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Abstract

A numerical method for the two-dimensional, incompressible Navier–
Stokes equations in vorticity–streamfunction form is proposed, which
employs semi-Lagrangian discretizations for both the advection and
diffusion terms, thus achieving unconditional stability without the
need to solve linear systems beyond that required by the Poisson solver
for the reconstruction of the streamfunction. A description of the dis-
cretization of Dirichlet boundary conditions for the semi-Lagrangian
approach to diffusion terms is also presented. Numerical experiments
on classical benchmarks for incompressible flow in simple geometries
validate the proposed method.
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1 Introduction

Over the last 30 years, Semi-Lagrangian (SL) schemes have been ex-
tremely successful for advection dominated problems, allowing for
example major reductions in the computational cost of operational
weather predictions, see e.g. [5], [24]. The potential advantage of SL
schemes comes from their unconditional stability with respect to the
Courant number, which is in turn achieved by exploiting approxima-
tions of the characteristics of the advection equation.

Several extensions of SL schemes to advection–diffusion problems
have been proposed in the last two decades. Some of these techniques
are based on a splitting of the evolution operator, in which only the
advective part is treated in SL form, whereas others treat the diffusion
term in a consistently SL form by using multiple characteristics, as it
will be shown in Section 3. A review of these proposals is presented,
e.g., in [12].

Within the second line of work, which has been traditionally mo-
tivated by stochastic arguments, we quote here the seminal paper [8],
along with the more recent contributions in [17], [18], [19] and [13].
Due to their stochastic origin, all these works treat diffusion opera-
tors in trace form, but extensions to divergence form operators has also
been proposed in [3], [4]. In these papers, SL methods have proved to
be accurate and efficient for linear and nonlinear advection–diffusion
problems.

In the present work we are interested in applying the same ap-
proach to the incompressible Navier–Stokes (NS) equations

∂u

∂t
+ (u · ∇)u− ν∆u+∇p = 0,

∇ · u = 0, (1)

on a bounded domain Ω ⊂ R
2, with proper initial and boundary con-

ditions. SL techniques of both the forms outlined above have been
proposed for this problem, we refer here for example to the papers
[16], [29], [31], [30] and the review in [2], in which the application of
the SL method is restricted to the advective part, and to [1], [20],
which present and analyze a fully SL approach based on a stochas-
tic framework. In particular, these latter works present a theoretical
analysis for the time-discrete scheme, although with limited numerical
validation.

In the present work, we study the application of a fully SL scheme,
much in the same spirit of [1], [20], to the two-dimensional NS equa-
tions from a more numerical perspective. We will use the vorticity
and streamfunction formulation for simplicity, as a first step towards
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the application of the same approach in the context of a projection
method for the NS equations in their standard velocity-pressure for-
mulation. We will show that the fully SL approach yields an explicit
discretization of both advection and diffusion terms with very mild
stability restrictions, that can achieve higher order spatial accuracy
in a practically and conceptually simple way, while reducing the com-
putational cost of the advection–diffusion step. The scheme will be
constructed and its consistency analyzed. Moreover, we will provide
details on the implementation of boundary conditions, which was not
discussed in detail in our previous papers, and perform some classical
numerical tests to validate the method. Numerical results show that
the method yields good quantitative agreement with reference numer-
ical solution of classical benchmarks, while allowing the use of time
steps several times larger than those of a standard explicit scheme.

The outline of the paper is the following. Section 2 recalls the
vorticity–streamfunction formulation of 2D NS equations, along with
the related boundary conditions. Section 3 describes the SL advection–
diffusion solver, along with its consistency analysis and the imple-
mentation of the boundary conditions. A numerical validation of the
proposed approach on classical benchmarks is presented in Section 5,
while some conclusions and perspectives for future developments are
outlined in Section 6.

2 The Navier–Stokes equations in the

vorticity–streamfunction formulation

We briefly recall here the vorticity–streamfunction (VS) formula-
tion of the NS equations. The basic idea, see [10] for an in-depth
discussion, is that any two-dimensional divergence-free vector field
u = (u1, u2) can be obtained as

u1 =
∂ψ

∂x2
, u2 = − ∂ψ

∂x1
, (2)

for a suitable streamfunction ψ. Now, since u is two-dimensional, its
vorticity is a scalar given by

ω =
∂u2
∂x1

− ∂u1
∂x2

, (3)

which, together with (2), gives

−∆ψ = ω. (4)
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On the other hand, by taking the curl of both sides in (1) we get

