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Abstract

We present a computationally efficient sparse grid approach to allow for multiscale simulations of non-
Newtonian polymeric fluids. Multiscale approaches for polymeric fluids often involve model equations of
high dimensionality. A conventional numerical treatment of such equations leads to computing times in
the order of months even on massively parallel computers.

For a reduction of this enormous complexity, we propose the sparse grid combination technique. Com-
pared to classical full grid approaches, the combination technique strongly reduces the computational com-
plexity of a numerical scheme but only slightly decreases its accuracy.

Here, we use the combination technique in a general formulation that balances not only different dis-
cretization errors but also considers the accuracy of the mathematical model. For an optimal weighting of
these different problem dimensions, we employ a dimension-adaptive refinement strategy. We finally ver-
ify substantial cost reductions of our approach for simulations of non-Newtonian Couette and extensional
flow problems.

Keywords: sparse grids, combination technique, dimension-adaptivity, multiscale simulation, Brownian
configuration fields, multi-bead spring-chains

1. Introduction

Many fluids from the chemical industry and from nature show a non-Newtonian behavior. In the
literature, the modeling of non-Newtonian fluids is usually based on an additional elastic stress tensor in
the fluid equations. Then, macroscopic approaches compute the entries of this stress tensor by solving an
additional differential or integral constitutive equation. An overview of macroscopic approaches is given
in the book by Owens and Philips [1].

Macroscopic models have a low computational complexity but exhibit two serious drawbacks: They
are prone to numerical instabilities, the so called High Weissenberg number problem (HWNP), and they have
limited modeling capabilities. Both drawbacks can be avoided in a multiscale approach. There, the kinetic
equations of the microscopic polymeric structure are directly modeled which allows for a better description
of real polymers. Furthermore, immunity to the type of instability caused by the HWNP seems to result, as
reported by Mangoubi, Hulsen and Kupferman [2]. A more detailed explanation of multiscale models can
be found in a survey by Keunings [3].

Despite their advantages compared to macroscopic models, multiscale models are hardly used in prac-
tical applications. This is due to their enormous computational complexity. Depending on the degrees
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of freedom of the polymeric microstructure, the configuration space for the polymer model can be high-
dimensional. For instance, it is of dimensionality fifteen for a model that consists of five spring segments.
This leads to an exponential growth in the complexity of grid-based numerical approaches which is often
described by the term curse of dimensionality.

In the following, we aim for a reduction of this multiscale model complexity. For this purpose, we
employ the sparse grid combination technique to cope with the curse of dimensionality. The combination
technique [4] is a specific sparse grid representation [5]. The basic idea is to linearly combine a sequence of
coarse grid numerical solutions to approximate a numerical solution on a fine grid. Since an optimal balanc-
ing of the different problem dimensions is not a priori clear, we employ a dimension-adaptive refinement
strategy for the combination technique. Furthermore, our novel approach balances not only errors that
result from the discretization schemes but also considers the error of the modeling equation which stems
from the choice of the spring-chain length.

The first application of sparse grids to non-Newtonian fluids was given by Delaunay, Lozinski and
Owens [6]. In contrast to our stochastic polymer model, the authors employ a deterministic Fokker-Planck-
based approach to model the high-dimensional configuration space. Furthermore, there exist several lit-
erature results on sparse grids for Newtonian fluids, see, e.g., Griebel and Koster [7] for results on tur-
bulent flows. An alternative approach in the literature to cope with the high complexity of multiscale
non-Newtonian models is the proper generalized decomposition (PGD). The PGD is a model reduction
technique that bases on a separated representation of the unknown field. An overview of the PGD for
applications related to non-Newtonian fluids is given by Chinesta et al. [8].

The remainder of this article is organized as follows: First, in Section 2, we discuss the governing equa-
tions of our multiscale polymer model. Then, in Section 3 we cover techniques related to the numerical
treatment of the high-dimensional equations. This includes the spatial and temporal discretization of the
partial and stochastic differential equations in Section 3.1 and the dimension-adaptive combination tech-
nique in Section 3.2. Finally in Section 4, we present the resulting numerical outcomes for Couette and
extensional flows. Moreover, we verify that our approach actually reduces the complexity compared to
classical full grid approaches.

2. Governing equations for the multiscale model

We investigate fluid flow in a bounded domain O ⊂ Rd with d = 1, 2, 3 depending on the specific
application and refer to O as physical space. For given position x ∈ O and at any time t ∈ T = [0, T] ⊂ R
the current state of a non-Newtonian fluid is described by the fluid’s velocity field u : (x, t) ∈ O × T 7→
u(x, t) ∈ Rd, the hydrodynamic pressure field p : (x, t) ∈ O × T 7→ p(x, t) ∈ R and the polymeric stress
tensor field τp : (x, t) ∈ O × T 7→ τp(x, t) ∈ R3×3 with corresponding initial and boundary conditions.

The dimensionless conservation of mass and momentum is given by the coupled system

∂u(x, t)
∂t

+ (u(x, t) · ∇)u(x, t) = −∇p(x, t) +
β

Re
∆u(x, t) +

1
Re
∇ · τp(x, t) (1)

∇ · u(x, t) = 0 (2)

Equations (1) contains the dimensionless parameters Re (Reynolds number) and β (viscosity ratio). They
are defined as

Re =
ρcUcLc

ηs + ηp
, β =

ηs

ηs + ηp
(3)

with the characteristic units Lc ∈ R+ (characteristic length in macroscopic flow), Uc ∈ R+ (characteristic
fluid velocity), ρc ∈ R+ (fluid density, scaling pressure term with 1/(ρUc

2)), ηs ∈ R+ (Newtonian dynamic
viscosity) and ηp ∈ R+ (zero shear rate polymer dynamic viscosity).

These equations are coupled with the initial conditions u(x, 0) = u0(x), p(x, 0) = p0(x) and τp(x, 0) =
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Figure 1: Modeling of a polymeric molecule as a multi-bead spring-chain.

τ0(x) for all x ∈ O. Furthermore, one of the conditions

u|Γ1 = u0 on the inflow boundary Γ1, (4a)
u|Γ2 = 0 on the no-slip boundary Γ2, (4b)

∂n(u · n)|Γ3 = 0, ∂n(u · t)|Γ3 = 0 on the outflow boundary Γ3 (4c)

holds for the velocity field on the boundary ∂O = Γ1 ∪ Γ2 ∪ Γ3 with n as outward pointing unit normal and
t as tangential vector on ∂O.

The polymeric stress tensor τp reflects the elastic stress contribution from the underlying polymeric
structure. In a multiscale approach, the microscopic structure is modeled as an arrangement of N + 1
beads that are connected with N elastic springs. We illustrate the resulting multi-bead spring-chain in
Fig. 1. A chain is fully described by its center position x ∈ O and its spring segment configuration vectors
qi ∈ Di ⊂ R3 for i = 1, . . . , N. For the description of a spring chain ensemble there are two different
stochastic approaches. They can either be described by a sequence of N + 1 stochastic processes with
realizations in O × D1 × . . . × DN or, alternatively, by a sequence of N time-dependent random fields
Q1(x, t), . . . , QN(x, t) with realizations in D1 × . . .× DN for any (x, t) ∈ O × T . The numerical treatment
of the first formulation leads to the CONNFFESSIT method (Calculation of Non-Newtonian Flow: Finite
Elements and Stochastic Simulation Techniques) which was introduced by Laso and Öttinger [9]. In the
following, we employ the second stochastic description in which the random fields are denoted as Brownian
configuration fields (BCF) [10].

