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1. Introduction 

Oscillations of an infinite system of points joined by spring masses, where the interaction is an exponential function of

the distance between two consecutive particles, are described by the so-called Toda equations [14,15] . An explicit solution of

the Toda lattice equations in one time variable can be deduced by using orthogonal polynomials associated to an exponential

modification of a positive measure (see, for instance, [7,10] ). Lax pairs [8] of matrices associated with the coefficients of the

three term recurrence relation for orthonormal and non-orthonormal polynomials can be deduced. Moreover, orthogonal

polynomials associated with symmetric measures are related with the so-called Langmuir lattice , Volterra lattice or finite

difference Korteweg–de Vries equation . 

Several modifications (or perturbations) of Toda equations have been studied during years. In particular, extensions of

Toda equations with two-dimensional discrete variables and one temporal variable were considered in [11] , and later the

relations with 2D Lotka–Volterra equation were considered in [5] . In [2] the authors consider discrete and continuous de-

formations of a measure, also the multivariate orthogonal polynomials and study the resulting integrable systems. In fact,

they consider continuous Toda deformations of the measure by using d -dimensional vectors and covectors of several time

variables, and relate them with Christoffel perturbations of the measure. A similar work of these authors about multispectral

Toda hierarchy can be found in [3] , where they deal with two continuous time parameter sequences. 
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Recently, Aptekarev et al. [1] have presented multidimensional analogues of continuous and discrete-time Toda lattices,

where they have considered integrable systems with two or more space coordinates, and relate them with multiple orthog-

onal polynomials. 

For more information and references about Toda lattice we refer to [1–3] . These references contain complete introduction

about this topic, and a complete set of references related with Toda equations and Lax pairs can be found therein. 

In this paper, we consider a continuous Toda lattice in only one time variable t and two space variables describing a

mesh of interacting points over the plane. We prove that this kind of extension for Toda equations can be related with

bivariate orthogonal polynomials associated with an exponential modification of a positive measure by using their matrix

three term relations. In fact, using the vector representation for bivariate polynomials, the so-called orthogonal polynomial

systems , we deduce matrix Toda-type equations for the matrix coefficients of the three term relations for bivariate polyno-

mials. In addition, we deduce a Lax-type pair related with the obtained 2D Toda equations. Moreover, the case when the

bivariate measure is centrally symmetric is considered, and Langmuir equations are deduced. 

Since the coefficients of the three term relations are matrices of increasing size, our Toda-type equations are also given

in terms of matrices of increasing size. Moreover, the product of matrices is non-commutative, then it is necessary to take

into account the size of the involving matrices. Therefore, the matrix manipulation is not a trivial extension of the univariate

case. 

This paper is structured as follows. Section 2 is devoted to recall the basic facts about the continuous classical Toda

equations and their relations with the coefficients of the three term recurrence relation for standard orthogonal polynomials

associated with an exponential modification of a positive measure. Moreover, we review Lax and Lax–Nakamura pairs for

continuous Toda equations. 

Some basic theory about bivariate orthogonal polynomials is described in Section 3 . Given a positive measure defined

over a domain in R 

2 , we define an Orthogonal Polynomial System as an orthogonal polynomial sequence organized as vectors

of increasing size n + 1 such that their entries are independent bivariate polynomials of total degree n . This section ends

with the description of the matrix three term relations for bivariate orthogonal polynomials, the key feature of the rest of

the paper. 

In the next section we establish the continuous bivariate Toda equations depending on a single time-variable, and we

study their relations with standard bivariate orthogonal polynomials. In particular, we deduce the matrix 2D Toda equations

from an exponential modification of the original measure. In the centrally symmetric case, by using similar tools, we obtain

an analogue of the Langmuir lattice. Toda equations for orthonormal polynomials are deduced as well. 

We devote Section 5 to the matrix analogue of the Lax pair associated with the bivariate Toda lattice. Using a block ma-

trix formulation, a Lax–Nakamura-type pair, that is, a Lax pair for non-orthonormal polynomials is deduced for the bivariate

polynomials and for the centrally symmetric case. In the orthonormal case, due of the non-commutativity of the product of

matrices, we deduce a perturbed matrix Lax-type pair. 

In the last section we describe in detail the particular case when the bivariate positive measure is given by the tensor

product of two univariate positive measures. We also show how the bivariate Toda equations recover classical Toda equations

for the univariate measures. 

2. Toda lattices and orthogonal polynomials in one variable 

As it is well known, continuous Toda lattices and orthogonal polynomials can be related. Toda lattice equations describe

the oscillations of an infinite system of particles x n , n ≥ 0, joined by spring masses, where the interaction is described by

the exponential of the distance between two masses as follows: 

ẍ n = e x n −1 −x n − e x n −x n +1 , n ≥ 1 , 

where we use the standard notation ˙ y (t) = d y (t) /d t . 

Following for instance Suris [13] , the above equation can be transformed into a system of differential equations by tak-

ing 

d n (t) = 

˙ x n , c n (t) = e x n −1 −x n , n ≥ 1 , 

and then, setting c 0 (t) = d −1 (t) = 0 , we obtain, for n ≥ 0, 

˙ d n (t) = c n (t) − c n +1 (t) , (1)

˙ c n (t) = c n (t ) [ d n −1 (t ) − d n (t)] . (2)

The coefficients of the three term recurrence relations for a special family of orthogonal polynomials constitute an explicit

solution for the system (1) and (2) (see, for instance, [7,10] ). In fact, 

Theorem 1 [7,10] . Let d μ( x ) be a real positive measure with finite moments, and let { P n ( x )} n ≥ 0 be the monic orthogonal poly-

nomial sequence (MOPS, in short) associated with d μ( x ) . Let c n , d n be the coefficients of the three term recurrence relation, that

is, 

P n +1 (x ) = (x − d n ) P n (x ) − c n P n −1 (x ) , n ≥ 0 , (3)
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where P −1 (x ) = 0 , P 0 (x ) = 1 , and 

d n = 

∫ 
R 

x P n (x ) 2 dμ(x ) ∫ 
R 

P n (x ) 2 dμ(x ) 
, n ≥ 0 , c n = 

∫ 
R 

P n (x ) 2 dμ(x ) ∫ 
R 

P n −1 (x ) 2 dμ(x ) 
, n ≥ 1 . 

Suppose that the moments ∫ 
R 

x n e −x t dμ(x ) 

exist for n ≥ 0, and let { P n ( x , t )} n ≥ 0 be the MOPS associated with d ̃  μ(x, t) = e −x t dμ(x ) . Let c n ( t ), d n ( t ) be the coefficients of

the three term recurrence relation 

P n +1 (x, t) = (x − d n (t)) P n (x, t) − c n (t) P n −1 (x, t) , n ≥ 0 , (4)

where P −1 (x, t) = 0 , P 0 (x, t) = 1 . 

