to cases 1 and 2, the function F(ζ) = f (ψDE3‡(ζ)) does not belong to LDE
L,R,α,β

(Dd)

under the assumptions of Theorem 2.9. In this case, we split the error into two terms as

∣

∣

∣

∣

∣

∣

∣

F(x) −
n

∑

k=−n

F(kh)S (k, h)(x)

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

F(x) −
∞
∑

k=−∞
F(kh)S (k, h)(x)

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

−n−1
∑

k=−∞
F(kh)S (k, h)(x) +

∞
∑

k=n+1

F(kh)S (k, h)(x)

∣

∣

∣

∣

∣

∣

∣

,

which are called the “discretization error” and the “truncation error,” respectively. Let us estimate

these two terms separately. For the discretization error, we require the following function space.

Definition 4.3. Let Dd(ǫ) be a rectangular domain defined for 0 < ǫ < 1 by

Dd(ǫ) = {ζ ∈ C : |Re ζ | < 1/ǫ, | Im ζ | < d(1 − ǫ)}.

Then, H1(Dd) denotes the family of all functions F that are analytic in Dd such that the norm

N1(F, d) is finite, where

N1(F, d) = lim
ǫ→0

∮

∂Dd(ǫ)

|F(ζ)||dζ |.

12



The discretization error for a function F belonging to H1(Dd) has been estimated as follows.

Theorem 4.13 (Stenger [3, Theorem 3.1.3]). Let F ∈ H1(Dd). Then,

sup
x∈R

∣

∣

∣

∣

∣

∣

∣

F(x) −
∞
∑

k=−∞
F(kh)S (k, h)(x)

∣

∣

∣

∣

∣

∣

∣

≤ N1(F, d)

πd(1 − e−2πd/h)
e−πd/h .

This paper shows that F ∈ H1(Dd) under the assumptions of Theorem 2.9.

Lemma 4.14. Let the assumptions in Theorem 2.9 be fulfilled. Then, the function F(ζ) = f (ψDE3‡(ζ))

belongs to H1(Dd), and N1(F, d) is estimated as

N1(F, d) ≤ 4K

π
1−µµ cos2µ(π

2
sin d) cos1+µ d

.

For the proof, the following inequality is useful.

Lemma 4.15. For all real numbers x and y with |y| < π/2, we have

| log(1 + eπ sinh(x+i y))| ≤ 1

cos(π
2

sin y) cos y
· π cosh x

1 + e−π sinh(x) cos y
.

As the proof is relatively long, it is given at the end of this section. If we accept this lemma,

Lemma 4.14 can be proved as follows.

Proof. By assumption, clearly F is analytic in Dd. In the following, we estimate N1(F, d). Using

Lemmas 4.9 and 4.15, we have

|F(x + i y)| = | f (ψDE3‡(x + i y))|

≤ K
∣

∣

∣log(1 + eπ sinh(x+i y))
∣

∣

∣

µ
∣

∣

∣

∣

∣

1

1 + eπ sinh(x+i y)

∣

∣

∣

∣

∣

µ

≤ K

{

1

cos(π
2

sin y) cos y
· π cosh x

1 + e−π sinh(x) cos y

}µ {
1

cos(π
2

sin y)
· 1

1 + eπ sinh(x) cos y

}µ

=
Kπµ

cos2µ(π
2

sin y) cosµ y
· coshµ x

(1 + e−π sinh(x) cos y)µ(1 + eπ sinh(x) cos y)µ

≤ Kπµ

cos2µ(π
2

sin y) cosµ y
· cosh x

eπµ sinh(|x|) cos y
.

From this, for any ǫ with 0 < ǫ < 1, it holds that

lim
x→±∞

∫ d(1−ǫ)

−d(1−ǫ)
|F(x + i y)|dy ≤ lim

x→±∞

Kπµ cosh x

eπµ sinh(|x|) cos d(1−ǫ)

∫ d(1−ǫ)

−d(1−ǫ)

dy

cos2µ(π
2

sin y) cosµ y
= 0.

