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Assessment of grid adaptation criteria for steady, two-dimensional, inviscid
flows in non-ideal compressible fluids
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bBordeaux-INP/Inria Bordeaux — Sud-Ouest, 200 avenue de la Vieille Tour, 33405 Talence cedex

Abstract

Two-dimensional simulations are carried out to assess standard grid adaptation criteria, widely used for
ideal flows, for steady inviscid flows in the proximity of the liquid-vapor saturation curve, where non-ideal
compressible-fluid behavior is expected. A van der Waals fluid description of the thermodynamic properties
is assumed to account for non-ideal effects at least qualitatively. Nitrogen under-expanded nozzle jets are
chosen as the reference flow to assess different adaptation criteria. Isotropic and anisotropic error estimators
based on the derivatives of flow variables proved to be suitable to capture the rarefaction, the reflected
shock and the constant-pressure jet boundary. Both density and Mach-based estimators are found to be
very suitable to drive grid adaptation in the non-ideal compressible-fluid regime, which is characterized by
large fluid compressibility. Then, similar adaptation criteria were used to simulate under-expanded nozzle
jets of the siloxane MDM, an high molecular complexity fluid for which the van der Waals model predicts
the existence of a thermodynamic region where the fundamental derivative of gasdynamics has values less
than one. In this region, Mach number estimators proved to be more effective because of the non-ideal
dependence of the speed of sound on the density and the temperature.

Keywords: Non-Ideal Compressible-Fluid Dynamics (NICFD), Unstructured mesh adaptation, Van der
Waals fluids, Finite volume scheme, Under-expanded jets

1. Introduction

Mesh adaptation proved to be a valuable tool for numerical simulations of fluid flows [1], with particular
reference to fluid flows characterized by different spatial scales and to all situations where the general location
of relevant flow features is not known a priori [2, 3, 4]. As it is well known, adaptation techniques aim at
modifying the computational mesh to maximize its efficiency with respect to a given goal, therefore the
definition of the criterion used to modify grid spacing is a key point in mesh adaptation [5] and several
approaches have been proposed. For example, integral error indicators obtained from the solution of the
adjoint flow problem can be used to redistribute the mesh nodes to minimize the error in the evaluation of the
output of interest, such as the aerodynamic force acting on a given solid body [6, 7, 8]. However, if not already
available for some other purposes, the solution of the adjoint problem may be expensive [9]. Alternatively, a
suitable local error indicator can be built and the grid can be modified to equi-distribute the numerical error
within the computational domain, i.e. the local mesh size can be increased (decreased) in regions where the
error is estimated to be below (above) its average value [10, 11, 12]. For finite element discretizations, this
estimates can be based on the interpolation error [13, 14, 15, 16]. In fluid-dynamic problems, local mesh
adaptation indicators are often functions of relevant flow variables, such as the density, the pressure, the
Mach number or the velocity and on their first- and second-order derivatives. The underlying assumption
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Figure 1: Representative isentropes and liquid-vapor saturation curve in the v-P plane in the non-ideal compressible-fluid
region for the siloxane MDM under the polytropic van der Waals gas. The critical isotherm, the critical point and iso-lines of
the fundamental derivative of gasdynamics Γ [22] are also shown.

of this approach is that the largest error occurs in the regions of the domain where the solution changes
most rapidly, therefore the grid spacing is reduced where the gradients are large, while it is increased where
the solution is smooth. Thanks to their simplicity and fast computation, this kind of adaptation criteria is
widely and successfully used in various fluid-dynamics problems [17, 18, 19].

The main drawback of the adaptive indicators based on flow variables is that the optimal indicator for the
problem under investigation, i.e. the variable (or combination of variables) that allows to efficiently detect
the relevant flow structures, is usually problem-dependent. However, some general assumptions can be stated
on the based of the expected flow behavior, as for instance the presence of shock waves, vortex structures
or rarefaction fan. In this regards, since the relationships among the diverse flow variables strongly depend
on the assumed thermodynamic model, the selection of the proper error indicator is not straightforward if
the fluid thermodynamics depart from the well-known ideal-gas conditions, for which a wealth of literature
regarding the effectiveness of the error indicators is already available [2, 3, 20]. The above is indeed the
case for the so-called non-ideal compressible-fluid dynamics (NICFD), the branch of fluid dynamics devoted
to the study of compressible fluids in the vicinity of the liquid-vapor saturation curve and critical point,
see Figure 1. In NICFD, non-ideal thermodynamics results in large compressibility of the fluid, non-ideal
dependence of the speed of sound on the density, critical point phenomena, phase transition. For fluid
characterized by large molecular complexity, non-classical gasdynamics behavior is possibly observed [21].
Therefore, the applicability of mesh adaptation criteria derived for the constant-specific-heat ideal-gas case
is questionable in these highly non-ideal flow conditions.

The present work is a first, tentative assessment of local mesh adaptation criteria for steady two-
dimensional NICFD under the inviscid assumption. To this purpose, numerical simulations of supersonic
under-expanded nozzle jets of nitrogen and siloxane MDM operating close to the liquid-vapor saturation
curve are performed to study the effectiveness of different adaptation criteria. These include combinations
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of the gradient and the Hessian of the pressure, the Mach number, the density and the temperature, within a
multi-passage adaptation strategy that allows to detect weaker phenomena [23]. Moreover, given the nature
of the flow, also anisotropic mesh adaptation is exploited [11, 24]. The van der Waals thermodynamic model
is used to take into account, at least qualitatively, non-ideal compressible-fluid effects, which are observed
in the proximity of the critical point.