Then, the coefficients c n ( t ), d n ( t ) satisfy the system (1) and (2) , with initial conditions c n (0) = c n , d n (0) = d n . Moreover, the

correspondence is unique. 

If we suppose that the positive measure d μ( x ) is symmetric, then d n = 0 , for n ≥ 0, and the modified measure is given

by d ̃  μ(x, t) = e −x 2 t dμ(x ) . Then, three term recurrence relation (4) becomes 

P n +1 (x, t) = x P n (x, t) − c n (t) P n −1 (x, t) , n ≥ 0 . 

In this case, the coefficients c n ( t ) satisfy the Langmuir lattice (see [10] ) 

˙ c n (t) = c n (t )[ c n −1 (t ) − c n +1 (t)] . (5) 

2.1. Toda lattices and orthonormal polynomials 

Let { Q n ( x , t )} n ≥ 0 denote the sequence of orthonormal polynomials with respect to the measure d ̃  μ(x, t) = e −x t dμ(x ) . It is

well known that 

Q n (x, t) = P n (x, t) h n (t) −1 / 2 , with h n (t) = 

∫ 
R 

P n (x, t) 2 e −x t dμ(x ) . 

From (3) , three term recurrence relation for orthonormal polynomials is given by 

x Q n (x, t) = a n (t) Q n +1 (x, t) + d n (t) Q n (x, t) + a n −1 (t) Q n −1 (x, t) , n ≥ 0 , 

with Q −1 (x, t) = 0 , Q 0 (x, t) = h 0 (t) −1 / 2 , and a n (t) = c n +1 (t) −1 / 2 . 

Setting a −1 (t) = 0 , Toda equations (1) and (2) become 

˙ d n (t) = a 2 n −1 (t) − a 2 n (t) , (6) 

˙ a n (t) = 

a n (t) 

2 

[ d n (t) − d n +1 (t)] , (7) 

for n ≥ 0. We refer to the lattice given by (6) and (7) as Toda lattice for univariate orthonormal polynomials . 

When the positive measure is symmetric, then Langmuir lattice (5) transforms into 

˙ a n (t) = 

a n (t) 

2 

[ a 2 n −1 (t) − a 2 n +1 (t)] , n ≥ 0 . (8) 

2.2. Lax pairs for orthonormal polynomials 

Usually, Toda equations for orthonormal polynomials are represented by means of a Lax pair . Here, we describe this

construction. 

Let us define the infinite tridiagonal matrices 

L = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

d 0 a 0 

a 0 d 1 a 1 

a 1 d 2 
. . . 

. . . 
. . . a n −1 

a n −1 d n 
. . . 

. . . 
. . . 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, B = 

1 

2 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 a 0 

−a 0 0 a 1 

−a 1 0 

. . . 

. . . 
. . . a n −1 

−a n −1 0 

. . . 

. . . 
. . . 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 
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where we have omitted the time variable t for simplification. Then, Toda equations (6) and (7) can be written in a matrix

form as 

˙ L = [ L , B] = L B − B L . (9)

The pair of matrices {L , B} is called Lax pair and the representation (9) is called Lax representation for the Toda lattice

(6) and (7) (see [10] ). 

For the symmetric case, we consider the infinite pentadiagonal matrix 

B s = 

1 

2 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 a 0 a 1 
0 0 0 a 1 a 2 

−a 0 a 1 0 0 0 

. . . 

−a 1 a 2 0 0 

. . . a n −1 a n 
. . . 

. . . 
. . . 0 

. . . 

−a n −1 a n 0 0 

. . . 

. . . 
. . . 

. . . 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

and using that d n (t) = 0 for n ≥ 0, one can obtain a Lax representation associated with (8) in the form 

˙ L = L B s − B s L = [ L , B s ] . 

2.3. Lax–Nakamura pairs for monic orthogonal polynomials 

Usually Lax pairs are deduced for the sequence of orthonormal polynomials, as above. However, following Nakamura [9] ,

a Lax pair for monic orthogonal polynomials can be established using Eqs. (1) and (2) . Define the infinite matrices 

L = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

d 0 1 

c 1 d 1 1 

c 2 d 2 
. . . 

. . . 
. . . 1 

c n d n 
. . . 

. . . 
. . . 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, B = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 

−c 1 0 

−c 2 0 

. . . 
. . . 

−c n 0 

. . . 
. . . 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

Observe that B is the opposite of the lower triangular part of L . Then, we can see that Eqs. (1) and (2) can be represented

as the Lax pair {L , B} , i.e., 

˙ L = [ L , B] = L B − B L . 

For the symmetric case, since d n (t) = 0 , n ≥ 0 , therefore (5) can be represented again as a Lax–Nakamura pair defining 

B s = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 

0 0 

−c 1 c 2 0 0 

−c 2 c 3 0 

. . . 

. . . 
. . . 0 

−c n c n +1 0 

. . . 

. . . 
. . . 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

and, as before, we obtain 

˙ L = [ L , B s ] = L B s − B s L . 

3. Orthogonal polynomials in two variables 

Along this paper, we need some definitions and general properties about bivariate orthogonal polynomials. For an ex-

haustive description of this and other related subjects see, for instance, [4,12] . 

Let � denote the linear space of real polynomials in two variables, and let �n denote the subspace of polynomials of

total degree not greater than n . 
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Let M h ×k (R ) and M h ×k (�) denote the linear spaces of h × k matrices with real or polynomial entries, respectively.

When h = k, the second index will be omitted. 

Given a matrix A , we denote by A 

T its transpose, and by det (A ) its determinant if A is a square matrix. As usual, we say

that A is non-singular if det (A ) � = 0 . Furthermore, we introduce I h as the identity matrix of dimension h . 

Definition 1. A polynomial system (PS) is a vector sequence { P n } n ≥0 such that 

P n = P n (x, y ) = (P n, 0 (x, y ) , P n −1 , 1 (x, y ) , . . . , P 0 ,n (x, y )) T ∈ M (n +1) ×1 (�n ) , 

where { P n, 0 (x, y ) , P n −1 , 1 (x, y ) , . . . , P 0 ,n (x, y ) } are polynomials of total degree n independent modulo �n −1 . 

