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Abstract
We study the problem of optimal harvesting of a marine species in a bounded domain, with the aim

of minimizing harm to the species, under the general assumption that the fishing boats have different
capacities. This is a generalization of a result of Kurata and Shi, in which the boats were assumed to
have the same maximum harvesting capacity. For this generalization, we need a completely different
approach. As such, we use the theory of rearrangements of functions. We prove existence of solutions,
and obtain an optimality condition which indicates that the more aggressive harvesting must be pushed
towards the boundary of the domain. Furthermore, we prove that radial and Steiner symmetries of the
domain are preserved by the solutions. We will also devise an algorithm for numerical solution of the
problem, and present the results of some numerical experiments.

Keywords: Population biology, Rearrangements of functions, Reaction-diffusion, Optimization, Symmetry.

Mathematics Subject Classification: 35K57, 35Q92, 35J25, 65K10, 65K15

Contents

1 Introduction 2
1.1 Our alternative approach through rearrangements of functions . . . . . . . . . . . . . . . . 5
1.2 Structure of the paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 6
2.1 Rearrangements of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Steady state equation (6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Existence of solutions 8

4 Symmetry results 10

5 Numerical algorithm 10
5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.1.1 Discretization and calculation of E j+1 . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.1.2 Local optima and saddle points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.2 Experiments and figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2.1 Radial domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2.2 Curvy generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2.3 Symmetry breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

∗Published in Applied Mathematics and Computation, DOI: 10.1016/j.amc.2017.10.006. See the full citation in [EFL18].
†Department of Mathematical Sciences, The University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo, Zhejiang

China 315100, Behrouz.Emamizadeh@nottingham.edu.cn
‡Center for Research on Embedded Systems, Halmstad University, Sweden, Amin.Farjudian@gmail.com
§Corresponding author
¶Beijing International Center for Mathematical Research, Peking University, China, yichen.liu07@yahoo.com

1

https://doi.org/10.1016/j.amc.2017.10.006
mailto:Behrouz.Emamizadeh@nottingham.edu.cn
mailto:Amin.Farjudian@gmail.com
mailto:yichen.liu07@yahoo.com


6 Proof of Lemma 13 13

7 Concluding remarks 16

1 Introduction

Kurata and Shi [KS08] considered the problem of optimal harvesting of a marine species with the aim of
minimizing harm to the species. From an applied marine economy perspective, the main result of their work
is a formal argument in support of designation of no-harvesting zones.

To be more precise, consider a species of (say) fish living in a lake Ω with boundary ∂Ω. The species is
a source of income for fishermen, and as such, it is imperative to come up with harvesting strategies that, on
the one hand, allow the fishermen to make a living, and on the other hand, minimize harm to the species and
provide long term sustainability of the source of income.

In mathematical biology, reaction-diffusion equations have provided a standard model for the study of
population dynamics of many species. Assuming that w denotes the population density, a fairly general form
of a reaction-diffusion equation may be expressed as:

∂w/∂t = ∇ · (D∇w) + f (w, x, t), x ∈ Ω, t > 0, (1)

in which f is regarded as the source function [Mur02, Chap. 11]. For modelling the fish population in a
lake, we consider the same set of assumptions as taken by Oruganti, Shi, and Shivaji [OSS02], i. e.:

1. The fish move around via a ‘random walk’ in the bounded homogeneous environment Ω, which im-
plies that D is constant throughout the domain. Of course, in a more general setting, it could be a
function of w, x, and t.

2. The population dynamics is subject to logistic growth.

With these assumptions, one obtains the following equation:

∂w/∂t = D∆w + aw (1 − w/K), x ∈ Ω, t > 0, (2)

where D > 0, and in which a,K > 0 denote the linear reproduction rate and the carrying capacity of the
environment, respectively. If the species is subject to harvesting, then a further term should be subtracted
from the right hand side of (2) to account for the loss of population due to harvesting. Hence, the modified
equation takes the form:

∂w/∂t = D∆w + aw (1 − w/K) − h(x,w), x ∈ Ω, t > 0, (3)

in which h(x,w) denotes the harvesting density per unit time.
As we are interested in qualitative properties of solutions, we would like to make some simplifications

in order to turn (3) into a more manageable one. First, we assume that the harvesting density per unit time is
directly proportional to the density w and some harvesting effort E(x) at each point x ∈ Ω. Hence, we take
h to be of the form:

h(x,w) = E(x)w.

This is acceptable as, for instance, fishers would cast the same type of net at a point x ∈ Ω regardless of the
density of population at that point.

Second, to avoid clutter, we would like to take the specific values that a and K take out of the discussion.
To that end, we introduce the change of variables w(x, t) = K u(y, t) and y =

√
a x into (3), which leads to:

∂u/∂t = a (D∆u + u (1 − u)) − E(y/
√

a)u, y ∈ Ω′, t > 0.
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Indeed, for qualitative analysis of the solutions, the parameter a appearing in the right hand side has no
significance in what shall follow (see, e. g., [CC89]). Hence, we normalize the value of a to 1. Combining
the effects of all the simplifications, and by taking the diffusion scale ε to be ε B

√
D, we obtain:

∂u/∂t = ε2∆u + u − u2 − E(y)u, y ∈ Ω′, t > 0.

Regarding boundary conditions, we assume that the surrounding area of the region Ω is completely
inhospitable, e. g., Ω is a lake surrounded by land. This leads to the choice of Dirichlet boundary conditions.
We remark here that a more general problem may be studied by considering Robin boundary conditions, but
as, on the one hand, our focus in this article is not the effects of the boundary conditions, and on the other
hand, with Dirichlet boundary conditions we have richer mathematical results at our disposal, we focus on
the case of Dirichlet boundary conditions.

