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Abstract

The Hermite-Birkhoff interpolation problem of a function given on arbitrarily distributed points on the sphere and

other manifolds is considered. Each proposed interpolant is expressed as a linear combination of basis functions, the

combination coefficients being incomplete Taylor expansions of the interpolated function at the interpolation points.

The basis functions depend on the geodesic distance, are orthonormal with respect to the point-evaluation functionals,

and have all derivatives equal zero up to a certain order at the interpolation points. A remarkable feature of such

interpolants, which belong to the class of partition of unity methods, is that their construction does not require solving

linear systems. Numerical tests are given to show the interpolation performance.
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1. Introduction

In previous papers we concerned with Hermite-Birkhoff interpolation of a function given on arbitrarily distributed

points on Euclidean spaces [4] (see also e.g. [18, 19]), and with Lagrange and Hermite-Birkhoff interpolation of

a function given on arbitrarily distributed points on Banach spaces [3, 5]. In particular, in [4] we considered data

on a general domain Ω Ă Rd`1, d ě 1, without using any topological information about Ω. Nevertheless many

applications provide us with additional information on the underlying domain. For example, problems coming from

geology, geophysics, metereology, oceanography, satellite-based techniques, etc., often relate to the entire earth or a

large part of it, so that the unit sphere would be an appropriate model and the additional information would lead to a

better approximant. The considered data typically represent some physical phenomena, such as temperature, rainfall,

pressure, and gravitational forces, measured at various points on the surface of the earth, possibly at different times.

The sphere is a particularly interesting example of a connected compact smooth manifold, even because consid-

erations developed about interpolation on the sphere can be extended to other manifolds. We think convenient to

discuss, as long as possible, a general framework, though in practice the most interesting manifolds are smooth two-

dimensional manifolds, i.e. surfaces in R3. In fact, a problem that occurs frequently in science and engineering is

to recover from a surface in three dimensions a real valued function that interpolates to a given set of data (see e.g.

[37, 56]).

The generalized Hermite interpolations (or Hermite-Birkhoff interpolation, see e.g. [27], Chapter 19) on scattered

data by means of basis functions depending on the distance have been developed since 1992, when appeared the

pioneering paper by Wu [55]. Since then, the interest in this topic seems to have increased significantly (see e.g. the

pertinent chapters in [26, 27, 53]). A number of authors have also considered the Hermite interpolation setting on

scattered data on the sphere (see e.g. [30, 49, 25, 44, 38]) or even general Riemannian manifolds [23, 43].

˚Corresponding author.

Email addresses: giampietro.allasia@unito.it (Giampietro Allasia), roberto.cavoretto@unito.it (Roberto Cavoretto),

alessandra.derossi@unito.it (Alessandra De Rossi)

G. Allasia, R. Cavoretto, A. De Rossi

http://arxiv.org/abs/1705.01032v1


The point of view we follow in this work is deeply different from that in the just quoted papers. The matter is that

we do not consider a radial basis function method but a cardinal (radial) basis function method. In this way, to get

the Hermite-Birkhoff interpolant we have not to solve a system of linear equations. In fact, the interpolant is directly

expressed as a linear combination of basis functions, which depend on the geodesic distance, are orthonormal with

respect to the point-evaluation functionals, and have all derivatives equal zero up to a certain order at the interpolation

points. The coefficients of the linear combination are incomplete Taylor expansions of the interpolated function at

the interpolation points. On the other hand, our interpolation method is strictly linked up with papers which discuss

Lagrange interpolation by partition of unity methods, namely Shepard-like methods, on the sphere (see, in particular,

[9, 10, 11, 12, 20, 21]). Our method also shows an interesting analogy with articles by Franssens [29, 28].

This paper is organized as follows. In Section 2 explicit expressions of Hermite-Birkhoff interpolants on manifolds

are given. Since these definitions are based on a suitable class of cardinal basis functions, Section 3 describes a general

way to construct such basis functions, which depend on geodesic distances on Riemannian manifolds. Moreover,

upper bounds for errors in terms of the fill distance are showed. In Section 4 some basic considerations are pointed

out on geometric objects and analytic tools to deal with. Beside sketching the general background, the main goal of

these considerations is to motivate the strategies to be adopted in numerical computation. Sections 5 and 6 discuss

the application of the proposed interpolants to numerical recovering of functions only known on scattered data on the

sphere and other Riemannian manifolds. The reported numerical tests are restricted to surfaces, which are the most

interesting and handy cases, but the adopted point of view is more general. Considering the sphere the well-known

expression of the geodesic distance is available, but for other manifolds it is necessary to consider approximations of

their geodesic distances.

2. Hermite-Birkhoff Interpolation on Manifolds

Now, we define Hermite-Birkhoff interpolation on Riemannian manifolds, in particular on the higher-dimensional

sphere. The manifolds we consider are supposed to enjoy suitable properties, as specified in the following (see

Sections 4–6 for geometric details).

Definition 2.1. Let us consider a m-dimensional Riemannian manifoldM Ă Rd`1, d ě 2, an open set U “ tu ”
pu1, . . . , ud`1q P Rd`1u Ă M, a function ϕ : U Ñ Rd which maps U homeomorphically to the open set V “ tv ”
pv1, . . . , vmq P R

mu :“ ϕpUq so that v “ ϕpuq :“ vpuq and u “ ϕ´1pvq :“ upvq. Let X “ tz1, . . . , znu Ă U be a set

of distinct points, possibly scattered, with associated finite sets ∆1, . . . ,∆n Ă Nm
0

. The Hermite-Birkhoff interpolation

problem from U to R consists in finding a function H : U Ñ R which satisfies the interpolation conditions

DβHpziq :“
B|β|Hpziq

Bv
β1

1
¨ ¨ ¨ Bv

βm

m

“ fiβ, β P ∆i, i “ 1, . . . , n, (1)

where β “ pβ1, . . . , βmq, |β| “ β1 ` ¨ ¨ ¨ ` βm, and the fiβ P R are given values to be interpolated. It is assumed that

H P CkpUq, where k “ maxt|β| : β P ∆i, for some i, 1 ď i ď nu.

In the following, we will also think that the fiβ are values assumed by an underlying function f : U Ñ R, f P CkpUq,

so that the conditions (1) take the form

DβHpziq “ Dβ f pziq, β P ∆i, i “ 1, . . . , n. (2)

In general, the values of f and of some its derivatives are known only at the points of X.