The BCF approach evolves each random field i = 1, . . . , N over time according to the dimensionless
stochastic partial differential equation (SPDE)

dQi(x, t)=
(
− u(x, t)∇Qi(x, t)+(∇u(x, t))TQi(x, t)− 1

4 De(N)

N

∑
k=1

Aik ·F (Qi(x, t))
)

dt (5)

+
1√

2De(N)

(
dW i+1(t)− dW i(t)

)
.

Here, we have used the dimensionless parameter De(N) = λ(N)Uc/Lc (Deborah number) in which
λ(N) ∈ R+ represents the relaxation time of a polymer segment. Furthermore, A = diag(−1, 2,−1) ∈
RN×N denotes the Rouse matrix, F : Di ⊂ R3 → R3 is the elastic spring force and W1(t), . . . , W N+1(t) is
a sequence of N + 1 independent and identically distributed (i.i.d.) Wiener processes with first moment
〈W i(t)〉 = 0 and second moment 〈W i(t)W i(t′)〉 = min(t, t′)Id. The Wiener processes represent Brownian
forces that act on each of the N + 1 beads. Theoretically, each process also depends on the spatial variable
x. However, the BCF method assumes a spatial correlation / homogeneity in space such that the Wiener
processes depend on time only which simplifies the numerical treatment later on.

As mentioned before, the SPDE (5) contains a spring force term F. Different choices for F are used in the
literature. We employ the nonlinear FENE (finitely extensible nonlinear elastic) spring force by Warner [11]
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that is defined as
F(qi) =

qi
1− ‖qi‖2/b(N)

, ‖qi‖2 ≤ b(N). (6)

The FENE spring force contains a parameter b(N) ∈ R+ that can be considered as the normalized max-
imum extension of each spring segment. The configuration space Di for a FENE spring is an open ball
with radius b(N)1/2 ∈ R+ centered at the origin. In the asymptotic limit b(N) → ∞, the FENE spring
force simplifies to the linear Hookean spring force F(qi) = qi in which the spring segment extension is not
restricted.

The initial distribution of the random field Q(x, 0) = (Q1, . . . , QN)(x, 0) ∼ ψeq(q1, . . . , qN) also de-
pends on the spring force F. Here, the density function ψeq for the FENE spring force is defined as

ψeq(q1, . . . , qN) =
1(

2πb(N)3/2B( 3
2 , b(N)+2

2 )
)N

N

∏
i=1

(
1− ‖qi‖2

b(N)

)b(N)/2

(7)

with the beta function B(., .) that is defined by

B(x, y) =
∫ 1

0
sx−1(1− s)y−1ds for x, y > 0. (8)

In the case of a Hookean spring force, the equilibrium density is

ψeq(q1, . . . , qN) =
1

(2π)(3N)/2

N

∏
i=1

exp

(
−‖qi‖2

2

)
(9)

which is a 3N-dimensional normal distribution with zero mean vector and the identity as covariance ma-
trix. Note here that both equilibrium densities (7) and (9) are product densities. Furthermore, we prescribe
homogeneous Neumann boundary conditions for Q(x, t) on the physical boundary ∂O.

We next discuss the coupling between the macroscopic scale (1)–(2) and the microscopic scale (5). The
downscaling from the macroscopic to the microscopic length scale results from the velocity field u. The
upscaling from the microscopic Brownian configuration fields Q(x, t) to the macroscopic polymer stress
tensor τp is given by Kramers’ relation [12]. Thus, the stress tensor for a spring chain is related to the
random field according to

τp(x, t) =
3 αb,d(1− β)

De(N)·((N + 1)2 − 1)

N

∑
i=1

(
〈Qi(x, t)⊗ F(Qi(x, t))〉 − Id

)
(10)

with ⊗ : R3 × R3 → R3×3 as tensor product of two random fields in R3, 〈·〉 as the expectation of the
random fields on the product space D1 × . . . × DN and αb,d as a spring force dependent constant. This
constant is αb,d = (b(N) + 5)/b(N) for FENE springs and simplifies to αb,d = 1 for Hookean springs when
b(N)→ ∞.

The rheological behavior of the full polymer chain depends on the number of spring segments N. For
comparisons, it is advantageous to match the length scale b(N) and the time scale λ(N) as two important
characteristics of different polymer chains. First, we consider the dumbbell case N = 1 for which b(1)
and λ(1) are not modified since the dumbbell already represents the full chain. In the multi-segment case
N > 1, we set b(N) = b(1)/N such that each segment represents the Nth part of the full chain, cf. Ghosh
et al. [13]. In the literature, there exist several approaches to gauge the time constant λ(N). We equate the
zero shear characteristic time scale of all models [14] which leads to

λ(N) = λ(1)/g with g =
b(1) + 7
15b(1)

· b(N)

b(N) + 5
·
[
(2(N + 1)2 + 7)− 12[(N + 1)2 + 1]

(N + 1)(b(N) + 7)

]
. (11)

According to Koppol et al. [15], this mapping ensures a close match of different chain systems in both shear
and extensional flows.
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3. Numerical discretization

In this section we describe the numerical discretization of the multiscale polymer model from Section 2.
First, Section 3.1 gives details on the discretization of the coupled system on a full grid and discusses its
computational complexity. The discretization of the multiscale model in the dumbbell case, i.e. for N = 1,
was already described in Griebel and Rüttgers [16]; this section now covers the general case N > 1. Then,
Section 3.2 introduces the combination technique to reduce the enormous complexity of the polymer model.

3.1. Discretization on a full grid
3.1.1. Spatial discretization

The macroscopic equations for the conservation of momentum and mass (1) and (2) are discretized with
a finite difference scheme. For this purpose, the physical flow domainO is subdivided into Mg rectangular
grid cells with discrete positions xk for k = 1, . . . , Mg. The unknowns p and p are discretized in the cell
centers while the three components of the velocity field u are placed on the cell faces. This staggered
grid avoids numerical instabilities in the pressure field, the so called checkerboard pattern, since a strong
coupling between the pressure and the velocity field can be ensured in the discretization.

The Brownian configuration field is approximated in every cell center by a sequence of Ms stochastic
realizations according to Q(j)(xk, t) for j = 1, . . . , Ms and k = 1, . . . , Mg. Since the discrete position of Q
and the macroscopic stress tensor τp overlap, no additional interpolation is necessary. Furthermore, the
spatial derivative of Q(x, t) in (5) is also approximated by a finite difference scheme.

We generate the samples at initial time t = 0 from the FENE equilibrium distribution (7) by using
von Neumann’s rejection sampling [17]. Here, the comparison function is the uniform density restricted
on an open ball with radius b(N)1/2. Furthermore, we explicitly make use of the fact that (7) is a product
density such that the realizations for each spring segment i can be generated independently.

