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Stability analysis of a parametric family of seventh-order iterative methods for
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Abstract

In this paper, a parametric family of seventh-order of iterative method to solve systems of nonlinear equations
is presented. Its local convergence is studied and quadratic polynomials are used to investigate its dynamical
behavior. The study of the fixed and critical points of the rational function associated to this class allows us to
obtain regions of the complex plane where the method is stable. By depicting parameter planes and dynamical
planes we obtain complementary information of the analytical results. These results are used to solve some
nonlinear problems.
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1. Introduction

Nonlinear systems arise in different areas of scientific computing and engineering computations, many prob-
lems modeled in science and applied problems are in the form of equations or systems of nonlinear equations.
So, the analysis of these type of equations is an interesting field of study. Let us consider the system of nonlinear
equations F (x) = 0, where F : D ⊆ Rn −→ Rn. As nonlinear systems are difficult to solve, the solution x is5

usually approximated by a fixed point function G : D ⊆ Rn −→ Rn defining a fixed point iteration scheme.
There are many root-finding iterative schemes to solve systems of nonlinear equations. The famous second
order Newton’s method, is a powerful iterative scheme for solving nonlinear equations and systems. But, in
recent years, some researchers have proposed new iterative methods with higher order and better efficiency as
an alternative to classical Newton’s scheme.10

Sharma and Arora in [? ] proposed an eighth-order method that is a three step scheme, denoted by NM8,,
as follows
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where G(x(k)) =
[
F ′(x(k))

]−1
F ′(y(k)) and I is the identity matrix.

In [? ], Cordero et al. designed two eighth-order methods that the first one is describe as
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and is denoted by CCGT1. The second one, denoted by CCGT2, has as iterative expression15
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According to Ostrowski’s efficiency index, defined as I = p1/d, (see [? ]) where p is the order of convergence
and d is the number of function evaluations per iteration, all these methods show better efficiency than Newton’s
scheme.

But, increasing order of convergence usually makes decreasing the radius of convergence, and since determin-
ing the regions where the initial guess shows better convergence behavior is important, so the study of dynamical20

behavior of the iterative methods is very helpful. Dynamical analysis of iterative methods for nonlinear systems
is so complicated (see [? ? ]) and most of the times is impossible, but the study of the behavior of the iterative
method in scalar case and in the complex plane is an interesting field of study. Moreover even in scalar case
for higher order methods studying dynamical behavior is a difficult task and sometimes is impossible due to
the high degree of the rational functions involved. The advent of computers in last decades, made it practically25

possible to study the structure of the dynamical and parameter planes of iterative methods closely in some
special cases, since large amount of computational power is needed to obtain their precise shape, that can be
easily performed in computers.

The main aim of this analysis is finding the regions in the complex plane where our function shows better
performance when converges to the zeros of the function. But even in the scalar case, finding stable regions for a30

high order iterative method is not easy. High order iterative methods, even for simple scalar nonlinear function
f(z), usually results in a high degree fixed point operator, since the key of stability analysis is the study of the
fixed point operator.

In this paper, we propose the following family of seventh-order iterative methods to solve systems of nonlinear
equations, whose iterative expression is35

y(k) = x(k) −
[
F ′(x(k))

]−1
F (x(k)),

z(k) = y(k) − 1

β

[
F ′(x(k))
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]−1 (
(2− 1/β − β)F (y(k)) + βF (zk)

)
, (4)

x(k+1) = w(k) −G(t(k))
[
F ′(x(k))

]−1
F (w(k)),

where t(k) = I − 1
β

[
F ′(x(k))

]−1
[y(k), z(k);F ] and G : Rn×n −→ Rn×n is a matrix weight function that is chosen

in order to obtain the seventh-order of convergence. Also [., .;F ] : Ω × Ω ⊂ Rn × Rn −→ L(Rn) is the divided
difference operator of F on Rn, defined as (see [? ])

[x, y;F ](x− y) = F (x)− F (y), for any x, y ∈ Ω.

Let us remark that the first three steps correspond to a fourth-order parametric family whose convergence
and stability was analyzed in [? ]. In this paper, we are going to analyze the dynamical behavior of class (??)40

on scalar functions. This analysis will be made on quadratic polynomial, as they are the simplest nonlinear
functions, and it will give us important information about the stability of the family in terms of the value of
the parameter and its dependence on the initial estimations used.

The rational function associated with a subclass of (??) on the quadratic polynomial p(z) = (z − a)(z − b)
is used in the following and denoted by Op(z). The obtained results can be extrapolated, up to some extent,45

to more complicated nonlinear function, as can be observed in related research [? ? ? ? ? ? ] and in our
numerical tests.