Under-expanded jets represent a valuable benchmark for mesh adaptation techniques because of the
complex flow structure, including oblique and normal shock waves, supersonic expansions and shear dis-
continuities. Besides their unique fluid dynamics features, under-expanded supersonic jets of gases are of
relevant interest also in several technical applications, including for instance particle nucleation, turbo-
machinery, exhaust plumes of propulsion systems, high-pressure gas discharge, fuel injectors, laser cutting
with assist gas. Reference [25] gives a review of experimental studies as well as numerical investigations of
under-expanded jets of ideal gases with constant isochoric specific heat.

The ideal gas thermodynamic model provides accurate estimation of gas properties only if thermodynamic
conditions are sufficiently away from the vapor-liquid saturation curve and from the critical point. Recent
applications require however the working fluid to operate within the non-ideal compressible-fluid region,
where the thermodynamic behavior of the substance deviates significantly from the ideal one, see Figure 1.
In such conditions, fluid transport and physical properties exhibit a peculiar dependence on the pressure
and temperature, which can be exploited in certain industrial processes. For example, under-expanded jets
of supercritical CO2 are widely used in the pharmaceutical industry and in food processing in order to
product micro- or nano-particles [26, 27]. In Organic Rankine Cycle (ORC) engines, organic fluids of high
molecular complexity are used as working fluids in the Rankine cycle for low-temperature renewable-energy
sources [28]. This technology has been successfully used to recover waste heat and to exploit geothermal,
biomass and solar sources [29]. As reported in Reference [30], highly under-expanded jets can occur between
turbine blades if supercritical ORCs operate in off-design conditions.

Simulations of so-called real-gas under-expanded jets were carried out by Obayashi [31], who considered
the thermal imperfection in combination with the ideal gas model in order to take into account the real
gas effects of the exhaust plumes of the Space Shuttle propulsion system. To investigate gas non-ideality
or caloric imperfection, Guardone and co-workers [32] performed numerical simulations of under-expanded
jets of nitrogen gas in supercritical conditions using a finite volume scheme for non-ideal gases. The fluid
thermodynamics was modeled by means of the polytropic van der Waals approximation. In the dilute gas
regime, the results in [32] agree fairly well with the experimental results of Katanoda and co-workers [33, 34].

In the present work, the FlowMesh code, currently under development at the Department of Aerospace
Science and Technology of Politecnico di Milano, is used to solve the flow equations under non-ideal ther-
modynamics. The code implements an unstructured-grid finite-volume scheme based on an innovative
interpretation of grid elements modifications due to mesh adaptation within the Arbitrary Lagrangian-
Eulerian (ALE) framework [35, 36, 37], which guarantees the scheme to be conservative by construction. The
VThermo library, now included in FluidProp [38], is used to compute the fluid thermodynamics. Local grid
adaptation techniques, such as node movement (r-refinement) and node insertion/deletion (h-refinement)
techniques, are employed to locally modify the computational grid to reach a variable grid spacing, avoiding
a complete re-meshing of the domain [2, 4]. To efficiently modify unstructured triangular grids, especially
when performing anisotropic adaptation, the flow solver has been linked to the automatic re-mesher Mmg [39].

The paper is structured as follows. Section 2 briefly describes the numerical method and the thermo-
dynamic model. Section 3 details the considered mesh adaptation techniques and reports on the results
of a simple shock reflection problem to assess the solution procedure. Section 4 presents the results for
under-expanded jets of non-ideal compressible fluids with different adaptation strategies. Finally, in Section
5, final considerations are drawn regarding the suitable adaption criteria for non-ideal compressible-fluid
flows.
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Polytropic ideal gas Polytropic van der Waals gas

P (T, v) = RT
v

P (T, v) = RT
v−b −

a
v2

e(T, v) = T
δ

e(T, v) = T
δ
− a
v

Π(u) = δ
[
Et − |m|

2

2ρ

]
Π(u) = δ

Et−|m|2/(2ρ)+aρ2
1−bρ − aρ2

Table 1: Polytropic ideal gas and van der Waals thermodynamic models. δ is the inverse dimensionless specific heat at constant
volume, namely, δ = R/cv , which is constant under the polytropic assumption. The van der Waals constants a and b are specifics
of the fluid and are related to the critical temperature TC and pressure PC, namely a = 27/64R2 T 2

C/PC and b = 1/8RTC/PC.

2. Physical model and solution method

2.1. Flow equations

The governing equations for a compressible inviscid fluid in two spatial dimensions are provided by the
unsteady Euler equations, which read

d

dt

∫
C
u dx+

∮
∂C

f (u) · n ds = 0 ∀C ⊆ Ω (1)

where x = (x, y)T is the position vector, t is the time and u = (ρ, m, Et)
T ∈ R+ × R3 is the vector of

conservative variables, composed by the density ρ, the momentum vector m and the total energy per unit
volume Et. The flux function is defined as

f(u) =
(
m, m⊗m/ρ+ Π(u)I2,

[
Et + Π(u)

]
m/ρ

)
∈ R4 × R2 (2)

where I2 is the 2 × 2 identity matrix and Π(u) = Π(ρ,m, Et) is the pressure function, whose analytical
expression depends on the adopted thermodynamic model. The solution is sought for in the spatial domain
Ω ∈ R2 for all times t ∈ R+. The arbitrary control volume C ∈ Ω is bounded by the surface ∂C. The vector
n(s) ∈ R2 is the outward unit normal to the boundary ∂C and it is a function of the curvilinear coordinate
s along the boundary itself. In the following equations, the variables of integration dx and ds are omitted
for conciseness. Suitable initial and boundary conditions are to be specified on the boundary ∂Ω to obtain
a well-posed problem, [40].

2.1.1. Thermodynamic model

In the present work the polytropic van der Waals model is used to derive the functional form of the
pressure function P = Π(u). The thermal and caloric Equation of State (EoS) and the pressure function
Π are reported in Table 1, along with the ones of the polytropic ideal gas model. The polytropic van der
Waals model is the simplest thermodynamic model capable of taking into account, at least qualitatively, the
non-ideal compressible-fluid effects [41].

