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Abstract

Let G[F, Vk,Hv] be the graph with k pockets, where F is a simple graph
of order n ≥ 1, Vk = {v1, . . . , vk} is a subset of the vertex set of F and Hv

is a simple graph of order m ≥ 2, v is a specified vertex of Hv. Also let
G[F,Ek,Huv] be the graph with k edge-pockets, where F is a simple graph
of order n ≥ 2, Ek = {e1, . . . , ek} is a subset of the edge set of F and Huv

is a simple graph of order m ≥ 3, uv is a specified edge of Huv such that
Huv − u is isomorphic to Huv − v. In this paper, we obtain some results
describing the signless Laplacian spectra of G[F, Vk,Hv] and G[F,Ek,Huv]
in terms of the signless Laplacian spectra of F,Hv and F,Huv, respectively.
In addition, we also give some results describing the adjacency spectrum
of G[F, Vk,Hv] in terms of the adjacency spectra of F,Hv. Finally, as an
application of these results, we construct infinitely many pairs of signless
Laplacian (resp. adjacency) cospectral graphs.

AMS classification: 05C50 05C12
Keywords: Adjacency matrix; Signless Laplacian matrix; Spectrum;

Pockets; Edge-pockets

1. Introduction

Throughout this paper, we consider only finite simple graphs. Let G = (V,E) be
a graph with vertex set V = {v1, v2, . . . , vn} and edge set E = {e1, e2, . . . , en}.
The adjacency matrix A(G) of G is a square matrix of order n, whose entry
ai,j = 1 if vi and vj are adjacent in G and 0 otherwise. Let D(G) be the degree

∗Corresponding author. E-mail: gxtian@zjnu.cn or guixiantian@gmail.com (G.-X. Tian)
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diagonal matrix of G. Then the Laplacian matrix L(G) and signless Laplacian
matrix Q(G) are defined as D(G)−A(G) and D(G) + A(G), respectively.

For an n × n matrix M associated to a graph G, the characteristic polyno-
mial det(xIn − M) of M is called the M-characteristic polynomial of G and is
denoted by fM(x). The eigenvalues of M (i.e. the zeros of det(xIn − M)) and
the spectrum of M (which consists of the n eigenvalues) are also called the M-
eigenvalues of G and the M-spectrum of G, respectively. In particular, if M
is the adjacency matrix A(G) of G, then the A-spectrum of G is denoted by
σ(A(G)) = (λ1(G), λ2(G), . . . , λn(G)), where λ1(G) ≤ λ2(G) ≤ . . . ≤ λn(G) are
the eigenvalues of A(G). If M is the signless Laplacian matrix Q(G) of G, then
the Q-spectrum of G is denoted by σ(Q(G)) = (q1(G), q2(G), . . . , qn(G)), where
q1(G) ≤ q2(G) ≤ . . . ≤ qn(G) are the eigenvalues of Q(G). Throughout this
paper, the A-spectrum, L-spectrum and Q-spectrum denote the adjacency spec-
trum, Laplacian spectrum and signless Laplacian spectrum of G, respectively. For
more review about the A-spectrum, L-spectrum and Q-spectrum of G, readers
may refer to [1, 4, 8, 9, 10, 11, 12, 13, 14, 18, 21] and the references therein.

The following two definitions come from [3] and [20], respectively.

Definition 1.1[3] Let F,Hv be graphs of orders n and m, respectively, where
m ≥ 2, v be a specified vertex of Hv and Vk = {v1, . . . , vk} is a subset of the ver-
tex set of F . Let G = G[F, Vk, Hv] be the graph obtained by taking one copy of F
and k vertex disjoint copies of Hv, and then attaching the ith copy of Hv to the
vertex ui, i = 1, . . . , k, at the vertex v of H (identify ui with the vertex v of the
ith copy). Then the copies of the graph Hv that are attached to the vertices ui,
i = 1, . . . , k are referred to as pockets, and G is described as a graph with k pockets.

Definition 1.2[20] Let F and Huv be two graphs of orders n and m, respec-
tively, where n ≥ 2, m ≥ 3, Ek = {e1, . . . , ek} is a subset of the edge set of F
and Huv has a specified edge uv such that Huv − u is isomorphic to Huv − v.
Assume that Ek denote the subgraph of F induced by Ek. Let G = G[F,Ek, Huv]
be the graph obtained by taking one copy of F and k vertex disjoint copies of
Huv, and then pasting the edge uv in the ith copy of Huv with the edge ei ∈ Ek,
where i = 1, . . . , k. Then the copies of the graph Huv that are pasted to the edges
ei, i = 1, . . . , k are called as edge-pockets, and G is described as a graph with k

edge-pockets.