The simplest example for PS is the so-called canonical basis , defined as 

{ X n = (x n , x n −1 y, x n −2 y 2 , . . . , y n ) T , n ≥ 0 } . 
Observe that 

x X n = L n, 1 X n +1 , y X n = L n, 2 X n +1 , 

where L n , i , i = 1 , 2 , are (n + 1) × (n + 2) matrices defined as (see [4] , p. 76) 

L n, 1 = 

⎛ 

⎝ 

1 � 0 

. . . 
. . . 

� 1 0 

⎞ 

⎠ and L n, 2 = 

⎛ 

⎝ 

0 1 � 

. . . 
. . . 

0 � 1 

⎞ 

⎠ . (10) 

Observe that L n , i , i = 1 , 2 are full rank matrices, and L n,i L 
T 
n,i 

= I n +1 . 

Moreover, we can express a vector polynomial P n in terms of the canonical basis as follows: 

P n = G 

n 
n X n + G 

n 
n −1 X n −1 + · · · + G 

n 
0 X 0 , 

where G 

n 
i 
, for i = 0 , 1 , . . . , n, are (n + 1) × (i + 1) constant matrices. 

The square matrix G 

n 
n is called the leading coefficient of P n , and it is a non-singular matrix since the entries of P n are

independent polynomials. In this way, we say that P n is monic if G 

n 
n = I n +1 , that is, every polynomial entry in P n has a

unique term of higher degree 

P n −k,k (x, y ) = x n −k y k + lower degree terms , 0 ≤ k ≤ n. 

A monic PS { P n } n ≥0 is a PS such that P n is monic, for n ≥ 0. 

Let � ⊂ R 

2 be a domain having a nonempty interior, and let d μ( x , y ) be a measure defined on the domain � such that

all moments ∫ 
�

x h y k dμ(x, y ) < + ∞ (11) 

exist for h , k ≥ 0. Let 〈 ·, ·〉 denote the inner product defined on � by means of 

〈 p, q 〉 = 

∫ 
�

p(x, y ) q (x, y ) dμ(x, y ) . 

Let A = (a i, j (x, y )) h,k 
i, j=1 

∈ M h ×k (�) and B = (b i, j (x, y )) k,l 
i, j=1 

∈ M k ×l (�) be two polynomial matrices, that is, a i , j ( x , y ), b i , j ( x ,

y ) ∈ �. The action of the above inner product over polynomial matrices is defined as the h × l matrix [4] , 

〈 A, B 〉 = 

∫ 
�

A (x, y ) B (x, y ) dμ(x, y ) = 

(∫ 
�

c i, j (x, y ) dμ(x, y ) 
)h,l 

i, j=1 

, 

where C = A · B = (c i, j (x, y )) h,l 
i, j=1 

∈ M h ×l (�) . 

We say that a polynomial p ∈ �n is orthogonal with respect to 〈 ·, ·〉 if 
〈 p, q 〉 = 0 , ∀ q ∈ �, deg q < deg p. 

Then, we can define 

V n = { p ∈ �n : 〈 p, q 〉 = 0 , ∀ q ∈ �n −1 } . 
Observe that V n is a linear space of dimension n + 1 . 

Definition 2 [4] . We say that a PS { P n } n ≥0 is an orthogonal polynomial system (OPS) with respect to the inner product 〈 ·, ·〉
if 

〈 P n , P 

T 
m 

〉 = 0 , n � = m, 

〈 P n , P 

T 
n 〉 = H n , n = 0 , 1 , 2 , . . . , 

where H n ∈ M n +1 (R ) is a symmetric and positive-definite matrix. 
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In the particular case where H n is a diagonal matrix, we say that the OPS { P n } n ≥0 is a mutually orthogonal polynomial

system . Moreover, if H n = I n +1 , we call { P n } n ≥0 an orthonormal polynomial system . In addition, there exists a unique monic

orthogonal polynomial system associated with d μ( x , y ). 

Now, we must describe the three term relations for monic orthogonal polynomials in two variables [4, p. 75] . 

Theorem 2. Let { P n } n ≥0 be the monic orthogonal polynomial system associated with a measure d μ( x , y ) . Then, for n ≥ 0, there

exist full rank matrices D n , i , C n , i of respective sizes (n + 1) × (n + 1) and (n + 1) × n, i = 1 , 2 , such that 

x P n = L n, 1 P n +1 + D n, 1 P n + C n, 1 P n −1 , (12)

y P n = L n, 2 P n +1 + D n, 2 P n + C n, 2 P n −1 , (13)

where P −1 = 0 and C −1 ,i = 0 . Moreover, 

D n, 1 H n = 〈 x P n , P 

T 
n 〉 , C n, 1 H n −1 = H n L 

T 
n −1 , 1 , 

D n, 2 H n = 〈 y P n , P 

T 
n 〉 , C n, 2 H n −1 = H n L 

T 
n −1 , 2 . 

Observe that we can add relations (12) and (13) , and we get 

(x + y ) P n = L n P n +1 + D n P n + C n P n −1 , 

where 

L n = L n, 1 + L n, 2 ∈ M (n +1) ×(n +2) (R ) , 

D n = D n, 1 + D n, 2 ∈ M (n +1) ×(n +1) (R ) , 

C n = C n, 1 + C n, 2 ∈ M (n +1) ×n (R ) . 

A bivariate measure d μ( x , y ) defined on � ⊂ R 

2 is centrally symmetric ( [4, p. 76] ) if 

(x, y ) ∈ � �⇒ (−x, −y ) ∈ �, 

and all moments of odd order vanish, i.e., ∫ 
�

x h y k dμ(x, y ) = 0 , h, k ≥ 0 , h + k = odd integer . (14)

As in the univariate case, the properties of symmetry from the inner product can be related with the coefficient matrices of

the three term relations. In [4, p. 77] , it is shown that a measure d μ( x , y ) is centrally symmetric if and only if the matrices

D n , i ≡ 0, for n ≥ 0 and i = 1 , 2 . 

4. 2D Toda lattices and bivariate orthogonal polynomials 

Consider the bivariate Toda lattice given by the oscillations of a mesh of particles on R 

2 given by the coordinates 

{ (x h , y k ) : h, k ≥ 0 } . 
For n ≥ 0, we define the (n + 1) × (n + 1) matrices 

X n, 1 (t) = 

⎛ 

⎜ ⎜ ⎝ 

x 0 x 0 · · · x 0 
x 1 x 1 · · · x 1 
. . . 

. . . 
. . . 

x n x n · · · x n 

⎞ 

⎟ ⎟ ⎠ 

, X n, 2 (t) = 

⎛ 

⎜ ⎜ ⎝ 

y 0 y 1 · · · y n 
y 0 y 1 · · · y n 
. . . 