Putting together all the normalizations, simplifications, and considerations alluded to thus far leads to
the dynamics of the fish population being modeled by the following reaction-diffusion equation with logistic
growth: 

∂u/∂t = ε2∆u + u − u2 − E(x)u, x ∈ Ω, t > 0,
u(x, t) = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), x ∈ Ω,

(4)

in which:

• Ω ⊆ RN is a smooth domain, with N ≥ 1;

• u is the population density;

• u0 ≥ 0 is an initial population density;

• ε is the diffusion scale;

• E(x) ≥ 0 is the harvesting effort, and as a consequence, E(x)u is the harvesting density per unit time;

• All the variables are dimensionless.

The biological energy function associated with system (4) is given as follows:

Eε(u, E) B
ε2

2

∫
Ω

| ∇u |2 dx︸            ︷︷            ︸
kinetic energy

−
1
2

∫
Ω

u2 dx +
1
3

∫
Ω

u3 dx +
1
2

∫
Ω

E(x)u2 dx︸                                                     ︷︷                                                     ︸
potential energy

, (5)

for u ∈ H1
0(Ω). As time passes, this quantity decreases for u(·, t). To see this, observe that using the

Divergence theorem, and keeping in mind that ∂u/∂t vanishes on ∂Ω, one finds:

dEε(u(·, t))
dt

=

∫
Ω

[
−ε2∆u − u + u2 + E(x)u

] ∂u
∂t

dx

= −

∫
Ω

(
∂u
∂t

)2

dx ≤ 0,

for t ∈ (0,∞). This behavior of Eε(u(·, t)), coupled with the fact that Eε(u(x, t), E) ≥ −C, for some positive
constant C,1 guarantee that there exists a function u∞ ∈ H1

0(Ω) such that:

lim
t→∞
‖u(x, t) − u∞(x)‖H1

0 (Ω) = 0.

1See (22) on page 9.
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The function u∞ satisfies the following steady state equation: ε2∆u + u − u2 − E(x)u = 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.
(6)

Of particular interest is the long term survival of the species which, according to the current formalism,
is determined by the steady state solution u of (6). As the effort function E(x) is the only parameter under
our control, we denote the solution of (6) by uE , to stress its dependence on the harvesting strategy. Indeed,
it has been shown (see, e. g., [CC89]) that when the diffusion scale ε is small enough, and the harvesting
effort is not too aggressive—i. e., when {x ∈ Ω | E(x) < 1} has positive measure—the population survives,
in that equation (6) has a unique positive solution uE , which satisfies: ∀x ∈ Ω : 0 < uE(x) ≤ 1.

Nonetheless, the survival of the species is not the same as its well-being. We have already discussed
how the solution u(x, t) of the parabolic equation (4) descends (in energy terms) towards a minimum energy
steady state. This hints at the biological system’s preference towards lower energy. By fixing ε, and noting
the dependence of uE on E—which is the parameter under our control—we define:

Φ(E) B
ε2

2

∫
Ω

| ∇uE |
2 dx −

1
2

∫
Ω

u2
E dx +

1
3

∫
Ω

u3
E dx +

1
2

∫
Ω

E(x)u2
E dx. (7)

By incorporating the differential equation in (6) into the definition of Φ in (7), it can be shown that:

Φ(E) = −
1
6

∫
Ω

u3
E dx.

To maximize the well-being of the species, our aim should be to devise a harvesting strategy E(x) which
minimizes Φ(E) amongst all the admissible choices for E(x). This is equivalent to maximizing

∫
Ω

u3
E dx, a

quantity which, at an intuitive level, may be construed as a total population distribution in the habitat. This
also reinforces the idea of minimizing Φ in order to maximize the well-being of the species. To that end,
Kurata and Shi [KS08] consider the following assumptions on E(x):

1. Among all the admissible choices for E(x), the total effort is constant:∫
Ω

E(x) dx = β · |Ω |, (8)

in which β > 0 is the average effort, and |Ω | denotes the Lebesgue measure of Ω.

2. The effort function E(x) is non-negative and bounded, i. e., for a maximum allowable harvesting effort
M ≥ β:

∀x ∈ Ω : 0 ≤ E(x) ≤ M. (9)

It is well known that the set

E′ B

{
E ∈ L∞(D) 0 ≤ E(x) ≤ M,

∫
Ω

E(x) dx = β · |Ω |

}
,

which is exactly the admissible set of effort functions satisfying (8) and (9), is the σ(L2, L2)-closure of the
set

E B
{
MχA A is a Lebesgue-measurable subset of Ω and |A| =

β

M
|Ω |

}
, (10)

in which χA is the characteristic function of the set A, see, e. g., [LE16, Lemma 4.1]. Here, σ(L2, L2) denotes
the weak topology on L2(Ω) induced by L2(Ω).

Kurata and Shi [KS08] prove that not only the energy functional Φ does attain its minimum on the
admissible set E′, but indeed the minimum is attained on an element of E. This, in particular, entails that the
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solution is of a ‘bang-bang’ type, meaning that there must be a no-harvesting zone (of maximum measure
possible) set aside over which no harvesting is allowed, and outside of which harvesting is carried out with
maximum allowable effort. The authors go on to prove other interesting results regarding the location and
geometry of the no-harvesting zone, e. g., that it preserves the Steiner symmetry of the domain Ω, and that
symmetry breaking can happen over non-convex domains such as the dumbbell shaped domain and annulus.
It is also argued that the no-harvesting zone must in general be away from the boundary of Ω and closer to
the center of the domain.