According to the ideal gas model, the isotherms are hyperbolae in the volume-pressure (v-P ) thermo-
dynamic plane, namely, P (T, v) = RP/v, where v is the volume for unit mass, T is the temperature and
R is the gas constant. On the contrary, the isotherms in non-ideal conditions exhibit different shapes de-
pending on the thermodynamic state. With reference to Figure 1, the isotherms of van der Waals fluids
tend to ideal-gas hyperbolae at high temperature, but become steeper close to the vapor-liquid saturation
curve, namely, in the so-called non-ideal compressible-fluid region [42]. A quantitative measure of non-ideal
behavior is the so-called compressibility factor Z, defined as

Z(T, v) =
P (T, v) v

RT
. (3)

Since Z = 1 for the ideal gas, a value different from unity indicates a deviation from ideal gas behavior.
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2.2. Finite volume solution of the flow equations

The finite volume discretization is applied to solve Eq. (1) supplemented with the thermodynamic models
in Section 2.1.1. The spatial domain Ω is split into Nm non-overlapping finite volumes Ci ∈ Ω, such that⋃

i Ci ≡ Ω. The resulting set made by the nodes of the triangulation is labeled K. For each finite volume,
the discrete counter part of Eq. (1) reads

d [Viui]

dt
= −

∮
∂Ci

f (u) · ni ∀i ⊆ K (4)

where ui is the average value of u over Ci, Vi is the area of Ci and ni = ni(s) denotes the outward normal
to the finite volume boundary ∂Ci. The right-hand side of the previous equation is rearranged to separate
the domain and the boundary contributions, i.e.∮

∂Ci
f (u) · ni =

∑
k∈Ki, 6=

∫
∂Cik

f (u) · ni +

∫
∂Ci∩∂Ω

f (u) · ni , (5)

where Ki,6= is the set of the indices of the finite volumes Ck sharing a part of their boundary with Ci, excluding
i, i.e. Ki,6= = {k ∈ K, k 6= i | ∂Ci ∩ ∂Ck 6= ∅}, and ∂Cik = ∂Ci ∩ ∂Ck is the so-called cell-to-cell interface.

Introducing a suitable integrated numerical flux Φ ∈ R4, to model the flux across the cell interface, and
Φ∂ , for the boundary counterpart, Eq. (5) can be approximated as∮

∂Ci
f (u) · ni '

∑
k∈Ki, 6=

Φ(ui, uk,ηik) + Φ∂(ui, ξi) , (6)

where the ηik and ξi are the integrated outward normal to the interface ∂Cik and to the i-th boundary
portion respectively, i.e.

ηik =

∫
∂Cik
ni and ξi =

∫
∂Ci∩∂Ω

ni . (7)

To obtain accurate solutions and a non-oscillatory behavior around discontinuities, a high-resolution Total
Variation Diminishing (TVD) expression for the numerical fluxes is used. In particular, a second-order
centered scheme is blended to the first-order monotonicity-preserving Roe’s scheme [43] through the van
Leer slope limiter [44], to obtain a spatial accuracy between first- and second-order. In the present work the
focus is on steady-state solutions of Eq. (1). The time term is thus dropped and a standard Newton-Krylov
technique is used with defect correction to integrate the solution [45].

After every adaptation step, steady-state computations are restarted from an initial guess which is ob-
tained by interpolating the old solution over the new grid with the ALE technique for unsteady computations
described in [35, 36]. In the case of steady-state computations of interest here, this method simplifies to an
area-weighted interpolation, which allows to locally conserve the solution.

3. Mesh adaptation

The present section details the grid modification procedure aimed at equi-distributing the numerical
error over the computational domain, without excessively increasing the computational cost. The first
step consists in building a target grid spacing on the basis of a local solution-based error estimator E,
computed with the expressions given in Section 3.1. Then, the computational grid is modified by means of
local operations, that includes node insertion through edge or element split, node deletion, edge swap and
node-relocation.
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3.1. Target grid spacing

As stated above, the grid spacing is modified according to error estimators expressed as functions of first-
and second-order derivatives of suitable flow variables [2]. In the present work, different error estimators
are compared, combining the gradient ∇a and the Hessian matrix H(a) of a given quantity a of interest,
e.g. pressure, Mach number, density, and temperature. To this purpose, suitable approximations of these
differential operators are required. By applying the Gauss theorem to the finite-volume representation of
the unknowns, the gradient of a scalar variable a on the generic node i is approximated as

∇ai '
1

Vi

 ∑
k∈Ki, 6=

ai + ak
2

ηik + aiξi

 . (8)

The Hessian matrix is computed by applying twice the previous discrete gradient operator. As suggested
in [46, 14], the error estimator based on the Hessian matrix is scaled with respect to the gradient to reduce
the predominance of the strongest phenomena, like shock wave, over weak flow features. Moreover, a
further estimator, defined in the following complex Hessian, is built adding to the modified Hessian a term
proportional to the gradient to obtain a more uniform refinement near flow variations. With this regard,
consider for instance a step-like variation that on the initial grid is spread over some elements. Since the
gradient has opposite sign at the two extremes, the second derivative goes to zero in the central part of the
variation. Thus, this region will not be refined if an indicator proportional only to the Hessian matrix is
used. To avoid this drawback the following estimator can be used

H?(a) ' `2 |second derivative|
` |first derivative|+ ε |µ|

+
` |first derivative|

`2 |second derivative|+ ε |mean value|
(9)

where ` is the local mesh size and the term ε |mean value| acts as a filter to avoid the refinement of the
smallest oscillations [46]. The constant ε is a number less 1 and in this work it is set equal to 0.12.