Barik[3] has described the L-spectrum of G = G[F, Vk, Hv] using the L-spectra
of F and Hv, when the specified vertex v is of degree m− 1 in Hv. In that case,
if a copy of Hv is attached to every vertex of F , each at the vertex v of Hv, that
is, if G has n pockets, then the graph G = G[F, Vn, Hv] is nothing but the corona
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F ◦H , where H = Hv−v. Then the complete L-spectrum of G is described using
the L-spectra of F and H [2]; and if H is a regular graph or a complete bipartite
graph, then the complete A-spectrum and Q-spectrum of G are also described
using the respective A-spectra and Q-spectra of F and H [2, 5, 6, 19].

Recently, Nath and Paul[20] has described the L-spectrum ofG = G[F,Ek, Huv]
using the L-spectra of F and Hv, when the specified vertices u and v are of degree
m − 1, and the subgraph Ek of F induced by Ek is regular. Similarly, they also
describe the A-spectrum, when Huv − {u, v} is regular. In that case, if a copy of
Huv is pasted to every edge of F , each at the edge uv of Huv, that is, if G has n
edge-pockets, then the graph G = G[F,En, Huv] is nothing but the edge-corona
F ⋄H , where H = Huv−{u, v}. Then the complete L-spectrum of G is described
using the L-spectra of F and H when F is regular[16]; and if F is a regular graph
and H is also a regular graph or a complete bipartite graph, then the complete
A-spectrum and Q-spectrum of G are described using the respective A-spectra
and Q-spectra of F and H [5, 6, 16].

Motivated by these researches, we discuss the Q-spectrum of G = G[F, Vk, Hv]
and G[F,Ek, Huv]. We also consider the A-spectrum of G = G[F, Vk, Hv] when
H = Hv − v is regular. The rest of this paper is organized as follows. In
Section 2, we present some preliminary results, which will be needed to prove
our main results. In Section 3, we give the A-characteristic polynomials and
Q-characteristic polynomials of G = G[F, Vk, Hv]. Using these results, we de-
scribe, except n + k A-eigenvalues, all the other A-eigenvalues of G[F, Vk, Hv]
in terms of the A-eigenvalues of Hv. We also show that the remaining n + k

A-eigenvalues of G[F, Vk, Hv] are independent of the graph Hv. For the Q-
eigenvalues of G[F, Vk, Hv], we also obtain the similar results. In Section 4, we
give the Q-characteristic polynomials of G[F,Ek, Huv] when Ek be an r-regular
subgraph of F induced by Ek in Definition 1.2. Using this result, we describe,
except n+ k Q-eigenvalues, all the other Q-eigenvalues of G[F,Ek, Huv] in terms
of the Q-eigenvalues of Huv. We also show that the remaining n+k Q-eigenvalues
of G[F,Ek, Huv] are independent of the graph Huv. In addition, we give a com-
plete description of the Q-spectrum of G[F,Ek, Huv] in some particular cases. At
the same time, as an application of these results, we also consider to construct
infinitely many pairs of A-cospectral and Q-cospectral graphs, respectively.

2. Preliminaries

In this section, we present some preliminary results which will be needed to prove
our main results. In [6], Cui and Tian introduced a new invariant, the M-coronal
ΓM(x) of a matrix M of order n (also see [19]). It is defined to be the sum of the
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entries of the matrix (xIn −M)−1, that is,

ΓM(x) = 1T
n (xIn −M)−11n,

where 1n denotes the column vector of size n with all the entries equal one and
In is the identity matrix of order n. It is proved[6] that if M is a matrix of order
n with each row sum equal to a constant t, then ΓM(x) = n

x−t
.

Let A = (aij) and B = (bij) be m× n and p× q matrices, respectively. Then
the Kronecker product of A and B is defined to the mp × nq partition matrix
(aijB) and is denoted by A ⊗ B. For some properties of the Kronecker product
of matrices, see [17].

Let G1 and G2 be two graphs with disjoint vertex sets V (G1) ,V (G2) and edge
sets E(G1), E(G2), respectively. The join G1 ∨G2[15] of G1 and G2 is the graph
union G1 ∪G2 together with all the edges joining V (G1) and V (G2).