1.1 Our alternative approach through rearrangements of functions

In this paper, we obtain a generalization of the result of Kurata and Shi [KS08] through the theory of
rearrangements of functions as developed by G. R. Burton [Bur87; Bur89b; Bur89a]. Note that the set E in
(10) is indeed a rearrangement class (see Definition 3 on the next page). Thus, here we attack the problem
from another angle. We first consider the optimization problem over a given rearrangement class, and then
prove its solvability by relaxing the admissible set to its weak closure. In contrast to the result of [KS08]
where the rearrangement class had to be generated by a characteristic function, here we can consider the
general multivalued generators.

The interpretation of the multivalued setting is as follows: imagine a fishing fleet consisting of boats
of various capacities, and assume that, to make the deployment of each boat cost-effective, each boat is
required to harvest to its maximum capacity. The problem is to find the best spatial strategy regarding the
location of the boats.

Note that, if all the boats have the same capacity, the problem reduces to that considered in [KS08]. Here
we solve the general multivalued problem using the theory of rearrangements of functions. Furthermore,
we obtain an optimality condition, which in particular provides a generalization of the result of [KS08]
regarding the location of boats. Specifically, it will be shown that the larger boats must be deployed closer
to the boundary of the habitat.

Finally, we will develop an algorithm for numerical solution of the multivalued problem and present
the results of some numerical experimentations. These results verify some of the theoretical conclusions
of [KS08] and the current paper.

1.2 Structure of the paper

The rest of the paper is organized as follows:

• Section 2 contains the preliminaries on rearrangement theory and some basic properties of the steady
state equation (6).

• Existence of solutions will be proven in Section 3.

• We prove preservation of Steiner and radial symmetries in Section 4.

• In Section 5, we present a numerical algorithm for finding minimizers, together with a number of
figures from our experiments that verify the theory.

• To avoid a large gap in the flow of the content, we have included the lengthy proof of Lemma 13—
from Section 3—in Section 6. This is an essential lemma which deals with the fundamental properties
of the energy functional Φ.

• In Section 7, we finish the paper with some concluding remarks regarding where the current result fits
in the general area of applications of rearrangement optimization problems.
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2 Preliminaries

The material in this section includes some basic results from the theory of rearrangements of functions, and
some background on the steady state equation (6), which we will need later on.

2.1 Rearrangements of functions

For a Lebesgue measurable function h : Ω→ [0,∞) and α ≥ 0, we let:

λh(α) B | {x ∈ Ω | h(x) ≥ α} |.

Definition 1. Let g0 : Ω1 → [0,∞) and g : Ω2 → [0,∞) be Lebesgue measurable. We say that g is a
rearrangement of g0 if and only if ∀α ≥ 0 : λg0(α) = λg(α).

Definition 2. For a Lebesgue measurable g : Ω → [0,∞), the essentially unique decreasing rearrange-
ment g∆ of g is defined on (0, |Ω |) by g∆(s) B max{α ∈ R | λg(α) ≥ s}. The essentially unique increasing
rearrangement g∆ of g is defined by g∆(s) B g∆(|Ω | − s).

Definition 3. The rearrangement class R(g0) generated by g0 is defined as follows:

R(g0) B {g : Ω→ [0,∞) g is a rearrangement of g0} .

When the generator is clear from the context, we may simply write R.

Definition 4. For a function f : Ω → R, we say that the graph of f has no significant flat zones on Ω if
∀c ∈ R : | {x ∈ Ω f (x) = c} | = 0.

Lemma 5. Let g0 ∈ L∞(Ω)+, where L∞(Ω)+ denotes the positive cone generated by non-negative functions
in L∞(Ω). Let R be the weak closure of R B R(g0) in L2(Ω). Then, R ⊆ L∞(Ω), and ∀g ∈ R : ‖g‖∞ ≤ ‖g0‖∞.

Proof. Let g ∈ R, and assume that D B {x ∈ Ω | g(x) > ‖g0‖∞} has a positive Lebesgue measure. As g ∈ R,
there exists {gn} ⊆ R such that gn ⇀ g in L2(Ω). Then, we have:∫

D
gn dx =

∫
Ω

gnχD dx→
∫

Ω

gχD dx =

∫
D

g dx. (11)

As each gn is in the rearrangement class of g0, we have
∫

D gn dx ≤ ‖g0‖∞ |D|. On the other hand, from the
definition of D, in conjunction with (11), we deduce:

‖g0‖∞ |D| <
∫

D
g dx = lim

n→∞

∫
D

gn dx ≤ ‖g0‖∞ |D|,

which is a contradiction. As a result, the measure of D is zero, and ‖g‖∞ ≤ ‖g0‖∞. �

Lemma 6. Assume that {gn}n∈N is a sequence of non-negative functions in L∞(Ω), g ∈ L2(Ω), and gn ⇀ g
in L2(Ω). Then, g is non-negative a.e. in Ω.

Proof. By Mazur’s Lemma, there exists a sequence {vn} in the convex hull of the set {gn | n ∈ N}, such
that vn → g in L2(Ω). Therefore, vn → g in measure. Whence, there exists a subsequence of {vn} which
converges to g almost everywhere in Ω. This completes the proof. �

Lemma 7. Let g0 ∈ L2(Ω)+, and let R B R(g0). Suppose Ψ : R → R is convex, weakly sequentially
continuous, and satisfies the following:

lim
t→0+

Ψ(u + t(v − u)) − Ψ(u)
t

=

∫
Ω

G(u)(v − u) dx, ∀ v, u ∈ R, (12)

where G : R → L2(D) is an operator. Then, we have:
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(i) Ψ attains a maximum value relative to R.