When a simple isotropic adaptation is performed, a single scalar estimator Ei is required. In this case,
the value of Ei is computed, according to the chosen error estimator, as the norm of the gradient or as
the module of the two vectors obtained by projecting the Hessian matrix along the direction parallel and
perpendicular to the local velocity, respectively,

Ei(a) = Vi

√
E(τ̂ , a)2 + E(ζ̂, a)2 where E(p, a) = pTH(a)p , (10)

with p a generic vector, while τ̂ and ζ̂ are the unit-vectors respectively tangent and normal to the velocity.
Finally, different estimators are averaged to form a compound error estimator.

The target isotropic grid spacing is computed from an initial couple of grid and solution. For each node
of the grid, the average length `i of the connecting nodes is computed and the error Ei is estimated as
described above. Then, the refinement and coarsening thresholds τR and τC are computed on the basis of
the mean µ and the standard deviation σ of the error estimator E over all nodes. Theoretically, a uniform
error distribution implies a null standard deviation at the end of the adaptation procedure, but, in practice,
this is not computationally worthwhile. Thus, a good compromise consists in defining the refinement and
coarsening thresholds as

τR = µ+ kRσ and τC = kCµ , (11)

where kR > 0 and 0 < kC < 1 are user-defined parameters that allow to tune the refinement and coarsening.
The target grid spacing, used to drive grid adaptation, is computed by specifying at each node the desired
average length ¯̀

i, which is lower than the actual length `i for the nodes with an error estimate Ei > τR and
it is greater if Ei < τC .

3.1.1. Multi-passage technique

A possible drawback of solution-based adaptation is that the refinement is over-focused on regions where
the error peaks are located. For instance, if the flow field encloses both a shock wave and a smooth,
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continuous rarefaction wave, the grid would probably be refined near the shock because it embeds the
strongest gradients but it would remain unaltered (or over-coarsened) near the weaker feature. As suggested
by Aftosmis [23], a multiple evaluation of the error estimation for each adaptation step could be applied to
circumvent this problem. This technique, called in the following multi-passage, consists in re-computing at
each passage the refinement and coarsening thresholds excluding the nodes already marked in the previous
passages. For example, if in the first passage the threshold τR1 is computed, in the second passage the
mean and the standard deviation are evaluated excluding nodes with an error greater than τR1. In this
way, the refinement threshold τRn decreases at every passage allowing to capture also less intense features.
Eventually, all nodes whose error is greater than the value τR computed in last passage are marked for
refinement. In the grid coarsening step, the threshold τC is evaluated using the mean value computed in the
last passage only. Since excluding the largest errors reduces the mean value, fewer elements are marked for
coarsening in the multi-passage procedure than they are in the single-passage one.

3.1.2. Anisotropic adaptation

A different procedure is followed when anisotropic mesh adaptation is performed, since for the definition
of the target grid spacing the edge size is not sufficient but also informations about element shape and
orientation are required. To this end, a metric map M(x) is defined at each grid point on the basis of the
Hessian matrix (or on the complex Hessian matrix). More precisely,M(x) is a 2×2 symmetric matrix defined
as M = RΛR−1, where R is the eigenvector matrix of the Hessian and Λ is a diagonal matrix containing
a modified version of its eigenvalues λi to account for the desired error ε, namely Λ = diag {c λ1/ε, c λ2/ε}
where c is a constant that for two-dimensional problems read 2/9.

Thanks to this metric map, it is possible to specify at a grid node different target edge sizes in different
directions. Indeed, the length of a vector w in terms of the metric map is defined as ‖w‖M =

√
wTMw.

According to this definition, the geometric locus of all points P that lie at a distance h from the point O,
i.e. that satisfy ‖P −O‖M = h, is an ellipse [47].

3.2. Grid alteration procedure

The grid optimization procedure considered here allows to combine different adaptation techniques and
to repeat the desired adaptation sequence for a certain number of cycles or until a specified threshold for
the number of grid modifications is reached. A loop on all elements is performed to check if their edges
comply with the target grid spacing. If an edge does not comply with the target grid spacing, a node can
be inserted or removed to modify the edge size. After each modification, the local connectivity is re-built
so that only triangular elements constitute the grid and no hanging nodes are present. In order to preserve
the correct geometry of the domain, the boundaries are represented by spline curves that are used when the
local modification involved a boundary node. Indeed, in case of boundary refinement the position of the new
node is prescribed by the spline curve, while a boundary node is not removed if this leads to a significant
deviation from the original boundary geometry.

In addition to node insertion and deletion, the adaptation sequence includes grid smoothing and edge
swapping. These latter techniques are applied to improve the quality of the mesh from a geometrical point
of view [1, 48]. For this reason, the element quality measure is not related to the error estimator, but it is
defined as

Qe = max
k∈Ke

(`k)
1

2

∑
k∈Ke

`k

/
Ae (12)

where Ae is the area of the triangle and `k is the length of k-th edge of the element and Ke is the set
of its nodes. For an equilateral triangular element (maximum quality, minimum value of Qe) one has
Qe = 2

√
3 ' 3.4641. An edge is swapped between two adjacent elements if the quality of the element with

the lowest quality is improved.

3.3. Regular shock reflection in dilute gas conditions

The simple, regular reflection of a shock wave over a wall was simulated under the polytropic ideal
gas assumption with a specific heats ratio γ = 1.4, to verify the performances of the foregoing adaptation
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Figure 2: Regular shock reflection results. Left and center: computational grids and pressure contour plots at three different
adaptation steps. Pressure is made dimensionless by means of the reference pressure Pref = 1 atm. From top to bottom: original
grid (241 nodes, 420 elements), grid after 2 adaptation cycles (2 454 nodes, 4 797 elements), final grid at 4-th adaptation level
(2 845 nodes, 5 589 elements). Right: Mach number along the line y = 2.0 obtained on the three grids and the exact solution.

strategy. The computational domain is a rectangular unstructured mesh with a wall at the bottom. The
initial solution consists in a uniform flow at Mach M = 2.377 and incidence α = −10.95◦. On the left
boundary a flow parallel to the wall at Mach M = 2.9 is enforced. The steady state is a flow parallel to the
wall with an oblique shock, which is reflected at the wall as a shock with different intensity. Therefore, the
flow appears as divided into three separate uniform regions: before the first shock, downstream the reflected
shock and between two waves.