Now, we recall some dynamical concepts that we use in this paper (see [? ]). Let R : Ĉ −→ Ĉ be a rational

function, where Ĉ is the Riemann sphere, the orbit of a point z0 ∈ Ĉ is defined as:

{z0, R(z0), R2(z0), ..., Rn(z0), ...}. (5)
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where Rk denotes the k-th composition of the map R with itself. We analyze the phase plane of the map R by50

classifying the starting points from the asymptotic behavior of the orbits. The point z0 is called a fixed point
if R(z0) = z0 and is a periodic point of period p > 1 if Rp(z0) = z0 and Rk(z0) 6= z0, for k < p. A pre-periodic
point is a point z0 that is not periodic but there exists k > 0 such that Rk(z0), is periodic. Point z0 is a critical
point if the derivative of the rational function at z0 vanishes, that is R′(z0) = 0. Moreover, a fixed point z0
is called an attracting if |R′(z0)| < 1, superattractive if |R′(z0)| = 0, repulsive if |R′(z0)| > 1 and parabolic if55

|R′(z0)| = 1. The fixed and critical points that are not the roots of the polynomial p(z) are called strange fixed
and free critical points, respectively.

The basin of attraction of an attractor α is defined as:

A(α) = {z0 ∈ Ĉ : Rn(z0)→ α, n→∞}. (6)

The Fatou set of the rational function R, is the set of points z ∈ Ĉ whose orbits tend to an attractor (fixed

point, periodic point or infinity). Its complement in Ĉ is the Julia set, J (R). So the basin of attraction of any60

fixed point belongs to the Fatou set and the boundaries of these basin of attraction belong to the Julia set.
The rest of paper is organized as follows: in Section 2 the local convergence of the iterative class (??) is

presented. In Section 3, we obtain the operator Op(z) of a particular subfamily of (??) on p(z) and then the
stability of fixed points of the operator is studied. Critical points of Op(z) are investigated in Section 4 and the
parameter and dynamic planes for some members of the subclass are studied in this section. Finally, in Section65

5 some of these family members are used to solve systems of nonlinear equations and the numerical stability of
different members are checked.

2. Convergence analysis

In this section we present a local convergence theorem for family (??). In order to get this result, we
introduce the following notation.70

Let us denote by X = Rn×n the space of all n × n real matrices; the weight function in this context is
G : X → X such that

(i) G′(u)(v) = G1uv, being G′ the first derivative of G, G′ : X → L(X), G1 ∈ R and L(X) denotes the space
of linear mappings from X to itself.

(ii) G′′(u, v)(w) = G2uvw, being G′′ the second derivative of G, G′′ : X ×X → L(X) and G2 ∈ R.75

As the variable of the weight function G involved in class (??) is t(k) = I − 1

β
[F (x(k))]−1[y(k), z(k);F ] and it
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(
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β

)
I when k →∞, then Taylor expansion of G around
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β
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β
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I
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+

1
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(
1− 1

β

)
I

)2

. (7)

We also use the Taylor development of the divided difference in the proof of the convergence theorem of
family (??); it is obtained by Genochi-Hermite formula (see [? ]),

[x, y;F ] =

∫ 1

0

F ′(x+ t(x− y))dt, for all (x, y) ∈ Ω× Ω ⊂ Rn × Rn

and, by developing F ′(x+ th) in Taylor series around x, we obtain80 ∫ 1

0

F ′(x+ th))dt = F ′(x) +
1

2
F ′′(x)h+

1

6
F ′′′(x)h2 +O(h3).

Denoting by e = x− x and assuming that F ′(x) is nonsingular, we have:

F (x) = F ′(x)(e+ C2e
2 + C3e

3 + C4e
4 + C5e

5 +O(e6)),

F ′(x) = F ′(x)(I + 2C2e+ 3C3e
2 + 4C4e

3 + 5C5e
4 +O(e5)),

F ′′(x) = F ′(x)(2C2 + 6C3e+ 12C4e
2 + 20C5e

3 +O(e4)),

F ′′′(x) = F ′(x)(6C3 + 24C4e+ 60C5e
2 +O(e3)),
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where Cq =
1

q!
[F ′(x)]−1F (q)(x), q ≥ 2. Replacing these developments in the formula of Gennochi-Hermite and

denoting the second point of the divided difference by y = x+ h and the error at the first step by ey = y − x,
we have

[x, y;F ] = F ′(x)
[
I + C2(ey + e) + C3(e2y + eye+ e2)

]
+O(ey)

In particular, if y is an approximation of the equation provided by the Newton’s method, i.e. h = x − y =85

[F ′(x)]
−1
F (x), we obtain

[x, y;F ] = F ′(x)
[
I + C2e+ (C2

2 + C3)e2
]

+O(e3).