(ii) Let û be a maximizer for Ψ relative to R, and suppose Ψ is locally strictly convex at û, i. e.

∃ ε > 0 : Ψ is strictly convex on R ∩ B(û, ε),

Then, û = η ◦G(û) a.e. in Ω, for some non-decreasing function η.

Proof.

(i) We begin by considering the following maximization problem:

sup
u∈R

Ψ(u). (13)

Since Ψ is weakly continuous, and R is weakly compact, (13) is solvable. Let ū ∈ R be a solution.
By applying the formula (12), we infer that ū maximizes the continuous linear functional L(h) :=∫
Ω

G(ū)h dx relative to h ∈ R. It is known that the functionalL has a maximizer ũ relative to R [Bur87,
Theorem 4]. Since L is weakly continuous, it follows that ũ maximizes L relative to R as well.
Whence, in particular, L(ū) ≤ L(ũ). By using the convexity of Ψ and the formula (12), we have:

Ψ(ũ) − Ψ(ū) ≥ lim
t→0+

Ψ(ū + t(ũ − ū)) − Ψ(ū)
t

=

∫
Ω

G(ū)(ũ − ū) dx = L(ũ − ū) ≥ 0.

Thus, Ψ(ũ) = Ψ(ū), and ũ ∈ R is a solution of (13), as desired.

(ii) Let us fix a maximizer û satisfying the local strict convexity. For any v ∈ R, there exists t > 0 small
enough such that:

0 ≥ Ψ(v) − Ψ(û) >
Ψ(û + t(v − û)) − Ψ(û)

t
≥

∫
Ω

G(û)(v − û) dx,

where the second inequality follows from local strict convexity of Ψ at û, and the third inequality is
derived from the convexity of Ψ. Thus, û is the unique maximizer of the continuous linear functional
L1(v) B

∫
Ω

G(û)v dx relative to v ∈ R. By applying Theorem 5 in [Bur87], we infer û = η ◦G(û) a.e.
in Ω, for some non-decreasing function η, as desired.

�

2.2 Steady state equation (6)

We need the following result regarding existence and uniqueness of solutions of the boundary value problem
(BVP) (6):

Proposition 8. Assume that | {x ∈ Ω | E(x) < 1} | > 0. Then, there exists an ε1 = ε1(Ω, E) > 0 such that:

• When ε ≥ ε1, the BVP (6) has only the trivial solution uE = 0.

• When 0 < ε < ε1, the BVP (6) has a unique positive solution, which is positive throughout the (interior
of the) domain, and bounded above by 1, i. e.:

∀x ∈ Ω : 0 < uE(x) ≤ 1.

Furthermore, this solution is globally asymptotically stable, in the sense that, for any u0 ∈ L2(Ω) with
u0(x) ≥ 0 for all x ∈ Ω, the solution u(x, t) of the parabolic equation (4) satisfies:

lim
t→∞
‖ u(x, t) − uE(x) ‖H1

0 (Ω) = 0.
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Proof. See [CC89, Sect. 2]. �

Remark 9. There is indeed an explicit description of the value ε1 of Proposition 8. Consider the following
eigenvalue problem:  −∆z = λ(1 − E(x))z, x ∈ Ω,

z = 0, x ∈ ∂Ω,
(14)

and let λ+
1 be the smallest positive eigenvalue of (14). Then ε1 = 1√

λ+
1

. For further details, see [CC89,

Sect. 2].

3 Existence of solutions

Let us first go through the formal statement of the problem. We take a non-negative function E0 ∈ L∞(Ω) as
the generator of the rearrangement class R(E0), where E0 satisfies:

1
|Ω|

∫
Ω

E0(x) dx < 1. (15)

Each element of this rearrangement class represents a harvesting strategy, and for each E ∈ R(E0) and x ∈ Ω,
the value E(x) corresponds to the harvesting capacity of the boat located at x. The special case where E0
is a characteristic function corresponds to the one considered in [KS08], where all the boats have the same
capacity.

Since ε1 depends on E when Ω is fixed, we need to maximize the ε1 among the rearrangement class
R(E0), i. e.:

ε2(E0) := sup
E∈R(E0)

ε1(Ω, E). (16)

Proposition 10. Let E0 be a non-negative function in L∞(Ω) which satisfies (15), and let R B R(E0). Then,
the maximization problem (16) is solvable. Furthermore, for any maximizer Ẽ, there exists a non-decreasing
function ϕ such that Ẽ = ϕ ◦ uẼ .

Proof. By Remark 9, the maximization problem (16) is equivalent to the following minimization problem:

1
ε2(E0)2 = inf

E∈R(E0)
λ+

1 (E). (17)

By applying Theorem 1 (i) in [CCP13], we have the desired results. �

Remark 11. We know that ε1(Ω, ·) is continuous on R [CCP13, Prop. 1 (i)]. For ε < ε2, there exists
E1 ∈ R(E0) such that ε < ε1(Ω, E1), while it is possible to have ε ≥ ε1(Ω, E2) for some other E2 ∈ R(E0).

