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Highly accurate calculation of the resonances

in the Stark effect in hydrogen
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Abstract

We obtained accurate resonances for the Stark effect in hydrogen by means of three

independent methods. Two of them are based on complex rotation of the coordinates

and diagonalization of the Hamiltonian matrix (CRLM and CRCH). The other one

is based on the Riccati equations for the logarithmic derivatives of factors of the

wavefunction (RPM). The latter approach enabled us to obtain the most accurate

results and extremely sharp resonances.

1 Introduction

The Stark effect in hydrogen is an old problem in atomic spectroscopy and

one of the first triumphs of wave mechanics [1, 2] (and references therein).

The Schrödinger equation is separable in parabolic and squared parabolic

coordinates which facilitates the application of most approximate methods [2].

In a recent paper Fernández-Menchero and Summers [3] obtained the complex

eigenvalues and eigenfunctions of the Hamiltonian operator for the hydrogen
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atom in a uniform electric field. They resorted to the Lagrange-mesh basis set,

proposed by Lin and Ho [4] for the treatment of the Yukawa potential in a

uniform electric field, and the complex-rotation method [5]. They compared

their results with those obtained by Lin and Ho [4], Kolosov [6], Rao and Li [7]

and Ivanov [8] and overlooked the earlier impressive calculations of Benassi

and Grecchi [9] and the accurate results obtained by Fernández [10]. Benassi

and Grecchi resorted to complex scaling and a basis set of confluent hyper-

geometric functions that is suitable when the Schrödinger equation is written

in squared parabolic coordinates. On the other hand, Fernández applied the

straightforward Riccati-Padé method (RPM) that does not require the use of

complex coordinates.

The purpose of this paper is to calculate the Stark resonances as accurately

as possible by means of the methods proposed by Fernández-Menchero and

Summers [3], Benassi and Grecchi [9] and Fernández [10] and compare the

results with those obtained by the authors already mentioned and also by

Damburg and Kolosov [11]. There is a vast literature on the hydrogen atom

in a uniform electric field but we restrict present discussion to some of the

available calculations that we deem are suitable for comparison.

In section 2 we outline the main ideas about separating the Schrödinger equa-

tion in parabolic and squared parabolic coordinates. In sections 3, 4 and 5

we briefly introduce the methods of Fernández-Menchero and Summers [3],

Benassi and Grecchi [9] and the RPM [10], respectively. In section 6 we com-

pare the results of various approaches and in section 7 we summarize the main

results and draw conclusions.

2 Stark effect in hydrogen

The Schrödinger equation in atomic units is
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Hψ=Eψ

H =−1

2
∇2 − 1

r
+ Fz, (1)

where F is the intensity of the uniform electric field assumed to be directed

along the z axis.

This equation is separable in parabolic coordinates

x =
√

ξη cosφ, y =
√

ξη sin φ, z =
ξ − η

2
ξ ≥ 0, η ≥ 0, 0 ≤ φ ≤ 2π. (2)

If we write

ψ(x, y, z) = (ξη)−1/2u(ξ)v(η)eimφ, m = 0,±1,±2, . . . , (3)

then we obtain two equations of the form

(

d2

dx2
+

1−m2

4x2
+
E

2
− σ

F

4
x+

Aσ

x

)

Φ(x) = 0, (4)

where σ = ±1 and A+ = A and A− = 1 − A are separation constants. When

σ = 1, x = ξ and Φ(ξ) = u(ξ); when σ = −1, x = η and Φ(η) = v(η).

The Schrödinger equation (1) is also separable in squared parabolic coordi-

nates

x = µν cosφ, y = µν sin φ, z =
µ2 − ν2

2
µ ≥ 0, ν ≥ 0, 0 ≤ φ ≤ 2π. (5)

If in this case we write

ψ(x, y, z) = (µν)−1/2u(µ)v(ν)eimφ, (6)
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then we obtain two equations of the form

(

d2

dx2
+

1− 4m2

4x2
+ 2Ex2 − σFx4 + Zσ

)

Φ(x) = 0, (7)

where, σ = ±1 and Z+ = Z and Z− = 4 − Z are the separation constants.