A constructive solution to the interpolation problem (1) can be given by introducing a suitable class of cardinal

basis functions, which can be defined as follows.

Definition 2.2. Given a set of distinct points X “ tzi, 1 ď i ď nu, arbitrarily distributed in the open set U Ă M,

the functions g j : U Ñ R, 1 ď j ď n, are cardinal basis functions with respect to X if they satisfy for all u P U the

conditions

g j P CkpUq, g jpuq ě 0,

n
ÿ

j“1

g jpuq “ 1, g jpziq “ δ ji,

2



where δ ji is the Kronecker delta, and also satisfy the additional property

Dβg jpziq “ 0, β P ∆i, |β| ‰ 0, i “ 1, . . . , n. (3)

It is clear that an interpolant based on these weights must be considered as a partition of unity method.

It can be easily checked that the following result holds.

Property 2.3. The interpolation conditions (2) are satisfied by the interpolant

Hpuq “
n

ÿ

i“1

T
`

u; f , zi,∆iq gipuq, (4)

where

T
`

u; f , zi,∆iq :“
ÿ

βP∆i

Dβ f pziq

β1! ¨ ¨ ¨ βm!

`

v ´ vpziq
˘β

“
ÿ

βP∆i

Dβ f pziq

β1! ¨ ¨ ¨ βm!

`

v1 ´ v1pziq
˘β1 ¨ ¨ ¨

`

vm ´ vmpziq
˘βm

,

is formally an incomplete Taylor expansion of f at zi, in the sense that it only includes the partial derivatives whose

orders belong to ∆i. The interpolant (4) can also be expressed in the form

Hpuq “
n

ÿ

i“1

ÿ

βP∆i

Dβ f pziq giβpuq, (5)

where

giβpuq :“

`

v ´ vpziq
˘β

β1! ¨ ¨ ¨ βm!
gipuq “

`

v1 ´ v1pziq
˘β1 ¨ ¨ ¨

`

vm ´ vmpziq
˘βm

β1! ¨ ¨ ¨ βm!
gipuq, (6)

with β P ∆i, 1 ď i ď n.

The formula (5) highlights that the interpolant is essentially constructed by using the giβ as basis functions.

The interpolant (4) enjoys the usual properties of cardinal basis interpolants.

Property 2.4. There hold the following inequalities:

aq }Hpuq} ď max
i

}T
`

u; f , zi,∆iq},

bq } f puq ´ Hpuq} ď
n

ÿ

i“1

gipuq} f puq ´ T
`

u; f , zi,∆iq} ď max
i

} f puq ´ T
`

u; f , zi,∆iq},

where the i-th term in the sum may be interpreted as the local error at the point zi.

3. Cardinal Basis Functions on Manifolds

A classical way to construct cardinal basis functions defined on Rd`1 is Cheney’s method (see [15] and [16], pp.

67–68), which can be used for manifolds as well, if we adopt a suitable distance.

Theorem 3.1. Let us consider U Ă M as in Definition 2.1 and let α : U ˆ U Ñ R
`
0

be a continuous and bounded

function, such that αpu, ziq ą 0 for all u P U, u ‰ zi, and αpzi, ziq “ 0 for all zi P X. Moreover, let each αpu, ziq be

k-times continuously differentiable on U such that

rDβαpu, ziqsu“zi
“ 0, i “ 1, . . . , n, 0 ă |β| ď k.

3



The corresponding cardinal basis functions

gipuq “

n
ź

j“1, j‰i

αpu, z jq

n
ÿ

k“1

n
ź

j“1, j‰k

αpu, z jq

, i “ 1, . . . , n, (7)

are continuous and satisfy

Dβgipz jq “ 0, 0 ă |β| ď k, i, j “ 1, . . . , n. (8)

Proof: This result is essentially the d´dimensional case of the main theorem in [4]. ˝

The gi in (7) can also be represented in the barycentric form

gipuq “
1{αpu, ziq

n
ÿ

k“1

1{αpu, zkq

, gipziq “ 1, i “ 1, . . . , n,

which is more convenient from a computational point of view [2].

A natural choice is defining α using the distance between points. Since we are considering points on the manifold

M, we take the geodesic distance dg (see Definition 4.4 below) and define α in the general form

αpu,wq “ ϑpdgpu,wqq, (9)

which obviously must satisfy the assumptions of Theorem 3.1. In particular, in (9) we may consider the choice

αpu,wq “ pdgpu,wqqµ, µ P R
`, µ ě k, u,w P U, (10)

which ensures both the vanishing of the derivatives at the nodes and the regularity assumptions, and among the

possible choices is the most direct. Other interesting choices are (see e.g. [9]):

αγpu,wq “
exppγpdgpu,wqqµq

pdgpu,wqqµ
, γ ą 0, µ ě k,

αδpx, yq “ exppδdgpu,wqµq, δ ě 0, µ ě k,

both of them being rapidly decreasing.

As a result of the choice (10), we obtain the cardinal basis functions

gipuq “
pdgpu, ziqq´µ

řn
k“1pdpu, zkqq´µ

, i “ i, . . . , n, (11)

but, for computational reasons, in many cases it may be preferable to use a localized version of the cardinal basis

functions (11), that is,

g̃ipuq “
τipuqpdgpu, ziqq´µ

řn
k“1 τkpuqpdgpu, zkqq´µ

, (12)

where τi : U Ñ R
`
0
, τi P CkpUq, such that

τipuq “

#

ą 0, for u : dgpu, ziq ă δ,

“ 0, for u : dgpu, ziq ě δ,
(13)

and δ ą 0 is a suitably chosen value. Hence, each function g̃i vanishes outside the neighborhood of zi such that

dgpu, ziq ě δ, u P U. It can be easily proved that the functions g̃i, i “ 1, . . . , n, are cardinal and enjoy the vanishing

property on derivatives (3). The localization can be obtained by taking, for instance,

τipuq “
´

1 ´
dgpu, ziq

δ

¯k`1

`
, u P U, i “ 1, . . . , n.
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A simpler, but a little naive, choice is

τipuq “

#

1, for u : dgpu, ziq ă δ,

0, for u : dgpu, ziq ě δ.