The following result establishes that the class (??) has order of convergence at least seven, reaching eighth-
order for a special value of parameter β.

Theorem 2.1. Let F : D ⊆ Rn −→ Rn be a sufficiently differentiable function in an open convex set D and
let x ∈ D be a solution of the system of nonlinear equations F (x) = 0. We suppose that F ′(x) is continuous90

and nonsingular at x. Then, sequence {x(k)}k≥0, obtained by expression (??), converges to x with order of
convergence at least seven when G0 = G((1− 1

β )I) = I, G1 = β and G2 = 1
2 (−β + 6β2), being in this case the

error equation
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7
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8
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Moreover, the particular member of the family, corresponding to β = 1
5 has order of convergence eight.

Proof. The proof of this result is based in Taylor expansion of the different elements of the iterative scheme95

(??). So, the expansion of F (x) and F ′(x) about x give
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where the terms of this expansion are obtained from [F ′(xk)]−1F ′(xk) = F ′(xk)[F ′(xk)]−1 = I. We have

X2 = −2C2, X3 = 4C2
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and, in general,100
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and then replace these expansions in the second step of the iterative expression of (??), we get
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Now, by using Taylor expansion of F (z(k))105
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By denoting A = [F ′(x(k))]−1
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In order to obtain the Taylor development of weight function G, we calculate

[y(k), z(k);F ] = F ′(y(k)) + F ′′(y(k))(z(k) − y(k)) +O((z(k) − y(k))2),

where

F (y(k)) =F ′(x)(y(k) − x) +
F ′(x)

2
(y(k) − x)2 +O((y(k) − x)3),
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Then,110 [
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When k → +∞, t(k) →
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I, so if we apply Taylor expansion of G(t) about
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I and use

notations G0, G1 and G2 as defined in (??), we get
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From this product and by solving the homogeneous system of equations obtained from the coefficients of e(k)
4

,

e(k)
5

and e(k)
6

we get G0 = 1, G1 = β and G2 =
1

2
(−β+6β2). So we have the desired order with error equation115

(??). From the error equation one can see that special case when β =
1

5
, we have an iterative scheme of order

8. �

In the previous results we imposed some conditions on the weight functions to obtain desired order. By using
the obtained coefficients G0, G1 and G2, one could use different weight functions G(t), satisfying the conditions
of previous theorem, for designing specific families of iterative schemes. For example,120

G(t(k)) = I + β

(
t(k) −

(
1− 1

β

)
I

)
+

1

4
(−β + 6β2)

(
t(k) −

(
1− 1

β

)
I

)2

(9)

or the rational function,

G(t(k)) = I +
10β − 1

(1− 6β)β
[t(k)]−1

[
1− 6β

10β − 1
I − (1− 2β)β

10β − 1
t(k)
]

The subclass corresponding to the first function G(t(k)) is denoted by M7, and its stability in the scalar case,
in terms of dependence on initial estimation, is developed in the following sections.

3. Fixed and critical points

In this section, we study the fixed points of operator Op(z) as a function of β and their stability, and analyze125

its critical points. First, we consider the fixed point operator correspond to the family (??) which we denote by
O(z). When this fixed point operator is applied on quadratic polynomial p(z) = (z − a)(z − b), the following
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rational function Op(z) is obtained

Op(z) =
(a− z)(b− z)
a+ b− 2z

+
(a− z)2(b− z)2

β(a+ b− 2z)3
+ z +

1

β(a+ b− 2z)7
+ (a− z)2(b− z)2(a4(−1 + β)

+b4(−1 + β) + 2b3(4− 5β)z + b2(−23 + 34β)z2 − 6b(−5 + 8β)z3 + 3(−5 + 8β)z4

+2a3(b(−2 + 3β) + (4− 5β)z) + · · ·+ 1/(4β5(a+ b− 2z)23)(a− z)4(b− z)4(
a4β + b4(−1 + 5β)− 10a3βz + 38a2βz2 − · · ·+ 2b(3a3β − 23a2βz + 58aβz2

+2(1− 24β)z3)
) (
b4β + a4(−1 + 5β)− 10b3βz + 38b2βz2 − · · ·+ 2(1− 24β)z3

)(
4a8β3 + 4b8β3 + 8a7β3(5b− 9z)− · · ·+ (1 + 10β − 96β2 − 1920β3)z7)

)
.