3.1.2. Temporal discretization
We subsequently describe a semi-implicit time integration scheme for the case of a general three-

dimensional flow space O. The approach uses an implicit second-order Crank-Nicolson scheme for the
diffusive velocity terms in the momentum equations (1). This ansatz avoids CFL-type restrictions on the
time step width for the laminar flow regime considered in Section 4. For the convective velocity terms
we apply an explicit time discretization scheme since we do not have to solve a nonlinear system of equa-
tions then. Next, a fractional step method that leads to a pressure-correction scheme is used to solve the
Navier-Stokes equations. This scheme was proposed by Bell et al. [18] and ensures a second-order tem-
poral accuracy of velocity and pressure field provided all velocity terms are discretized with second-order
accuracy in time.

Let un, pn, τn
p and Qn denote the discretized variables in time step tn ∈ [0, T]. We then obtain the

discrete solution at tn + ∆tn = tn+1 ∈ (0, T] by the following steps:

1. For the discretization of FENE spring force model in (5), we apply one step of a semi-implicit Euler-
Maruyama method for all spring segments i = 1, . . . , N, for all j = 1, . . . , Ms stochastic samples and
in all cell centers xk according to(

1 +
Aii∆tn

4 De(N)

)
F
(

Qn+1,(j)
i (xk)

)
= Qn,(j)

i (xk) +

(
− un∇Qn,(j)

i (xk) + (∇xun)TQn,(j)
i − 1

4 De(N)
·

N

∑
k=1
k,i

Aik ·F
(

Qn,(j)
k (xk)

))
∆tn +

√
∆tn

2De(N)

(
η
(j)
i+1 − η

(j)
i

)
(12)

and solve this equation for Qn+1,(j)
i (xk). This discrete approach is implicit in the spring force term

F (Qi) for i = 1, . . . , N and was proposed by Öttinger [19].
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Here, η
(j)
i , η

(j)
i+1 ∼ N(0, 1)3 denote triples of independent Gaussian random variables with zero mean

and variance one for j = 1, . . . , Ms.
In case of the linear Hooke model, we perform one step of an explicit Euler-Maruyama method ac-
cording to

Qn+1,(j)
i (xk) = Qn,(j)

i (xk) +

(
− un∇Qn,(j)

i (xk) + (∇xun)TQn,(j)
i (xk)

− 1
4 De(N)

N

∑
k=1

Aik ·F
(

Qn,(j)
k (xk)

))
∆tn +

√
∆tn

2De(N)

(
η
(j)
i+1 − η

(j)
i

)
. (13)

2. The new stress contribution is obtained from Kramers’ relation by using Monte Carlo integration
according to

τn+1
p (xk) =

αb,d(1− β)

De(N)
· 3
(N + 1)2 − 1

N

∑
i=1

(
1

Ms

Ms

∑
j=1

(
Qn+1,(j)

i (xk)⊗ F(Qn+1,(j)
i (xk))

)
− Id

)
.

3. We solve the Helmholtz equation(
Id−∆tnβ

2Re
∆
)

u∗(xk)=un(xk)−∆tn
(
∇pn(xk)+un · ∇un(xk)−

β

2Re
∆un(xk)−

1
Re
∇ · τn+1

p (xk)

)
(14)

to obtain an intermediate velocity field u∗(xk).
4. The intermediate velocity field u∗ is used on the right-hand side of a Poisson problem

∆φn+1(xk) =
1

∆tn∇ · u
∗(xk). (15)

The resulting pressure correction φn+1 ensures that un+1 is divergence free. We then compute

un+1(xk) = u∗(xk)− ∆tn∇φn+1(xk). (16)

5. The new pressure field is finally derived as

pn+1(xk) = pn(xk) + φn+1(xk)−
∆tnβ

2Re
∆φn+1(xk). (17)

This description also applies to the case of a lower-dimensional flow space than d = 3, i.e. to the cases
d = 1 and d = 2. Then, steps 3-5 for computing the new velocity field simplify accordingly.

3.1.3. Computational complexity
Compared to classical macroscopic approaches for non-Newtonian fluids, multiscale approaches have

a much higher computational complexity due to the large number of stochastic realizations. For the case of
an N-segment chain, the Brownian configuration field Q(xk, t) is approximated with j = 1, . . . , Ms samples
Q(j)(xk, t) ∈ R3N for every xk. Therefore, the full grid storage complexity is of order O(3N · Mg · Ms)
double precision floating point units in the computer’s memory.

As an example, in Griebel and Rüttgers [16] multiscale FENE dumbbell simulations with one segment
(N = 1) are conducted on a three-dimensional grid with Mg = 260× 64× 64 grid cells. Moreover, the
number of discrete samples per grid cells is Ms = 800. Therefore, the stochastic field is approximated with
about 2.6 · 109 double precision floating points which require 20 GB of main memory. Since this complexity
scales linearly in the number of spring segments, the same simulation for an N = 5 spring segment system
would require a main memory of about 100 GB.

The large number of stochastic sample particles leads to enormous computing times even on massively
parallel computers as observed in Griebel and Rüttgers [16]. For this reason, we propose in the following
the combination technique as a viable approach to cope with this complexity.
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3.2. Dimension-adaptive combination technique
The combination technique [4, 20] allows to build approximation spaces of reduced complexity com-

pared to classical full grid approximation spaces. In the following, we introduce the basic concepts of the
combination technique as a specific sparse grid representation. A more detailed introduction on sparse
grids is given in [5] and in [21].

Let Ω ⊂ Rd be a Lipschitz domain with d ∈ N and m = (m1, . . . , md) ∈ Nd. We then define an
anisotropic grid Ωm on Ω with 2mi − 1 inner grid points in each of the i = 1, . . . , d dimensions. The inner
grid consists of the points xm,j = (xm1,j1 , . . . , xmd ,jd) with ji = 1, . . . , 2mi − 1 for i = 1, . . . , d. Here, the
multi-index j denotes the position of a grid point in a mesh of resolution m. Next, a set of basis functions is
defined on Ωm. For this purpose, we employ one-dimensional basis functions φmi ,ji (xi) in every dimension
and build a d-dimensional basis by a tensor product approach according to

φm,j(x) =
d

∏
i=1

φmi ,ji (xi), x ∈ Ω. (18)

As an example for φmi ,ji (xi) we may consider the piecewise linear hat functions centered in point xi. Note
here that also piecewise polynomials of higher order, interpolets or (pre-)wavelets may be employed, see
e.g. Bungartz and Griebel [5]. The full grid approximation space

Vm = span{φm,j|ji = 1, . . . , 2mi − 1, i = 1, . . . , d} (19)

is built by using this standard nodal point basis. The approximation space (19) can alternatively be defined
as direct sum of hierarchical subspaces Wl . These hierarchical difference spaces are defined as

Wl = span{φl,j|ji = 1, . . . , 2li − 1, ji odd for all i = 1, . . . , d}. (20)

The elements of Wl for which l ≤ m holds component-wise form a basis of Vm denoted as hierarchical basis.
Thus, alternatively to (19), we can then define Vm as

Vm =
m1⊕

l1=1

· · ·
md⊕

ld=1

Wl1,...,ld =
⊕
l≤m

Wl . (21)

For m1 = · · · = md = n the full grid approximation space Vm has a number of degrees of freedom of
the order O(Nd) with N = 2n. This approach can easily be generalized to function spaces with non-zero
boundary conditions and thus grid points on ∂Ω, see e.g. Feuersänger [22].