0 =
∂ω

∂t
− ν∆ω +

∂ψ

∂x2

∂ω

∂x1
− ∂ψ

∂x1

∂ω

∂x2

=
∂ω

∂t
− ν∆ω + u1

∂ω

∂x1
+ u2

∂ω

∂x2
, (5)

i.e., an advection–diffusion equation for the vorticity. Then, the VS
formulation combines (2), (4) and (5) in the form

∂ω

∂t
+ u · ∇ω − ν∆ω = 0

−∆ψ = ω u = ∇⊥ψ (6)

in which the symbol ∇⊥ denotes in compact form the operator defined
by (2). Note that the incompressibility condition is ensured by (2) and
that the advantage of treating a scalar problem for the vorticity only
occurs in two space dimensions.

The precise derivation of boundary conditions for the vorticity–
streamfunction formulation is not trivial, see e.g. the discussion in
[11], [22]. Here, we will simply note that no slip boundary conditions
amount to assigning

ψ = 0, ∇⊥ψ · n = 0, (7)

where n denotes the outer normal at the boundary, while more general
non homogeneous boundary conditions are assigned by setting non
zero values for the normal derivative of the streamfunction.

3 The fully semi-Lagrangian numeri-

cal method

Our aim in this work is to employ the fully SL advection–diffusion
method described in [3] in the framework a discretization of the NS
equations in VS formulation. The general idea underlying this tech-
nique is to approximate the diffusion term by a convex combination of
the known values at the locations of a time dependent stencil. Similar
ideas, often justified by probabilistic arguments, have been proposed
in various independent contexts, see [8], [13], [21], [25].

Given the advection–diffusion equation

ωt + u · ∇ω − ν∆ω = 0, (x, t) ∈ R
2 × [0, T ]

ω(x, 0) = ω0(x) x ∈ R
2, (8)
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we first consider the inviscid case ν = 0. The construction of large
time-step schemes for (8) stems from the application of the classi-
cal method of characteristics. The system of characteristic curves
X(x, t; s) for (8) is defined by the solutions of:

d

ds
X(x, t; s) = u(X(x, t; s), s),

X(x, t; t) = x. (9)

The solution of (8) is constant along such curves, which means that
it satisfies the relationship

ω(x, t) = ω(X(x, t; t−∆t), t−∆t). (10)

Discretizing the representation formula (10) we obtain the advective
SL approximation. More precisely, we denote by ∆t and ∆x respec-
tively the time and space discretization steps, with tn = n∆t for
n ∈ [0, T/∆t], and a space grid of points xi. The characteristics
X defined by (9) will be replaced by their numerical approximations
X∆. We will also use the shorthand notation

zn+1
i = X∆(xi, t

n+1; tn) (11)

to denote the foot of the approximate characteristic starting from
(xi, tn+1). In this work, we have employed characteristics approxima-
tions based on the standard explicit Euler and Heun schemes. These
methods are applied with substepping, as described e.g. in [9], [14],
[23]. More precisely, for the approximation of characteristics a time
step ∆τ is employed, that is a fraction of the total time step ∆t.
This time step is required to comply with a local CFL restriction. As
discussed in [23], the value of ∆τ can vary along each approximated
characteristic, so that ∆τ << ∆t only in those (usually small) re-
gions with really large Courant numbers. During these substeps, the
velocity field u is frozen at a constant time level for simplicity. Since
employing u

n entails at most first order accuracy, in the case of the
Heun scheme the extrapolation

u
n+ 1

2 ≈ 3

2
u
n − 1

2
u
n

is employed, as common in the meteorological literature, see e.g. [24].
For inviscid problems with ν = 0, (10) is discretized by replacing

the exact upwinding X with X∆, and the value of u at the foot of a
characteristic with an interpolation Ip:

ωn+1
i = Ip[Ω

n]
(

zn+1
i

)

(12)
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where ωn+1
i is the approximation of ω(xi, t

n+1), Ωn is the vector of
node values ωn

i , and Ip is an interpolation operator (e.g., a polynomial
interpolation of degree p) which is assumed to satisfy the condition

Ip[Ω](xi) = ωi.

As customary in the implementation of semi-Lagrangian schemes,
whenever zn+1

i falls outside of the computational domain, it is re-
defined as the closest boundary point. Even though this implies in
principle an error that is first order in time, its impact is minimized
by the use of substepping approaches for the approximation of the
trajectories, see e.g. the discussion in [23].