For the Hermite-Birkhoff interpolant with cardinal basis functions (12)

H̃puq “
n

ÿ

i“1

T
`

u; f , zi,∆iq g̃ipuq, (14)

we can give more significant error estimates than for the basic case (4). Let q P N be defined such that each Taylor-

type expansion T pu; f , z j,∆ jq is a complete Taylor expansion up to order q, plus other terms of higher degree. For any

f : U Ñ R with f P CqpUq and for any u P U, we have, since the cardinal basis functions g̃i are a partition of unity,

| f puq ´ H̃puq| “

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

f puq g̃ipuq ´
n

ÿ

i“1

T pu; f , zi,∆iq g̃ipuq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

“

f puq ´ T pu; f , zi,∆iq
‰

g̃ipuq

ˇ

ˇ

ˇ

ˇ

ˇ

ď
n

ÿ

i“1

ˇ

ˇ f puq ´ T pu; f , zi,∆iq
ˇ

ˇ g̃ipuq, (15)

each g̃i being non-zero only inside the ball of radius δ centered at zi. Now, since each T pu; f , zi,∆iq is a Taylor

expansion complete up to order q, we can use the estimate

| f puq ´ T pu; f , zi,∆iq| ď Ci}v ´ vpziq}q`1, (16)

where Ci P R` is a suitable constant and } ¨ } is the Euclidean norm. Since }v ´ vpziq} is less than or equal to the

geodesic distance dgpu, ziq, it follows

| f puq ´ T pu; f , zi,∆iq| ď Cid
q`1
g pu, ziq. (17)

Inserting (17) in (15) and exploiting again the partition of unity property, since |dgpu, ziq| ă δ, we get

| f puq ´ H̃puq| ď
n

ÿ

i“1

Cid
q`1
g pu, ziqg̃ipuq ď δq`1

n
ÿ

i“1

Cig̃ipuq ď Cδq`1,

with C “ maxi Ci. Moreover, if we set the localization radius δ “ KhU,X, where hU,X is the so-called fill distance, that

is,

hU,X :“ sup
uPU

inf
ziPX

dgpu, ziq. (18)

and K ě 1, we obtain the estimate

| f puq ´ H̃puq| ď CKh
q`1

U,X
. (19)

4. Some Facts from Geometry

Considering the Hermite-Birkhoff interpolation problem on the sphere Sd and Riemannian manifolds in Rd`1,

some basic considerations are to be pointed out on the geometric objects and analytic tools to deal with. In fact,

besides giving the general background, they affect deeply numerical computation strategies.

Let us consider first the interpolation problem on the sphere. It is well known that the spherical earth model is

navigated using flat maps, collected in an atlas, and no single flat map can represent the entire earth. Similarly, the

sphere S
d Ă R

d`1 can be described using an atlas of charts, each chart mapping part of the sphere to a subset of

Rd. Precisely, for every u P Sd there exist an open set U Ă Sd with u P U and a mapping ϕ : U Ñ Rd that maps

U homeomorphically to the open set V :“ ϕpUq. The pair pU, ϕq is a chart of U and a collection A “ tpUα, ϕαqu
5



of charts, which covers the sphere, is an atlas. Charts in an atlas may overlap and a single point of the sphere may

be represented in different charts. Given two overlaping charts pUα, ϕαq and pUβ, ϕβq, a transition function, that is,

a coordinate transformation, can be defined which goes from ϕαpUα X Uβq Ă Rd to the sphere and then back to

ϕβpUα X Uβq Ă Rd. A chart pU, ϕq is of class Ck if ϕ´1 P CkpϕpUqq, whereas a Ck-atlas consists of Ck-charts and

Ck-transition functions.

Through the chart pU, ϕq the neighborhood U inherits the coordinates given on the Euclidean space Rd and the

homeomorphism ϕ leads us to describe U as a locally Euclidean space. In fact, considering ϕ´1 : V Ñ U we have

that the coordinates u1, . . . , ud`1 of a point u P U can be given by d ` 1 parametric equations

u1 “ u1pv1, . . . , vdq, . . . , ud`1 “ ud`1pv1, . . . , vdq, (20)

where the parameters v1, . . . , vd identify the point v “ ϕpuq P V Ă R
d. Then, the map ϕ´1 can be written in terms of

its components as ϕ´1pv1, . . . , vdq “
`

u1pv1, . . . , vdq, . . . , ud`1pv1, . . . , vdq
˘

.

An atlas is not unique as the sphere can be covered in multiple ways using different combinations of charts.

To describe a possible atlas for the sphere S d, we consider for any u˚ P S d the open neighborhood of u˚ in S d

given by U`
u˚ “ tu P S d : pu, u˚q ą 0u, where p¨, ¨q is the usual inner product in Rd`1. Choosing the coordinate

system in Rd`1 so that the vector u˚ has, to say, components p0, 0, . . . , 1q we have that the neighborhood U`
u˚ can be

homeomorphically projected on an open set in Rd. Similarly, we may consider the neighborhood U´
u˚ “ tu P S d :

pu, u˚q ă 0u. Since S d can be thought as the union of a suitable number of charts, we get an atlas and the considered

parametrization holds. In particular, considering the two-dimensional sphere S2 an atlas of six charts is obtained

which covers the entire sphere. Otherwise for the sphere S2, as well as for Sd, it may be sometimes convenient to use

spherical coordinates (see e.g. [25, 43]). Choosing one or another atlas has significant effects, especially for actual

applications and their numerical treatment.

Referring to a real function ψ defined on the sphere Sd, we say that ψ is k-times differentiable on Sd, or ψ P CkpSdq,

if ψ ˝ ϕ´1 P CkpϕpUqq for every chart pU, ϕq of Sd. The function ψ : Sd Ñ R inherits the local coordinates v1, . . . , vd

of the chart U, since ψpuq “ ψ ˝ ϕ´1pvq.

The considerations on the sphere, just seen, can be extended to other manifolds. It is useful to recall a formal

definition of a topological manifold (see e.g. [53, 7]).

Definition 4.1. A setM Ă Rd`1 is called a topological manifold of dimension m, if it is a Hausdorff space with a

countable basis of open sets such that for every u P M there exist an open set U Ă M with u P U and a mapping

ϕ : U Ñ Rm that maps U homeomorphically to the open set V :“ ϕpUq Ă Rm. The pair pU, ϕq is called a coordinate

neighborhood of u or a chart and for every u P U the vector ϕpuq “ pv1puq, . . . , vmpuqq P Rm represents the local

coordinates of u in V. A chart is of class Ck if ϕ´1 P CkpϕpUqq. A collectionA “ tpUα, ϕαqu of Ck´charts is called a

Ck´atlas ofM if the sets Uα coverM and, moreover, for any Uα,Uβ with Uα X Uβ ‰ H the transition maps ϕβ ˝ϕ´1
α

and ϕα˝ϕ´1
β

are in Ck on ϕαpUαXUβq and ϕβpUαXUβq, respectively. Finally, a manifoldM is called a Ck´manifold

if it possesses a Ck´atlas.