Sparse grids can be used to decrease the complexity of full grid approximation spaces. A regular sparse
grid approximation space of level n = m1 = . . . = md is defined by

V (s)
m =

n+d−1⊕
l1=1

· · ·
n+d−1−∑i<d li⊕

ld=1

W(1)
l1
⊗ . . .⊗W(d)

ld
=

⊕
|l|1≤n+d−1

Wl . (22)

Compared to the approximation space Vm, the number of degrees of freedom reduces from O(Nd) to
O(N · log2(N)d−1). This underlines the enormous benefits that are possible with sparse grids. On the
other hand, approximation spaces as in (22) require a hierarchical data structure and rely on additional
smoothness requirements for the solution of a PDE problem. Typically, this requirement is that the solution
is an element of a Sobolev space of mixed smoothness. Sobolev spaces of mixed smoothness are subspaces
of Sobolev spaces, the classical solution spaces of PDE problems, see e.g. Bungartz and Griebel [5] for
further details.

The combination technique now is a specific sparse grid representation that avoids hierarchical data
structures such that existing algorithms on a nodal basis as in Section 3.1 can be reused. For this purpose,
the combination technique combines functions ul from different coarse full grid spaces Vl with l ∈ Nd for
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I(V1,4) I(V2,3) I(V3,2) I(V4,1)

I(V1,3) I(V2,2) I(V3,1) V
(s)
4

≈
V4

Figure 2: Approximation of the 2D sparse grid space V(s)
4 as a linear combination of seven bilinearly interpolated coarse full grid

spaces. The coloring was chosen such that interpolated points are colored in light blue.

which l ≤ m holds component-wise. The d-dimensional combination formula of level n = m1 = · · · = md
is given by

uc
m =

d−1

∑
i=0

(−1)i
(

d− 1
i

)
∑

|l|1=n+(d−1)−i
ul for l1, . . . , ld = 1, . . . , n. (23)

As an example, we visualize the two-dimensional combination formula of level n = 4 in Fig. 2. Note here
that the combination of the different solutions in (23) requires interpolation to a common subspace, i.e. the
approximated sparse grid space. Then, the error of the combination technique is of the same order as the
sparse grid solution, cf. Griebel and Harbrecht [23]. A further advantage of this representation is that each
coarse grid solution can be computed independently such that the combination technique is intrinsically
parallel.

Finally, we generalize the sparse approximation space (22) to arbitrary index sets I ⊂ Nd. To this end,
we define the generalized sparse approximation space as

VI =
⊕
l∈I

Wl =
⋃
l∈I

Vl . (24)

Then, the generalized combination technique combines all discrete functions ul ∈ Vl with l ∈ I according
to the formula

uc
I = ∑

l
clul = ∑

l∈I

(
(1,...,1)

∑
z=0∈Nd

(−1)|z|1 · χI (l + z)

)
ul (25)

where χI is a characteristic function on the index set I according to

χI (l) =

{
1 if l ∈ I
0 else

(26)

and cl ∈ R is a combination coefficient. In our application, ul either denotes the discrete velocity field u or
the discrete stress tensor field τp.

The index set I contains all grid indices for the combination formula. According to Gerstner and
Griebel [24], the index set I has to fulfill an admissibility condition: If l ∈ I with unit vector ej, then
it holds

l − ej ∈ I for 1 ≤ j ≤ d, lj ≥ 1. (27)

For an optimal index set I the error contributions of the different subspaces Vl have to be balanced. In many
cases, it is not a priori clear how this balancing can be achieved and whether the additional smoothness
requirements for the solution are fulfilled. For this purpose, Griebel and Gerstner [25] have developed
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Figure 3: Evolution of the dimension-adaptive algorithm in two dimensions. The color coding in the first row represents the coefficient
cl in (25). The second row illustrates the grid points of the approximated sparse grid space VI(it) .

a dimension-adaptive algorithm that allows to create a close to optimal index set by ongoing refinement
I (1) = {(1, . . . , 1) ∈ Nd} ⊆ I (2) ⊆ . . . I (it) ⊆ . . .. Furthermore, adaptive algorithms are usually better
suited to cope with unsmooth solutions that might occur in our applications. The algorithm ensures the
admissibility condition by splitting the index set into two subsets such that I (it) = O(it) ∪A(it) and O(it) ∩
A(it) = 0 in every iteration step it. The sets A and O are denoted as active and old index set, respectively.
In each iteration step, an element l ∈ A is selected that determines adjacent new grids l + ej < I for
1 ≤ j ≤ d whose associated function ul+ej might be computed and added to the combination formula if
the admissibility condition is fulfilled. Consequently, up d discrete functions are added to the combination
formula in every iteration step. Next, the selected l ∈ A is removed from A and added to O. We illustrate
the process of refinement with both subsets A and O in two dimensions in Fig. 3. Here, the selected index
l ∈ A is indicated with a circle. Furthermore, arrows indicate the up to d = 2 directions of refinement.
Since the admissibility condition is violated in both directions from iteration step it+ 2→ it+ 3, the sparse
grid solution space is not extended in this iteration.

For balancing the different error contributions, we require an appropriate error estimator. To this end,
we here do not only consider discretization errors as in the original approach [25], see also Bohn, Garcke
and Griebel [26], but also take the modeling accuracy of the spring-chain system due to its number of
individual segments into account. Altogether, we have:

• spatial grid: the spatial discretization of the fields u(x, t), p(x, t), τp(x, t) and Q(x, t) in the coordinate
directions x, y and z leads to an anisotropic three-dimensional spatial grid.

• temporal grid: time integration of the macroscopic flow equations and the microscopic stochastic equa-
tion is performed with the same time step width ∆t and leads to a one-dimensional grid.

• stochastic grid: the stochastic partial differential equation (5) is solved for Ms stochastic samples. We
consider the number of samples Ms as a one-dimensional problem dimension in the algorithm.

• spring model grid: we consider the number of spring segments N ∈N as a modeling dimension.

We illustrate the different dimensions in Fig. 4. Note that the spatial, temporal and stochastic grids
affect the accuracy of the corresponding discretization scheme while the spring model grid actually affects
the dimensionality of the underlying model equation (5).