When ν 6= 0, the scheme can be modified along the lines proposed
in [3], [13], in order to introduce an approximation of the diffusion
term. In fact, a first-order consistent discretization of the term ν∆ω
is obtained by replacing the interpolation of the numerical solution at
zn+1
i with an average of interpolated values obtained adding to zn+1

i

a second displacement of the form

δk = ±δej , (k = 1, . . . , 4)

for all combination of both the sign and the index j = 1, 2, and with

δ =
√
4ν∆t.

Notice that, in an alternative form of the diffusive part of the scheme,
the displacements δk could be rather defined as

δk =
δ√
2

(

±1
±1

)

,

which corresponds to the definition given in [1, 20]. While this defi-
nition is perfectly equivalent in two space dimensions (the stencil of
points is simply rotated), in three space dimensions this would require
a higher number of interpolations at each node (eight interpolation
points instead of six).

The resulting scheme then reads

ωn+1
i =

1

4

4
∑

k=1

Ip[Ω
n]
(

zn+1
i + δk

)

, (13)

in which zn+1
i is defined by (11). In case some of the displacements

δk identifies a location out of the computational domain, the displace-
ment is redefined so that the point zn+1

i + δk is the boundary point
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Figure 1: Modification of weights and displacements near the boundary

along the line connecting zn+1
i and zn+1

i ± δej . For these points, the
scheme is redefined as

ωn+1
i =

4
∑

k=1

αkIp[Ω
n]
(

zn+1
i + δk

)

, (14)

where
∑4

k=1 αk = 1. In order to define the displacements δk and
weights αk in a consistent form, we consider without loss of generality
the simple case depicted in Figure 1. A pure diffusion operator is
discretized by the abstract scheme

u(x, tn+1) ≈ 1

4
u(x+ δe1, tn) +

1

4
u(x− δe1, tn)

+α+u(x+ δ+e2, tn) + α−u(x− δ−e2, tn),

in which we enforce the constraint

δ− ≤ δM , (15)

according to the scheme of Fig. 1. Following [3], consistency is
achieved by imposing conditions on the moments of the discrete mass
distribution defined by the weights α± and displacements δ±. Requir-
ing the first and second moment to coincide with the original ones, we
obtain the conditions:

α+ + α− = 1/2

α+δ+ − α−δ− = 0 (16)

α+(δ+)2 + α−(δ−)2 = 2ν∆t.

The first condition is satisfied if

α− =
1

2
− α+.
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Using the relationship in the second equation of (16), we obtain

0 = α+δ+ − α−δ−

= α+δ+ − (1/2 − α+)δ−

which gives in turn

α+ =
1

2

δ−

δ+ + δ−
, α− =

1

2

δ+

δ+ + δ−
. (17)

Using now (17) in the third equation of (16), we obtain

2∆tν =
1

2

δ+δ−
2
+ δ−δ+

2

δ+ + δ−
=

1

2
δ+δ−,

that is,

δ+ =
4∆tν

δ−
. (18)

To sum up, consistency under the constraint (15) would be obtained
by setting

δ− = δM , δ+ =
4∆tν

δM
, α− =

1

2

δ+

δ+ + δ−
, α+ =

1

2
− α−. (19)

Note that, in general, (16) ensures only consistency of order 1/2 (see
the analysis in [3]). Consistency of first order requires the further
condition

α+δ+
3 − α−δ−

3
= O(∆t2),

which is false in general for the solution (19). Therefore, we should
expect the consistency rate of the diffusive term to drop to ∆t1/2 at
points where the constraint (15) holds.

Denoting by A a numerical approximation of the operator −∆
(e.g., via a five-point discrete Laplacian), by D⊥ an approximation
of the operator ∇⊥ (e.g., via centered differences), and by Ψn+1 and
U

n+1 the vectors of the node values ψn+1
i and u

n+1
i , respectively, the

final form of the scheme is therefore

ωn+1
i =

4
∑

k=1

αkIp[Ω
n]
(

zn+1
i + δk

)

,

AΨn+1 = Ωn+1, (20)

U
n+1 = D⊥Ψn+1,

with initial conditions given by Ω0 = AΨ0, U0 = D⊥Ψ0, where Ψ0

denotes the vector of the initial streamfunction values.
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Figure 2: Node arrangement for the Thom boundary conditions

For a complete definition of the numerical method, boundary con-
ditions for vorticity must be assigned, which do not follow immediately
from the boundary conditions for the streamfunction. A wide range
of possibilities is discussed in [11]. Here, we will employ one of the
simplest formulations, corresponding to the so called Thom bound-
ary conditions [26], which are obtained by converting (via Poisson’s
equation) boundary conditions for the derivative of ψ into Dirichlet
boundary conditions for ω. More specifically, for a linear portion of the
boundary on which a tangential (possibly zero) speed U is imposed,
the Thom boundary conditions read