Theorem 2.1[12] Let Gi be an ri regular graph with ni vertices, where i = 1, 2.
Then

fA(G1∨G2)(x) =
fA(G1)(x)fA(G2)(x)

(x− r1)(x− r2)
((x− r1)(x− r2)− n1n2) .

Theorem 2.2[7] Let Gi be an ri regular graph with ni vertices, where i = 1, 2.
Then

fQ(G1∨G2)(x) =

(

1−
n1n2

(x− n1 − 2r2)(x− n2 − 2r1)

)

fQ(G1)(x−n2)fQ(G2)(x−n1).

Throughout this paper, assume that F is a simple graph of order n, Hv and
Huv two simple graphs of order m, unless mentioned otherwise. We also assume
the specified vertex v in Hv is of degree m − 1 and the specified vertices u and
v in Huv are all of degree m − 1. Let H1 = Hv − v. H2 = Huv − {u, v}. Then
Hv = {v} ∨H1 and Huv = ({u, v}, {uv})∨H2.

If H1 is r1-regular, then by Theorems 2.1 and 2.2, we arrive at

σ(A(Hv)) = (σ(A(H1))− {r1}) ∪ {α, β}, (1)

where α, β are roots of the equation x2 − r1x−m+ 1 = 0, and

σ(Q(Hv)) = {qj(H1) + 1|1 ≤ j ≤ m− 2} ∪ {γ, δ}, (2)

4



where γ, δ are roots of the equation (x− 2r1 − 1)(x−m+ 1)−m+ 1 = 0.
Similarly, if H2 is r2-regular, then by Theorem 2.2, we obtain

σ(Q(Huv)) = {qj(H2) + 2|1 ≤ j ≤ m− 3} ∪ {m− 2, ζ, η}, (3)

where ζ, η are roots of the equation (x− 2r2 − 2)(x−m)− 2(m− 2) = 0.

3. The A-spectrum and Q-spectrum of G[F, Vk, Hv]

3.1. The A-spectrum of G[F, Vk, Hv]

Proposition 3.1. Let G = G[F, Vk, Hv] and |Vk| = k. Then the A-characteristic
polynomial of G is

fA(G)(x) = (fA(H1)(x))
k det(xIn −M), (4)

where M = A(F ) + ΓA(H1)(x)

(
Ik 0T

0 0

)

.

Proof. With suitable labeling of the vertices of G, we can write the adjacency
matrix of G to

A(G) =

(

A(F )
(

Ik⊗1
T

m−1

0

)

(Ik ⊗ 1m−1|0) Ik ⊗A(H1)

)

.

Then the A-characteristic polynomial of G can be calculated as follows:

fA(G)(x) = det

(

xIn − A(F )
(

−Ik⊗1
T

m−1

0

)

(−Ik ⊗ 1m−1|0) Ik ⊗ (xIm−1 − A(H1))

)

= det(xIm−1 − A(H1))
k det(S1)

= (fA(H1)(x))
k det(S1),

where

S1 = xIn − A(F )−
(

Ik⊗1
T

m−1

0

)

· (Ik ⊗ (xIm−1 − A(H1)))
−1 · (Ik ⊗ 1m−1|0)

= xIn −A(F )− ΓA(H1)(x)

(
Ik 0T

0 0

)

is the Schur complement with respect to Ik ⊗ (xIm−1 −A(H1)). This implies the
required result. ✷

Let H1 be an r1-regular graph and |Vk| = k. Then, except n+k A-eigenvalues,
we describe all the other A-eigenvalues ofG[F, Vk, Hv] in terms of theA-eigenvalues
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of Hv. We also show that the remaining n + k A-eigenvalues of G[F, Vk, Hv] are
independent of the graph Hv.

Theorem 3.2. Let H1 be an r1-regular graph, where r1 ≥ 1. Also let λ ∈
σ(A(Hv)) \ {α, β}, where α, β is described as (1), and G = G[F, Vk, Hv]. If
|Vk| = k, then λ ∈ σ(A(G)) with multiplicity k. Moreover, the remaining n + k

A-eigenvalues of G are independent of Hv.

Proof. Since H1 is an r1-regular graph. Thus ΓA(H1)(x) =
m−1
x−r1

and

fA(H1)(x) = (x− r1)

m−2∏

j=1

(x− λj(H1)).