Next, we give the details on an appropriate error estimator. Let uC
I and τC

p,I denote the discrete solutions

9
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Figure 4: Different problem dimensions for the multiscale polymeric system.

from the combination formula (25). The adaptive scheme builds I such that{
uC
I → u

τC
p,I → τp

for cardinality(I)→ ∞. (28)

Therefore, we actually require an error estimator for u and τp and a parameter to weight both error terms
depending on the specific application. In both cases, the size of the hierarchical surpluses ‖Wl(u)‖ and
‖Wl(τp)‖ is used as an error indicator. Here, the hierarchical surplus for ul ∈ Vl is defined as

Wl(u) = ⊗d
j=1∆j ul = ∆d(⊗d−1

j=1 ∆j) ul = (∆d . . . ∆1) ul (29)

with the first-order difference operator

∆jul =

{
ul − ul−ej , if lj > 1,

ul , if lj = 1,
(30)

and with ej as canonical unit vector. Again, the first-order difference operator requires interpolation of the
functions to a common approximation space. As an illustrative example, we consider (29) for d = 2 and
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lj > 1 for j = 1, 2. In this case, we obtain

W(l1,l2)(u) = ∆2(∆1u(l1,l2)) = ∆2(u(l1,l2) − u(l1−1,l2)) = u(l1,l2) − u(l1−1,l2) − u(l1,l2−1) + u(l1−1,l2−1). (31)

Analogously, we calculate the surplus for τp. In both cases, we require adequate error norms. The
size of the velocity field u(x, t) at fixed position in space-time (x, t) is measured by the Euclidean norm
‖u(x, t)‖E =

(
u(x, t)T · u(x, t)

)1/2. This is extended to the product space S = O × T according to

‖u‖E,2 =

(∫
S
‖u‖2

E dµ

)1/2
≈
(

∑
(xk ,tn)

‖u(xk, tn)‖2
E ∆tn ∆xk

)1/2

(32)

with µ as product measure on S . The right-hand side of (32) approximates the L2-norm on a discrete grid
that results from our algorithm in Section 3.1.2. For the stress tensor τp, we also employ definition (32) but
use the Frobenius tensor norm ‖τp(x, t)‖F = (trace

(
τp(x, t)τp(x, t)T))1/2 instead of the Euclidean norm

in the integrand. This gives the norm ‖τp‖F,2.
We opt for a cost-benefit optimized refinement criterion. For this purpose, we define the cost nl that is

associated with the subspace Vl as
nl = dT/∆teMg MsN. (33)

Here, dT/∆te denotes the number of time steps, Mg is the number of grid cells, Ms is the number of
stochastic samples and N is the number of spring segments. This definition of the cost differs from the
number of grid point operations only by a constant factor of proportionality that is independent from Vl
and does not affect the refinement procedure.

Using the previous definitions (29)–(33) we define a local refinement indicator as

gl = max
{

ω · ‖Wl(u)‖E,2

nl ‖W(1,...,1)(u)‖E,2
,
(1−ω) · ‖Wl(τp)‖F,2)

nl ‖W(1,...,1)(τp)‖F,2

}
(34)

with ω ∈ [0, 1]. Definition (34) states an ω-balanced profit indicator in which the benefit that is approxi-
mated by the size of the hierarchical surplus is divided by the cost nl for every index l ∈ I . Furthermore,
both hierarchical surpluses are normalized by the size of the surpluses on the coarsest grid (1, . . . , 1) ∈Nd

to make both quantities comparable such that they can be combined via ω in a balanced way.
The dimension-adaptive combination technique is summarized in Algorithm 1. The iteration steps to

build up the index set by ongoing refinement are now cached by the while-loop. Note again that the
combination technique, in contrast to classical sparse grids, combines full grid solutions spaces so that
hierarchical data structures are not required. More details on the algorithm can be found in Griebel and
Gerstner [25] and in Rüttgers [27].

4. Results and discussion

In the following, we demonstrate the reductions in complexity using our sparse grid algorithm instead
of classical full grid discretizations. For this purpose, we consider two important flow types which are

• shear-type flows/ Couette flows in Section 4.1 and

• extensional-type flows in Section 4.2.

In these applications, we adaptively build index sets to approximate individual components of u and τp.
Thus, the norms ‖·‖E,2 and ‖·‖F,2 from (32) reduce to the usual L2-norm ‖·‖2 for scalar fields.
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Algorithm 1: Dimension-adaptive algorithm for multiscale simulation of polymeric fluids.

1 Determine important d problem dimensions ; /* compare with Fig. 4 */

2 Restrict grid maximum refinement lmax ; /* e.g. restrictions on spring model grid */

3 l B (1, . . . , 1) ; /* coarsest full grid solution that resolves flow structure */

4 A B {l} ; /* active index set */

5 O B ∅ ; /* old index set */

6 Compute gl as defined in (34) ; /* local profit indicator */

7 Determine global error indicator E and error tolerance TOL;
8 while E > TOL do
9 select l ∈ A with largest gl according to (34);

10 O = O ∪ {l}, A = A\{l};
11 for j← 1 to d do
12 i = l + ej;
13 if i− el ∈ O ∀ l = 1, . . . , d and if;
14 i ≤ lmax then
15 A = A ∪ {i};
16 Apply multiscale flow solver from Section 3.1.2 on full grid space Vi;
17 Compute local profit indicator gi as defined in (34);
18 end
19 end
20 Compute new global error indicator E ; /* terminate algorithm if r-times below TOL */
21 end
22 Compute (uC

I , τC
p,I ) on index set I = O ∪ A according to (25);

4.1. Couette flows
Let x = (x, y, z) denote the components of the position vector in the flow space O. We consider a

Couette flow in x-direction between two parallel plates in a vertical distance L in y-direction. At t = 0 the
fluid is at rest. Then, at t > 0 the upper plate at y = L moves with a constant velocity Vcon. We are interested
in the temporal evolution of the x-velocity component u(y, t) of u = (u, v, w) for t ∈ [0, 1], Vcon = L = 1.0.
Furthermore, we employ a Hookean dumbbell model to model viscoelastic flow behavior. In this case, the
multiscale system of equations (1)–(11) simplifies to

∂u(y, t)
∂t

=
1

Re
β

∂2u(y, t)
∂y2 +

1
Re

∂τxy(y, t)
∂y

(35)

dQ(y, t) =
[
(∇u(y, t))TQ(y, t)− 1

2 De
Q(y, t)

]
dt +

1√
De

dW(t) (36)

τxy(y, t) =
1− β

De
〈Qx(y, t) Qy(y, t)〉 (37)

with Q(y, t) = (Qx, Qy, Qz)(y, t) ∈ D ⊂ R3 and τp = (τxx, τxy, . . . , τzz) ∈ R3×3.
Moreover, the initial and boundary conditions are

u(y, 0) = 0, u(0, t) = 0, u(1, t) = Vcon (38a)
τxy(y, 0) = 0, ∂τxy(0, t)/∂y = ∂τxy(L, t)/∂y = 0 (38b)

Q(y, 0) ∼ ψeq(q) =
1

(2π)3/2 exp
(
−‖q‖

2

2

)
(38c)

for all t ∈ [0, 1] and for all y ∈]0, L[. Furthermore, we set Re = 0.1, De = 0.5 and β = 0.1. In Fig. 5 (a) we
visualize the velocity component u(y = 0.5, t) and the shear stress component τxy(y = 0.5, t) in the channel
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center over time. Furthermore, Fig. 5 (b) plots u(y, t) over space and time. Due to the non-Newtonian fluid
behavior, the velocity field first shows some under- and overshoots which are damped out over time.