ω0 = − 2

∆y2
(ψ1 − ψ0) +

2U

∆y
. (21)

A sketch of the reference geometry is given in Fig. 2. Note that the
Thom conditions are directly written in terms of the approximate so-
lution on the grid, in which the subscript denotes the index of the
node with respect to the boundary, so that ω0, ψ0 refer to the bound-
ary and ψ1 to the first internal layer of nodes. Note also that, in (20),
the computation of (21) should be performed at the start of time step
n+1 after the Poisson equation has been solved for Ψn at time step n
(or from the initial data if n = 0). The SL solution of the advection–
diffusion equation should then be computed only at internal nodes,
using the values provided by (21) as boundary data.

4 Consistency analysis of the method

We give now a simplified consistency analysis for the global method,
assuming that it is posed on the whole of R2 with a uniform orthogonal
grid. The analysis of the advection–diffusion step has been carried out
elsewhere (see [13, 3]), and shows that the error introduced between
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two successive time steps is

ǫ1 ≤ C
(

∆t2 +∆xp+1
)

.

Using a five-point laplacian, the Poisson equation is solved withO(∆x2)
accuracy. On the other hand, since the right-hand side is perturbed
by an error ǫ1, the error introduced on the streamfunction is

ǫ2 ≤ C
(

∆t2 +∆xp+1 +∆x2
)

.

Finally, the error introduced by the operator D⊥, when implemented
by centered differences, is again of order O(∆x2). Since for the order
of interpolation we have p ≥ 1, we can drop the term ∆xp+1, and
dividing by ∆t we finally obtain the local truncation error

τ(∆x,∆t) ≤ C

(

∆t+
∆x2

∆t

)

,

which results in a first-order scheme when working at constant Courant
number. A comparison with more conventional advection–diffusion
solvers (see again [3]) shows that, despite being formally low-order,
this strategy provides a good absolute accuracy. In addition, as usual
in SL schemes, no stability restrictions on the Courant number are
introduced. However, since the numerical stencil consists of points
O(

√
∆t) apart, some care should be taken to avoid under-resolution

of the smaller spatial scales. The analysis carried out in [13] shows
that, in order to have a smooth numerical domain of dependence at
time T , the compatibility condition

ν1/3∆t

T 2/3∆x2/3
≪ 1

should be enforced on the discretization steps. In particular, this
implies that time steps with Courant numbers quite larger than one are
still acceptable, so that the efficiency of the semi-Lagrangian scheme
for the advection term is not lost.

5 Numerical results

The method outlined in the previous sections has been imple-
mented so far in a rather elementay way, employing structured Carte-
sian meshes on a rectangular domain. The boundary conditions de-
scribed in section 3 were employed. In one numerical experiments,
the mesh employed had constant step in either direction. The Poisson
equation was discretized in this case via a standard five-point finite
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Nodes u∆t/∆x ν∆t/(2∆x2) L∞ rel. err. L2 rel. err. p2
50× 50 2.6 1 1.12 · 10−2 1.68 · 10−2 -
100× 100 2.6 2 5.44 · 10−3 7.54 · 10−3 1.15
200× 200 2.6 4 2.58 · 10−3 3.57 · 10−3 1.08

Table 1: Convergence test in benchmark with analytic solution

difference scheme, and the operator D⊥ by centered finite differences.
For the interpolation operator Ip, the monotonized bicubic interpolant
implemented in the MATLAB native function interp2 was employed.
Also piecewise linear interpolation was tested, but this resulted in an
overly dissipative method, as well known in the SL literature for the
advective terms (see e.g. [24]) and already shown for the diffusive
terms in [3]. The corresponding results are not reported in the follow-
ing. In the other tests, meshes with non constant steps were employed,
in order to achieve higher resolution at the boundaries, where vortic-
ity production takes place. In this case, first order finite differences
approximations were employed both for the Poisson equation and the
D⊥ operator. For both the constant and non constant step cases,
the finite difference approximations employed for the Poisson equa-
tion yield matrices that coincide with those that would arise from a
linear finite element discretization on the same mesh. Furthermore,
for the meshes with non constant steps, the the cubic spline option in
interp2 was employed.