Therefore, we have

N1(F, d) = lim
y→d

∫ ∞

−∞
|F(x + i y)| dx + lim

y→−d

∫ ∞

−∞
|F(x + i y)| dx

≤ 2Kπµ

cos2µ(π
2

sin d) cosµ d

∫ ∞

−∞

cosh x

eπµ sinh(|x|) cos d
dx =

4Kπµ

cos2µ(π
2

sin d) cosµ d
· 1

πµ cos d
,

which is finite if 0 < d < π/2. This completes the proof.
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Combining the above results, we have the following estimate for the discretization error.

Lemma 4.16. Let the assumptions in Theorem 2.9 be fulfilled. Then, setting F(ζ) = f (ψDE3‡(ζ)),

we have

sup
x∈R

∣

∣

∣

∣

∣

∣

∣

F(x) −
∞
∑

k=−∞
F(kh)S (k, h)(x)

∣

∣

∣

∣

∣

∣

∣

≤ 4K

π
2−µdµ(1 − e−2πd/h) cos2µ(π

2
sin d) cos1+µ d

e−πd/h .

The truncation error is estimated as follows.

Lemma 4.17. Let the assumptions in Theorem 2.9 be fulfilled. Then, setting F(ζ) = f (ψDE3‡(ζ)),

we have

∣

∣

∣

∣

∣

∣

∣

−n−1
∑

k=−∞
F(kh)S (k, h)(x) +

∞
∑

k=n+1

F(kh)S (k, h)(x)

∣

∣

∣

∣

∣

∣

∣

≤ 22−µK e
π

2
µ

µπ1−µh enh(1−µ)
e−
π

2
µ exp(nh) .

Proof. Using |S (k, h)(x)| ≤ 1, we have

∣

∣

∣

∣

∣

∣

∣

−n−1
∑

k=−∞
F(kh)S (k, h)(x) +

∞
∑

k=n+1

F(kh)S (k, h)(x)

∣

∣

∣

∣

∣

∣

∣

≤
−n−1
∑

k=−∞
|F(kh)| +

∞
∑

k=n+1

|F(kh)|.

Furthermore, from Lemma 4.15, it holds that

|F(x)| ≤ K| log(1 + eπ sinh x)|µ
∣

∣

∣

∣

∣

1

1 + eπ sinh x

∣

∣

∣

∣

∣

µ

≤ K
π
µ coshµ x

(1 + e−π sinh x)µ
· 1

(1 + eπ sinh x)µ
.

Therefore, the desired estimate is obtained as

−n−1
∑

k=−∞
|F(kh)| +

∞
∑

k=n+1

|F(kh)| ≤ 2

∞
∑

k=n+1

Kπµ coshµ(kh)

(1 + e−π sinh(kh))µ(1 + eπ sinh(kh))µ

≤ 2Kπµ
∞
∑

k=n+1

coshµ(kh) e−πµ sinh(kh)

≤ 2Kπµ

h

∫ ∞

nh

coshµ(x) e−πµ sinh x dx

≤ 2Kπµ

h cosh1−µ(nh)

∫ ∞

nh

cosh(x) e−πµ sinh x dx

=
2Kπµ

h cosh1−µ(nh)
· e−πµ sinh(nh)

πµ
≤ 2Kπµ

h(enh /2)1−µ ·
e
π

2
µ e−

π

2
µ exp(nh)

πµ
.

This completes the proof.

Using Lemmas 4.16 and 4.17, we obtain the desired estimate (Theorem 2.9) as follows.
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Proof. Let F(ζ) = f (ψDE3‡(ζ)). Lemmas 4.16 and 4.17 give the following inequality:

∣

∣

∣

∣

∣

∣

∣

F(x) −
n

∑

k=−n

F(kh)S (k, h)(x)

∣

∣

∣

∣

∣

∣

∣

≤ 4K

π
2−µdµ cos2µ(π

2
sin d) cos1+µ d

· e−πd/h

1 − e−2πd/h
+

22−µK e
π

2
µ

µπ1−µ · e−
π

2
µ exp(nh)

h enh(1−µ)
.