Now, from Proposition 3.1, one gets

fA(G)(x) = (x− r1)
k

m−2∏

j=1

(x− λj(H1))
k det(xIn −M), (5)

where M = A(F )+ m−1
x−r1

(
Ik 0T

0 0

)

. Notice that M depends on the regularity of

H1 only and not on the structure of H1. From (1) and (5), we obtain the required
result. ✷

As an application of the above results, we may construct many pairs of A-
cospectral graphs.

Corollary 3.3. Let Hu and Hv be two disjoint graphs of order m such that
Hu − u and Hv − v are r1-regular, where m ≥ 2 and r1 ≥ 1. If Hu and Hv are
A-cospectral, then G[F, Vk, Hu] and G[F, Vk, Hv] are A-cospectral.

Let H∗

v be the Hv graph such that H1 = Gr1
p , where Gr1

p = Cp✷Kr1−1 is the
Cartesian product of the cycle Cp and the complete graph Kr1−1. Notice that
Gr1

p is r1-regular. Theorem 3.2 implies the following result.

Corollary 3.4. Let H1 be an r1-regular graph and m − 1 = p(r1 − 1) for some
integer p, where p ≥ 3 and r1 ≥ 2. Let G = G[F, Vk, Hv] and G∗ = G[F, Vk, H

∗

v ].
If |Vk| = k, then σ(A(G)) consists of the eigenvalues

(a) λ with multiplicity k, for each λ ∈ σ(A(Hv)) \ {α, β}, where α, β is de-
scribed as (1);

(b)

θ ∈ σ(A(G∗))\{λ1(G
r1
p ), . . . , λ1(G

r1
p )

︸ ︷︷ ︸

k

, λ2(G
r1
p ), . . . , λ2(G

r1
p )

︸ ︷︷ ︸

k

, . . . , λm−2(G
r1
p ), . . . , λm−2(G

r1
p )

︸ ︷︷ ︸

k

.
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Proof. With suitable labeling of the vertices of G∗, we can write the adjacency
matrix of G∗ to

A(G∗) =

(

A(F )
(

Ik⊗1
T

m−1

0

)

(Ik ⊗ 1m−1|0) Ik ⊗ A(Gr
p)

)

.

Thus, from the proofs of Proposition 3.1 and Theorem 3.2, one obtains

fA(G∗)(x) = (x− r)k
m−2∏

j=1

(x− λj(G
r1
p ))k det(xIn −M), (6)

where M = A(F ) + m−1
x−r1

(
Ik 0T

0 0

)

. It follows from (5) and (6) that

fA(G)(x) =
m−2∏

j=1

(x− λj(H1))
k fA(G∗)(x)
m−2∏

j=1

(x− λj(G
r1
p ))k

. (7)

From (1) and (7), we get λ ∈ σ(A(G)) with multiplicity k, for each λ ∈ σ(A(Hv))\
{α, β}. Next we only need to prove λj(G

r1
p ) ∈ σ(A(G∗)) with multiplicity k, for

each j = 1, . . . , m− 2.
Let the eigenvalues λ1(Cp), . . . , λp(Cp) = 2 of A(Cp) are afforded by the eigen-

vectors X1, . . . , Xp = 1p, respectively. Also let the eigenvalues λ1(Kr1−1), . . .,
λr1−1(Kr1−1) = r1−2 of A(Kr1−1) are afforded by the eigenvectors Y1, . . . , Yr1−1 =
1r1−1, respectively. Since A(G

r1
p ) = A(Cp)⊗ Ir1−1 + Ip ⊗A(Kr1−1). Then Xs ⊗ Yt

is an eigenvector of A(Gr1
p ) corresponding to the eigenvalue λs(Cp) + λt(Kr1−1),

where s = 1, . . . , p and t = 1, . . . , r1 − 1. Now, for fixed s and t, it is easy to
verify that

(
0

e1 ⊗Xs ⊗ Yt

)

,

(
0

e2 ⊗Xs ⊗ Yt

)

, . . . ,

(
0

ek ⊗Xs ⊗ Yt

)

are k linearly independent eigenvectors of A(G∗) corresponding to the eigenvalue
λs(Cp)+λt(Kr1−1), where Xs⊗Yt 6= Xp⊗Yr1−1 and ei denotes the column vector
of size k with the i-th entry equals one and 0 otherwise. The proof is completed.
✷
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3.2. The Q-spectrum of G[F, Vk, Hv]

Proposition 3.5. Let G = G[F, Vk, Hv] and |Vk| = k. Then the Q-characteristic
polynomial of G is

fQ(G)(x) = (fQ(H1)(x− 1))k det(xIn −M), (8)

where M = Q(F ) + (m− 1 + ΓQ(H1)(x− 1))

(
Ik 0T

0 0

)

.