When σ = 1, x = µ and Φ(µ) = u(µ); when σ = −1, x = ν and Φ(ν) = v(ν).

The solutions to the equations in either set of coordinates are commonly la-

belled by the quantum numbers n1, n2 = 0, 1, 2 . . . and m = 0, 1, . . ., and the

notation |n1, n2, m〉 is suitable for referring to them. We will sometimes resort

to the principal quantum number n = n1 + n2 + |m| + 1 to denote a set of

states. Obviously, m is the only good quantum number; the other ones refer

to the states of the hydrogen atom and are valid when F = 0.

3 Complex rotation and Laguerre-mesh basis set

Fernández-Menchero and Summers [3] decided to treat the Schrödinger equa-

tion as nonseparable. The Hamiltonian operator in parabolic coordinates reads

H = − 2

ξ + η

[

∂

∂ξ

(

ξ
∂

∂ξ

)

+
∂

∂η

(

η
∂

∂η

)]

− 1

2 ξη

∂2

∂φ2
− 2

ξ + η
+ F

ξ − η

2
, (8)

and the authors proposed the variational ansatz

ψ (ξ, η, φ)=
1√
2π
eimφ

N
∑

k=1

N
∑

l=1

cklme
−

ξ+η

2 (ξη)
|m|
2 ΛNk(ξ)ΛNl(η) (9)

ΛNk(x)= (−1)k
√
xk
LN (x)

x− xk
, (10)

where LN (x) is the Laguerre polynomial of degreeN and xk its k-th zero. In or-

der to obtain the resonances they resorted to the well-known complex rotation

method [5] that in this case is given by the transformation (ξ, η) → (eiϑξ, eiϑη),

where ϑ is the rotation angle. The eigenvalues and expansion coefficients are
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given by the secular equation

(H−ES)C = 0, (11)

where the elements of the N2 × N2 matrices H and S are explicitly shown

elsewhere [3] and the elements of the column vector C are the coefficients

cklm. Note that the integrals appearing in the matrix elements of both H

and S should be calculated numerically and when we increase N we have to

calculate all those integrals again. For brevity we will call this method CRLM.

4 Complex scaling and confluent hypergeometric basis set

In order to obtain the resonances Benassi and Grecchi [9] resorted to equation

(7) and a basis set of the form

ϕm,n(x) =
2(m+ n)!

m!n!
e−x2/2xm+ 1

2F (−n,m+ 1; x2), (12)

where F (a, b, z) is the confluent hypergeometric function. In this case the

authors resorted to the complex scaling method that is based on the transfor-

mation (µ, ν) → (λ1/2µ, λ1/2ν), where λ is a complex number. The complex

scaling method contains the complex rotation method as a particular case

because λ = |λ|eiϑ and the proper choice of |λ| enables one to improve the

convergence of the approach.

In this case all the elements of the relevant pentadiagonal matrix can be

calculated analytically and are independent of the matrix dimension. This

approach will be called CRCH from now on.
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5 The Riccati-Padé method

We can apply the RPM to the eigenvalue equations derived in either parabolic

or squared parabolic coordinates. In the earlier application of the approach

Fernández [10] chose the former and here we resort to the latter. It is worth

mentioning that the performance of the RPM in both sets of coordinates

is identical and that the reason for the selection of the squared parabolic

coordinates is to have a closer contact between the RPM and the CRCH

method of Benassi and Grecchi [9]. The regularized logarithmic derivative

f(x) =
s

x
− Φ′(x)

Φ(x)
, s = |m|+ 1

2
, (13)

can be expanded in a Taylor series

f(x) =
∞
∑

j=0

fjx
2j+1, (14)

where the coefficients fj are polynomial functions of E and Z. The details of

the method are outlined elsewhere [10]; here it suffices to say that we construct