The initial grid is a uniform coarse unstructured grid, made of 241 nodes and 420 triangles. The
error estimator is based on the Hessian of the pressure and an anisotropic grid adaptation is performed.
Four adaptation steps are required to reach convergence of the adaptation process, with ε = 1.0 × 10−4.
The computational grids and the ones obtained after 2 and 4 adaptation cycles are shown along with the
solutions in Figure 2. As expected, the accuracy of the solution increases with adaptation cycles. An
excellent agreement between the profile of the Mach number along the line y = 2.0 over the final grid and
the exact solution is achieved.

4. Grid adaptation in non-ideal compressible-fluid flows

Numerical simulations were performed to investigate the impact of different solution-based adaptation
criteria on the solution of under-expanded nozzle jets of nitrogen and of the siloxane MDM in non-ideal
compressible-fluid region. The expected flow features are depicted in Figure 3 and include all flow features
that can be of interest for assessing the adaptation procedure, namely, strong and weak shock waves, slip
lines and rarefaction fans. If a supersonic jet exits from a nozzle at a pressure higher than the ambient
one, the jet is said to be under-expanded and the expansion process continues outside the nozzle. As a
consequence, a Prandtl-Meyer expansion fan forms, centered at the nozzle edge. A constant-pressure slip
line detaches from the nozzle edge and it separates the jet flow from the quiescent gas. As sketched in
Figure 3, the expansion fan is reflected at the jet symmetry axis and then it intersects the slip line. From
the slip line, the rarefaction fan is reflected as an isentropic compression fan. Propagating downstream,
compression waves coalesce into an oblique intercepting shock, which is reflected at the symmetry axis. If
the jet is highly under-expanded, i.e. the ratio between the exit pressure and the ambient one is sufficiently
large, a normal shock, called Mach disk, occurs and a subsonic region is observed near the centerline. The
Mach disk ends at a triple point, where a slip line is formed that separates the supersonic region (behind
the reflected oblique shock) from the subsonic one. In axisymmetric flows, the interception shock and the
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Figure 3: Left: weakly under-expanded jet. The interception shock is reflected as an oblique shock and the flow downstream
is therefore supersonic. This configuration is referred to as a regular reflection (RR). Right: Mach reflection (MR) of a highly
under-expanded jet with Mach disk formation. Downstream of the triple point, a slip line separates the subsonic flow near the
jet-center (downstream of the normal shock) from the outer region of the flow at supersonic speed.

Mach disk form the so-called barrel shock configuration. Downstream the Mach disk, the jet shape, namely
the position of the slip line, is modified by a complex flow structure due to further shock interactions.

The computational domain is described in Section 4.1, along with the procedure to compute the boundary
conditions for the tested operating conditions. Since the present work aims at investigating the flow structure
downstream of the supersonic exit section of the nozzle, only this latter region is simulated. A reference
solution is first computed for both fluids in Section 4.2. Then, different error estimators are evaluated for the
nitrogen flow in Section 4.3 to identify the most suitable for under-expanded jets in non-ideal compressible-
fluid region. Finally, the results for the MDM jet are presented in Section 4.4.

4.1. Setup of numerical simulations

The computation domain is a 30L× 10L rectangular grid composed by triangular elements, with L the
size of the nozzle exit section. Five numerical boundaries are defined. The left side is made by half of the
nozzle exit section (x = 0, 0 ≤ y ≤ 0.5L), which in the computational domain of the jet is in fact a supersonic
inlet, and by a solid wall (x = 0, y > 0.5L). The flow is symmetric with respect to the lower boundary
(y = 0), which represents the jet center-line. The nozzle discharges in quiescent atmosphere, so constant
ambient pressure is enforced along the upper boundary (y = 10L). Non-reflecting boundary conditions are
imposed on the right boundary (x = 30L) since both supersonic and subsonic flow regions are possibly
observed.

The quasi mono-dimensional theory is used to compute the inflow boundary conditions at the nozzle exit,
which depend on the stagnation or reservoir state (pressure and temperature) of the gas and the ambient
pressure. The operating conditions, obtained with the van der Waals and the ideal gas model, are shown
in the thermodynamic plane P -v in Figure 4 and detailed in Table 2. The subscripts 0, e and a indicate
respectively variables in the reservoir, on the exit section and the ambient ones. Flow variables are reduced
with respect to their critical values, i.e. scaled by TC = 126.192 K and PC = 3.396 MPa for nitrogen and
TC = 564.1 K and PC = 1.415 MPa for MDM. In all tests, the reduced ambient pressure is equal to 0.2 and
the pressure ratio between the reservoir and the ambient is 12.5. The critical pressure is enforced on the
nozzle exit section. Flow quantities at the exit section, including the Mach number reported in Table 2, are
computed according to the one-dimensional theory of gasdynamics nozzle under the assumption of isentropic
flows at constant total specific enthalpy [49]. The polytropic van der Waals thermodynamic model is used
with the ratio of the specific heats at constant pressure and volume γ equal to 1.4 for nitrogen and 1.0173
for MDM.

For nitrogen vapor, an isentropic expansion that ends very close to the saturation curve is chosen by
setting va/vC = 8.0. Thus, the expansion from the nozzle exit till the ambient occurs in the non-ideal
compressible-fluid region, as indicated also by the compressibility factor at the exit section Ze = 0.771.
However, despite this value, the deviation between the expansions obtained with the two different thermo-
dynamic models shown in Figure 4 is not much significant. This can be explained by the fact that nitrogen
gas consists of simple molecules.
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are shown. For the MDM jet, the ambient conditions are imposed in the simulations to enforce a jump in entropy between the
jet and the ambient. Indeed, the full symbol indicates the end of the expansion under the isentropic hypothesis, while the
empty symbol � indicates the enforced ambient conditions.