Proof. With suitable labeling of the vertices of G, we can write the signless
Laplacian matrix of G to

Q(G) =




Q(F ) + (m− 1)

(
Ik 0T

0 0

) (
Ik⊗1

T

m−1

0

)

(Ik ⊗ 1m−1|0) Ik ⊗ (Q(H1) + Im−1)



 .

Then the Q-characteristic polynomial of G can be calculated as follows:

fQ(G)(x) = det




xIn −Q(F )− (m− 1)

(
Ik 0T

0 0

) (
−Ik⊗1

T

m−1

0

)

(−Ik ⊗ 1m−1|0) Ik ⊗ ((x− 1)Im−1 −Q(H1))





= det((x− 1)Im−1 −Q(H1))
k det(S1)

= (fQ(H1)(x− 1))k det(S1)

where

S1 = xIn −Q(F )− (m− 1)

(
Ik 0T

0 0

)

−
(
Ik⊗1

T

m−1

0

)

(Ik ⊗ ((x− 1)Im−1 −Q(H1)))
−1(Ik ⊗ 1m−1|0)

= xIn −Q(F )− (m− 1)

(
Ik 0T

0 0

)

− ΓQ(H1)(x− 1)

(
Ik 0T

0 0

)

is the Schur complement with respect to Ik ⊗ ((x− 1)Im−1 −Q(H1)). Hence, the
result follows. ✷

Let H1 be a r1-regular graph. If |Vk| = k, then except n + k Q-eigenvalues,
we describe all the other Q-eigenvalues of G[F, Vk, Hv] using the Q-eigenvalues
of Hv. We also show that the remaining n + k Q-eigenvalues of G[F, Vk, Hv] are
independent of the graph Hv.

Theorem 3.6. Let H1 be an r1-regular graph, where r1 ≥ 1. Also let q ∈
σ(Q(Hv)) \ {γ, δ}, where γ, δ is described as (2), and G = G[F, Vk, Hv]. If
|Vk| = k, then q ∈ σ(Q(G)) with multiplicity k. Moreover, the remaining n + k
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Q-eigenvalues of G are independent of Hv.

Proof. If H1 is an r1-regular graph, then ΓQ(H1)(x− 1) = m−1
x−1−2r1

and

fQ(H1)(x− 1) = (x− 1− 2r1)

m−2∏

j=1

(x− 1− qj(H1)).

Thus, from Proposition 3.5, one gets

fQ(G)(x) = (x− 1− 2r1)
k

m−2∏

j=1

(x− 1− qj(H1))
k det(xIn −M), (9)

where M = Q(F ) + (m − 1 + m−1
x−1−2r1

)

(
Ik 0T

0 0

)

. Notice that M depends on

the regularity of H1 only and not on the structure of H1. From (2) and (9), we
obtain the required result. ✷

As an application of the above results, we may construct many pairs of Q-
cospectral graphs. The following Corollary 3.7 and above Corollary 3.3 show that
there exit two graphs G[F, Vk, Hu] and G[F, Vk, Hv] such that they are not only
A-cospectral, but also are Q-cospectral.

Corollary 3.7. Let Hu and Hv be two disjoint graphs of order m such that
Hu − u and Hv − v are r1-regular, where m ≥ 2 and r1 ≥ 1. If Hu and Hv are
Q-cospectral, then G[F, Vk, Hu] and G[F, Vk, Hv] are Q-cospectral.

Corollary 3.8. Let H1 be an r1-regular graph and m − 1 = p(r1 − 1) for some
integer p, where p ≥ 3 and r1 ≥ 2. Let G = G[F, Vk, Hv] and G∗ = G[F, Vk, H

∗

v ].
If |Vk| = k, then σ(Q(G)) consists of the eigenvalues

(a) q with multiplicity k, for each q ∈ σ(Q(Hv))\{γ, δ}, where γ, δ is described
as (2);

(b)
θ ∈ σ(Q(G∗))\{q1(G

r1
p ) + 1, . . . , q1(G

r1
p ) + 1

︸ ︷︷ ︸

k

, q2(G
r1
p ) + 1, . . . , q2(G

r1
p ) + 1

︸ ︷︷ ︸

k

, . . . ,

qm−2(G
r1
p ) + 1, . . . , qm−2(G

r1
p ) + 1

︸ ︷︷ ︸

k

}.