Hankel determinants of the form

Hd
D(E,Z, F ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

fd+1 fd+2 . . . fD+d

fd+2 fd+3 . . . fD+d+1

. . .

fD+d fD+d+1 . . . f2D+d−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (15)

and obtain the approximate eigenvalues E[D,d] from the roots of the set of

nonlinear equations

Hd
D(E,Z, F ) = Hd

D(E, 4− Z,−F ) = 0. (16)
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The main advantage of the RPM is the enormous rate of convergence which

enables us to obtain very accurate eigenvalues with determinants of relatively

small dimension. However, the great number of roots in the neighborhood of

each eigenvalue makes it difficult to find the optimal sequence that converges

to it. Since we resort to the Newton-Raphson algorithm to obtain the roots of

the system of equations (16) we have to choose the starting point quite close

to the chosen root. We will discuss this point briefly in Section 6. The RPM

is most suitable for the treatment of separable problems.

6 Numerical calculations

In order to apply the CRLM [3] we calculated all the integrals numerically with

a tolerance of 10−15. For each value of F ,m and N we varied the rotation angle

ϑ between 0.3 and 0.7 looking for those eigenvalues that remained almost

constant. We could reproduce the results in the literature with matrices of

dimension N = 30 [12].

The only exact quantum number is m, however, it is customary to resort to

the quantum numbers of the isolated hydrogen atom in order to label the

energies and states of the Stark problem. Some authors choose the parabolic

quantum numbers n1, n2 = 0, 1, 2, . . . [9] and others the principal quantum

number n = n1 + n2 + |m|+ 1 and k = n1 − n2 [3].

In the case of CRCH we first solved the eigenvalue equations that yield the

eigenvalues Z+ and Z− and then applied the Newton-Raphson method to

solve the equation Z+ + Z− − 4 = 0. Details of the calculation are given

elsewhere [9]; we just mention that in order to obtain a starting point for the

Newton-Raphson method we resorted to the results provided by perturbation

theory [16].
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The Hankel determinants that appear in the RPM are polynomial functions

of E and Z of great degree. For this reason it is necessary to handle complex

numbers with sufficiently great precision and we resorted to the GNU MPC

library [13]. The Hankel determinants can be calculated numerically by means

of the well known recurrence relation

Hd
D =

Hd
D−1H

d+2
D−1 −

(

Hd+1
D−1

)2

Hd+2
D−2

(17)

with the initial conditions Hd
0 = 1 and Hd

1 = fd+1. Once we calculate the

desired determinants we obtain the eigenvalue and separation constant by

means of the Newton-Raphson method. In order to have a suitable starting

point we resorted to CRCH results.

The remarkable rate of convergence of the RPM is clearly illustrated by the

calculation of the logarithmic error log
∣

∣

∣α[D] − α[D−1]
∣

∣

∣ where α stands for either

ReE or ImE. We do not indicate the value of d explicitly because in present

calculations we have chosen d = 0. Figures 1 and 2 show the logarithmic

error for all the resonances with n = 1, 2, . . . , 6 and field strengths F = 0.001

and F = 0.005, respectively. As the quantum numbers increase the minimum

value of D at which the resonance appears also increases. For example, the

lowest resonance appears as a root of the Hankel determinant with D = 2 and

|0, 5, 0〉 appears at D = 11. The rate of convergence is greater when the root of

the Hankel determinant is real. This fact is clearly shown in Fig. 2 where the

imaginary part of |0, 0, 0〉 appears at D = 22. When F = 0.001 the imaginary

part of the lowest resonance appears at D = 103 which is the reason why the

rate of convergence for this resonance is considerably greater than the other

ones for all D ≤ 100. When D > 103 the rate of convergence for the lowest

resonance becomes similar to the other ones.