In the following, we focus on an optimal approximation of the velocity field. For this purpose, we set
ω = 1 in (34). First in Table 1, we list a sequence of multi-indices from which I is built and state the
resolutions of the corresponding approximation spaces. The three-dimensional index set is derived from a
one-dimensional grid in space, a one-dimensional grid for the stochastic dimension and a one-dimensional
grid in time, cf. Fig. 4. In each dimension, the grid is refined by a factor of two such that the cost increases
uniformly in each dimension. These rates of refinement do not coincide with the rates of convergence for
the corresponding numerical schemes which are one for the spatial grid (central differences with first-order
upwind scheme at the boundary), one for the temporal grid (explicit Euler-Maruyama scheme) and 1/2 for
the variance reduction of the polymeric stress tensor (Monte Carlo approach). The underlying idea of a
refinement factor of two in Table 1 is that the dimensions and the actual amount of refinement shall be
determined by the algorithm itself by using the error indicator. Using a larger refinement factor, e.g. a
factor of four in some dimensions, would just decrease the accuracy of the dimension-adaptive refinement
procedure since an overrefinement in some dimensions becomes more probable.

As mentioned before, the refinement algorithm selects in step it the index l ∈ I (it) for which ul ∈ VI (it)
maximizes gl according to (34). For a better illustration of the refinement directions, Fig. 6 visualizes the
profit indicator gl = ‖Wl1,l2,l3(u)/nl1,l2,l3‖2 for the two-dimensional cuts g(l1,l2,l3=3) and g(l1,l2,l3=5). Note
that the normalization factor ‖W1,1,1(u)‖2 from (34) is not necessary in this case since only the velocity field
is optimized. The isolines of the profit indicator lead to a slightly stronger refinement in the stochastic
dimension than in the spatial dimension. At first view, a stronger refinement of the stochastic grid would
have been expected due to the lower order of convergence of the Monte Carlo approach for the stress
tensor. However, the directions of grid refinement are influenced by two further effects: First, the profit in-
dicator also considers the cost of an approximation space. Therefore, due to an isotropic cost increase in all
three dimensions, the profit indicator tends to a more isotropic refinement of all dimension than expected.
Second, the velocity field does not directly depend on the stress tensor but only on its divergence. Conse-
quently, an error decrease in the stress tensor that results from a fine stochastic grid does not necessarily

0 0.5 1 1.5 2 2.5 3
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time t

u(y = 0.5)
τxy(y = 0.5)

(a) u and τxy in the channel center
0

0.5
1

time0
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(b) u over space and time

Figure 5: Non-Newtonian velocity and stress components u and τxy in the channel center (left) and u over space and time (right).

Table 1: Sequence of different full grid resolutions (l1, l2, l3) for the simulated Couette flow. The first index l1 denotes the number of
finite difference grid cells in the spatial grid, the second index l2 lists the number of stochastic samples and the last index specifies the
number of time steps in the time discretization scheme of the approximation space V(l1 ,l2 ,l3).

level l 1 2 3 4 5 6 7 8 . . . 11
space 1/∆xl1 2 4 8 16 32 64 128 256
samples l2 256 512 210 211 212 213 214 215 . . . 218

1/∆tl3 16 32 64 128 256 512 1024 2048
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Figure 6: Visualization of a 2D cut of the profit indicator with the index pairs (l1, l2, 3) (left) and (l1, l2, 5) (right). Note that the first
index l1 specifies the number of finite difference cells in the spatial grid and the second index l2 denotes the number of stochastic
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Figure 7: Index set I (it) for the iteration steps it = 10, 25, 55, 90 of the dimension-adaptive algorithm.

decrease the error in u by the same amount. This explains an asymptotically isotropic refinement of the
index set as indicated in Fig. 6.

In Fig. 7 we illustrate the resulting index sets I (it) for the iteration steps it = 10, 25, 55, 90 of the

14



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

time t

u
(y
=
0.
5)

VI(10)

VI(25)

VI(55)

VI(90)

Vref

0.1 0.15 0.2 0.25 0.3 0.35

0.4

0.5

0.6

0.7

time t

Figure 8: Velocity field in the channel center y = 0.5 for different approximation spaces VI(it) of the iteration steps it = 10, 25, 55, 90 in
the dimension-adaptive algorithm.
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Figure 9: Relative L2-error E(uC) with respect to the initial approximation u1,1,1 ∈ V1,1,1 for each iteration step it.

dimension-adaptive algorithm. The color coding of each box in Fig. 7 represents its weight coefficient
cl ∈ {−2,−1, 0, 1} in the combination formula (25). In iteration step it = 90, a global error threshold of
0.02 for the relative L2-error E(uC) = ‖uC − uref‖2/‖u(1,1,1) − uref‖2 has been reached and the algorithm
terminates. The relative error is defined with respect to the coarse grid approximation space V1,1,1 from
Table 1. Again, we note that the profit indicator (34) leads to a more isotropic refinement of each problem
dimension than a plain error indicator. If only the hierarchical surplus was considered, the refinement
would better correspond with the asymptotic rates of convergence. This is due to the fact that the size of
the hierarchical surplus, as an approximation to the error contribution of the corresponding approximation
space, should asymptotically decrease with a similar rate as the measured relative error E(uC).

The approximation spaces VI (it) shown in Fig. 7 converge to the reference solution with ongoing re-
finement. We illustrate this convergence in Fig. 8. Here, the velocity field in the channel center y = 0.5 is
compared for different iteration steps it = 10, 25, 55, 90 with a reference solution on a fine grid. Note that
the reference solution of the velocity field is also visualized in Fig. 5 (a). On the right-hand side of Fig. 8 we
show a magnification around the first maximum of u to better illustrate the higher accuracy of the refined
approximation spaces.

For a better analysis of the error decrease, Fig. 9 plots the relative error E(uC) = ‖uC− uref‖2/‖u(1,1,1)−
uref‖2 over all iteration steps it. Furthermore, we note that the absolute L2-error of the coarsest full grid
solution space is ‖u(1,1,1) − uref‖2 ≈ 0.107. Besides, Fig. 9 shows that the error does not decrease mono-
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Table 2: Comparison of cost and accuracy of the full grid spaces V6,6,6 and V7,7,7 with the sparse grid approximation space VI(90) .

discrete approach total cost / n1,1,1 nr. of grids rel. error E(u)
full grid space V6,6,6 32,768 1 ≈ 0.04
full grid space V7,7,7 262,144 1 ≈ 0.01
sparse grid space VI (90) 5608 67 0.02

Table 3: Absolute and relative L2-error for flows with modified Deborah numbers. The dimension-adaptive approach always uses
the index set I (it) that has been obtained for De = 0.5.

De = 0.5 De = 1.0 De = 2.0 De = 4.0
relative error ‖uC,it − uref‖2/‖uC,1 − uref‖2
iteration step it = 1 1 1 1 1
iteration step it = 10 0.373 0.344 0.349 0.379
iteration step it = 25 0.172 0.162 0.174 0.195
iteration step it = 55 0.068 0.063 0.067 0.075
iteration step it = 90 0.02 0.023 0.018 0.012
absolute error ‖uC,1 − uref‖2
iteration step it = 1 0.107 0.097 0.086 0.075

tonically and that the approximation spaces between two neighboring iterations can be identical, see for
instance steps it = 62 and it = 63 in Fig. 9.