Furthermore, by substituting the formula in (2.10), the first term can be estimated as

e−πd/h

1 − e−2πd/h
=

e−πdn/ log(2dn/µ)

1 − e−πµ(2dn/µ)/ log(2dn/µ)
≤ e−πdn/ log(2dn/µ)

1 − e−πµ e / log(e)
,

and the second term can be estimated as

e−
π

2
µ exp(nh)

h enh(1−µ)
=

e−πdn

(log(2dn/µ)/n)(2dn/µ)1−µ =
(2dn/µ)µ e−

π

2
µ(2dn/µ)(1−1/ log(2dn/µ))

log(2dn/µ)

µ

2d
e−πdn/ log(2dn/µ)

≤ (e)µ e−
π

2
µ(e)(1−1/ log(e))

log(e)

µ

2d
e−πdn/ log(2dn/µ),

which completes the proof.

The remaining task is to prove Lemma 4.15. For the purpose, the following lemma is needed.

Lemma 4.18. For all x ∈ R, it holds that

√
x2 + π2 ≥ (1 + e−x) log(1 + ex).

Proof. Set f (x) = ex
√

x2 + π2− (1+ex) log(1+ex). The desired inequality is obtained by showing

that f (x) ≥ 0 for x ∈ R. We show this separately in two cases: (i) x ≤ 4π/3 and (ii) x > 4π/3.

(i) x ≤ 4π/3. Set p(x) =
√

x2 + π2 − log(1 + ex). If we can show that p(x) > 1, we obtain the

desired inequality, as f (x) = ex p(x) − log(1 + ex) > ex − log(1 + ex) ≥ 0. Therefore, we show

p(x) > 1 below. We have

p′(x) =
x

√
x2 + π2

− ex

1 + ex
,

p′′(x) =
π

2

(x2 + π2)3/2
− 1

{2 cosh(x/2)}2 .

Furthermore, it holds for all x ∈ R that

2 cosh(x/2) ≥ 2 +
x2

4
>

1

π

(x2
+ π

2)3/4,

from which p′′(x) ≥ 0 holds for all x ∈ R. Therefore, p′(x) is a monotonically increasing function.

Noting that p′(x) → 0 as x → ∞, we see that p′(x) ≤ 0. Therefore, p(x) is a monotonically
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decreasing function. Thus, for x ≤ 4π/3, we have p(x) ≥ p(4π/3) > 1. This completes the proof

for x ≤ 4π/3.

(ii) x > 4π/3. Set p̃(x) =
√

x2 + 32 − log(1 + ex). As it holds for all x ∈ R that

2 cosh(x/2) ≥ 2 +
x2

4
>

1

3
(x2
+ 32)3/4,

we see that p̃(x) is a monotonically decreasing function in the same way as above. Furthermore,

because p̃(x) → 0 as x→ ∞, p̃(x) ≥ 0 holds for all x ∈ R. Therefore, we have

p(x) =
√

x2 + π2 −
√

x2 + 32 + p̃(x)

≥
√

x2 + π2 −
√

x2 + 32 + 0 =
π

2 − 32

√
x2 + π2 +

√
x2 + 32

≥ π
2 − 32

√
x2 + π2 +

√
x2 + π2

≥ π
2 − 32

√
x2 + x2 +

√
x2 + x2

=
π

2 − 32

2
√

2x
.

The last inequality uses x ≥ π. From this inequality, setting q(x) = ex(π2 − 32)/(2
√

2x), we have

f (x) = ex p(x) − log(1 + ex) ≥ q(x) − log(1 + ex).

Therefore, the desired inequality is proved if we can show that q(x) > log(1 + ex) for x > 4π/3.