The resonances explicitly labelled in figures 1 and 2 are shown in Table 1 with

their number of digits truncated to a reasonable size.
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Figure 3 shows that our estimated value of ImE for the lowest resonance is

in perfect agreement with the analytic asymptotic formula derived by Benassi

and Grecchi [9]:

|ImE| ∼ 2F−1e−2/(3F )
(

1− 8.916̄F + 25.57F 2 +O(F 3)
)

. (18)

The RPM is also suitable for the calculation of higher resonances. For example,

tables 2 and 3 compare present results obtained by the CRCH and RPM for

two states with n = 5 with those obtained earlier by Damburg and Kolosov

[11]. Table 4 compares present RPM results for some states with n = 10 with

those obtained by Kolosov [6]. The discrepancy in the imaginary part for the

case |0, 9, 0〉, F = 2.2 × 10−5, is probably due to a misprint in that reference.

Table 5 shows the resonance |39, 0, 0〉 for several values of the field strength.

We do not compare these results with those of Kolosov [6] because he did not

indicate the conversion factor from atomic units to V cm−1 shown in his table.

However, Fig. 4 shows that both sets of results are in reasonable agreement.

In the tables discussed above we have truncated present RPM results to a rea-

sonable number of digits. We have obtained them with much higher accuracy

as suggested by figures 1 and 2. For example, for the lowest resonance and

field strength F = 0.005 we obtained

ReE=−0.50005628479379296933177394769143288196325092731889137262135731

28725736315548994436307340293823812601699152241599625041068943791

42099665225189334039046848974164185728077545219665133771938893895

64251327341968732189236225621425838831553440690618168917215735013

803880912033036

ImE=−4.74901370837102040886757127120827250441845432417751748825418970

22400488040285011762035775189238632536585799373474503067879411046

22147574080708907330396144467615023762954201754322979890803189455

51562966634796276868224× 10−56 (19)

with Hankel determinants of dimension D ≤ 150. In principle we expect that a

properly truncated perturbation series will exhibit an accuracy of the order of

9



|ImE|. On summing the first 130 terms of the perturbation series calculated by

means of the hypervirial perturbative method [16] we obtained the following

result:

EPT = −0.5000562847937929693317739476914328819632509273188913726,(20)

that agrees with the RPM one to the last digit. It is not easy to obtain such

a sharp resonance by means of other approaches; for example, Fernández-

Menchero and Summers [3] estimated ReE = −0.5000553416 and ImE =

0.8944475605×10−7. We calculated the real part of this resonance more accu-

rately by means of the CRLM but were unable to obtain a reasonable estimate

of the imaginary part [12].

The RPM enables one to calculate even sharper resonances; for example, for

the lowest one and F = 0.001 we obtained

ReE=−0.50000225005555178356591589970608204532866714376652965654995937

97019283545891048870035463753481536961447568150634794700138591827

91549628581187487453336046428670620173909589867079695807271725700

47474205292728633151353049600188535220623998127315129221076077663

756392409425470889188167975544640438386213612059475282765271923

ImE=−5.854592875137598393486482622915575× 10−287 (21)

with Hankel determinants of dimension D ≤ 130. In this case perturbation

theory of order 600 (300 nonzero terms) yields

EPT =−0.50000225005555178356591589970608204532866714376652965654995937970

19283545891048870035463753481536961447568150634794700138591827915496

28581187487453336046428670620173909589867079695807271725700474742052

92728633151353049600188535220623998127315129221076077663756392409425

47088918816797549 (22)
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7 Conclusions

We have calculated the resonances of the Stark effect in hydrogen by means

of three independent methods. Although we were able to improve the CRLM

calculation considerably [12] we think that the CRCH is far more efficient.