Now, let us fix a positive ε < ε2(E0). We are interested in minimizing harm to the species, which
corresponds to minimization of the functional:

Φ(E) B
ε2

2

∫
Ω

| ∇uE |
2 dx −

1
2

∫
Ω

u2
E dx +

1
3

∫
Ω

u3
E dx +

1
2

∫
Ω

E(x)u2
E dx = −

1
6

∫
Ω

u3
E dx (18)

over the set R(E0) of all the admissible strategies. We denote this problem by the usual notation:

inf
E∈R(E0)

Φ(E). (19)

To prove the existence of solutions for (19), we need to explore some properties of the energy func-
tional Φ.
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Lemma 12. If—by a slight abuse of notation—we define:

Φ(v, E) B
ε2

2

∫
Ω

| ∇v |2 dx −
1
2

∫
Ω

v2 dx +
1
3

∫
Ω

v3 dx +
1
2

∫
Ω

E(x)v2 dx, (20)

then we have:
Φ(E) = inf

v∈H1
0 (Ω)+

Φ(v, E). (21)

Indeed, for each fixed E, the solution uE of the BVP (6) is the unique minimizer of Φ(v, E) with respect to
v ∈ H1

0(Ω)+.

Proof. Since E(x) ≥ 0, for every v ∈ H1
0(Ω)+, we have

Φ(v, E) ≥
ε2

2
‖v‖2H1

0 (Ω) −
1
2

∫
Ω

v2 dx +
1
3

∫
Ω

v3 dx =
ε2

2
‖v‖2H1

0 (Ω) +
1
6

∫
Ω

v2(2v − 3) dx

≥
ε2

2
‖v‖2H1

0 (Ω) +
1
6

∫
{v< 3

2 }
v2(2v − 3) dx ≥

ε2

2
‖v‖2H1

0 (Ω) −
9
8
|Ω|. (22)

So, Φ(·, E) is coercive and bounded below on H1
0(Ω)+. By applying the direct method of calculus of vari-

ations, we infer the existence of a minimizer v for (21). We intend to show that v = uE , in the sense of
Proposition 8. To that end, we apply the classical techniques of variational inequalities, (see, e. g., [Eva10,
Sect. 8.4.2]). It follows that:v ≥ 0, −ε2∆v ≥ (1 − E(x))v − v2, in Ω,

−ε2∆v = (1 − E(x))v − v2, on Ω ∩ {v > 0} .
(23)

However, in the region {x ∈ Ω | v(x) = 0}, the differential equation in the second line of (23) is trivially
satisfied. This implies that the minimizer satisfies v = 0 or v = uE . If ε ≥ ε(Ω, E), we must have v = 0.
On the other hand, if ε < ε(Ω, E), we infer that v = uE is the unique positive solution, since Φ(uE , E) =

− 1
6

∫
Ω

u3
E dx < 0. �

Lemma 13. Let E0 be a non-negative function in L∞(Ω) which satisfies (15), and let R B R(E0). Suppose
that 0 < ε < ε2(E0). The functional Φ : R → R satisfies the following properties:

(i) Φ is weakly sequentially continuous w. r. t. the L2 topology.

(ii) Φ is concave. Moreover, for any E ∈ R with uE > 0, Φ is locally strictly concave at E, i. e.:

∃ ε > 0 : Φ is strictly concave on R ∩ B(E, ε).

(iii) For any given E and F in R, by assigning v B F − E, we get:

lim
t→0+

Φ(E + tv) − Φ(E)
t

=
1
2

∫
Ω

vu2
E dx. (24)

Proof. See Section 6. �

Based on the properties of the energy functional as stated in Lemma 13, we can apply the theory of
Burton [Bur87] to obtain the following existence result:

Theorem 1. Let E0 be a non-negative function in L∞(Ω) which satisfies (15), and let 0 < ε < ε2(E0). Then,
the minimization problem (19) is solvable. Furthermore, for any minimizer E∗, there exists a non-increasing
function φ̌ such that:

E∗ = φ̌ ◦ uE∗ . (25)
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Proof. Define Ψ(E) B −Φ(E). By Lemma 13, the functional Ψ is weakly sequentially continuous w. r. t.
the L2 topology, convex, and satisfies the formula (12) with G(E) = − 1

2 u2
E . Thus, we can apply Lemma 7 to

deduce that the maximization problem:
sup

E∈R(E0)
Ψ(E) (26)

is solvable.
Let us fix a maximizer E∗ ∈ R(E0), and note that we must have uE∗ > 0 by Remark 11. It follows

from Lemma 13 (ii) that Ψ is locally strictly convex at E∗. By Lemma 7 (ii), we have E∗ = φ̂ ◦ (− 1
2 u2

E∗),
for some non-decreasing function φ̂. This implies that E∗ = φ̌ ◦ uE∗ , in which φ̌ : [0,∞) → R, defined by
φ̌(t) B φ̂(−t2/2), is non-increasing.

It should be obvious that any solution of the maximization problem (26) is a solution of our main
minimization problem (19), and vice versa. Hence, the proof is complete. �

4 Symmetry results

In this section, we investigate preservation of Steiner and radial symmetries by the minimizer, when Ω has
the respective symmetries.

Theorem 2. Suppose that | {x ∈ Ω | E0(x) = ‖ E0 ‖∞} | > 0. If Ω is Steiner symmetric with respect to a
hyperplane P, then E∗ is increasingly Steiner symmetric with respect to the hyperplane P.

Proof. The proof is similar to Theorem 2.5 in [KS08]. Without loss of generality, we assume that Ω is
Steiner symmetric with respect to the hyperplane x1 = 0. Let E∗ be a minimizer of the optimization problem
with E∗ = φ̆ ◦ uE∗ for a non-increasing φ̆ as shown in Theorem 1. Then, we have:

−ε2∆uE∗ = (1 − ‖E0‖∞ − uE∗)uE∗ + (‖E0‖∞ − φ̆ ◦ uE∗)uE∗ .