Since even for quadratic polynomials, Op(z) is so complicated and difficult to work with, instead we use conjugacy
maps to get a simpler operator. By using Möbius map,130

M(z) =
z − a
z − b

, M−1(z) =
zb− a
z − 1

,

with properties:

M(∞) = 1, M(a) = 0, M(b) =∞,

P. Blanchard in [? ] proved that, for quadratic polynomials, Newton’s operator is conjugated to rational
function z2, in a similar way, it is easy to show that operator Op(z) is conjugated to the rational function (not
depending on a and b)

Mp(z, β) = z7
(−1 + 5β + 14βz + 14βz2 + 6βz3 + βz4)r(z)

(β + 6βz + 14βz2 + 14βz3 − z4 + 5βz4)s(z)
,

where r(z) = 4β2−24β3+80β4+(β+26β2−188β3+900β4)z+(6β+72β2−608β3+4592β4)z2+(14β+108β2−135

968β3+13952β4)z3+(10β+128β2−688β3+28080β4)z4+(−1+3β+114β2+8β3+39580β4)z5+(−4β+44β2+
320β3 + 40400β4)z6 + (184β3 + 30496β4)z7 + (40β3 + 17216β4)z8 + (4β3 + 7260β4)z9 + 2240β4z10 + 480β4z11 +
64β4z12 + 4β4z13 and s(z) = 4β4 + 64β4z + 480β4z2 + 2240β4z3 + (4β3 + 7260β4)z4 + (40β3 + 17216β4)z5 +
(184β3 + 30496β4)z6 + (−4β + 44β2 + 320β3 + 40400β4)z7 + (−1 + 3β + 114β2 + 8β3 + 39580β4)z8 + (10β +
128β2 − 688β3 + 28080β4)z9 + (14β + 108β2 − 968β3 + 13952β4)z10 + (6β + 72β2 − 608β3 + 4592β4)z11 + (β +140

26β2 − 88β3 + 900β4)z12 + (4β2 − 24β3 + 80β4)z13.
The fixed and critical points as well as their asymptotic behavior depend on the values of parameter β. The

fixed points are the roots of equation Mp(z, β) = z, or z(z − 1)q(z) = 0. In this case, q(z) is a polynomial of
degree 22, whose roots are different from z = 0, ∞ and z = 1. That is, fixed points of operator Mp(z, β) are,
z = 0, and z = ∞, that correspond to the roots of polynomial p(z), z = 1 and the 22 roots of q(z), denoted145

by si(β), i = 1, 2, . . . , 22. The fixed points that do not correspond to the roots of p(z) are called strange fixed
points.

In order to study the stability of the fixed points, we calculate the first derivative of Mp(z, β) and evaluate it
at every fixed point. The resulting absolute value, called stability function of the fixed point, gives us information
about the asymptotic behavior of the point. As z = 0 is the root of order 6 of Mp(z, β) so M ′p(z, β) vanishes at150

z = 0 and M ′p(z, β)→∞ when z →∞ so we conclude that z = 0 and z =∞ are always superattracting fixed
points. But the stability of other fixed points depend on the value of parameter β.

On the other hand, changes in the multiplicity of the fixed points imply also alterations in their dynamical
behavior, as they are related with bifurcations of different kind. For different values of β we have:

• If β = 0, the method is not defined, so we neglect it.155

• The stability function of z = 1 is denoted by Sone = |M ′p(1, β)|, where

M ′p(1, β) =
(33554432β5(1− 70β + 704β2 + 21760β3 − 262144β4 + 7413760β5))

((1− 40β)2(1− 30β − 496β2 + 1920β3 − 185344β4)2)

By analyzing this function we can see that when β → 1

40
, |M ′p(1, β)| → ∞ and if β → ±∞, |M ′p(1, β)| =

4096

905
. Besides, fixed point z = 1 is attracting in an apple shape set of complex plane that lies in a small

rectangle and contains the origin, that is |M ′p(1, β)| < 1 (see Figure ??).

7



Figure 1: Attractive regions for strange fixed points Sone .

• For many different values of β in the complex plane, strange fixed points si(β), i = 1, 2, · · · , 22 are equal to160

1, so strange fixed point 1 can have different multiplicities. However, the behavior of the strange fixed
points are different in the complex plane especially around 0, as in a small region near 0 some of them
satisfy Si = |M ′p(si(β), β)| < 1. Figure ??, depicts |M ′p(si(β), β)| < 1, for i = 18, 19, · · · , 22 and strange
fixed point 1 simultaneously near 0. These six strange fixed points have the bigger regions in which
|M ′p(si(β), β)| < 1, in this figure Sone denotes strange fixed point z = 1. One can see more details of these165

basins of attractions in Figure ??.