In the following, we compare the computational complexity and the accuracy of our sparse grid ap-
proach with different full grid solution spaces. For this purpose, Table 2 lists the full grid spaces V6,6,6 and
V7,7,7 that have a uniform refinement according to Table 1 and the sparse grid space VI (90) after the algo-
rithm has been terminated. The second column plots the relative cost of V6,6,6, V7,7,7 and VI (it) with respect
to V1,1,1. As an example, the relative cost of V6,6,6 is n6,6,6/n1,1,1 = 215 = 32768 since this approximation
space is 5-times refined in every problem dimension. Next, the third column of Table 2 lists the number of
sub-grid spaces Vl that build VI (90) . We note that this number only contains those grids that have a non-zero
weight in the combination formula. Consequently, we exclude the gray colored grids in Fig. 7 (d) with zero
weight from the cost consideration. We will justify this approach subsequently. The last column in Table 2
specifies the relative error of all approximations. It can be seen that the sparse grid solution space VI (90) has
an accuracy which is between that of V6,6,6 and V7,7,7 but it has a computational complexity that is roughly
one order of magnitude lower than these full grid spaces. This demonstrates the enormous benefits from
using the combination technique.

Finally, we discuss the computational effort of the dimension-adaptive algorithm itself. First, we note
that for the considered examples, the computational effort is primarily determined by the cost for approx-
imating the sub-grid spaces Vl , cf. line 16 of Algorithm 1, so that we focus on this cost contribution. This
simplification is justified by the fact that the flow space O is one-dimensional such that interpolation on
a common grid, required for calculating the profit indicator in line 17 and for evaluating the combination
formula in line 22 of Algorithm 1, requires little effort. Obviously, this simplified cost consideration is not
valid for two- or three-dimensional flow spaces O in which interpolation becomes more cost intensive.

Table 2 specifies the cost estimation of the subgrid spaces in I (90) with non-zero weight in (25). This
cost consideration requires that the index set has already been determined. In the first run of Algorithm 1,
however, all sub-grid solutions in I (90) have to be computed to be able to build the hierarchical surplus
/ profit indicator specified in (34). In that case, 111 sub-grid solutions have to be determined instead
of 67 that are finally used in the combination formula. If all 111 grids were taken into account for the
cost consideration in Table 2, the total cost with respect to the coarsest approximation space would have
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Figure 10: Couette flow simulations with modified Deborah numbers. All simulations use the index sets I (it) of the iteration steps
it = 10, 25, 55, 90 that were previously built for De = 0.5.

increased from 5608 to 7615. But even then, our algorithm reduces the computational effort by roughly one
order of magnitude.

Furthermore, we will subsequently show that the process of creating an optimized index set has to be
applied only once for a specific class of problems. As long as the solution continuously depends on the
flow parameters, the index set can be reused for modified flow conditions. Since non-Newtonian effects
usually occur for highly elastic flows with low Reynolds numbers, the flow field is laminar in most cases.
Therefore, this condition holds for most applications in non-Newtonian fluid mechanics. As an example,
we consider Couette flows in which the Deborah number has been increased from De = 0.5 to De = 1.0, 2.0
and 4.0. Fig. 10 shows the velocity field in the channel center at y = 0.5 for all four elasticity numbers. Here,
the index sets I (it) for the higher Deborah numbers have not been adaptively built but are reused from the
simulation with De = 0.5, cf. Fig. 7. We observe that the sequence of velocity over- and undershoots that
occur for De = 0.5 dampens out for a higher fluid elasticity. This simplifies the numerical approximation
of the velocity field for higher Deborah numbers. Consequently, the reused index sets achieve excellent
results in all cases. As a final result, Table 3 specifies the absolute and relative errors for the original flow
problem and the modified simulations. As observed in Fig. 10, due to the more simple velocity profile,
the absolute and relative errors slightly decrease. A further modification of the flow field is considered in
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Rüttgers [27]. There, the original index set was reused for higher inflow velocities. In this case, the absolute
error increases but the relative error is still unchanged. As a result, the adaptively created index set can be
reused for higher inflow velocities as well. We therefore conclude that the dimension-adaptive procedure
leads to an index set that is applicable to a wide range of modified Couette flow simulations. For all these
modified flow conditions, the cost considerations are exactly as specified in Table 2. Then, the combination
technique is able to reduce the computational complexity of multiscale simulations by more than one order
of magnitude.

4.2. Extensional flows
In this section, we apply the combination technique to three-dimensional homogeneous extensional

flows for which the velocity field is given by u = (ε̇x,− ε̇
2 y,− ε̇

2 z) for a dimensionless extension rate ε̇ ∈ R.
Consequently, since the velocity gradient does not depend on space and time, the multiscale system (1)–(11)
for i = 1, . . . , N segments reduces to

dQi(t)=
[
∇uTQi(t)−

1
4 De(N)

N

∑
k=1

Aik ·F (Qi(t))
]

dt +
1√

2De(N)

(
dW i+1(t)− dW i(t)

)
(39)

τp(t)=
3(1− β) (b(N) + 5)

b(N)De(N) ((N + 1)2 − 1)

N

∑
i=1

(〈Qi(t)⊗ F i(Qi(t))〉 − Id) . (40)

We now consider more general spring-chain systems with the nonlinear FENE spring force model (6). The
other simulations parameters in (39) and (40) are De = 1.0, β = 0.0, ε̇ = 2.0 and a maximum full chain
extension b = 120. We now aim for an accurate approximation of the elastic stress tensor τp and set ω = 0
in (34). In this application, only the diagonal components are non-zero such that τp = diag(τxx, τyy, τzz).

In Table 4 we list three different problem dimensions that will be used for the dimension-adaptive algo-
rithm, cf. Fig. 4. These problem dimensions differ from the dimensions in Section 4.1. Analogously to the
previous section, the number of stochastic realizations and the time step width are balanced and refined
by a factor of two for each level increase. Moreover, we now also consider the number of spring-chain seg-
ments as a further modeling dimension. As mentioned before, this is not a modification of a discretization
parameter but a modification of the physical model. To allow for comparisons with a numerical reference
solution, we restrict the spring model grid to a maximum number of five spring segments.

A spring model dimension as in Table 4 is only justified if the stress predictions of the modeling equa-
tions converge with ongoing refinement. In general this is not the case since the dynamic behavior of a
spring-chain depends on the gauge of the modeling equations as in (11) and cannot be fully matched.
There are, however, certain situations in which complex spring-chain systems can be reasonably well ap-
proximated by more simple chains with less spring segments. As an example, Fig. 11 displays the exten-
sional viscosity τxx − τyy/ε̇ for different spring segment numbers N with the flow parameters as specified
before. Here, we note that the results with four and five segments closely resemble each other on a fine
grid. In such situations, an optimal sparse-grid-type balancing of discretization errors on the one hand
with modeling errors on the other hand can reduce the computational complexity of the full system.