Let us set f1(u) B (1− ‖E0‖∞ − u)u and f2(u) B (‖E0‖∞ − φ̆ ◦ u)u. By applying Theorem 3.6 in [Fra00], we
conclude that uE∗ is decreasingly Steiner symmetric with respect to the hyperplane x1 = 0. Recalling that
E∗ = φ̆ ◦ uE∗ , we infer that E∗ is increasingly Steiner symmetric with respect to the hyperplane x1 = 0. �

The following is a direct consequence:

Corollary 14. Suppose that | {x ∈ Ω | E0(x) = ‖ E0 ‖∞} | > 0. If Ω is a ball centered at the origin, then E∗

is increasingly Schwarz symmetric with respect to the origin. Moreover, E∗ is the unique minimizer of the
optimization problem (19).

Remark 15. The assumption | {x ∈ Ω | E0(x) = ‖ E0 ‖∞} | > 0 is a reasonable one, as in practice we expect
the maximal harvesting to be taken over a region rather than at a point.

5 Numerical algorithm

The gradient formula (24) of Lemma 13, together with the optimality condition 25 of Theorem 1, give us the
necessary machinery for devising a numerical algorithm for solving the minimization problem (19), which
is only practical when the generator E0 is a characteristic function. For an example of such an algorithm,
see [EFZR16].

Fortunately, for the current problem we can devise an algorithm based on the approach of Eydeland and
Turkington [ET88], which was also applied to a rearrangement problem by Elcrat and Nicolio [EN95]. The
pseudocode in Fig. 1 is a simplified account of the main iteration in our algorithm.

Proposition 16. The iteration of Fig. 1 on the following page generates a minimizing sequence, i. e., at every
iteration j we have:

Φ(E j+1) ≤ Φ(E j). (27)
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Figure 1 Iteration for generating a minimizing sequence.
Input: A generator E0, and an ε > 0.
Output: An approximation of a local minimum.

1. Start with E0;

2. Set j B 0;

3. Repeat

4. E j+1 B arg minE∈R(E0)
∫
Ω

Eu j dx, where u j B uE j ;

5. j B j + 1;

6. Until ‖ E j+1−E j ‖∞
‖ E0 ‖∞

< ε.

Proof. This is straightforward, as we have:

Φ(E j) +
1
2

∫
Ω

(E j+1 − E j)u2
j dx = Φ(u j, E j+1)

(by Lemma 12) ≥ Φ(u j+1, E j+1)

= Φ(E j+1). (28)

Note that by line 4 of the iteration, we have chosen E j+1 to minimize the functional L1(h) B
∫
Ω

hu j dx
relative to the rearrangement class R(E0). But as u j is non-negative, then E j+1 also minimizes L2(h) B∫
Ω

hu2
j dx. This implies that:

1
2

∫
Ω

(E j+1 − E j)u2
j dx ≤ 0,

which, together with (28), prove inequality (27). �

5.1 Implementation

We have implemented an algorithm for solving (19) in dimension N = 2, using the iteration of Fig. 1, which
provides the basic machinery for generating a minimizing sequence. Here, we discuss a couple of issues
regarding concrete implementation of the algorithm.

5.1.1 Discretization and calculation of E j+1

The only non-trivial step of the iteration is the calculation of E j+1 in Line 4. Suppose that we have a mesh
D = {Di | 0 ≤ i ≤ P − 1} (for some P ∈ N) over the domain Ω ⊆ R2, such that Ω = ∪D. The corresponding
discretization of the generator provides a list of P values, which we sort in ascending order to obtain:

E(0)
0 ≤ E(1)

0 ≤ . . . ≤ E(P−1)
0 .

These are the various values that the (discretized) generator takes over (say, the centroid of) each finite
element Di.

At each iteration j, we sort the values of u j over the (say, centroids of the) finite elements, in descending
order, to obtain:

u j(Dσ(0)) ≥ u j(Dσ(1)) ≥ . . . ≥ u j(Dσ(P−1)),

in which σ : {0, 1, . . . , P − 1} → {0, 1, . . . , P − 1} is a permutation. To obtain E j+1, it suffices to assign the
value E(k)

0 to the finite element Dσ(k), for k ∈ {0, 1, . . . , P − 1}.
Thus, assuming that u j has already been obtained, the calculation of E j+1 requires a simple sorting of P

elements.
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Remark 17. Care must be taken as the current procedure relies on u j having no significant flat zones.
Indeed, by assuming:

∀c ∈ [0, 1) : | {x ∈ Ω | E(x) = c} | = 0,

it can be shown that uE does not have any significant flat zones. We do not have a proof for the general case,
but in our numerical simulations, none of the u j’s have any flat zones, so we can apply the above procedure.

5.1.2 Local optima and saddle points

We have neither proven nor disproven the existence of non-global local optima or saddle points. Nonethe-
less, our numerical experiments strongly indicate the existence of local optima, from which the algorithm
cannot escape except through the use of randomization. The local optima show themselves more clearly
over the dumbbell shaped domain, in the presence of a very small no-harvesting zone (or zones with very
low harvesting effort).

To escape local optima (and potential saddle points), we have enhances the algorithm with randomization
through Simulated Annealing. Of course, with randomized algorithms the best one may get is a near-optimal
solution, and due to the huge size of the search space, a brute force search is impractical. For more details,
please see [EFZR16].

5.2 Experiments and figures

We present the results of some of our numerical experiments. All of the figures have been produced in
MATLAB R©. The computations in each case have taken less than 30 seconds on a personal laptop.