Figure 2: Some attractive regions for strange fixed points Sone and S18, S19, · · · , S22.

Figure ?? shows boundaries of regions around the basin of attraction of strange fixed point z = 1, in which
the basins of attraction of some strange fixed points lie. These five regions are denoted by B1, B2, B3,
B4 and B5 (see Figure ??). Boundary B1 is intersected with that of z = 1 in β ≈ 0.2194 + 0.02447i and
β ≈ 0.02315+0.02002i, approximately, and boundary B2 is intersected with z = 1 in β ≈ 0.2194−0.02447i170

and β ≈ 0.02315 − 0.02002i. Boundaries B3 and B4 are tangent with basin of attraction of z = 1
respectively at the points β = −0.0373793− 0.0286275i and β = −0.0373793 + 0.0286275i and boundary
B5 is tangent with the basin of attraction of z = 1 at β = 0.0184166.

By summarizing, the following result can be established.
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(a) B1 (b) B2 (c) B3

(d) B4 (e) B5

Figure 3: Some attractive regions for strange fixed points Sone and S18, S19, · · · , S22.

Proposition 3.1. Strange fixed points si(β), i = 1, 2, · · · , 22 and z = 1 satisfy the following statements:175

(i) Strange fixed point z = 1 for complex values near zero which lie in the square [−0.04, 0.025] ×
[−0.045, 0.045] is attracting, but for values far from zero is repulsive.

(ii) The major attractive regions for strange fixed points si(β), i = 1, 2, · · · , 22 are near zero and around
the basin of attraction of strange fixed point z = 1.

(iii) Among all strange fixed points, si(β), i = 18, 19, · · · , 22 have the major attractive regions and these180

regions lie in the squares [0.02, 0.036]×[0.01, 0.027], [0.02, 0.036]×[−0.01,−0.027], [−0.055,−0.035]×
[−0.042,−0.02] and [−0.055,−0.035]× [0.042, 0.02].

Let us also recall that critical points of Mp(z, β) are the roots of M ′p(z, β) = 0, since we have

M ′p(z, β) = (z + 1)12z6u(z),

where u(z) = 1400β5 + (−4β − 40β2 + 1012β3 − 6504β4 + 18080β5)z + (−16β + 71β2 + 2506β3 − 25464β4 +
106640β5)z2+(−12β+440β2+2244β3−51208β4+377120β5)z3+(54β+274β2+510β3−49668β4+886920β5)z4+185

(6−36beta−224β2+2184β3−7824β4+1458240β5)z5+(−11−42β−310β2+4540β3+20592β4+1716960β5)z6+
(6−36β−224β2 +2184β3−7824β4 +1458240β5)z7 +(54β+274β2 +510β3−49668β4 +886920β5)z8 +(−12β+
440β2 + 2244β3− 51208β4 + 377120β5)z9 + (−16β+ 71β2 + 2506β3− 25464β4 + 106640β5)z10 + (−4β− 40β2 +
1012β3 − 6504β4 + 18080β5)z11 + (−14β2 + 154β3 − 700β4 + 1400β5)z12. So the critical points of Mp(z, β) are
z = 0, z = ∞ and z = −1 and the 12 roots of polynomial u(z). We denote these 12 roots of u(z) as ci(β),190

i = 1, 2, · · · 12.
On the other hand, to obtain some properties of ci(β) we discretize the square of [−2, 2] × [−2, 2] in the

complex plane with 400 × 400 mesh points. We denote this mesh points by (i, j), where i, j = 1, 2, · · · , 400,
then by obtaining the roots of p(z) for each β = (i, j), a numerical value of critical points ci in the square
[−2, 2]× [−2, 2], for i = 1, 2, · · · , 12 is obtained.195
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A classical result establishes that there is at least one critical point associated with each invariant Fatou
component. Points z =∞ and z = 0 are both superattractive fixed points of Mp(z, β), so they also are critical
points and give rise to their respective Fatou components. So, the way to calculate the parameter planes
associate to Mp(z, β) is to study the orbits of each free independent critical point for all the complex values of
the parameter β in the defined mesh. In the next section we investigate these parameter planes of Mp(z, β).200

4. The parameter space

In this section we study the behavior of Mp(z, β). As mentioned in the previous sections, the dynamical
behavior of operator Mp(z, β) depends on the values of the parameter β. There is at least one critical point
associated with each invariant Fatou component [? ]. So, the way to calculate the parameter planes associate
to Mp(z, β) is the study of the orbits of each free independent critical point for all the complex values of the205

parameter β in the defined mesh. In order to get the parameter plane we study the orbits of the free critical
points for each β in the complex square [−2, 2]× [−2, 2].