The smoothness of a function f : M Ñ R is defined by the smoothness of f ˝ ϕ´1 with a chart pU, ϕq, as it is

pointed out in the following:

Definition 4.2. We say that f : M Ñ R is k-times differentiable onM or f P CkpMq provided that for every chart

pU, ϕq ofM the composition

f ˝ ϕ´1 : ϕpUq Ñ R

is k-times differentiable.

It is important to realize that the definition of differentiability of a real-valued function on a Ck-manifold does not

depend on the choice of the chart.

To introduce on a Ck-manifoldM Ă Rd`1, k ě 1, the notions of length and distance, each tangent space must

be equipped with an inner product, so that it varies smoothly from point to point. The tangent space TuM for a point

u P M is the space formed by the tangent vectors to all the curves in M passing through u. Here, a vector τ is a

6



tangent vector in u PM if there exists a differentiable curve γptq onM, depending on a parameter t with ´ε ď t ď ε

for some ε ą 0, such that γp0q “ u and γ1p0q “ τ, where

γ1p0q :“
d

dt
ϕ ˝ γptq

ˇ

ˇ

ˇ

t“0
.

It turns out that TupMq is a m´dimensional vector suspace of Rd`1 and that a basis is given by

Bϕ´1

Bv1

pϕpuqq, . . . ,
Bϕ´1

Bvm

pϕpuqq. (21)

It is interesting to note that the tangent space can be thought as the best linear approximation toM in u.

More explicity, let us consider a chart pU, ϕq of a manifoldM with parametric equations

u1 “ u1pv1, . . . , vmq, . . . , ud`1 “ ud`1pv1, . . . , vmq,

and a curve γ : r´ǫ,`ǫs ÑM on U whose equations in ϕpUq are

v1 “ v1ptq, . . . , vm “ vmptq.

Substituting the latter equations into those of the chart, we get the equations of the curve γptq on U as a function of t,

that is, γptq “ upvptqq. Then, differentiating we obtain the tangent vector to the curve at the point u “ γp0q

γ1p0q “
Bu

Bv1

dv1

dt
` . . .`

Bu

Bvm

dvm

dt

ˇ

ˇ

ˇ

t“0
(22)

and the basis vectors are

Bu

Bv1

“
´Bu1

Bv1

, . . . ,
Bud`1

Bv1

¯

, . . . ,
Bu

Bvm

“
´ Bu1

Bvm

, . . . ,
Bud`1

Bvm

¯

,

namely (21).

To operationalize the Hermite-Birkhoff interpolation technique we start considering the geometric problem involv-

ing the computation of lengths of curves lying on a surfaceM Ă R3. The key idea is essentially based on replacing

an infinitesimal element of a smooth curve by the corresponding element of its tangent plane. As a significant ex-

ample, which concerns the sphere and other major surfaces, let us consider a surfaceM, a curve γ on it and a point

u “ pu1pv1, v2q, u2pv1, v2q, u3pv1, v2qq on γ. Taking the arclength s of the curve as a parameter, the vector du{ds is of

unit length and we have from (22) for m “ 2

ds2 “
´ Bu

Bv1

,
Bu

Bv1

¯

dv2
1 ` 2

´ Bu

Bv1

,
Bu

Bv2

¯

dv1dv2 `
´ Bu

Bv2

,
Bu

Bv2

¯

dv2
2,

where p¨, ¨q is the scalar product. Making use of the notations

g11 “
´ Bu

Bv1

,
Bu

Bv1

¯

, g12 “ g21 “
´ Bu

Bv1

,
Bu

Bv2

¯

, g22 “
´ Bu

Bv2

,
Bu

Bv2

¯

,

we obtain the first fundamental quadratic form of the surface

ds2 “ g11dv2
1 ` 2g12dv1dv2 ` g22dv2

2.

The components gi j, pi, j “ 1, 2q, of the metric form the entries of a 2 ˆ 2 symmetric matrix, namely ds2 is a positive

quadratic form related to this matrix. The first fundamental quadratic form of a surface provides the expression for the

length ds of an infinitesimal arc and the length of a finite curve lying on the surface is obtained from it by integration.

More precisely, if a curve on the surface is given by the equation γptq “ upvptqq, t1 ď t ď t2, its length is

Lpγ; t1, t2q “

ż t2

t1

”

g11

´

dv1

dt

¯2

` 2g12

dv1

dt

dv2

dt
` g22

´

dv2

dt

¯2ı1{2

dt.

To handle this idea in a more general situation, we recall the concept of Riemannian manifold.

7



Definition 4.3. A Ck-manifold is called a Ck´Riemannian manifold if for every u PM there exists a positive definite

inner product gu : TupMq ˆ TupMq Ñ R such that for every chart pU, ϕq the m2 functions

g
ϕ

i j
puq :“ gu

´ Bϕ´1

Bvi

pϕpuqq,
Bϕ´1

Bv j

pϕpuqq
¯

, i, j “ 1, . . . ,m, (23)

are in CkpVq with V “ ϕpUq. The family of g
ϕ

i j
puq, assuming compatibility among different charts, is called a

Riemannian metric on M, the g
ϕ

i j
puq are the component of the metric and form the entries of a m ˆ m symmetric

matrix. The first fundamental quadratic form associated to the metric is

ds2 “
m

ÿ

i, j“1

g
ϕ

i j
puqdvidv j.

All differentiable manifolds (of constant dimension) can be given the structure of a Riemannian manifolds. The

Euclidean space itself carries a natural structure of Riemannian manifold, where the tangent spaces are naturally

identified with the Euclidean space itself and the scalar product of the space is the standard scalar product. Precisely,

with Bu{Bvi identified with the i-th standard basis vector ei “ p0, . . . , 1, . . . , 0q, the (canonical) Euclidean metric over

an open subset U Ă Rd`1 is defined by gcan
i j

“ pei, e jq “ δi j. Many familiar curves and surfaces, including for

example all d´spheres, are specified as subspaces of a Euclidean space and inherit a metric from their imbedding.

Finally, we use the Riemannian metric to define the length of a curve onM.