. . . 
. . . 

y 0 y 1 · · · y n 

⎞ 

⎟ ⎟ ⎠ 

and 

X n (t) = X n, 1 (t) + X n, 2 (t) = 

⎛ 

⎜ ⎜ ⎝ 

χ0 , 0 χ0 , 1 · · · χ0 ,n 

χ1 , 0 χ1 , 1 · · · χ1 ,n 

. . . 
. . . 

. . . 
χn, 0 χn, 1 · · · χn,n 

⎞ 

⎟ ⎟ ⎠ 

, 

where χh,k = x h + y k , 0 ≤ h , k ≤ n . 

Suppose that the interaction between the masses is given by the exponential matrix of X n,i , that is, equation 

Ẍ n, 1 = e −X n L T n −1 e 
X n −1 L n −1 , 1 − L n, 1 e 

−X n +1 L T n e 
X n , 

describes the oscillations in the X -axis, and equation 

Ẍ n, 2 = e −X n L T n −1 e 
X n −1 L n −1 , 2 − L n, 2 e 

−X n +1 L T n e 
X n , 

describes the oscillations in the Y -axis. Summing both equations, we can describe the total oscillations as 

Ẍ n = Ẍ n, 1 + Ẍ n, 2 = e −X n L T n −1 e 
X n −1 L n −1 − L n e 

−X n +1 L T n e 
X n . 
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For n ≥ 0 and i = 1 , 2 , we define the matrices depending on t given by the expressions 

D n,i (t) = 

˙ X n,i 

C n,i (t) = e −X n L T n −1 ,i e 
X n −1 , 

of dimensions (n + 1) × (n + 1) and (n + 1) × n, respectively. If X n and 

˙ X n commute, then 

˙ D n,i (t) = C n (t) L n −1 ,i − L n,i C n +1 (t) , (15) 

˙ C n,i (t) = C n,i (t) D n −1 (t) − D n (t) C n,i (t) , (16) 

for i = 1 , 2 , where D n (t) = D n, 1 (t) + D n, 2 (t) and C n (t) = C n, 1 (t) + C n, 2 (t) . Moreover, 

˙ D n (t) = C n (t) L n −1 − L n C n +1 (t) , (17) 

˙ C n (t) = C n (t) D n −1 (t) − D n (t) C n (t) . (18) 

We say that (15) and (16) , for i = 1 , 2 , or (17) and (18) , is a 2D Toda lattice . 

Now, we want to relate the above 2D Toda lattice with bivariate orthogonal polynomials. Let d μ( x , y ) be a positive

measure defined on a domain � ⊂ R 

2 , and suppose that all moments (11) exist. Let { P n } n ≥0 be the monic OPS associated

with d μ( x , y ). 

Define the modified measure 

d ̃  μ(t) ≡ d ̃  μ(x, y, t) = e −(x + y ) t dμ(x, y ) , 

and suppose that all moments 

∫ 
�

x h y k e −(x + y ) t dμ(x, y ) < + ∞ 

exist for h , k ≥ 0, that is, we suppose that the new measure depends on the time variable t as well as the two variables

x and y . Then, there exists a monic orthogonal polynomial system { P n (t) } n ≥0 ≡ { P n (x, y, t) } n ≥0 associated with d ̃  μ. Clearly,

every polynomial in such a system is a polynomial in two variables x and y whose coefficients depend on t . Obviously,

P n (0) = P n , and 

˙ P n (t) = 

d 

dt 
P n (t) = ( ̇ P n, 0 (x, y, t) , ˙ P n −1 , 1 (x, y, t) , . . . , ˙ P 0 ,n (x, y, t)) T ∈ M (n +1) ×1 (�n −1 ) . 

Since P n −k,k (x, y, t) is a monic polynomial, then 

˙ P n −k,k (x, y, t) ∈ �n −1 . 

In addition, the symmetric positive-definite matrix 

H n (t) = 〈 P n (t) , P 

T 
n (t) 〉 , 

also depends on t , and H n (0) = H n , for n ≥ 0. 

The system { P n (t) } n ≥0 satisfies three term relations as (12) and (13) , but now, the matrix coefficients depend on t . In this

way, for n ≥ 0, there exist matrices D n , i ( t ), C n , i ( t ) of respective sizes (n + 1) × (n + 1) and (n + 1) × n, i = 1 , 2 , such that 

x P n (t) = L n, 1 P n +1 (t) + D n, 1 (t ) P n (t ) + C n, 1 (t ) P n −1 (t ) , (19) 

y P n (t) = L n, 2 P n +1 (t) + D n, 2 (t ) P n (t ) + C n, 2 (t ) P n −1 (t ) , (20) 

where P −1 (t) = 0 and C −1 ,i (t) = 0 . Moreover, 

D n, 1 (t) H n (t) = 〈 x P n (t) , P 

T 
n (t) 〉 , D n, 2 (t) H n (t) = 〈 y P n (t) , P 

T 
n (t) 〉 , (21)

C n, 1 (t) H n −1 (t) = H n (t) L T n −1 , 1 , C n, 2 (t) H n −1 (t) = H n (t) L T n −1 , 2 , (22)

and D n,i (0) = D n,i , C n,i (0) = C n,i , i = 1 , 2 . We remark that L n , i are given in (10) and they are independent of t . We also

define 

D n (t) = D n, 1 (t) + D n, 2 (t) , 

C n (t) = C n, 1 (t) + C n, 2 (t) . 

Now we present our first result. 
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Lemma 3. For n ≥ 0, 

˙ H n (t) = −D n (t) H n (t) . (23)

Proof. Since 

H n (t) = 

∫ 
�

P n (t) P 

T 
n (t) e −(x + y ) t dμ(x, y ) , 

we get 

˙ H n (t) = 

∫ 
�

˙ P n (t) P 

T 
n (t) e −(x + y ) t dμ(x, y ) + 

∫ 
�

P n (t) ˙ P 

T 
n (t) e −(x + y ) t dμ(x, y ) 

−
∫ 
�
(x + y ) P n (t ) P 

T 
n (t ) e −(x + y ) t dμ(x, y ) 

= −D n, 1 (t) H n (t) − D n, 2 (t) H n (t) , 

using (21) , and the fact that deg ˙ P n (t) < n . �

On the coefficients of the three term relations (19) and (20) we have the following. 

Theorem 4. For n ≥ 1 and i = 1 , 2 , it is satisfied 

˙ C n,i (t) = C n,i (t ) D n −1 (t ) − D n (t ) C n,i (t ) . (24)

Moreover, 

˙ C n (t) = C n (t ) D n −1 (t ) − D n (t) C n (t) . (25)

Proof. Taking derivatives in (22) , we get 

˙ H n (t) L T n −1 ,i = 

˙ C n,i (t) H n −1 (t) + C n,i (t) ˙ H n −1 (t) , 

and using (23) , we obtain 

−D n (t) H n (t ) L T n −1 ,i = 

˙ C n,i (t ) H n −1 (t ) − C n,i (t ) D n −1 (t ) H n −1 (t ) . 