Reservoir Nozzle exit Ambient Expansion
P0/PC v0/vC Pe/PC ve/vC Me Ze Pa/PC va/vC P0/Pa v0/va

N2 VdW 2.50 1.359 1.0 2.44 1.226 0.771 0.2 8.00 12.5 0.170
N2 Id.G. 2.50 1.317 1.0 2.53 1.223 1.000 0.2 8.00 12.5 0.165

MDM VdW 2.50 0.782 1.0 2.54 1.409 0.786 0.2 15.00 12.5 0.052
MDM Id.G. 2.50 1.253 1.0 3.08 1.347 1.000 0.2 15.00 12.5 0.084

Table 2: Operating conditions of isentropic under-expanded nitrogen and MDM jets. Flow variables are scaled with respect to
their critical values, i.e. TC = 126.192 K, PC = 3.396 MPa for nitrogen and TC = 564.1 K, PC = 1.415 MPa for MDM.

Differently from the nitrogen gas, the siloxane MDM is a high molecular complexity fluid. Indeed, it
allows a region in the thermodynamic plane where the fundamental derivative of gasdynamics Γ, defined as

Γ = 1 +
ρ

c

(
∂c

∂ρ

)
s

=
v3

2c2

(
∂2P

∂v2

)
s

, (13)

exhibits values less than 0, see Figure 1, indicating that non-classical gasdynamic phenomena may occur [22].
To avoid to entering the region of Γ < 0, where the peculiar thermodynamic behavior makes difficult to
reach the convergence in numerical simulations, for the MDM jet the ambient volume is set to va/vC = 15,
so that the expansion from the exit section to the ambient takes place within the region where 0 < Γ < 1.
In this region, the speed of sound, differently from ideal gases, decreases on isentropic compressions and
increases in isentropic expansions. Moreover, in quasi-mono-dimensional steady flows, the decrease in speed
of sound is overcompensated by the increase in local velocity and a non-monotone variation between Mach
number and density may be observed in supersonic regimes [22]. Due to the strong non-ideal gas effects
that occur in this region, the deviation between the expansion predicted by the van der Waals model and
the one predicted by the ideal gas model is pronounced, as displayed in Figure 4. Finally, a jump in entropy
between the jet and the ambient is enforced by imposing a different value of the ambient density, namely it
is imposed va/vC = 30.
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Figure 5: Reduced pressure (top) and Mach number (bottom) contour plots of the reference solutions. Left: nitrogen jet, right:
MDM jet

4.2. Reference solution and flow description

A reference solution was computed for the nitrogen and MDM jet over a fine grid of 86 381 nodes and
257 858 elements. Grid elements have smaller sizes in the bottom part of the grid, where the largest gradients
of the solutions are expected. In Figure 5 the pressure and the Mach contours are shown above and below
the symmetry line, respectively. As expected, a Prandtl-Meyer expansion is observed at the nozzle exit,
which is reflected along the symmetry axis and the slip line. The resulting compression wave coalesces into
an interception shock which produces a Regular Reflection (RR) at the symmetry axis. The most significant
features of the flow, i.e. the constant-pressure line which separates the jet from the ambient fluid and the
shock reflection which takes place at jet center line around x/L = 8 for nitrogen and x/L = 10 for MDM,
are well captured. Another relevant feature is the interaction between the constant-pressure line and the
reflected shock, which occurs very close to the symmetry axis and results in a strong rarefaction wave being
reflected towards the axis. Note that the flow downstream of the triple point is not investigated because the
viscosity plays a major role in momentum transfer [33], therefore flow features cannot be correctly captured
under the inviscid approximation considered here.

4.3. Assessment of mesh adaptation criteria in the nitrogen jet flow

In the case of adaptive simulations a low accuracy initial solution is first computed to start the solution
process. First the solution is computed using the first-order upwind scheme and a preliminary grid adaptation
is carried out on this solution, resulting in a grid composed by 8408 nodes and 24629 triangular elements.
This solution is used as the initial condition in the following high-resolution computations.

Three different sections at constant x are selected to compare the density and Mach profiles obtained in
different simulations. These sections, depicted in Figure 6, are located: (A) near the exit section where the
Prandtl-Meyer expansion takes place, (B) near the section of maximum width of the jet and (C) across the
reflected shock.

First, simple error estimators based on one variable only are compared. The Hessian of pressure, Mach
number, density and the gradient of the last two are tested to drive the adaptation, with kR = 2.5 and
kC = 0.25. Figure 6 shows the density and the Mach number profiles obtained after three adaptation steps.
The expansion fan (0 ≤ y/L ≤ 0.6 at x/L = 0.25) is well captured by all the estimators, especially by the
Hessian of the pressure, which leads to the higher, i.e. more similar to the reference one, maximum value
of the density at the end of the expansion. However, as expected, the Hessian of the pressure does not
allow to detect the slip line, since it separates two regions at the same pressure, but it leads to a correct
detection of the rarefaction fan. Despite all estimators produce an insufficient refinement at the slip line,
probably due to an insufficient number of adaptation steps, the estimators based on the gradient of density
and Mach number produce the minimum deviation from the reference density profile, as it can be observed
at x/L = 5. The region of the grid near the reflected shock (x/L = 9) is not adequately refined, since the
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Figure 6: Comparison of the results for the nitrogen jet obtained with different estimators after 3 adaptation steps, using 2
multi-passages. In the legend, grad and Hess indicate respectively the gradient and the Hessian operator, Ref is the reference
solution. Reduced density and Mach number are shown along three lines at three different positions across the jet center line.

solutions obtained after 3 steps—similar for all estimators—are very different from the reference one. In all
sections, no significant deviation between the results obtain with the estimators based on the density and
the ones based on the Mach number is observed.