Remember regions near zero are major regions in which |M ′p(si(β), β)| < 1 and some strange fixed points
are attracting near zero, so we only focus our attention in this region. To find the most stable members of the
family M7, we are looking for regions in which the orbits of free critical points converge to zero or infinity. Since210

12 critical points of Mp(z, β) are two-by-two dependent, so we only study the parameter plane of 6 of them.
In Figure ??, the parameter planes of the 6 free independent critical points are shown. By using the routines
appearing in [? ], we have painted in red the values of the parameter that makes the critical point converge to
z = 0 or z =∞ (brighter as lower is the number of iterations needed), and in black if the critical point has not
converged after 600 iterations, or has converged to another element (attracting strange fixed point or periodic215

orbit).
By comparing the parameter plane of critical points of the family (??) and Figures ?? and ?? one can see

for the regions near zero, some strange fixed points are attractive and members of the family close to zero are
the most unstable members of the family. In fact, there is no other pathologic behavior as attracting periodic
orbits; so, the family is actually very stable.220

As we mentioned in the previous section, the biggest attractive regions of the strange fixed points of the
family are B1, B2, B3, B4, B5 and the corresponding of stability function Sone, so we select some members
of the family in these regions or outside them to depict their dynamical planes. These planes show different
behaviors of the members of family (??) (see Figure ??-??) and have been generated by iterating an element
of the family (??) that is, for a constant β and using each point of the complex plane as an initial estimation225

(see [? ] for the codes). These dynamical planes are built by using a mesh of 400 × 400 points, maximum
number of iterations 1500 and a tolerance of 10−3. In this section, the basins of attraction of 0 and∞ for all the
dynamical planes are depicted respectively with orange and blue. Figure ?? and ?? show the dynamical planes
of members of β = 0.018 and β = 0.019 respectively. These two members are chosen to be near β = 0.0184166
where the boundaries of the circle B5 and attracting region of strange fixed point z = 1 are tangent. Let us230

recall that β = 0.018 is in the attracting region of the strange fixed point z = 1 and is a member of the family
with three basins of attraction corresponding to fixed points z = 0, z = 1 and z =∞. In this dynamical plane,
the basin of attraction of z = 1 is shown in green. On the other hand, β = 0.019 is inside B5 and its respective
dynamical plane has four basins of attraction, that correspond to z = 0, z = ∞ and two strange fixed points
whose values at β = 0.019 are z = 0.995133 − 0.0985444i and z = 0.995133 + 0.0985444i and their basins of235

attraction are shown respectively with green and red.
Figure ?? and ?? respectively show the dynamical plane of β = −0.037 − 0.028i and β = −0.037 + 0.028i

that are in the region where z = 1 is attracting and near the points β ≈ −0.0373793 − 0.0286275i and β ≈
−0.0373793 + 0.0286275i in which the basin of attraction of z = 1 is tangent with regions B3 and B4. So, for
each of them there are three basins of attraction z = 0, z = 1 and z = ∞. Basin of attractions for z = 1 is240

shown with green color.
Figures ?? and ?? show the dynamical planes associated to two values of β that are inside B5 and B6 and

each of them has four basins of attraction. Two of them correspond to 0 and ∞ and the other ones correspond
to the other two attracting strange fixed points. The values of these strange fixed points at β = −0.039 + 0.028i
are z = 0.8348881 + 0.232033i and z = 1.11189 − 0.309021i and their respective basins are shown respectively245

with green and red color. Moreover, the values of two strange fixed points at β = −0.039 − 0.028i are z =
0.8348881− 0.232033i and z = 1.11189 + 0.309021i and their basins are shown respectively with green and red
color.

On the other side, Figures ?? to ?? are related to the points that are inside and outside regions B1 and
B2. Let us remark that B1 and B2 are not tangent, but secant, with Sone. Area B1 is intersected with Sone at250

β ≈ 0.2194 + 0.02447i and β ≈ 0.02315 + 0.02002i and B2 is intersected with Sone at β ≈ 0.2194− 0.02447i and
β ≈ 0.02315− 0.02002i. So, we choose three points for each of them to show the properties of the members of
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Figure 4: Parameter plane for critical points c1, c2, · · · , c6

the family that lie inside or outside of these regions. Values β = 0.023 − 0.019i and β = 0.023 + 0.019i which
are only in Sone, so have only three basins of attractions (see Figure ?? and ??).