5.1 Test case with analytic solution

We consider the test case discussed e.g. in [15]. In this test, that was
run with ν = 0.02, over the time interval t ∈ [0, 4], the computational
domain is given by [0, 2π] × [0, 2π], with periodic boundary condi-
tions. The exact solution is given by ω(x, y, t) = sinx sin y exp (−2νt).
For this test, Cartesian meshes with constant node spacing were em-
ployed, as described above. The first order convergence behaviour is
confirmed, but it can be seen that time steps up to four times those
of explicit schemes can be used without any loss in accuracy.

5.2 Lid driven cavity

This classical benchmark for numerical approximations of the Navier
Stokes equations has been discussed in detail for the vorticity and
streamfunction formulation in [11]. Reference solutions obtained with
high order spectral methods and other accurate techniques are re-
ported, among many others, in [6], [7]. In our assessment, we focus on
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Figure 3: Lid driven cavity benchmark at Re = 100 : a) flow field b) stream-
function.

low or moderate values of the Reynolds number. Indeed, it is known
that for Re ≈ 8000 the flow becomes turbulent and unpredictable
for this test, so that a more sophisticated statistical assessment would
have to be carried out. Furthermore, the proposed method is expected
to yield significant efficiency gains especially in laminar regimes, in
which the stability restrictions due to the viscous term can affect the
efficiency of standard explicit methods.

An example of the flow field and streamfunction obtained in the
case Re = 100 at steady state (approximately T = 100) is shown in
Figure 3. The streamfunction is plotted with the same isoline val-
ues as suggested in [7]. The results were obtained using 100 nodes
in each direction and a mesh whose 2 nodes closest to the boundary
are separated by a spacing smaller than that used in the rest of the
domain. The time step employed was such that ν∆t/(2∆x2) ≈ 4,
‖u‖∆t/∆x ≈ 1 for the smallest ∆x values and the solution was com-
puted until steady state was achieved up to a tolerance of 10−7. At a
more quantitative level, the maximum horizontal velocity value along
the centerline of the cavity was umax = 0.21458, while the maximum
and minimum vertical velocity values along the centerline of the cavity
were vmax = 0.17534, vmin = −0.24613, respectively. These values im-
ply a relative error of order 10−3 with respect to the reference steady
state solution in [6]. The vorticity value at the center of the cavity was
computed as ωcen = 1.13370, which implies a relative error of order
10−2 with respect to the same reference solution.

Results at Re = 1000 are shown instead in 4. Again, the stream-
function is plotted with the same isoline values as suggested in [7]
and a good general agreement is found between our results and those
reported in [6], [7]. At a more quantitative level, we show in Fig-
ure 5 the u component of velocity and the vorticity values along

13
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Figure 4: Lid driven cavity benchmark at Re = 1000 : a) flow field b)
streamfunction.

the axis of the cavity, as computed by the proposed method (black
line) on the same mesh described above with a time step that yields
u∆t/∆x ≈ 6, ν∆t/(2∆x2) ≈ 4. The results are compared to those
of reference solutions presented in [6], shown in blue dots and red
circles for velocity and vorticity, respectively. It can be seen that
also good quantitative agreement is achieved, in spite of the rela-
tively coarse mesh, even though the accuracy loss at the boundaries
discussed in Section 3 is apparent in the results for the vorticity vari-
able. The maximum horizontal velocity value along the axis of the
cavity was umax = 0.37487, while the maximum and minimum verti-
cal velocity values along the horizontal centerline of the cavity were
vmax = 0.36034, vmin = −0.49989, respectively. The vorticity value
at the center of the cavity was computed as ωcen = 2.02641. These
values imply relative errors of order 10−2 with respect to the reference
steady state solution in [6].

6 Conclusions

We have presented a fully semi-Lagrangian, explicit time discretiza-
tion method for the Navier Stokes equations in the vorticity stream-
function formulation, which allows to use time steps much longer than
conventional explicit discretizations without the need to solve any lin-
ear systems apart from the one resulting from the discretization of the
Poisson equation. While only first order in time, the method allows in
practice to achieve a sufficient accuracy for many applications, since
high order interpolants can be used to reduce numerical dissipation in
a very straightforward way.

The effectiveness of the method was demonstrated by numerical re-
sults on classical benchmarks of two dimensional incompressible flows.
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Figure 5: Lid driven cavity benchmark at Re = 1000 : a) comparison with u
velocity component values of reference solution b) comparison with ω values
of reference solutions

In ongoing work, this approach is being extended to the pressure–
velocity formulation of the Navier Stokes equations. Furthermore, we
are aiming to implement this approach in the framework of the high
order adaptive SL-DG discretizations proposed in [27], [28].
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