Since H n −1 (t) is a non-singular matrix, therefore 

˙ C n,i (t) = C n,i (t ) D n −1 (t ) − D n (t) H n (t ) L T n −1 ,i H 

−1 
n −1 (t ) , 

and using again (22) , we obtain (24) . Summing above equation for i = 1 , 2 , we deduce (25) . �

Theorem 5. For n ≥ 1, and i = 1 , 2 , the following holds: 

˙ D n,i (t) = C n (t ) L n −1 ,i − L n,i C n +1 (t ) . (26)

In addition, 

˙ D n (t) = C n (t ) L n −1 − L n C n +1 (t ) . (27)

Proof. Eq. (21) can be written as follows: 

D n, 1 (t) H n (t) = 

∫ 
�

x P n (t) P 

T 
n (t) e −(x + y ) t dμ(x, y ) . 

By taking derivative with respect to t we get 

˙ D n, 1 H n + D n, 1 
˙ H n = 

∫ 
�

x ˙ P n P 

T 
n e 

−(x + y ) t dμ(x, y ) + 

∫ 
�

x P n ˙ P 

T 
n e 

−(x + y ) t dμ(x, y ) 

−
∫ 
�

x (x + y ) P n P 

T 
n e 

−(x + y ) t dμ(x, y ) , (28)

where we have omitted the time variable t for simplicity. 

We study the first and third integral in (28) , since the second integral is the transpose of the first one. Using (19) , we

get ∫ 
�

x ˙ P n P 

T 
n e 

−(x + y ) t dμ(x, y ) = 

∫ 
�

˙ P n P 

T 
n −1 e 

−(x + y ) t dμ(x, y ) · C T n, 1 . 

On the other hand, since 
∫ 
� P n P 

T 
n −1 

e −(x + y ) t dμ(x, y ) = 0 by orthogonality, then 

0 = 

∫ 
�

˙ P n P 

T 
n −1 e 

−(x + y ) t dμ(x, y ) + 

∫ 
�

P n ˙ P 

T 
n −1 e 

−(x + y ) t dμ(x, y ) 

−
∫ 

(x + y ) P n P 

T 
n −1 e 

−(x + y ) t dμ(x, y ) , 

�
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and therefore ∫ 
�

˙ P n P 

T 
n −1 e 

−(x + y ) t dμ(x, y ) = C n, 1 H n −1 + C n, 2 H n −1 . 

For the third integral in (28) , using again (19) , we obtain ∫ 
�

x 2 P n P 

T 
n e 

−(x + y ) t dμ(x, y ) = 

∫ 
�
(x P n ) (x P n ) 

T e −(x + y ) t dμ(x, y ) 

= L n, 1 H n +1 L 
T 
n, 1 + D n, 1 H n D 

T 
n, 1 + C n, 1 H n −1 C 

T 
n, 1 , 

and ∫ 
�

x y P n P 

T 
n e 

−(x + y ) t dμ(x, y ) = L n, 1 H n +1 L 
T 
n, 2 + D n, 1 H n D 

T 
n, 2 + C n, 1 H n −1 C 

T 
n, 2 . 

In this way, (28) becomes 

˙ D n, 1 H n + D n, 1 
˙ H n = C n, 2 H n −1 C 

T 
n, 1 + C n, 1 H n −1 C 

T 
n, 1 − L n, 1 H n +1 L 

T 
n, 1 − D n, 1 H n D 

T 
n, 1 − L n, 1 H n +1 L 

T 
n, 2 − D n, 1 H n D 

T 
n, 2 . 

On the other hand, exploiting (21) , and using (19) , we get 

D n, 1 H n = 〈 x P n , P 

T 
n 〉 = 

∫ 
�

x P n P 

T 
n e 

−(x + y ) t dμ(x, y ) 

= 

∫ 
�

P n (x P n ) 
T e −(x + y ) t dμ(x, y ) = H n D 

T 
n, 1 , 

and then, by (23) , 

D n, 1 
˙ H n = −D n, 1 D n, 1 H n − D n, 1 D n, 2 H n = −D n, 1 H n D 

T 
n, 1 − D n, 1 H n D 

T 
n, 2 . 

Therefore, using again (22) , we obtain 

˙ D n, 1 H n = C n, 2 H n −1 C 
T 
n, 1 + C n, 1 H n −1 C 

T 
n, 1 − L n, 1 H n +1 L 

T 
n, 1 − L n, 1 H n +1 L 

T 
n, 2 

= C n, 2 L n −1 , 1 H n + C n, 1 L n −1 , 1 H n − L n, 1 C n +1 , 1 H n − L n, 1 C n +1 , 2 H n . 

Multiplying by H 

−1 
n , the result (26) follows for i = 1 . The case i = 2 can be shown similarly. Summing Eq. (26) for i = 1 , 2 ,

we obtain (27) . �

Theorems 4 and 5 show that the matrix coefficients of the three term relation of a bivariate monic orthogonal polyno-

mials satisfy the 2D Toda lattice (15) and (16) for i = 1 , 2 , and the 2D Toda lattice (17) and (18) . 

4.1. Centrally symmetric measures 

Let us consider a bivariate centrally symmetric positive measure d μ( x , y ) defined by (14) . Since D n , i ( t ) ≡ 0, for n ≥ 0,

and i = 1 , 2 , relations (19) and (20) become 

x P n (t) = L n, 1 P n +1 (t) + C n, 1 (t ) P n −1 (t ) , 

y P n (t) = L n, 2 P n +1 (t) + C n, 2 (t ) P n −1 (t ) , 

where P −1 (t) = 0 and C −1 ,i (t) = 0 . Similarly as before we define the modified measure 

d ̃  μ(t) ≡ d ̃  μ(x, y, t) = e −(x + y ) 2 t dμ(x, y ) , 

and we suppose that all of the moments ∫ 
�

x h y k e −(x + y ) 2 t dμ(x, y ) < + ∞ 

exist for h , k ≥ 0. We can prove the following. 

Lemma 6. For a centrally symmetric bivariate measure, 

˙ H n (t) = −E n (t) H n (t) , n ≥ 0 , (29) 

where E n (t) = L n C n +1 (t) + C n (t) L n −1 . 