Figures (??) and (??) show the dynamical behavior of the members of the class of iterative methods corre-255

sponding to β = 0.023−0.021i and β = 0.023+0.021i of the family that lie in the overlapping regions of B1 and
B2 with Sone and have five basins of attraction, that for β = 0.023+0.021i are z = 0, z =∞ and z = 1, and those
of two strange fixed points whose at β = 0.023−0.019i are z = 0.839234−0.125821i and z = 1.16537+0.174716i
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(a) β = 0.018
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(b) β = 0.019

Figure 5: Dynamical planes of β = 0.018 and β = 0.019.
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(a) β = −0.037 − 0.028i
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(b) β = −0.037 + 0.028i

Figure 6: Dynamical planes of β = −0.037 − 0.028i and β = −0.037 + 0.028i.

(their basins are shown respectively with green and red color). Also for β = 0.023− 0.021i the basins of attrac-
tion correspond to z = 0, z = ∞ and two strange fixed point whose values are z = 0.839234 + 0.125821i and260

z = 1.16537− 0.174716i (they are shown respectively with green and red colors). For both β = 0.023− 0.019i
and β = 0.023 + 0.019i, the basin of attraction of z = 1 is shown with grey color (when after few iterations
converges to z = 1) and black (when after many iterations converges to z = 1).

Figures (??) and (??) are related to β = 0.024+0.021 and β = 0.024−0.021 that are inside B1 and B2, but not
in the overlapping region with Sone. So, for both of them there are four basins of attraction: those corresponding265

to z = 0 and z = ∞ and, in case of β = 0.024 + 0.021, two strange fixed points z = 1.29489 + 0.0781489i and
z = 0.769466 − 0.0464388i (their basins of attraction are shown respectively with green and red color); for
β = 0.024 − 0.021, the strange fixed points are z = 1.29489 − 0.0781489i and z = 0.769466 + 0.0464388i and
their basins of attraction are shown also with green and red color.

Figures ??) to (?? show the members β = 0.1 − 0.1i, β = 0.5 + 0.1i, β = 5 + 5i and β = 30 + 30i of the270

family that all are far from 0 and are chosen randomly. They are in the regions with no attracting strange fixed
points. So, there are only two basins of attraction corresponding to z = 0 and z =∞.

In the next section, we use some of these family members to solve systems of nonlinear equations and check
the obtained values, observing their numerical stability and comparing it with the qualitative information.
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(a) β = −0.039 − 0.028i
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(b) β = −0.039 + 0.028i

Figure 7: Dynamical planes of β = −0.039 − 0.028i and β = −0.039 + 0.028i.
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(a) β = 0.023 − 0.019i
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(b) β = 0.023 + 0.019i

Figure 8: Dynamical planes of β = 0.023 − 0.019i and β = 0.023 + 0.019i.

5. Numerical results275

In this section, we are going to apply some elements of family (??) to solve systems of nonlinear equations
and use the obtained results from parameter and dynamical planes to apply the most stable members of the
family for solving nonlinear problems and compare them with known eight order methods (??)-(??).

These results show that the selected methods of family (??) perform as well as known eight order methods,
however the computations of the new method are less than other three methods. In each iteration of M7 we280

need to evaluate four times function F , once Jacobian and once a divided difference. But in NM8, CCGT1
and CCGT2 one needs to evaluate two Jacobian and three functions per iteration. By using the approximated
computational order of convergence (ACOC) introduced in [? ] as

p ≈ ACOC =
ln(‖x(k+1) − x(k)‖/‖x(k) − x(k−1)‖)

ln(‖x(k) − x(k−1)‖/‖x(k−1) − x(k−2)‖)

we will check the theoretical order of convergence p for the methods we test.
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(a) β = 0.023 − 0.021i

-8 -6 -4 -2 0 2 4

IRe{z}

-6

-4

-2

0

2

4

6

IIm
{z

}

(b) β = 0.023 + 0.021i

Figure 9: Dynamical planes of β = 0.023 − 0.021i and β = 0.023 + 0.021i.
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(a) β = 0.024 − 0.021i
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(b) β = 0.024 + 0.021i

Figure 10: Dynamical planes of β = 0.024 − 0.021i and β = 0.024 + 0.021i.

Example 1. Let us consider the following nonlinear system

xi − cos(2xi −
4∑
j=1

xj) = 0, i = 0, 1, 2, ..., n.