Proof. With suitable labeling of the vertices of G∗, we can write the signless
Laplacian matrix of G∗ to

Q(G∗) =




Q(F ) + (m− 1)

(
Ik 0T

0 0

) (
Ik⊗1

T

m−1

0

)

(Ik ⊗ 1m−1|0) Ik ⊗ (Q(Gr1
p ) + Im−1)




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Thus, from the proofs of Proposition 3.5 and Theorem 3.6, we obtain

fQ(G∗)(x) = (x− 1− 2r1)
k

m−2∏

j=1

(x− 1− qj(G
r1
p ))

k det(xIn −M), (10)

where M = Q(F ) + (m − 1 + m−1
x−1−2r1

)

(
Ik 0T

0 0

)

. It follows from (9) and (10)

that

fQ(G)(x) =
m−2∏

j=1

(x− 1− qj(H1))
k fQ(G∗)(x)
m−2∏

j=1

(x− 1− qj(Gr
p))

k

(11)

From (2) and (11), we get q ∈ σ(Q(G)) with multiplicity k, for each q ∈
σ(Q(Hv)) \ {γ, δ}. Next we only need to prove qj(G

r1
p ) + 1 ∈ σ(Q(G∗)) with

multiplicity k, for each j = 1, . . . , m− 2.
Let the eigenvalues q1(Cp), . . . , qp(Cp) = 4 of Q(Cp) are afforded by the

eigenvectors X1, . . . , Xp = 1p, respectively, and the eigenvalues q1(Kr1−1), . . .,
qr1−1(Kr1−1) = 2(r1−2) ofQ(Kr1−1) are afforded by the eigenvectors Y1, . . . , Yr1−1 =
1r1−1, respectively. Since Q(Gr1

p ) = Q(Cp)⊗ Ir1−1+ Ip⊗Q(Kr1−1). Then Xs⊗Yt

is an eigenvector of Q(Gr1
p ) corresponding to the eigenvalue qs(Cp) + qt(Kr1−1),

where s = 1, . . . , p and t = 1, . . . , r1 − 1. Now, for fixed s and t, then

(
0

e1 ⊗Xs ⊗ Yt

)

,

(
0

e2 ⊗Xs ⊗ Yt

)

, . . . ,

(
0

ek ⊗Xs ⊗ Yt

)

are k linearly independent eigenvectors of Q(G∗) corresponding to the eigenvalue
qs(Cp) + qt(Kr1−1) + 1, where Xs ⊗ Yt 6= Xp ⊗ Yr1−1. The proof is completed. ✷

4. The Q-spectrum of G[F,Ek, Huv]

Proposition 4.1. Let Ek be an r-regular subgraph of F induced by Ek in Defi-
nition 1.2. Also let G = G[F,Ek, Huv] and |Ek| = k. Then the Q-characteristic
polynomial of G is

fQ(G)(x) = (fQ(H2)(x− 2))k det(xIn −M), (12)

where M = Q(F ) + r(m− 2)

(
Ip 0T

0 0

)

+ ΓQ(H2)(x− 2)

(
Q(Ek) 0T

0 0

)

.

10



Proof. Notice that Ek has p = 2k
r

vertices. Let Q(Ek) be the signless Lapla-
cian matrix of Ek. With suitable labeling of the vertices of G, we can write the
signless Laplacian matrix of G to

Q(G) =




Q(F ) + r(m− 2)

(
Ip 0T

0 0

) (
R(Ek)

0

)

⊗ 1T
m−2

(R(Ek)
T |0)⊗ 1m−2 Ik ⊗ (Q(H2) + 2Im−2)



 .