Proof. Since H n (t) = 

∫ 
�

P n (t) P 

T 
n (t) e −(x + y ) 2 t dμ(x, y ) , and deg ˙ P n (t) < n, we get 

˙ H n (t) = −
∫ 
�
(x 2 + 2 xy + y 2 ) P n (t ) P 

T 
n (t ) e −(x + y ) 2 t dμ(x, y ) , 
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using (19) and (20) , we get 

˙ H n (t) = −[ L n, 1 C n +1 , 1 (t) + C n, 1 (t) L n −1 , 1 + L n, 1 C n +1 , 2 (t) + C n, 1 (t) L n −1 , 2 

+ L n, 2 C n +1 , 1 (t) + C n, 2 (t) L n −1 , 1 + L n, 2 C n +1 , 2 (t) + C n, 2 (t) L n −1 , 2 ] H n (t) 

= −[ L n C n +1 (t) + C n (t) L n −1 ] H n (t) . 

�

The next theorem relates centrally symmetric positive measures with 2D Toda systems. 

Theorem 7. For a bivariate centrally symmetric positive measure, it follows that: 

˙ C n (t) = C n (t ) C n −1 (t ) L n −2 − L n C n +1 (t ) C n (t ) , n ≥ 1 , (30)

taking C 0 (t) = 0 . 

Proof. Taking derivatives in (22) , we get 

˙ H n (t) L T n −1 ,i = 

˙ C n,i (t) H n −1 (t) + C n,i (t) ˙ H n −1 (t) , 

and using (29) , we obtain 

−E n (t) H n (t ) L T n −1 ,i = 

˙ C n,i (t ) H n −1 (t ) − C n,i (t ) E n −1 (t ) H n −1 (t ) . 

H n −1 (t) is a non-singular matrix, therefore 

˙ C n,i (t) = C n,i (t ) E n −1 (t ) − E n (t) H n (t ) L T n −1 ,i H 

−1 
n −1 (t ) , 

using again (22) and the definition of E n ( t ), we get 

˙ C n,i (t) = C n,i (t) E n −1 (t) − E n (t) C n,i (t) 

= C n,i (t)[ L n −1 C n (t) + C n −1 (t) L n −2 ] − [ L n C n +1 (t) + C n (t) L n −1 ] C n,i (t) . 

Hence, 

˙ C n (t) = C n (t)[ L n −1 C n (t) + C n −1 (t) L n −2 ] − [ L n C n +1 (t) + C n (t) L n −1 ] C n (t) 

= C n (t) C n −1 (t) L n −2 − L n C n +1 (t) C n (t) , 

and the result is proved. �

The lattice given by Eq. (30) is referred as a 2D Langmuir lattice . 

4.2. 2D Toda lattices and bivariate orthonormal polynomials 

In this section, we want to write the 2D Toda equations (15) and (16) for orthonormal bivariate polynomials. Since 

H n (t) = 〈 P n (t) , P 

T 
n (t) 〉 , 

is a (n + 1) symmetric and positive definite matrix, there exists another symmetric and positive definite matrix H n (t) 
1 
2 , the

so-called square root of the matrix H n ( t ) [6, p. 405] , such that 

H n (t) = H n (t) 
1 
2 H n (t) 

1 
2 . 

Moreover, we define H n (t) −
1 
2 = (H n (t) 

1 
2 ) −1 , and it can be checked that (H n (t) 

1 
2 ) −1 = (H n (t) −1 ) 

1 
2 . 

Let { Q n (t) } n ≥0 = { Q n (x, y, t) } n ≥0 be the OPS defined by 

Q n (t) = H n (t) −
1 
2 P n (t) . (31)

Then, 〈 Q n (t) , Q 

T 
n (t) 〉 = H n (t) −

1 
2 〈 P n (t) , P 

T 
n (t) 〉 H n (t) −

1 
2 = I n +1 , and therefore { Q n } n ≥0 is an orthonormal polynomial system.

Multiplying (19) and (20) by H n (t) −
1 
2 , it can be proved that { Q n } n ≥0 satisfy the three term relations 

x Q n (t) = A n, 1 (t) Q n +1 (t) + B n, 1 (t) Q n (t) + A 

T 
n −1 , 1 (t) Q n −1 (t) , 

y Q n (t) = A n, 2 (t) Q n +1 (t) + B n, 2 (t) Q n (t) + A 

T 
n −1 , 2 (t) Q n −1 (t) , 

where 

A n,i (t) = H n (t) −
1 
2 L n,i H n +1 (t) 

1 
2 = H n (t) 

1 
2 C T n +1 ,i (t) H n +1 (t) −

1 
2 , (32)

B n,i (t) = H n (t) −
1 
2 D n,i (t) H n (t) 

1 
2 , (33)
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are matrices of respective sizes (n + 1) × (n + 2) and (n + 1) × (n + 1) , i = 1 , 2 . Adding the above matrices for i = 1 , 2 , also

we get 

A n (t) = H n (t) −
1 
2 L n H n +1 (t) 

1 
2 = H n (t) 

1 
2 C T n +1 (t) H n +1 (t) −

1 
2 , (34) 

B n (t) = H n (t) −
1 
2 D n (t) H n (t) 

1 
2 , (35) 

Since the product of matrices is not commutative, then, in general B n , i ( t ) � = D n , i ( t ). On the other hand, 

˙ A n,i = 

˙ H 

1 
2 

n C 
T 
n +1 ,i H 

− 1 
2 

n +1 
+ H 

1 
2 

n 
˙ C T n +1 ,i H 

− 1 
2 

n +1 
+ H 

1 
2 

n C 
T 
n +1 ,i 

˙ H 

− 1 
2 

n +1 
, 

˙ B n,i = 

˙ H 

− 1 
2 

n D n,i H 

1 
2 

n + H 

− 1 
2 

n 
˙ D n,i H 

1 
2 

n + H 

− 1 
2 

n D n,i 
˙ H 

1 
2 

n , 

and 

˙ A n = 

˙ H 

1 
2 

n C 
T 
n +1 H 

− 1 
2 

n +1 
+ H 

1 
2 

n 
˙ C T n +1 H 

− 1 
2 

n +1 
+ H 

1 
2 

n C T n +1 
˙ H 

− 1 
2 

n +1 
, (36) 

˙ B n = 

˙ H 

− 1 
2 

n D n H 

1 
2 

n + H 

− 1 
2 

n 
˙ D n H 

1 
2 

n + H 

− 1 
2 

n D n ˙ H 

1 
2 

n , (37) 

where we omitted the time variable for brevity. On the other hand, 

B 

T 
n,i (t) = H n (t) 

1 
2 D 

T 
n,i (t) H n (t) −

1 
2 = H n (t) 

1 
2 H n (t) −1 〈 x P n (t) , P 

T 
n (t) 〉 T H n (t) −

1 
2 

= H n (t) −
1 
2 〈 P n (t) , (x P n (t)) T 〉 H n (t) −

1 
2 = 〈 Q n (t) , (x Q n (t)) T 〉 = B n,i (t) , 

showing that B n , i ( t ) is a symmetric matrix, and also B n ( t ). 