However, the RPM yielded considerable more accurate results and enabled

us to obtain extremely sharp resonances that we were not able to obtain by

means of the other two methods. The reason is that the accuracy of the real

part should be at least of the order of the imaginary one. We were able to attain

such an accuracy in the calculation of the roots of the RPM equations (16)

thanks to the GNU MPC library [13]. We think that it is almost impossible

to do the same by means of the CRLM because of the numerical calculation

of the matrix elements. In principle, one can obtain the resonances with any

degree of accuracy by means of the CRCH but such calculation would require a

great deal of ingenuity. For this reason we think that the RPM is an extremely

suitable benchmark to test other approaches on separable models.
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[13] A. Enge, M. Gastineau, P. Théveny, and P. Zimmermann, mpc - A library

for multiprecision complex arithmetic with exact rounding, INRIA 1.0.3 (2015)

http://mpc.multiprecision.org/

[14] B. G. Adams, Algebraic Approach to Simple Quantum Systems. Springer,

Berlin, 1994.

[15] U. D. Jentschura, Resummation of the divergent perturbation series for a

hydrogen atom in an electric field, Phys. Rev. A 64:013403 (2001).

[16] F. M. Fernández, Introduction to Perturbation Theory in Quantum Mechanics.

CRC Press, Boca Raton, 2000.

12

http://mpc.multiprecision.org/


Table 1

Resonances for the states appearing in figures 1 and 2

F Resonance Re(E) Im(E)

0.001

|0, 0, 0〉 −0.5000022500555518 −6.584169959231863 × 10−287

|0, 0, 1〉 −0.1250782240371032 −8.433615180808857 × 10−33

|0, 1, 0〉 −0.1280858350607099 −2.060525710039887 × 10−31

|1, 0, 0〉 −0.1220826861326878 −3.395926205766083 × 10−34

|0, 5, 0〉 −0.05215538955477732 −2.594493723108199 × 10−2

0.005

|0, 0, 0〉 −0.5000562847937930 −4.749013708371020 × 10−56

|0, 0, 1〉 −0.1271466127039709 −1.307642723230557 × 10−5

|0, 1, 0〉 −0.1426186075727077 −5.297223183652474 × 10−5

|1, 0, 0〉 −0.1120619240019938 −2.864684219868783 × 10−6

|0, 5, 0〉 −0.1213596730003857 −1.176260968442979 × 10−1

Fig. 1. Convergence of the RPM resonances for F = 0.001
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Table 2

Resonance |0, 4, 0〉 from reference [11] (a) and present calculation by means of CRCH

(b) and RPM (c)

F Re(E) Im(E)

0.00010

a −0.0231791962 −2.1× 10−12

b −0.02317919625030 −2.1135 × 10−12

c −0.02317919625030518 −2.113884073268850 × 10−12

0.00015

a −0.024956749 −9.595 × 10−7

b −0.024956750918078 −9.6007202913 × 10−7

c −0.02495675091807878 −9.600720291331372 × 10−7

0.00020

a −0.02697136 −8.9150 × 10−5

b −0.0269800814710915 −9.36280360832384 × 10−5

c −0.02698008147109154 −9.362803608323849 × 10−5

0.00025

a −0.02896828 −4.2655 × 10−4

b −0.02912946983310681 −4.868994650393436 × 10−4

c −0.02912946983310681 −4.868994650393436 × 10−4

0.00030

a −0.0305381 −9.849 × 10−4

b −0.03122955458572655 −1.127494087615666 × 10−3

c −0.03122955458572655 −1.127494087615666 × 10−3

0.00035

a −0.0314338 −1.8217 × 10−3

b −0.03323652729915596 −1.945324601526496 × 10−3

c −0.03323652729915596 −1.945324601526496 × 10−3

0.00040

a −0.031408 −3.17565 × 10−3

b −0.03512209724011620 −2.892832253491630 × 10−3

c −0.03512209724011620 −2.892832253491630 × 10−3

0.00045

a −0.02998 −6.365 × 10−3

b −0.03687445248862566 −3.911655467856354 × 10−3

c −0.03687445248862566 −3.911655467856354 × 10−3

14



Table 3

Resonances for the state |4, 0, 0〉 from reference [11] (a) and present calculation by

means of CRCH (b) (b) and RPM (c)

F Re(E) Im(E)