Then the Q-characteristic polynomial of G can be calculated as follows:

fQ(G)(x) = det




xIn −Q(F )− r(m− 2)

(
Ip 0T

0 0

)

−
(

R(Ek)
0

)

⊗ 1T
m−2

−(R(Ek)
T |0)⊗ 1m−2 Ik ⊗ ((x− 2)Im−2 −Q(H2))





= det((x− 2)Im−2 −Q(H2))
k det(S1)

= (fQ(H2)(x− 2))k det(S1),

where

S1 = xIn −Q(F )− r(m− 2)

(
Ip 0T

0 0

)

−
(

R(Ek)
0

)

⊗ 1T
m−2 · (Ik ⊗ ((x− 2)Im−2 −Q(H2)))

−1 · (R(Ek)
T |0)⊗ 1m−2

= xIn −Q(F )− r(m− 2)

(
Ip 0T

0 0

)

− ΓQ(H2)(x− 2)

(
Q(Ek) 0T

0 0

)

is the Schur complement with respect to Ik ⊗ ((x− 2)Im−2 −Q(H2)). This im-
plies the required result. ✷

Let H2 be a r2-regular graph. If |Ek| = k, then except n+k Q-eigenvalues, we
describe all the other Q-eigenvalues of G[F,Ek, Huv] in term of the Q-eigenvalues
of Huv. We also show that the remaining n + k Q-eigenvalues of G[F,Ek, Huv]
are independent of the graph Huv.

Theorem 4.2. Let H2 be an r2-regular graph, where r2 ≥ 2. Also let q ∈
σ(Q(Huv)) \ {m− 2, ζ, η}, where ζ, η is described as (3), and G[F,Ek, Huv]. As-
sume that Ek is an r-regular subgraph of F induced by Ek. If |Ek| = k, then
q ∈ σ(Q(G)) with multiplicity k. Moreover, the remaining n + k Q-eigenvalues
of G are independent of Huv.

Proof. Since H2 is an r2-regular graph. Then ΓQ(H2)(x− 2) = m−2
x−2−2r2

and

fQ(H2)(x− 2) = (x− 2− 2r2)
m−3∏

j=1

(x− 2− qj(H2)).

11



Thus by Proposition 4.1,

fQ(G)(x) = (x− 2− 2r2)
k

m−3∏

j=1

(x− 2− qj(H2))
k det(xIn −M), (13)

where M = Q(F ) + (m− 2)

(
rIp +

Q(Ek)
x−2−2r2

0T

0 0

)

. Notice that M depends on

the regularity of H2 only and not on the structure of H2. From (3) and (13), we
obtain the required result. ✷

As an application of the above results, we may construct many pairs of Q-
cospectral graphs.

Corollary 4.3. Let Huv and Hxy be two disjoint graphs of order m such that
Huv −{u, v} and Hxy −{x, y} are r2-regular, where m ≥ 3 and r2 ≥ 2. Let Ek be
an r-regular subgraph of F induced by Ek in Definition 1.2. If Huv and Hxy are
Q-cospectral, then G[F,Ek, Huv] and G[F,Ek, Hxy] are Q-cospectral.

Let H∗∗

uv be the Huv graph such that H2 = Gr2
p , where Gr2

p = Cp✷Kr2−1 is the
Cartesian product of the cycle Cp and the complete graph Kr2−1. Notice that
Gr2

p is r2-regular. Theorem 4.2 implies the following result.

Corollary 4.4. Let H2 be an r2-regular graph and m−2 = p(r2−1) for some in-
teger p, where p ≥ 3 and r2 ≥ 2. Let G = G[F,Ek, Huv] and G∗∗ = G[F,Ek, H

∗∗

uv].
Assume that Ek is an r-regular subgraph of F induced by Ek. If |Ek| = k, then
σ(Q(G)) consists of the eigenvalues

(a) q with multiplicity k, for each q ∈ σ(Q(Huv)) \ {m− 2, ζ, η}, where ζ, η is
described as (3);

(b) θ ∈ σ(Q(G∗∗))\{q1(G
r2
p ) + 2, . . . , q1(G

r2
p ) + 2

︸ ︷︷ ︸

k

, q2(G
r2
p ) + 2, . . . , q2(G

r2
p ) + 2

︸ ︷︷ ︸

k

,

. . . , qm−3(G
r2
p ) + 2, . . . , qm−3(G

r2
p ) + 2

︸ ︷︷ ︸

k

}.

Proof. With suitable labeling of the vertices of G∗∗, we can write the signless
Laplacian matrix of G∗∗ to

Q(G∗∗) =




Q(F ) + r(m− 2)

(
Ip 0T

0 0

) (
R(Ek)

0

)

⊗ 1T
m−2

(R(Ek)
T |0)⊗ 1m−2 Ik ⊗ (Q(Gr2

p ) + 2Im−2)



 .