Definition 4.4. Suppose thatM is a connected Ck´Riemannian manifold. Let u,w P M be two distinct points and

let γ : ra, bs ÑM be a piecewise C1 curve that connects these points, i.e., γpaq “ u, γpbq “ w. Then the length of γ

is expressible in one of the equivalent forms

Lpγ; a, bq :“

ż b

a

}γ1ptq}dt “

ż b

a

”

gγptq

´

dγ

dt
ptq,

dγ

dt
ptq

¯ı1{2

dt

“

ż b

a

´
m

ÿ

i, j“1

g
ϕ

i j
puq

dvi

dt

dv j

dt

¯1{2

dt, (24)

where the first integrand represents the length of an infinitesimal arc in the Riemannian metric and } ¨ } denotes the

norm induced by the inner product on the tangent space. Supposing M to be compact, we set dgpu,wq to be the

infimum over the length of all such curves connecting u and w. The shortest of such curves is called the shortest path

for u and w, and dgpu,wq is their geodesic or Riemannian distance.

IfM “ Rm and if gu is the canonical inner product onRm then our definition of the length of a curve in the Riemannian

metric coincides with the classical definition. In this case, dgpu,wq “ }u ´ w}2, i.e. the shortest curve between two

points in Rm is the straight line between them. On the sphere, our definition of geodesic coincides with the old one,

since both denote the length of the shorter portion of the great circle connecting the two points.

5. Numerical Results on the Sphere

In this section we discuss numerical calculation of Hermite-Birkhoff interpolation on the sphere. Referring to the

framework in Sections 2 and 3, we develop our considerations on Sd, d ě 2, as long as possible.

5.1. Computation of the Geodesic Distance on the Sphere

The d´dimensional sphere represents a case where the concept of atlas is essential. As described in Section 4,

suitable charts are given for Sd by the function ϕ`
i

pu1, . . . , ud`1q “ pv1, . . . , vi´1, vi`1, . . . , vdq, which projects the

subset of Sd with ui ą 0 in the subspace Rd, and by the similar function ϕ´
i

with ui ă 0, being i “ 1, . . . , d ` 1. The

family of all these charts forms an atlas.
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Referring to Definition 4.4, the geodesic distance of any two points u and w of the unit sphere Sd, that is, the

sphere of unit radius and centered at the origin, is

dgpu,wq “ arccospu,wq.

The geodesic distance dgpu,wq is always expressible in terms of the Euclidean distance dEpu,wq in Rd`1. In fact, we

have

dgpu,wq “ 2 arcsin
dEpu,wq

2
,

and, conversely,

dEpu,wq “
b

2 ´ 2pu,wq “ 2 sin
dgpu,wq

2
.

It follows from the asymptotic expansion of arcsin x, x P R,

dgpu,wq “ dEpu,wq `
1

24
d 3

Epu,wq ` Opd 5
Epu,wqq,

that is, the difference between dgpu,wq and dEpu,wq may be very small if u and w are sufficiently close. Therefore,

using our local interpolation method, the Euclidean distance may be considered as a good approximation of the

geodesic distance.

In general, taking a radial function ϕpdEpu,wqq we obtain a zonal basis function ψpdgpu,wqq with u,w P Sd by

setting

ϕpdEpu,wqq “ ϕp
b

2 ´ 2pu,wqq “ ϕp
b

2 ´ 2 cospdgpu,wqq “ ψpdgpu,wqq.

In particular, referring to the construction of cardinal basis functions in Section 3, we remark that the expressions of

α in terms of Euclidean and geodesic distances are closely related, because from (9) we have for suitable functions ϑ

and η

αpu,wq “ ϑpdgpu,wqq “ ϑ

ˆ

2 arcsin
dEpu,wq

2

˙

“ ηpdEpu,wqq, u,w P U. (25)

Hence, known expressions of α in terms of the Euclidean distance can be used as well to get expressions of α in terms

of the geodesic distance (see e.g. [31]).

5.2. Computation of the Interpolant on the Sphere

Implementing the interpolation formula H : U Ă Sd Ñ R in (4), a problem is to optimize the nearest neighbour

searching procedure for spherical data, that is finding in a convenient way the set of points of X closest to any

point u P U. It is possible to use a cell-technique, which consists in a space decomposition into hypercubic cells

by overlaying a spatial grid on the sphere. The procedure, which is based on the optimized Renka’s algorithm for

trivariate interpolation [48, 13, 14], has been successfully tested for S2 [20]. Referring only to S2, another procedure,

as well successfully tested, makes a decomposition of U ĂM in strips or spherical zones [6, 10].

Generally speaking, it is convenient to use the localized version (12) of the cardinal basis functions, so that more

distant points have less influence. Alternatively, one could consider exponential-type weights, as in (11), which

are strongly decaying as distance increases (see e.g. [8], p. 46). The drawback is that at least one parameter is

necessary for the localization and this implies the requirement of determining its optimal value. The choice of an

appropriate value for the localization parameter δ in (13) determines the efficiency of the local scheme and is a

nontrivial problem. In practice, the localization can be obtained using for interpolation only the nodes that belong to

a convenient neighborhood of the point u considered, i.e. the nodes zk whose distance from u is smaller than δ.

To test the performance of our interpolation method, we must consider in general a uniform distribution of nodes

on the sphere. To generate uniformly (or quasi-uniformly) distributed random (or pseudo-random) points on the high-

dimensional unit sphere one can use, in principle, anyone of the suitable algorithms proposed in the literature, but they

are not quite equivalent and only some of them work for d ě 3. The most efficient and fast algorithm is based on the

fact that the normal distribution function for a point u P Rd`1 has a density that depends only on the distance of the

point from the origin, so that the points of Sd have the uniform distribution (see e.g. [33, 40, 42, 51, 52]). Since our
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interpolation algorithm works locally and on suitable charts, we experimented another way to find interpolation points

on the unit sphere S2 Ă R
3 (and in the following on manifolds), considering n Halton points [54] on the spherical cap

of S2 for z ą 0.5. Interpolation errors are instead evaluated on a nearly uniform distribution of neval “ 50 spiral points

belonging to the considered chart (see e.g. [50, 10]). An example of interpolation and evaluation points defined on

the chart of S2 is shown in Figure 1.

Figure 1: Example of interpolation (blue dot) and evaluation (red star) points on the sphere.