0.00015

a −0.0158077645 −1× 10−11

b −0.01580776440749585 −7.156147028941416 × 10−12

c −0.01580776440749585 −7.156147028941416 × 10−12

0.00020

a −0.0145352049 −2.013−8

b −0.01453520517676726 −2.012419057345574 × 10−8

c -0.01453520517676726 −2.012419057345574 × 10−8

0.00025

a −0.013328925 −1.63595 × 10−6

b −0.01332892813256598 −1.637235677233378 × 10−6

c −0.01332892813256598 −1.637235677233378 × 10−6

0.00030

a −0.01220093 −2.0833 × 10−5

b −0.01220135935615766 −2.104916128829678 × 10−5

c −0.01220135935615766 −2.104916128829678 × 10−5

0.00035

a −0.01113604 −8.9570 × 10−5

b −0.01114288854595917 −9.327043407081445 × 10−5

c −0.01114288854595917 −9.327043407081445 × 10−5

0.00040

a −0.01008206 −2.1402 × 10−4

b −0.01011729953739499 −2.321591626792999 × 10−4

c −0.01011729953739499 −2.321591626792999 × 10−4

0.00045

a −0.00899479 −3.7941 × 10−4

b −0.00909725070184054 −4.263615594700631 × 10−4

c −0.00909725070184054 −4.263615594700631 × 1−4

0.00050

a −0.0078517 −5.7415 × 10−4

b −0.00807076238659657 −6.601708601710509 × 10−4

c −0.00807076238659657 −6.601708601710509 × 10−4
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Table 4

Resonances calculated by Kolosov [6] (a) and by means of the RPM with D = 30

(b)

|9, 0, 0〉

105 F ReE ImE

2.0
a −2.58557398 × 10−3 −9.509227 × 10−8

b −2.585573979364734 × 10−3 −9.509226978683682 × 10−8

3.0
a −1.57105982 × 10−3 −3.959433 × 10−5

b −1.571059822031523 × 10−3 −3.959432995212450 × 10−5

4.0
a −5.8496223 × 10−4 −1.6703408 × 10−4

b −5.849621042229387 × 10−4 −1.670340346132577 × 10−4

|0, 0, 9〉

105 F ReE ImE

2.0
a −5.32440479 × 10−3 −3.9351431 × 10−5

b −5.324404794258087 × 10−3 −3.935143048784509 × 10−5

3.0
a −5.6483507 × 10−3 −3.263613 × 10−4

b −5.648350339949772 × 10−3 −3.263623549768137 × 10−4

|0, 9, 0〉

105 F ReE ImE

1.4
a −7.2120845 × 10−3 −4.0070215 × 10−5

b −7.212084472616482 × 10−3 −4.007021552503371 × 10−5

1.8
a −7.977367 × 10−3 −2.4391785 × 10−4

b −7.977367228278029 × 10−3 −2.439179991742931 × 10−4

2.2
a −8.660578 × 10−3 −5.32992 × 10−6

b −8.660579416493959 × 10−3 −5.329919686471733 × 10−4
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Table 5

Resonance |39, 0, 0〉 calculated by means of the RPM with D ≤ 65

107 F ReE ImE

1.0 −1.033131815036742 × 10−4 −1.410563208376528 × 10−12

1.2 −6.597779434524293 × 10−4 −2.882918724695370 × 10−8

1.4 −3.007626411426787 × 10−5 −8.858397640808244 × 10−7

1.6 5.730328096956075 × 10−6 −2.598217010741238 × 10−6

1.8 4.153413722356150 × 10−5 −4.277370190378267 × 10−6

2.0 7.701721282910781 × 10−5 −5.720318291587286 × 10−6

2.2 1.120415206875958 × 10−4 −6.975702947269457 × 10−6

Fig. 2. Convergence of the RPM resonances for F = 0.005
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Fig. 3. Width of the lowest resonance calculated by means of the RPM (circles) and

the asymptotic expansion (18) (line)
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Fig. 4. Real and imaginary parts of the resonance |39, 0, 0〉: (a) [6], (b) RPM
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