12



Thus, from the proofs of Proposition 4.1 and Theorem 4.2, we obtain

fQ(G∗∗)(x) = (x− 2− 2r2)
k

m−3∏

j=1

(x− 2− qj(G
r2
p ))

k det(xIn −M), (14)

where M = Q(F )+(m−2)

(
rIp +

Q(Ek)
x−2−2r2

0T

0 0

)

. It follows from (13) and (14)

that

fQ(G)(x) =

m−3∏

j=1

(x− 2− qj(H2))
k fQ(G∗∗)(x)
m−3∏

j=1

(x− 2− qj(G
r2
p ))k

(15)

From (3) and (15), we get q ∈ σ(Q(G)) with multiplicity k, for each q ∈
σ(Q(Huv)) \ {m − 2, ζ, η}. Next, using the similar technique to the proof of
Corollary 3.8, we may prove that qj(G

r2
p ) + 2 ∈ σ(Q(G∗∗)) with multiplicity k,

for each j = 1, . . . , m− 3. The proof is completed. ✷
In the rest of this paper, we consider many special cases. Assume that Ek

is an r-regular spanning subgraph of F . From the proof of Proposition 4.1, we
easily obtain

Proposition 4.4. Let Ek be an r-regular spanning subgraph of F . Also let
G = G[F,Ek, Huv] and |Ek| = k. Then the Q-characteristic polynomial of G is

fQ(G)(x) = (fQ(H2)(x− 2))k det(xIn −M), (16)

where M = r((m− 2) + ΓQ(H2)(x− 2))In +Q(F ) + ΓQ(H2)(x− 2)A(Ek).

A k-matching in G is a disjoint union of k-edges. If 2k is the order of G, then
a k-matching of G is called a perfect matching of G ([15]).

Theorem 4.5. Let F = K2k, Ek be a perfect matching of F . Also let H2 be
an r2-regular graph, where r2 ≥ 2 and G = G[F,Ek, Huv]. Then the Q-spectrum
of G is given by

(i) q with multiplicity k, for each q ∈ σ(Q(Huv)) \ {m− 2, ζ, η}, where ζ, η is
described as (3);

(ii) m+ 2k − 4 with multiplicity k;
(iii) two roots of the equation (x−m− 4k + 4)(x− 2r2 − 2)− 2(m− 2) = 0,

each with multiplicity 1;
(iv) two roots of the equation (x−m− 2k + 4)(x− 2r2 − 2)− 2(m− 2) = 0,

each with multiplicity k − 1.
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Proof. From Proposition 4.4, we obtain

fQ(G)(x) = (x− 2− 2r2)
k

m−3∏

j=1

(x− 2− qj(H2))
k det(xI2k −M), (17)

where

M = ((m− 2) + ΓQ(H2)(x− 2))I2k + (2k − 2)I2k + J2k + ΓQ(H2)(x− 2)(Ik ⊗ A(K2))

=
(

m− 2 + m−2
x−2−2r2

+ 2k − 2
)

I2k +
m−2

x−2−2r2
(Ik ⊗ A(K2)) + J2k.

Take M1 =
(

m− 2 + m−2
x−2−2r2

+ 2k − 2
)

I2k +
m−2

x−2−2r2
(Ik ⊗ A(K2)). By a simple

computation, one gets

det(xI2k −M) = det(xI2k −M1 − J2k)
= det(xI2k −M1) · (1− ΓM1

(x))

= (x−m− 2k + 4)k
(

(x−m−2k+4)(x−2−2r2)−2(m−2)
x−2−2r2

)k−1 (
(x−m−4k+4)(x−2−2r2)−2(m−2)

x−2−2r2

)

.

(18)

From (17) and (18), we obtain the required result. ✷

Theorem 4.6. Let F = Kn, Ek = Cn. Also let H2 be an r2-regular graph,
where r2 ≥ 2 and G = G[F,Ek, Huv]. Then the Q-spectrum of G is given by

(i) q with multiplicity n, for each q ∈ σ(Q(Huv)) \ {m− 2, ζ, η}, where ζ, η is
described as (3);

(ii) two roots of the equation (x− 2m− 2n+ 6)(x− 2r2 − 2)− 4(m− 2) = 0,
each with multiplicity 1;

(iii) two roots of the equation (x− 2m− n + 6)(x− 2r2 − 2)− 2(m− 2)(1 +
cos 2πl

n
) = 0, for each l = 1, 2, . . . , n− 1.

Proof. The proof is similar to that of Theorem 4.5, omitted. ✷
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