5.2.1 Radial domain

We have considered a disc-shaped lake of area 1. We want to cover 35% of the domain with larger boats,
45% with medium-sized boats, and leave the remaining 20% as the no-harvesting zone. Figure 2 below
shows the result of running our algorithm on this domain.

Note that the generator of the rearrangement class is 3-valued. The optimal strategy, as shown in the
middle of the figure, suggests that the smaller boats should be positioned closer to the no-harvesting zone,
which is in the middle. The larger boats harvest around the boundary. Of course, this is intuitively expected.
Note also that radial symmetry is preserved.

Figure 2 From left to right: the decreasing rearrangement E∆
0 of the 3-valued generator E0, the best harvest-

ing strategy E∗, and the population density uE∗ under this optimal strategy. The no-harvesting zone is the
blue zone in the middle, the green zone is where the medium sized boats should be sent, and the red strip
around the border is where the largest boats should do their harvesting.
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5.2.2 Curvy generator

To show that our algorithm works for general multi-valued generators, we have considered a generator with
no flat zones at all, over a cardioid of area 20. The result is shown in Fig. 3 below. Starting from a random
initial guess E0, the algorithm reaches a stable result in about 60 iterations, under 20 seconds, and with
relative error less than 10−2.8. Here, the relative error at each iteration j is calculated by:

relative error at iteration j =
‖ E j+1 − E j ‖∞

‖ E0 ‖∞
= ‖ E j+1 − E j ‖∞,

as ‖ E0 ‖∞ = 1. A further 100 iterations takes the relative error to just below 10−3, but makes no noticeable
dent in the optimal energy.

Figure 3 Multivalued generator on the cardioid: Again note that the harvesting should be less aggressive
towards the center.

5.2.3 Symmetry breaking

Kurata and Shi [KS08] prove that symmetry breaking can occur for the 2-valued case in dumbbell-shaped
and annulus-shaped domains, when the no-harvesting zone is quite small.

In the case of the dumbbell-shaped domain (Fig. 4 on the next page) the two patches must be relatively
large, and the channel between them should be relatively narrow. We have considered a domain of area 1,
with the no-harvesting zone taking up 8% of the area.

In the case of the annulus, the radius of the two inner and outer circles should be relatively large, and
the strip should be quite narrow (Fig. 5 on the following page). Here we have taken the domain to have area
10, and the no-harvesting zone to take up 5% of the total area of the lake.

In both cases, our experiments produce symmetry breaking, as predicted by the theory. Nonetheless,
in the case of the dumbbell-shaped domain, Steiner symmetry is preserved, as proven by Kurata and Shi
[KS08], and also generalized in Theorem 2 of the current document.

6 Proof of Lemma 13

(i) We follow the approach taken in proving Lemma 3.3 (i) in [EL15]. Consider a sequence {En | n ∈ N} ⊆
R and a function Ê ∈ R, such that En ⇀ Ê in L2(Ω). For simplicity, let us set un B uEn and u B uÊ .
By applying Lemma 12, we infer:
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Figure 4 Verifying symmetry breaking in the Dumbbell shaped domain: Note that the no-harvesting zone
is the blue zone in the right patch.

Figure 5 Verifying symmetry breaking in Annulus shaped domain: The no-harvesting zone comprises the
two small blue areas.

Φ(En) +
1
2

∫
Ω

(
Ê − En

)
u2

n dx = Φ(un, En) +
1
2

∫
Ω

(
Ê − En

)
u2

n dx = Φ(un, Ê)

≥ Φ(Ê) = Φ(u, En) +
1
2

∫
Ω

(
Ê − En

)
u2 dx

≥ Φ(un, En) +
1
2

∫
Ω

(
Ê − En

)
u2 dx = Φ(En) +

1
2

∫
Ω

(
Ê − En

)
u2 dx.

(29)

So, it suffices to show that:

lim
n→∞

∫
Ω

(
Ê − En

)
u2

n dx = 0 and lim
n→∞

∫
Ω

(
Ê − En

)
u2 dx = 0. (30)

The second limit in (30) follows from the weak convergence of {En} in L2(D), since u ∈ L∞(D).
However, the verification of the first limit in (30) requires more work. To this end, let us recall that: ε2∆un + un − u2

n − En(x)un = 0, x ∈ Ω,

un(x) = 0, x ∈ ∂Ω.
(31)
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By multiplying both sides of (31) by un, and using the divergence theorem, we obtain:

ε2
∫

Ω

| ∇un |
2 dx =

∫
Ω

(
u2

n − u3
n − Enu2

n

)
dx

(as un ≥ 0, and En ≥ 0) ≤
∫

Ω

u2
n dx

(by Proposition 8) ≤ |Ω |.

Hence, {un} is a bounded sequence in H1
0(Ω). This, in turn, implies the existence of a subsequence of

{un}—still denoted {un}—and ũ ∈ H1
0(Ω), such that un ⇀ ũ in H1

0(Ω), and un → ũ in L2(Ω). Recalling
that 0 ≤ un ≤ 1, by extracting a further subsequence if necessary, it follows from Lebesgue dominated
convergence theorem that u2

n → ũ2 in L2(Ω). Next, we write:∫
D

(
Ê − En

)
u2

n dx =

∫
D

(
Ê − En

)
(u2

n − ũ2) dx +

∫
D

(
Ê − En

)
ũ2 dx. (32)

Obviously, the right hand side of (32) tends to zero as n goes to infinity. The proof of item (i) is com-
plete.