Here, we see that q(x) is a convex function for x > 0, because

q′(x) =
ex(π2 − 32)(x − 1)

2
√

2x2
,

q′′(x) =
ex(π2 − 32){(x − 1)2

+ 1}
2
√

2x3
> 0.

Therefore, considering a tangent line at x = 4π/3, we have

q(x) ≥ q′(4π/3)(x − (4π/3)) + q(4π/3)

for x > 0. Furthermore, it holds for x ≥ 4π/3 that

log(1 + ex) = x + log(1 + e−x) ≤ x + log(1 + e−4π/3) = (x − (4π/3)) + (4π/3) + log(1 + e−4π/3).

Thus, from q′(4π/3) > 1 and q(4π/3) > (4π/3) + log(1 + e−4π/3), it holds for x > 4π/3 that

q′(4π/3)(x − (4π/3)) + q(4π/3) > 1 · (x − (4π/3)) +
{

(4π/3) + log(1 + e4π/3)
}

,

which shows q(x) > log(1 + ex). This completes the proof for x > 4π/3.

Based on this lemma, we can prove Lemma 4.15 as follows.
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Proof. Using | cosh(x + i y)| ≤ cosh x, Lemma 4.9, and

d

dz
log(1 + eπ sinh z) =

π cosh z

1 + e−π sinh z
,

we have

| log(1 + eπ sinh(x+i y))| =
∣

∣

∣

∣

∣

∫ x

−∞

π cosh(t + i y)

1 + e−π sinh(t+i y)
dt

∣

∣

∣

∣

∣

≤
∫ x

−∞

π| cosh(t + i y)|
|1 + e−π sinh(t+i y) | dt

≤
∫ x

−∞

π cosh t

(1 + e−π sinh(t) cos y) cos(π
2

sin y)
dt

=
1

cos(π
2

sin y) cos y
log(1 + eπ sinh(x) cos y).

The desired inequality is obtained by showing that

log(1 + eπ sinh(x) cos y) ≤ π cosh x

1 + e−π sinh(x) cos y
,

which is equal to
(1 + e−t) log(1 + et)
√

π
2 + (t/ cos y)2

≤ 1,

where t = π sinh(x) cos y. This inequality can be shown as

(1 + e−t) log(1 + et)
√

π
2 + (t/ cos y)2

≤ (1 + e−t) log(1 + et)
√
π

2 + t2
≤ 1,

where Lemma 4.18 has been used in the last inequality. This completes the proof.

5. Concluding remarks

The errors of the SE-Sinc approximation over the infinite and semi-infinite intervals have been

analyzed in Theorems 2.1 and 2.2, where the constant Ci is not given in an explicit form. This

paper revealed the explicit form of each Ci, enabling us to obtain a rigorous, mathematically

correct error bound by computing the right-hand side of (2.5) or (2.7). These results are useful

for computations with guaranteed accuracy. Similarly, for the DE-Sinc approximation, this paper

presented Theorems 2.7–2.9, where the error bounds are given in a computable form. In case 3, in

particular, although existing studies employed ψDE3(t) or ψDE3†(t) as a variable transformation, we

used ψDE3‡(t), which improves the convergence rate of the DE-Sinc approximation. Note that the

error bounds are valid if the assumptions are satisfied, otherwise we cannot use the error bounds

(see Figure 4, for example, where the assumptions of Theorem 2.7 are not satisfied).

Future work includes the following. First, in addition to the four cases listed in Section 1, other

cases and corresponding conformal maps have been considered by Stenger [14, Section 1.5.3].

Computable error bounds for these cases should be given. Furthermore, the DE-Sinc approxima-

tion for these cases should also be considered. Second, the SE-Sinc and DE-Sinc approximations

described in this paper assume that f (t) → 0 as t → a and t → b. However, there are more

general approximation formulas that can handle the case where the boundary values of f are non-

zero [14, 15]. Computable error bounds for these cases are desirable.
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