According to the previous results, a combination of different estimators should be exploited to accurately
capture all the relevant flow features. The Hessian of the pressure allows to better capture shock waves since
the pressure is continuous across the slip line. Thus, it is combined with the gradient of the Mach and of the
density, which perform better than the others in detecting the slip line. Moreover, since the flow features
present in the jet have different intensities, the multi-passage technique, described in Subsection 3.1.1, is
exploited and 5 re-computations of the refinement and coarsening thresholds are performed.

Figure 7 shows how the solution changes after different adaptation steps (from 3 to 10) using the estima-
tors H(P ) +∇ρ and H(P ) +∇M respectively, with kR = 2.5 and kC = 0.25. It can be observed that, even
with the compound estimators and 5 multi-passage, three adaptation steps are not sufficient to well resolve
all the flow features. Eight steps proved to be sufficient to obtain convergence of the adaptation procedure,
i.e. to obtain a computational grid which satisfies the imposed level of error uniformity (kC and kR). The
number of grid nodes is 27 152 nodes and 29 473 nodes for eight adaptation steps for the estimatorH(P )+∇ρ
and H(P )+∇M respectively. No significant differences between the two compound estimators are observed
and both produces results that are in good agreement with the reference ones. It should be highlighted that,
because of linearity of the associated characteristic field, slip lines are extremely hard to capture using an
artificial viscosity numerical scheme, such as the Roe scheme used here to capture non-linear shock waves.
The grid adaptation procedure allows to attain an acceptable level of spatial resolution around the slip line,
thus reducing the effect of numerical viscosity.
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Figure 9: Solutions and grid for the nitrogen jet obtained using the anisotropic estimator based on the complex Hessian of the
Mach number and of the density, after five adaptation steps. Reduced density and Mach number are shown at two different
positions along the jet center line.

Figure 8 shows the number of grid nodes and elements at each adaptation level for the estimator H(P )+
∇ρ using 2 and 5 multi-passages. If only 2 passages are performed, the number of grid nodes reaches a
maximum value after seven steps (19 9722 nodes, 41 593 elements). In the following steps, the number of
removed nodes is greater then the new ones. When 5 passages are carried out, the number of nodes increases
more rapidly during the first five steps, then it follows still an increasing trend but less steep. The same
figure shows also a comparison of the initial grid and the one obtained after 8 adaptation steps.

Moreover, also anisotropic estimators are assessed. In this case, single estimators are sufficient to detect
all the relevant flow features. Figure 9 displays the solution and the grid after 5 adaptation steps with the
anisotropic estimators based on the complex Hessian of the Mach number and the density. Both anisotropic
estimators proved to be suitable to efficiently modified the grid. Indeed, with respect to the isotropic cases,
less nodes compose the grid at the end of the anisotropic adaptation, namely 23 473 and 21 763 for the
H?(M) and H?(ρ), respectively.

Finally, a comparison to the ideal gas model results is performed. The boundary conditions at the nozzle
exit section were computed imposing the same ambient conditions, pressure ratios Pe/Pa and P0/Pe and
reservoir pressure of the real-gas case. The numerical values are displayed in the last row of Table 2. Figure
10 compares the solution computed with van der Waals gas model and ideal gas model after eight adaptation
steps and using the error estimator H(P )+∇M . As expected, the ideal gas model results in different values
of Mach number. In particular, the greater Mach number inside the jet leads to a stronger reflected shock,
thus a lower Mach downstream. Moreover, a slight difference can be observed also in the location of the
shock reflection. Furthermore, the same combination of adaptation parameters applied to the ideal gas case
results in a different and less refined grid with respect to the van der Waals model (21 322 nodes).

4.4. Assessment of mesh adaptation criteria in the MDM jet flow

In the previous subsection different adaptation criteria have been assessed for a non-ideal compressible
fluid with low molecular complexity. The present section extends the assessment to the sixolane MDM
in the thermodynamic region characterized by 0 < Γ < 1, which is a typical effect of the high-molecular
complexity. As shown in Figure 4, a jump in density across the slip line is enforced.

14



y 0

1

2

3

4

Mach: 0.2 0.6 1 1.4 1.8 2.2 2.6 3 3.4 3.8

Mach number Non­dimensional density

van der Waals Ideal gas

y/L

/
C

M
a
c
h

0 0.5 1 1.5 2 2.5 3

0.025

0.05

0.075

0.1

0

1

2

3

B: x/L=5.0x/L

/L

0 5 10

0

1

2

3

4

0

y/L

/
C

M
a
c
h

0 0.5 1 1.5 2 2.5

0.05

0.1

0.15

0.2

1

2

C: x/L=9.0

Figure 10: Solutions for the nitrogen jet obtained using the estimator H(P ) +∇M and 5 multi-passages with van der Waals
gas model (top) and ideal gas model (bottom). Reduced density and Mach number are shown at two different positions along
the jet center line.

Following the results obtained for nitrogen gas jets, the compound estimatorsH(P )+∇M andH(P )+∇ρ
are used. Figure 11 shows the results obtained after a different number of adaptation cycles for these isotropic
estimators with 5 multi-passage. As in the previous comparisons, the dimensionless density and the Mach
number profiles are compared at three different x = const sections along the jet center-line, but, differently
from the nitrogen jet case, the position C (across the reflected shock) is located at x/L = 11. In order to
detect all the relevant flow structures—in particular the constant-pressure line—with a similar accuracy, a
different value of the refinement and coarsening thresholds have been required. For the estimatorH(P )+∇M
they are equal to kR = 2.9 and kC = 0.2, while for the estimator H(P ) +∇ρ they amount to kR = 2.6 and
kC = 0.22. In the latter case, the coarsening threshold is modified to avoid and excessive increase of the
number of nodes due to a lower refinement threshold. After eight steps a good agreement with the reference
solution is obtained for both estimators, as it can be better observed in Figure 12. However, the main
difference concerns the number of grid nodes at this step: 13 755 for the estimator containing the gradient of
the Mach number and 32 490 for the estimator with the gradient of the density. This discrepancy indicates
that the estimator H(P ) +∇M is able to modify more efficiently the grid.