Therefore, to investigate accuracy of the Hermite-Birkhoff interpolant, we compute the Maximum Absolute Error

(MAE) and the Root Mean Square Error (RMSE) given by

MAE “ max
1ďiďneval

| f puiq ´ H̃puiq|, RMSE “

g

f

f

e

1

neval

neval
ÿ

i“1

| f puiq ´ H̃puiq|2. (26)

In order to get an idea of the distribution of points in the set X Ă U (see Definition 2.1) and, in particular, of their

uniformity and density, we consider two common indicators, that is, the separation distance

qU,X :“
1

2
min
i‰ j

dgpzi, z jq, (27)

and the fill distance (18). These parameters are crucial in order to investigate the accuracy of interpolation methods.

Considering a function f to be recovered, it is possible, from a theoretical point of view, to take in account several

combinations of function values and derivatives of f and, moreover, this combinations may change from point to

point of the set X. In fact, the interpolant Hpuq in (4) is such as to offer a complete flexibility. On the other hand,

in practice, the most interesting situation is when the values of f and its first (and possibly second) derivatives are

known at each point of X. Hence, our numerical tests are restricted to this case and also to S2, as it is usually done

using other interpolation methods, achieving the advantage of permitting a comparison among different schemes (see

e.g. [25, 26]).

The test functions to be interpolated are taken from the restriction to S2 of the following trivariate functions

f1px, y, zq “
1

10
rexp x ` 2 exppy ` zqs, f2px, y, zq “ sin x sin y sin z.

Since the performance of the interpolant does not change significantly using other test functions (see e.g. [31, 47, 24]),

for shortness we here report only the numerical results obtained considering f1 and f2. In Tables 1–2 we report the

errors obtained for the interpolant (14) using a complete Taylor expansion up to order zero (T0), one (T1) and two

10



(T2). From these tables we can observe the significant improvement (in terms of accuracy) of the interpolant (14)

when making use of first and second derivatives in the Taylor expansion. Finally, to give an idea, in Table 3 we show

the results obtained in case of lacunary data, that is when a half of the first and second derivatives respectively are

missing. This study points out that the interpolation scheme results in an unavoidable loss of accuracy due to the lack

of information, but in any case the method can be applicable.

T0 T1 T2

n MAE RMSE MAE RMSE MAE RMSE

500 2.87E ´ 2 6.56E ´ 3 2.96E ´ 3 1.12E ´ 3 1.89E ´ 4 2.38E ´ 5

1000 2.07E ´ 2 4.09E ´ 3 1.45E ´ 3 5.44E ´ 4 5.87E ´ 5 6.83E ´ 6

2000 1.14E ´ 2 2.83E ´ 3 5.88E ´ 4 2.67E ´ 4 1.73E ´ 5 2.24E ´ 6

4000 8.41E ´ 3 1.94E ´ 3 3.43E ´ 4 1.34E ´ 4 6.14E ´ 6 7.27E ´ 7

8000 6.30E ´ 3 1.35E ´ 3 1.83E ´ 4 6.65E ´ 5 1.98E ´ 6 2.25E ´ 7

16000 4.83E ´ 3 9.08E ´ 4 7.70E ´ 5 3.28E ´ 5 5.66E ´ 7 7.66E ´ 8

Table 1: MAEs and RMSEs computed on the sphere for f1.

T0 T1 T2

n MAE RMSE MAE RMSE MAE RMSE

500 1.44E ´ 2 3.72E ´ 3 4.98E ´ 3 1.30E ´ 3 2.00E ´ 4 3.29E ´ 5

1000 8.47E ´ 3 2.37E ´ 3 2.90E ´ 3 6.36E ´ 4 4.09E ´ 5 1.08E ´ 5

2000 6.78E ´ 3 1.70E ´ 3 1.22E ´ 3 3.13E ´ 4 1.72E ´ 5 3.76E ´ 6

4000 5.16E ´ 3 1.20E ´ 3 6.70E ´ 4 1.55E ´ 4 6.35E ´ 6 1.28E ´ 6

8000 3.36E ´ 3 8.70E ´ 4 2.52E ´ 4 7.66E ´ 5 2.16E ´ 6 4.60E ´ 7

16000 3.35E ´ 3 6.20E ´ 4 1.15E ´ 4 3.78E ´ 5 5.48E ´ 7 1.57E ´ 7

Table 2: MAEs and RMSEs computed on the sphere for f2.

The considered interpolation scheme for the sphere is suitable for parallel implementation (see [2, 17, 21]). In

the implementation of the parallel algorithm for a distributed memory machine, the data are assigned to p processors

by breaking the set X into subsets Xk, k “ 1, . . . , p. In this way each processor proceeds to solve the interpolation

problem on a subset Xk. The parallel algorithm consists of three steps: a) partitioning and data distribution, so that

each subset has an approximately equal number of points, b) local interpolation solving, after having determined the

radius of influence for each point of the considered subset, c) data collection and evaluation phase, where each slave

processor sends its partial results to the master processor. In the ideal case, when the algorithm is completely and

efficiently parallelizable, the speed-up must be equal to the number of processors involved.

6. Numerical Results on Riemannian Manifolds

Moving from the considerations on the sphere to those on Riemannian manifolds in general, nothing changes

for what concerns the structure of the interpolant (14) and of the cardinal basis functions to be used. Instead, what

changes dramatically is the problem of calculating the geodesic distance between points, because on the sphere one

has got a simple analytic expression of the geodesic distance while this does not happen for other manifolds.
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missing 1st der. missing 2nd der.

n MAE RMSE MAE RMSE

500 3.16E ´ 2 5.68E ´ 3 3.25E ´ 3 9.17E ´ 4

1000 2.20E ´ 2 3.35E ´ 3 1.80E ´ 3 4.47E ´ 4

2000 1.19E ´ 2 2.13E ´ 3 7.86E ´ 4 2.23E ´ 4

4000 8.28E ´ 3 1.43E ´ 3 4.02E ´ 4 1.13E ´ 4

8000 6.40E ´ 3 9.38E ´ 4 1.90E ´ 4 5.73E ´ 5

16000 4.90E ´ 3 6.63E ´ 4 9.30E ´ 5 2.84E ´ 5

Table 3: MAEs and RMSEs computed on the sphere with lacunary data for f1. Left: missing a half of the 1st

derivatives, right: missing a half of the 2nd derivatives.