Table 4: Different grids spaces (l1, l2, l3) for an adaptive-refinement of a homogeneous extensional flow. The first index denotes
the number of stochastic samples, the second index varies the number of time steps and the last index states the number of spring
segments in the FENE chain.

level l 1 2 3 4 5 6 7 . . . 12
samples l1 1024 2048 212 213 214 215 216 . . . 2·106

1/∆tl2 2 4 8 16 32 64 128 . . . 4096
spring segments l3 1 2 3 4 5
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The result of the dimension-adaptive refinement with a global relative error threshold of 0.02 is shown
in Fig 12. As mentioned before, a further refinement for l3 > 5 has been excluded in the dimension-
adaptive algorithm due to our choice of a 5-segment reference solution. We note that the refinement is
primarily performed in the spring model and in the temporal dimension. This results from the fact that
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Figure 11: Comparison of the extensional viscosity for different spring-chain systems over time.
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Figure 12: Visualization of the adaptive index set I for a homogeneous extensional flow. The triple (l1, l2, l3) denotes the number of
stochastic samples, the number of time steps, and the number of spring segments in the discrete approximation spaces, cf. Table 4.
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Figure 13: Comparison of the computational complexity (left) and the profit indicator (right) of the full grid spaces V8,l2 ,l3 , i.e. all
involved solution spaces employ 217 stochastic samples and only the remain two problem dimensions are varied.
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Figure 14: Temporal evolution of the τxx stress component for the iteration steps it = 1, 7, 19, 38 of the dimension-adaptive algorithm.

the initial grid in the stochastic dimension is relatively fine with 1024 stochastic realizations. This fine
initial grid in the stochastic dimension was necessary to increase the numerical stability of the algorithm.
Consequently, the temporal error and the spring modeling error are the dominant terms. Moreover, we
note that the algorithm fully resolves the spring modeling dimension and therefore leads to a full grid
between temporal and modeling dimension. The refinement of the spring model grid primarily results
from an anisotropic cost increase. While the number of time steps and stochastic samples doubles between
adjacent refinement levels, the cost in the spring model grid increases only linearly. Fig. 13 (a) plots the
computational complexity nl of the full grid spaces Vl with l1 = 8 and illustrates this anisotropy. Since the
profit indicator in (34) also considers the computational complexity, the moderate cost increase for refining
the spring model grid leads to a stronger refinement of that dimension, cf. the isolines of the profit grid
W(8,l2,l3)/n(8,l2,l3) in Fig. 13 (b).

Fig. 14 plots the τxx stress component for the approximation spaces shown in Fig. 12 in comparison to a
reference solution on V12,12,5. First, we observe that the approximation space VI (1) describes just a dumbbell
system which of course has a different physical behavior than a system with a 5-segment chain. Then,
with ongoing refinement the approximation spaces better correspond to the reference solution. Indeed,
the approximation space VI (38) , after which the algorithm has terminated, closely resembles the reference
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Table 5: Comparison of the cost and accuracy of different sparse and full solution spaces.

discrete approach total cost / n1,1,1 nr. of grids rel. error E(τxx)
full grid space V8,4,5 5120 1 0.098
full grid space V8,5,5 10,240 1 0.048
full grid space V8,6,5 20,480 1 0.021
full grid space V8,7,5 40,960 1 0.009
sparse grid space VI (7) 24 7 0.52
sparse grid space VI (19) 215 14 0.12
sparse grid space VI (38) 4235 22 0.02

solution.
We next investigate the convergence of the dimension-adaptive scheme. For this purpose, Fig. 15

displays the relative error of τxx with respect to the first iteration in each iteration step it according to
E(τC

xx) = ‖τC
xx − τxx,ref‖2/‖τ(1,1,1)

xx − τxx,ref‖2. Again, we observe that the algorithm converges to the refer-
ence solution. Note here that the error does not decrease monotonically. Furthermore, the approximation
space between two iteration steps is unaltered if the admissibility condition from Section 3.2 is violated
since the index set is not extended then.

Finally, in Table 5 we compare the complexity of different sparse and full grid solution spaces for a spec-
ified accuracy. Again, the sparse grid solution spaces lead to considerable reductions in the computational
cost. For instance, the spaces V8,6,5 and VI (38) both have a comparable relative error of about 0.02 but the
adaptive sparse grid space VI (38) requires about 1/5 of grid point operations. This factor of five in the cost
reduction is valid for a sequence of simulations, cf. Fig. 10, in which only sub-grid solutions with non-zero
weight have to be determined. In the first run for creating the index set, 51 subgrids have to determined to
build VI (38) . Since most of these additional sub-grids have a coarse spatial resolution, the cost of the sparse
approximation space moderately increases from 4235 to 7149 then. In the end, the cost of the first run to
generate I (38) and the corresponding space VI (38) is reduced by factor of three compared to V8,6,5.

The cost reductions that we achieve in this second example are slightly lower than the factor of ten that
was achieved in Section 4.1. We believe that this reduction in efficiency is due to the full grid that is built
between the spring model and the temporal grid in the initial stochastic dimension. On the other hand,
this result underlines the robustness of the algorithm which reduces to a classical full grid if necessary. In
all situations, the algorithm obtains accurate results.
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5. Conclusions

Multiscale simulations of dilute polymeric fluids were conducted with full and sparse grid numerical
approaches. As a sparse grid approach, we employed the combination technique such that our existing full
grid solver could be reused. Since a balancing of the different problem dimensions was not a priori known,
we employed a dimension-adaptive algorithm that iteratively constructed a sparse approximation space.

For a non-Newtonian Couette flow with a Hookean spring model, our approach was able to reduce the
computational complexity of the simulations by one order of magnitude. Furthermore, we also presented
numerical results for a multi-segment FENE chain. Here, the computational effort was reduced by a factor
of five. Thus, both results clearly show the potential of the dimension-adaptive combination technique. It
is planned to employ our sparse grid approach for flow problems with three-dimensional flow spaces, e.g.
for three-dimensional contraction flows as in Griebel and Rüttgers [16]. The three-dimensional multiscale
simulations necessarily have to be performed in parallel. Since the combination technique determines the
partial solutions independently, this adds a second level of parallelism with an ideal scaling behavior that
can be made use of. Therefore, we expect even higher cost reductions in the case of three-dimensional flow
spaces.

Interestingly, the dimension-adaptive algorithm itself does not lead to a noticeable increase in the com-
putational effort when a sequence of similar flow problems is considered since the constructed index sets
can be reused for modified flow conditions. We verified this in Section 4.1 where Couette flows with
modified Deborah numbers were simulated. This property is important for applications in the context of
uncertainty quantification in CFD where a large number of problems is considered with slightly modified
flow conditions.

Finally, we note again that our sparse grid approach balances different problem dimensions. More
precisely, it considers not only different discretization dimensions but also takes a further spring modeling
dimension, the number of spring segments, into account. This is a novel application for the combination
technique. We assume that this idea can be generally employed for a range of other problems. A high cost
reduction can be expected if the cost increases exponentially with the modeling dimension as, for instance,
in molecular dynamics of correlated systems where many-body potentials are considered.
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