The solution of this problem is x = (0.5149, 0.5149, ..., 0.5149)T . We use n = 20 and initial guess x(0) =285

(1, 1, ..., 1). In Table (??) we listed numerical results of this problem for some members of M7. All the exper-
iments have been carried out in Matlab 2017 with precision arithmetics 10000 digits and the stopping criteria
is ‖x(k+1) − x(k)‖ < 10−500 or ‖F (x(k+1))‖ < 10−500.

These results show that for the values of the parameter near 0 the method is unstable and in cases that
M7 is successful to solve the problem the order of convergence is not preserved. Also the member of the family290

corresponding to β = 0.2 has the highest order of convergence. For other members far from the origin, the value
of the approximated computational order of convergence is preserved and is not changed point by point, so the
value of β does not affect the order of convergence.

Comparing these results with those obtained for eight order methods (??)-(??), it can be observed that
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(a) β = 0.1 − 0.1i
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(b) β = 0.5 + 0.1i
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(c) β = 5 + 5i
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(d) β = 30 + 30i

Figure 11: Dynamical planes of β = 0.1 − 0.1i, β = 0.5 + 0.1i, β = 5 + 5i and β = 30 + 30i.

Method parameter iter ‖x(k+1) − x(k)‖ ‖F (x(k+1))‖ ACOC

M7

0.001 - ∞ ∞ -
0.005 6 1.31e-195 4.89e-1364 7.0
0.010 5 1.41e-344 9.72e-2428 7.0
0.019 4 1.47e-184 1.14e-767 4.0
0.023 +0.021i 5 5.30e-501 1.36e-2033 4.0
-0.039 - 0.028i 5 9.10e-445 4.32e-1843 3.999
0.035 -0.035i 4 8.30e-180 1.40e-1256 7.0
0.2 4 3.38e-346 2.10e-2770 8.0
1 4 7.84e-333 1.32e-2329 7.0
2 4 9.75e-327 8.23e-2287 7.0
5 4 3.10e-304 1.10e-2129 7.0
20 4 8.13e-297 3.0e-2077 7.0

NLM8 - 4 1.65e-214 1.99e-1711 7.9999
CCGT1 - 4 5.23e-455 1.68e-3638 8.0
CCGT2 - 4 2.10e-297 2.62e-2376 8.0

Table 1: Numerical results for Example 1.

the number of iterations to reach the convergence is the same, in spite of having one unit less in the order of295

convergence. So, in these cases we can conclude that our methods with vlues of the parameter far from the
origin are more efficient.
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Method parameter iter ‖x(k+1) − x(k)‖ ‖F (xk+1)‖ ACOC

M7

0.001 - ∞ ∞ -
0.005 4 2.92e-89 3.39e-619 7.0022
0.010 5 2.10e-359 6.03e-2508 7.0
0.019 5 6.67e-127 3.16e-535 5.0507
0.023 +0.021i 5 3.82e-182 2.47e-756 -
-0.039 - 0.028i 5 2.83e-236 9.15e-974 -
0.035 -0.035i 4 5.0e-76 1.82e-526 6.9954
0.2 4 2.97e-212 2.04e-1693 7.9999
1 4 4.61e-151 1.37e-1053 6.9999
2 4 5.44e-151 4.34e-1053 6.9999
5 4 5.91e-149 9.04e-1039 6.9999
20 4 6.38e-148 1.66e-1031 6.9999

NLM8 - 4 8.16e-369 7.36e-2950 8.0
CCGT1 - 4 4.82e-380 2.98e-3041 8.0
CCGT2 - 4 3.16e-376 4.12e-3010 8.0

Table 2: Numerical results for Example 2.

Example 2. Let us consider the following nonlinear system

x2ixi+1 − 1 = 0, i = 0, 1, 2, ..., n− 1,

x2nx1 − 1 = 0. i = n

The solution of this problem is x = (1, 1, ..., 1)T . We use n = 9 and initial guess x(0) = (1.25, 1.25, ..., 1.25).
In Table (??) we list the numerical results obtained in this this problem for some members of the M7. It300

can be observed that the performance of the methods is the same as in previous example.

6. Conclusions

In this manuscript, a new seventh-order family of parametric methods for solving nonlinear systems of
equations is presented, with one element of order of convergence eight. As far as the authors know, there exist
only a few methods with the same order of convergence and they are used in the numerical section for comparing305

with the proposed ones. The local order of convergence of the family is proved and the analysis of the stability
of the whole family is performed by using techniques from complex discrete dynamics, showing a completely
stable behavior, except by a very small region around β = 0, where the iterative scheme is not defined. These
analytical results have been checked by means of some dynamical planes and also with numerical tests on
selected problems. In all cases, the members of the proposed family have shown a very stable performance.310
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