Now we deal with Eq. (26) . Using (32) and (34) , we deduce 

H n (t) −
1 
2 ˙ D n,i (t) H n (t) 

1 
2 = H n (t) −

1 
2 C n (t) L n −1 ,i H n (t) 

1 
2 − H n (t ) −

1 
2 L n,i C n +1 (t ) H n (t ) 

1 
2 

= H n (t) −
1 
2 C n (t ) H n −1 (t ) 

1 
2 H n −1 (t ) −

1 
2 L n −1 ,i H n (t ) 

1 
2 

−H n (t) −
1 
2 L n,i H n +1 (t) 

1 
2 H n +1 (t) −

1 
2 C n +1 (t) H n (t) 

1 
2 

= A 

T 
n −1 (t) A n −1 ,i (t) − A n,i (t) A 

T 
n (t) . 

In the same way, we can use (33) and (35) into (24) , and we find that 

H n (t) −
1 
2 ˙ C n,i (t) H n −1 (t) 

1 
2 = A 

T 
n −1 ,i (t) B n −1 (t) − B n (t) A 

T 
n −1 ,i (t) . 

We resume our results in the following propositions. 

Proposition 1. For n ≥ 0, and i = 1 , 2 , we get 

H 

− 1 
2 

n 
˙ C n,i H 

1 
2 

n −1 
= A 

T 
n −1 ,i B n −1 ,i − B n,i A 

T 
n −1 ,i . (38) 

H n (t) −
1 
2 ˙ D n,i H 

1 
2 

n = A 

T 
n −1 A n −1 ,i − A n,i A 

T 
n , (39) 

Summing above equations for i = 1 , 2 , we get 

H 

− 1 
2 

n 
˙ C n H 

1 
2 

n −1 
= A 

T 
n −1 B n −1 − B n A 

T 
n −1 . (40) 

H 

− 1 
2 

n 
˙ D n H 

1 
2 

n = A 

T 
n −1 A n −1 − A n A 

T 
n , (41) 

where we have omitted the variable t. 

Using (36) and (37) in (40) and (41) we get 

Proposition 2. For n ≥ 1, 

˙ A 

T 
n −1 = A 

T 
n −1 B n −1 − B n A 

T 
n −1 + 

˙ H 

− 1 
2 

n C n H 

1 
2 

n −1 
+ H 

− 1 
2 

n C n ˙ H 

1 
2 

n −1 
, (42) 

˙ B n = A 

T 
n −1 A n −1 − A n A 

T 
n + 

˙ H 

− 1 
2 

n D n H 

1 
2 

n + H 

− 1 
2 

n D n ˙ H 

1 
2 

n , (43) 

where we have omitted the variable t. 
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4.3. 2D Langmuir lattices and centrally symmetric bivariate orthonormal polynomials 

We study now the orthonormal polynomials (31) for centrally symmetric measures, that is, D n , i ( t ) ≡ 0, n ≥ 0, i = 1 , 2 . If

we consider the 2D Langmuir lattice given by (30) , and we use definition (34) , it follows: 

H 

− 1 
2 

n +1 
˙ C n +1 H 

1 
2 

n = A 

T 
n A 

T 
n −1 A n −1 − A n +1 A 

T 
n +1 A 

T 
n , n ≥ 0 , (44)

and substituting (36) , we get 

˙ A 

T 
n = A 

T 
n A 

T 
n −1 A n −1 − A n +1 A 

T 
n +1 A 

T 
n + 

˙ H 

− 1 
2 

n +1 
C n +1 H 

1 
2 

n + H 

− 1 
2 

n +1 
C n +1 

˙ H 

1 
2 

n , n ≥ 0 , (45)

where, again we have omitted t . 

5. Block Lax representation for bivariate orthogonal polynomials 

In this section we want to give a block matrix perspective of the 2D Toda equations (17) and (18) and the 2D Langmuir

equation (30) . In particular, we deduce a block Lax–Nakamura pair for bivariate monic orthogonal polynomials. 

Furthermore, we give a block Lax-type pair for bivariate orthonormal polynomials using Eqs. (42) and (43) and for cen-

trally symmetric case using Eq. (45) . 

We define the following infinite block matrices: 

L = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

D 0 L 0 
C 1 D 1 L 1 

C 2 D 2 

. . . 

. . . 
. . . L n −1 

C n D n 

. . . 

. . . 
. . . 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, B = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 

−C 1 0 

−C 2 0 

−C 3 
. . . 

. . . 0 

−C n 
. . . 

. . . 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

where we have omitted the time variable t for brevity. 

Proposition 3. The 2D Toda equations (17) and (18) can be given as the block Lax–Nakamura pair representation 

˙ L = [ L , B] = LB − BL . (46)

For the centrally symmetric case, since D n ( t ) ≡ 0, we define the infinite block matrix 

B s = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 

0 0 

−C 1 C 2 0 0 

−C 2 C 3 0 

. . . 

. . . 
. . . 0 

−C n C n +1 0 

. . . 

. . . 
. . . 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

In this case, the 2D Langmuir lattice (30) can be express as a block Lax–Nakamura representation as follows: 

˙ L = [ L , B s ] = LB s − B s L . 

Now we want to deduce a block Lax-type pair for bivariate orthonormal polynomials, that is, we want to express relations

(42) and (43) as a Lax-type representation. 

Define the following infinite diagonal block matrices: 

H 

1 
2 = diag { H 

1 
2 

n , n = 0 , 1 , . . . } , 
H 

− 1 
2 = diag { H 

− 1 
2 

n , n = 0 , 1 , . . . } , 
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L = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

B 0 A 0 

A 

T 
0 B 1 A 1 

A 

T 
1 B 2 

. . . 

. . . 
. . . A n 

A 

T 
n B n 

. . . 

. . . 
. . . 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, B = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 A 0 

−A 

T 
0 0 A 1 

−A 

T 
1 0 

. . . 

. . . 
. . . A n 

−A 

T 
n 0 

. . . 

. . . 
. . . 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

K = 

1 

2 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 A 0 

A 

T 
0 0 A 1 

A 

T 
1 0 

. . . 

. . . 
. . . A n 

A 

T 
n 0 

. . . 

. . . 
. . . 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, J = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

D 0 C T 1 

C 1 D 1 C T 2 

C 2 D 2 

. . . 