6.1. Computation of the Geodesic Distance on Manifolds

In order to study properties of geodesics on a m-dimensional Riemannian manifoldM, it is convenient to consider

a connected chart pU, ϕq and for each u P U the vector ϕpuq “ pv1, . . . , vmq P V of local coordinates. Then, a geodesic

on U is a curve given by m functions v1psq, . . . , vmpsq which satisfy the system of second order differential equations,

called geodesic equations,

d2vk

ds2
`

m
ÿ

i, j“1

Γk
i j

dvi

ds

dv j

ds
“ 0, k “ 1, . . . ,m, (28)

where s is the arclength parameter and Γk
i j

are the Christoffel symbols of the second kind. It is possible to express the

Christoffel simbols in terms of the components gks of the metric matrix and their derivatives as follows

Γk
i j “

1

2

m
ÿ

s“1

gks
´ Bgsi

Bv j

`
Bg js

Bvi

´
Bgi j

Bvs

¯

, (29)

where gks are the components of the matrix pgi jq, inverse of the matrix pgi jq. As the manifold has dimension m, the

geodesic equations are a system of m ordinary differential equations for the m variables vk. Thus, allied with initial

conditions consisting of a point on the manifold and a tangent vector at the point, the system can theoretically be

uniquely solved, at least locally, but actually there are serious difficulties.

Computing the geodesic distance is less prohibitive if we merely consider a particular, but important, subclass of

Riemannian manifolds, namely the regular surfaces in R3 parametrically defined on an open set of R2 by a map of the

type u “ pu1pv1, v2q, u2pv1, v2q, u3pv1, v2qq. In this case the system (28) reduces to two equations.

A further simplification is achieved considering for the set U on the surfaceM orthogonal local coordinates, so

that g12 “ g21 “ 0. For γ “ γpsq to be a geodesic on U, then it is necessary and sufficient that the geodesic equations

d2v1

ds2
`

1

2g11

Bg11

Bv1

´ dv1

ds

¯2

`
1

g11

Bg11

Bv2

dv1

ds

dv2

ds
´

1

2g11

Bg22

Bv1

´ dv2

ds

¯2

“ 0,

d2v2

ds2
´

1

2g22

Bg11

Bv2

´ dv1

ds

¯2

`
1

g22

Bg22

Bv1

dv1

ds

dv2

ds
`

1

2g22

Bg22

Bv2

´ dv2

ds

¯2

“ 0, (30)

are satisfied, expressing now the Christoffel symbols by (29).

An even more favorable situation is achieved considering the Clairaut parametrizations. We say that an orthogonal

parametrization is a Clairaut parametrization in v1 if

Bg11

Bv2

“
Bg22

Bv2

“ 0.
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Similarly, we say that an orthogonal parametrization is a Clairaut parametrization in v2 if

Bg11

Bv1

“
Bg22

Bv1

“ 0.

The geodesic equations simplify in these cases to the v1-Clairaut geodesic equations

d2v1

ds2
`

1

2g11

Bg11

Bv1

´ dv1

ds

¯2

´
1

2g11

Bg22

Bv1

´ dv2

ds

¯2

“ 0,

d2v2

ds2
`

1

g22

Bg22

Bv1

dv1

ds

dv2

ds
“ 0, (31)

and to the v2-Clairaut geodesic equations

d2v1

ds2
`

1

g11

Bg11

Bv2

dv1

ds

dv2

ds
“ 0,

d2v2

ds2
´

1

2g22

Bg11

Bv2

´ dv1

ds

¯2

`
1

2g22

Bg22

Bv2

´ dv2

ds

¯2

“ 0, (32)

respectively. As an example, considering the torus

T
2pv1, v2q “ tppR ` r cos v1q cos v2, pR ` r cos v1q sin v2, r sin v1q : v1, v2 P r0, 2πru (33)

the v1-Clairaut geodesic equations are

d2v1

ds2
`

R ` r cos v1

r
sin v1

´dv2

ds

¯2

“ 0,

d2v2

ds2
´ 2

r sin v1

R ` r cos v1

dv1

ds

dv2

ds
“ 0. (34)

Actually the surfaces of revolution, which include many cases important for applications, appear to be the most

manageable. Without loss of generalization, let us consider a plane π Ă R3 generated by the unit vectors e1, e3 P R3,

a straight line l generated by the unit vector e3, and a curve c P Ck, k ě 1, which is disjoint from l and belongs to the

positive halfplane with respect to e1. Rotating the curve c around the line l we obtain a surface of revolutionM with

generating curve c and revolution axis l. If c is parametrically represented by

cpv1q “ tpαpv1q, βpv1qq : v1 P ra, bs Ă R, αpv1q ą 0u,

the surface is given by

Mpv1, v2q “ tpαpv1q cos v2, αpv1q sin v2, βpv1qq P R
3 : v1 P ra, bs, v2 P r0, 2πr, αpv1q ą 0u.

For a fixed v1 “ v0
1

the curve p “ Mpv0
1
, v2q Ă R3 is called a parallel of M and represents the circle of radius

αpv0
1
q obtained by rotating the point pαpv0

1
q, βpv0

1
qq P c around the line l. Similarly, for a fixed v2 “ v0

2
the curve

m “Mpv1, v
0
2
q Ă R3 is called a meridian ofM and is obtained by rotating c of an angle v0

2
around l.

If the curve is parameterized with respect to the arclength s, the differential equations of geodesics for surfaces of

rotation are

d2v1

ds2
´ α

dα

ds

´ dv2

ds

¯2

“ 0,

d2v2

ds2
`

2

α

dα

ds

dv1

ds

dv2

ds
“ 0.

Important consequences of these equations are:

i) the meridians of a surface of revolution are geodesic curves,
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ii) a parallel is a geodesic curve if and only if it is obtained by rotating a point on the generating curve whose

tangent vector is parallel to the axis of revolution.

Note that the geodesic equations of surfaces of revolution parameterised with respect to the arclength are particular

cases of v1-parameterization of Clairaut.

We used Matlab to numerically solve equations of geodesics on a parametric surface and to picture the relevant

graphs. IfM Ă R3 is the surface

ϕ´1pv1, v2q “ tpu1, u2, u3q : pu1, u2, u3q P U ĂM, pv1, v1q P ϕpUq Ă R
2u,

we built two programs, which are similar but meet different needs. One of them resolves the system (28) with m “ 2

(as well as its particular cases) and finds pv1psq, v2psqq with the arclength parameter s or a multiple of it, starting from

the initial point pv1p0q, v2p0qq and the derivatives pdv1p0q{ds, dv2p0q{dsq. Then the program draws the support ofM

by varying pv1, v2q P ϕpUq and traces the geodesic curve leaving s to vary in a given interval rsi, ses Ă R required in

input. Seeing pictures of geodesics is obviously interesting and useful, but it is not our primary goal (see e.g. [45, 1]).