Before proving the last two properties, we claim that the operator G : R → L2(Ω) defined by G(E) B u2
E

is continuous on R, and the set B B
{
E ∈ R : G(E) > 0

}
is open in R. We know from Proposition 8 that

for every E ∈ R, G(E) is either (strictly) positive or zero on Ω. Recalling (18), we infer that Φ(E) = 0 if
uE = 0, and Φ(E) < 0 if uE > 0. The openness of B in R follows by using the continuity of Φ. To prove the
continuity of G, it suffices to show that ũ = uÊ . By (31) we have:

∀φ ∈ C∞0 (Ω) : ε2
∫

Ω

∇un · ∇φ dx +

∫
Ω

(
−unφ + u2

nφ + Enunφ
)

dx = 0. (33)

Since un ⇀ ũ in H1
0(Ω), un → ũ strongly in L2(Ω), and En ⇀ Ê in L2(Ω), from (33) we obtain:

∀φ ∈ C∞0 (Ω) : ε2
∫

Ω

∇ũ · ∇φ dx +

∫
Ω

(
−ûφ + ũ2φ + Êũφ

)
dx = 0.

If uÊ = 0, then it follows from Proposition 8 that ũ = uÊ . On the other hand, if uÊ > 0, we need to show that
ũ , 0. Let us pass to the limit in the following equation:

Φ(En) =
ε2

2

∫
Ω

| ∇un |
2 dx −

1
2

∫
Ω

u2
n dx +

1
3

∫
Ω

u3
n dx +

1
2

∫
Ω

Enu2
n dx,

which leads to:

0 > Φ(Ê) = lim inf
n→∞

Φ(En) ≥
ε2

2

∫
Ω

| ∇ũ |2 dx −
1
2

∫
Ω

ũ2 dx +
1
3

∫
Ω

ũ3 dx +
1
2

∫
Ω

Êũ2 dx.

This shows that ũ , 0, as desired.

(ii) Let us first prove that Φ is concave. Take E1, E2 ∈ R, t ∈ (0, 1), and Et B tE1 + (1 − t)E2. For
v ∈ H1

0(D)+, we have:
Φ(v, Et) = tΦ(v, E1) + (1 − t)Φ(v, E2), (34)

in which the bivariate variant Φ(., .) is as in (20). By taking the infimum of both sides of (34) with
respect to v ∈ H1

0(D)+, we obtain:

Φ(Et) ≥ tΦ(E1) + (1 − t)Φ(E2),
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which proves the concavity of Φ. We prove the second assertion by contradiction. To that end, by
recalling the openness of B, assume that for some E1 ∈ B \ {E} and t ∈ (0, 1), we have:

Φ(Et) = t Φ(E) + (1 − t)Φ(E1). (35)

From (35), and after some straightforward calculations using (21), we obtain:

Φ(uE , E) = Φ(uEt , E) and Φ(uE1 , E1) = Φ(uEt , E1).

Once again, by using the minimality of uE and uE1 (Lemma 12), we obtain uE = uEt = uE1 . Thus,
substituting in the main BVP (6), we have: ε2∆uE + uE − u2

E − E(x)uE = 0, x ∈ Ω,

ε2∆uE1 + uE1 − u2
E1
− E1(x)uE1 = 0, x ∈ Ω.

This implies that (E − E1) uE = 0, almost everywhere in Ω. As uE is positive, then we must have
E = E1, almost everywhere in Ω, which is a contradiction.

(iii) To derive formula (24), we first derive the following equation similar to (29):

∀E1, E2 ∈ R :
1
2

∫
Ω

(E2 − E1)u2
E2

dx ≤ Φ(E2) − Φ(E1) ≤
1
2

∫
Ω

(E2 − E1)u2
E1

dx. (36)

Now, by setting E1 B E and E2 B E + tv = E + t(F − E), from (36) we obtain:

1
2

∫
Ω

tv u2
E+tv dx ≤ Φ(E + tv) − Φ(E) ≤

1
2

∫
Ω

tv u2
E dx,

which implies that:
1
2

∫
Ω

v u2
E+tv dx ≤

Φ(E + tv) − Φ(E)
t

≤
1
2

∫
Ω

v u2
E dx, (37)

as t > 0. On the other hand, by applying the continuity of G we know that limt→0+ u2
E+tv = u2

E in L2(Ω),
which, combined with (37), implies that:

lim
t→0+

Φ(E + tv) − Φ(E)
t

=
1
2

∫
Ω

vu2
E dx,

as desired.

�

7 Concluding remarks

The theory behind optimization of convex functionals over rearrangement classes, as used in this paper, was
originally laid out by Burton [Bur87] to study vortex rings, i. e., in the context of fluid dynamics. The abstract
formulation of rearrangement optimization problems, however, suggests a greater potential for applications.
In essence, one has a set of resources which should be deployed to solve a given problem, and the main task
is to find the optimal arrangement/permutation of resources.

Since Burton’s seminal work, there has been a steady flow of contribution to the theory and its ap-
plications in fluid mechanics [EM91; EN95], finance [EH09; Rüs13], free boundary problems [EM14],
construction of robust membranes [Ema+17], and eigenvalue problems [EZR11], to name a few. In the
current paper, we have extended this range of applications to include a theoretical result in marine economy.
We showed that, using the theory of rearrangements, we can generalize the original results of Kurata and
Shi [KS08], whilst keeping technicalities to a minimum, which is another witness to the power of the theory.
Furthermore, we were able to devise a very straightforward efficient numerical algorithm for solving the
minimization problem, which demonstrates that the theory can lend itself well to numerical computations.
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