. . . 
. . . C T n 

C n D n 

. . . 

. . . 
. . . 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, 

then, we can represent Eqs. (42) and (43) by the following block Lax-type representation: 

˙ L = [ L − K, B] + 

˙ H 

− 1 
2 J H 

1 
2 + H 

− 1 
2 J 

˙ H 

1 
2 . 

Now we can deduce a block Lax-type pair for centrally symmetric bivariate orthonormal polynomials. In this case,

B n ( t ) ≡ 0 and D n ( t ) ≡ 0, and we define 

B s = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 A 0 A 1 

0 0 0 A 1 A 2 

−A 

T 
1 A 

T 
0 0 0 0 

. . . 

−A 

T 
2 A 

T 
1 0 0 

. . . A n −1 A n 

. . . 
. . . 

. . . 0 

. . . 

−A 

T 
n +1 A 

T 
n 0 0 

. . . 

. . . 
. . . 

. . . 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

Then, Eq. (45) can be represented by the following Lax-type representation: 

˙ L = [ L , B s ] + 

˙ H 

− 1 
2 J H 

1 
2 + H 

− 1 
2 J 

˙ H 

1 
2 . 

6. A particular case: tensor product of univariate polynomials 

It is well known that we can define orthogonal polynomials in two variables as the product of orthogonal polynomials

in one variable, the so-called tensor product . 

Let d μi ( x ), for i = 1 , 2 , be two real measures with finite moments, and let { p n } n ≥ 0 and { q n } n ≥ 0 be the monic orthogonal

polynomial sequences associated with d μi ( x ), respectively. Then, for n ≥ 0, both sequences satisfy the following three term

recurrence relations: 

x p n (x ) = p n +1 (x ) + d (1) 
n p n (x ) + c (1) 

n p n −1 (x ) , p −1 (x ) = 0 , p 0 (x ) = 1 , 

x q n (x ) = q n +1 (x ) + d (2) 
n q n (x ) + c (2) 

n q n −1 (x ) , q −1 (x ) = 0 , q 0 (x ) = 1 . 

As above, for i = 1 , 2 , we suppose that all the moments ∫ 
R 

x n e −x t dμi (x ) , 

exist for n ≥ 0, and let { p n ( x , t )} n ≥ 0 and { q n ( x , t )} n ≥ 0 be the MOPSs associated with e −x t dμi (x ) , respectively. Now, let

c (i ) 
n (t) , d (i ) 

n (t) be the coefficients of the three term recurrence relations 

x p n (x, t) = p n +1 (x, t) + d (1) 
n (t) p n (x, t) + c (1) 

n (t) p n −1 (x, t) , (47) 

x q n (x, t) = q n +1 (x, t) + d (2) (t) q n (x, t) + c (2) (t) q n −1 (x, t) , (48) 
n n 
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with p −1 (x, t) = 0 , p 0 (x, t) = 1 , q −1 (x, t) = 0 , q 0 (x, t) = 1 . Following Theorem 1 , the coefficients c (i ) 
n (t) , d (i ) 

n (t) for i = 1 , 2 ,

satisfy the univariate Toda system (1) and (2) , with initial conditions c (i ) 
n (0) = c n , d 

(i ) 
n (0) = d n . 

Define the bivariate polynomials 

P n −k,k (x, y, t) = p n −k (x, t) q k (y, t) , 

for k = 0 , 1 , . . . , n and n ≥ 0, and define the PS { P n } n ≥0 , as in Definition 1 , 

P n = P n (t) = P n (x, y, t) = (P n, 0 (x, y, t) , P n −1 , 1 (x, y, t) , . . . , P 0 ,n (x, y, t)) T . 

Then { P n (t) } n ≥0 is a monic OPS associated with the modified measure 

d ̃  μ(x, y, t) = e −(x + y ) t ω 1 (x ) ω 2 (y ) dx dy = e −x t ω 1 (x ) e −y t ω 2 (y ) dx dy. 

Using the three term recurrence relation for the univariate orthogonal polynomials, we can give the explicit expression for

the matrix coefficients of the three term relations for the bivariate orthogonal polynomials. In fact, the monic OPS { P n (t) } n ≥0

satisfy the three term relations (12) and (13) with 

D n, 1 (t) = diag { d (1) 
n −k 

(t) , k = 0 , 1 , . . . , n } , 
D n, 2 (t) = diag { d (2) 

k 
(t) , k = 0 , 1 , . . . , n } , 

C n, 1 (t) = L T n −1 , 1 diag { c (1) 
n −k 

(t) , k = 0 , 1 , . . . , n − 1 } , 
C n, 2 (t) = L T n −1 , 2 diag { c (2) 

k 
(t) , k = 0 , 1 , . . . , n − 1 } . 

Applying Theorems 4 and 5 , the matrix coefficients of the three term relations satisfy the 2D Toda lattice (15) and

(16) . Using the explicit expressions for the matrices, we have to observe that (16) can be write for the entries of ˙ C n, 1 (t) ,

obtaining 

˙ c (1) 
n (t) = c (1) 

n (t)[ d (1) 
n −1 

(t) + d (2) 
0 

(t)] − [ d (1) 
n (t) + d (2) 

0 
(t)] c (1) 

n (t) , 

˙ c (1) 
n −1 

(t) = c (1) 
n −1 

(t)[ d (1) 
n −2 

(t) + d (2) 
1 

(t)] − [ d (1) 
n −1 

(t) + d (2) 
1 

(t )] c (1) 
n −1 

(t ) , 

. . . 

˙ c (1) 
1 

(t) = c (1) 
1 

(t)[ d (1) 
0 

(t) + d (2) 
n −1 

(t)] − [ d (1) 
0 

(t) + d (2) 
n (t)] c (1) 

1 
(t) , 

that is, 

˙ c (1) 
n (t) = c (1) 

n (t ) [ d (1) 
n −1 

(t ) − d (1) 
n (t)] , n = 1 , 2 , . . . . 

In the same way, Eq. (15) means that 

˙ d (1) 
n (t) = c (1) 

n (t) − c (1) 
n +1 

(t) , n = 1 , 2 , . . . . 

This recovers the Toda lattice in one variable for the MOPS { p n ( t )} n ≥ 0 . 

Analogously, using i = 2 in (15) and (16) , we recover Toda system for the second MOPS { q n ( t )} n ≥ 0 

˙ c (2) 
n (t) = c (2) 

n (t ) (d (2) 
n −1 

(t ) − d (2) 
n (t)) , 

˙ d (2) 
n (t) = c (2) 

n (t) − c (2) 
n +1 

(t) . 
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