The other program resolves the system (28) with m “ 2 (as well as its particular cases) and finds pv1psq, v2psqq with

the arclength parameter s or a multiple of it, given the initial point pv1psiq, v2psiqq and the end point pv1pseq, v2pseqq.

Then, the program traces the geodesic connecting the two points and, above all, compute the geodesic distance be-

tween them. This second program starts with an approximate path of the geodesic and improves the solution itera-

tively. Since the geodesic distance between the initial and the end points is very small, we can choose a segment as the

initial guess. In general, the method works well, but in a few cases the convergence is not assured despite requiring

compactness (see e.g. [39, 32]).

6.2. Computation of the Interpolant on Manifolds

To optimize the nearest neighbour searching procedure for data on a general Riemannian manifold, one can con-

tinue to use the techniques already described for the sphere. Of course, in individual cases, more difficulties than with

the sphere may arise in the use of those procedures.

To test the performance of our interpolation method, we need to get a uniform (or quasi-uniform) distribution of

nodes on the considered Riemannian manifolds. Unfortunately, finding a convenient distribution is another critical

point. To face the problem of generating a uniform distribution of points on analytic surfaces, there appear to be

interesting the results of some recent papers [36, 35, 34, 41, 46]. On the other hand, to get information on uniformity

and density of the distribution of points in the set X Ă U, the separation distance (27) and the fill distance (18),

already considered for the sphere, continue to be crucial parameters to assess the accuracy of interpolation methods.

To test our interpolant on manifolds, we focus on cylinder and cone. As interpolation nodes, we take some sets of

n uniformly random Halton data points, originally contained in the unit square r0, 1s2 Ă R2 and then mapped onto the

surface of cylinder and cone via, respectively, the equations

x “ r cosp2πpq, y “ r sinp2πpq, z “ q,

and

x “
ph ´ zq

h
r cosp2πpq, y “

ph ´ zq

h
r sinp2πpq, z “ hq,

where pp, qq P r0, 1s2, r is the radius and h denotes the height of the cone. The computation of interpolation errors,

using (26), is carried out mapping as earlier a set of neval “ 50 evaluation points generated by the rand command of

Matlab. Note that in our tests we consider a chart ofM, taking all points belonging to the cylinder for x ă ´0.5 and

to the cone for x ă 0, assuming r “ 1 and h “ 2. An example of interpolation and evaluation points defined on the

charts of cylinder and cone is given in Figure 2.

In order to recover a function f , known on a set X Ă U ĂM together with some of its derivatives, the interpolant

Hpuq in (4) is quite efficient for any combination of derivatives. However, actually, the most interesting situation

is when the values of f and its first and second derivatives are known at each point of X. Hence, our numerical

tests are restricted to this case and also to a chart of the cylinder and a chart of the cone. As regard to Hermite-

Birkhoff interpolation on manifolds it is difficult to find numerical tests in the literature, as far as we know, while
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Figure 2: Example of interpolation (blue dot) and evaluation (red star) points on the cylinder (left) and the cone (right).

theoretical considerations are not lacking (see e.g. [22, 23, 43]). The test functions to be interpolated are taken from

the restriction to U ĂM of the trivariate functions already considered for the sphere, but we report only the numerical

results obtained considering f1 and f2. Interpolation errors computed for the interpolant (14) using a complete Taylor

expansion up to order zero (T0), one (T1) and two (T2) are shown in Tables 4–5 for the cylinder and Tables 6–7 for the

cone. From these numerical experiments we obtain an error behavior similar to that observed in the previous section

for the sphere.

T0 T1 T2

n MAE RMSE MAE RMSE MAE RMSE

500 4.01E ´ 2 1.15E ´ 2 4.22E ´ 3 1.36E ´ 3 1.38E ´ 4 3.18E ´ 5

1000 2.37E ´ 2 6.19E ´ 3 1.29E ´ 3 5.22E ´ 4 1.69E ´ 5 5.67E ´ 6

2000 1.27E ´ 2 3.63E ´ 3 8.71E ´ 4 2.99E ´ 4 1.06E ´ 5 2.48E ´ 6

4000 5.09E ´ 3 1.87E ´ 3 3.66E ´ 4 1.34E ´ 4 2.74E ´ 6 6.79E ´ 7

8000 4.74E ´ 3 1.19E ´ 3 1.27E ´ 4 6.56E ´ 5 4.79E ´ 7 1.44E ´ 7

16000 2.93E ´ 3 1.07E ´ 3 7.87E ´ 5 3.55E ´ 5 1.82E ´ 7 6.81E ´ 8

Table 4: MAEs and RMSEs computed on the cylinder for f1.

The considered interpolation schemes for the Riemannian manifolds are suitable for parallel implementation as

explained for the sphere.
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T0 T1 T2

n MAE RMSE MAE RMSE MAE RMSE

500 1.91E ´ 2 5.13E ´ 3 2.59E ´ 3 9.23E ´ 4 7.94E ´ 5 2.44E ´ 5

1000 6.16E ´ 3 2.85E ´ 3 1.09E ´ 3 3.85E ´ 4 1.74E ´ 5 6.65E ´ 6

2000 3.96E ´ 3 1.55E ´ 3 4.99E ´ 4 1.79E ´ 4 5.41E ´ 6 1.75E ´ 6

4000 2.73E ´ 3 1.10E ´ 3 2.21E ´ 4 9.47E ´ 5 1.59E ´ 6 6.09E ´ 7

8000 2.15E ´ 3 7.33E ´ 4 8.83E ´ 5 4.28E ´ 5 5.43E ´ 7 1.83E ´ 7

16000 1.23E ´ 3 5.20E ´ 4 5.66E ´ 5 2.51E ´ 5 1.93E ´ 7 6.33E ´ 8

Table 5: MAEs and RMSEs computed on the cylinder for f2.

T0 T1 T2

n MAE RMSE MAE RMSE MAE RMSE

500 2.29E ´ 2 9.64E ´ 3 3.20E ´ 3 1.62E ´ 3 7.80E ´ 5 2.41E ´ 5

1000 1.16E ´ 2 5.64E ´ 3 1.52E ´ 3 7.35E ´ 4 3.95E ´ 5 9.93E ´ 6
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