Anisotropic error estimators based on flow variables are also assessed. Figure 13 displays the grid and
the solution contour plot after 5 anisotropic adaptation steps, using as estimator the complex Hessian of
the Mach number, and the density and Mach profiles compared also to the ones obtained with the complex
Hessian of the density. As in the isotropic adaptation, the estimator based on the Mach number proved
to be more efficient. Indeed, the results obtained with H?(ρ) show a larger deviation from the reference
solution, despite a higher number of grid nodes (33 488 compared with 16 252).

An interesting results is shown in Figure 14 which compares the contour plot of the compressibility factor
Z on the grid obtained after eight adaptation steps with the isotropic estimator H(P ) + ∇M and on the
initial grid. Thanks to mesh adaptation, a smaller minimum value of the compressibility factor is obtained
on the adapted grid, indicating that grid adaptation allows to better capture non-ideal conditions.

Finally, a comparison with the ideal gas model is performed. As suggested by the isentropic expansions
in Figure 4, a significant deviation is observed between the solutions obtained with the van der Waals and
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Figure 11: Comparison of the results for the MDM jet obtained with estimators H(P ) + ∇M (at left) and H(P ) + ∇ρ (at
right) after different adaptation steps (from 0 to 8), using 5 multi-passages. Reduced density and Mach number are shown
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Figure 14: Comparison of the compressibility factor Z for the MDM jet on the adapted grid (top) and on the initial grid
(bottom).

the ideal gas model, which are shown in Figure 15. Besides a different position of the reflected shock and
different values of Mach number and density, also the size of the jet itself depends on the used thermodynamic
model.

5. Discussion and conclusions

Inviscid two-dimensional numerical simulations of under-expanded nozzle jets in the non-ideal compress-
ible-fluid gas region were performed using adaptive unstructured grids. To take into account non-ideal
compressible-fluid effects, the van der Waals gas has been chosen to compute the thermodynamic properties
of the fluid. Two fluids are simulated: the nitrogen gas, characterized by simple molecules, and the siloxane
MDM, which is classified as high-molecular complexity fluid. In both cases, according to the qualitative
description of Figure 3, the flow can be defined as weakly under-expanded, since no Mach disk was observed.
The capability of the present method to perform mesh adaptation for non-ideal compressible-fluid flows was
proved and standard mesh adaptation criteria, widely used under the ideal gas assumption, were compared
in this peculiar thermodynamic regime.

Different mesh adaptation criteria and techniques, including multi-passage techniques, edge swapping,
grid smoothing, refinement and coarsening, were combined to capture the diverse flow features. The choice of
the error estimator was confirmed to be non-trivial for non-ideal compressible-fluid dynamics. For nitrogen
jets, isotropic compound estimators combining the Hessian of the pressure and the gradient of the Mach
number or density, as well anisotropic estimators based on the complex Hessian of the density and Mach
number, proved to be suitable to capture both the reflected shock and the constant-pressure line. No
significant differences between Mach- or density-based estimators have been observed. Conversely, for MDM
jets, the error estimators based on the Mach number proved to drive more efficiently mesh adaptation, both
in isotropic and anisotropic grid adaptation. This difference can be explained by the peculiar non-monotone
dependence of the Mach number on the density. According to the quasi mono-dimensional theory, assuming
constant specific total enthalpy hT and specific entropy s, the variation of the Mach number with the density
can be expressed as [50]

dM
(
ρ, s, hT

)
dρ

=
M
(
ρ, s, hT

)
ρ

(
1− Γ(ρ, s)− 1

M2(ρ, s, hT)

)
.

Therefore, in the sub-region of the NICFD region where 0 < Γ < 1 the dependence of M on ρ can be
non-monotone for supersonic flows. Thus, the Mach number usually presents larger variations with respect
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Figure 15: Solutions for the MDM jet obtained using the estimator H(P ) +∇M and 5 multi-passages with van der Waals gas
model (top) and ideal gas model (bottom). Reduced density and Mach number are shown at two different positions along the
jet center line.

to the density, and this feature can be exploited to efficiently perform mesh adaptation in this region, by
using error estimators that include the variation of the Mach number.

According to the obtained results, standard mesh adaptation criteria used to build solution-based esti-
mators in ideal gas flows can be successfully applied also in non-ideal compressible fluid region. However,
it is the authors’ opinion that Mach- and density-based estimators are more suitable for grid adaptation in
non-ideal compressible-fluid flows, which are characterized by large fluid compressibility κ = (∂ρ/∂P )s. As a
consequence, for the same expansion ratio, larger density gradients are observed in non-ideal compressible-
fluid flows with respect to ideal gas ones. Moreover, Mach number variations are more significant with
respect to the ideal gas case because of the dependence of the speed of sound on the density and the temper-
ature that is peculiar of the non-ideal compressible-fluid regime, whereas in ideal gases the speed of sound is
a function of the temperature only. Finally, for supersonic flows of high-molecular complexity fluids, if the
region of the thermodynamic plane where 0 < Γ < 1 is entered, Mach-based estimators are recommended
to exploit the non-monotone M -ρ variation to efficiently perform mesh adaptation. Future developments
will concern the assessment of mesh adaptation criteria for unsteady flows in non-ideal compressible-fluid
dynamics.
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