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Reduced difference polynomials

and self–intersection computations

Rida T. Farouki
Department of Mechanical and Aerospace Engineering,

University of California, Davis, CA 95616, USA.

Abstract

A reduced difference polynomial f(u, v) = (p(u)−p(v))/(u−v) may
be associated with any given univariate polynomial p(t), t ∈ [ 0, 1 ] such
that the locus f(u, v) = 0 identifies the pairs of distinct values u and v
satisfying p(u) = p(v). The Bernstein coefficients of f(u, v) on [ 0, 1 ]2

can be determined from those of p(t) through a simple algorithm, and
can be restricted to any subdomain of [ 0, 1 ]2 by standard subdivision
methods. By constructing the reduced difference polynomials f(u, v)
and g(u, v) associated with the coordinate components of a polynomial
curve r(t) = (x(t), y(t)), a quadtree decomposition of [ 0, 1 ]2 guided by
the variation–diminishing property yields a numerically stable scheme
for isolating real solutions of the system f(u, v) = g(u, v) = 0, which
identify self–intersections of the curve r(t). Through the Kantorovich
theorem for guaranteed convergence of Newton–Raphson iterations to
a unique solution, the self–intersections can be efficiently computed to
machine precision. By generalizing the reduced difference polynomial
to encompass products of univariate polynomials, the method can be
readily extended to compute the self–intersections of rational curves,
and of the rational offsets to Pythagorean–hodograph curves.

Keywords: Bernstein basis; polynomial division; variation–diminishing property;
quadtree decomposition; Kantorovich theorem; polynomial curves; rational curves;

self–intersections; Pythagorean–hodograph curves; offset curve trimming.
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1 Introduction

The Bernstein form of a polynomial over a finite domain has found widespread
application in diverse contexts, on account of its numerical stability and the
intuitive and versatile algorithms it entails [5]. Methods for generalizing the
Bernstein form, and for deriving new properties and algorithms, continue to
be active areas of investigation [14, 21]. In the present study, we investigate
the use of the Bernstein form in developing robust algorithms to address the
problem of computing the self–intersections of planar curves.

With any univariate polynomial p(t), we may associate a bivariate reduced

difference polynomial f(u, v) = (p(u)−p(v))/(u− v), such that the points of
the algebraic curve f(u, v) = 0 identify the pairs of distinct values u and v of
the independent variable t that satisfy p(u) = p(v). When p(t) is specified in
Bernstein form on t ∈ [ 0, 1 ], the Bernstein coefficients of the tensor–product
form of f(u, v) on (u, v) ∈ [ 0, 1 ]× [ 0, 1 ] can be easily obtained from those of
p(t), and can be specialized to any rectangular subdomain [ u1, u2 ]× [ v1, v2 ]
by standard subdivision algorithms. These ideas also generalize to a product
p1(t) p2(t) of polynomials, in which case the reduced difference polynomial is
defined as f(u, v) = (p1(u) p2(v) − p1(v) p2(u))/(u − v).

The construction of reduced difference polynomials, in conjunction with
the subdivision and variation–diminishing properties of the Bernstein form,
offers an efficient and extremely robust means of isolating and computing the
self–intersections of planar polynomial and rational curves, and also of the
offsets to planar Pythagorean–hodograph (PH) curves, which are essential to
the offset trimming process. All these problems can be reduced to computing
the intersections on (u, v) ∈ [ 0, 1 ]× [ 0, 1 ] of two algebraic curves f(u, v) = 0
and g(u, v) = 0, specified by two reduced difference polynomials.

The intersection points of f(u, v) = 0 and g(u, v) = 0 can be isolated by
use of a quadtree decomposition of the domain [ 0, 1 ]× [ 0, 1 ] guided by both
of these curves. Invoking the variation–diminishing property of the Bernstein
form, any subdomain [ u1, u2 ]× [ v1, v2 ] on which the coefficients of f(u, v) or
g(u, v) are all of the same sign can be discarded as not containing a portion
of both curves. Since the quadtree decomposition is governed by both curves,
it rapidly converges on a set of small subdomains that (potentially) enclose
intersection points of f(u, v) = 0 and g(u, v) = 0, and an efficient test for the
guaranteed convergence of Newton–Raphson iterations to a unique solution
within such subdomains allows their rapid computation to machine precision,
once they are sufficiently isolated. Since the quadtree subdivision procedure
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incurs taking only convex combinations of the original Bernstein coefficients
of f(u, v) and g(u, v), the method is numerically stable and robust.

Instead of attempting a “synthetic division” of p(u) − p(v) by u − v, we
formulate a simple recursive algorithm to determine the Bernstein coefficients
of f(u, v) from those of p(t). Organizing these coefficients into a matrix, the
“boundary” elements are first populated through simple expressions, and the
“interior” elements can then be recursively filled in, row–by–row. The process
can be further simplified by noting that, since f(u, v) = f(v, u), this matrix is
symmetric. It should be noted that the self–intersection algorithms described
herein can also be readily adapted to computing the mutual intersections of
distinct curves, by considering the bivariate form p1(u) − p2(v) for different

polynomials p1(t) and p2(t), and omitting the division by u − v.
The remainder of this paper is organized as follows. Section 2 describes

the construction of the bivariate difference polynomial associated with a given
univariate polynomial. Section 3 then shows how its Bernstein coefficients
on any given subdomain [ u1, u2 ] × [ v1, v2 ] ⊂ [ 0, 1 ]× [ 0, 1 ] can be obtained
by matrix multiplications. These results are used in Section 4 to generate a
quadtree decomposition of (u, v) ∈ [ 0, 1 ] × [ 0, 1 ] to a prescribed resolution,
governed by reduced difference polynomials f(u, v) = 0 and g(u, v) = 0 that
characterize the self–intersections of planar polynomial curves. A generalized
form of the reduced difference polynomial is introduced in Sections 5 and 6,
and applied to computing the self–intersections of rational curves, and of the
offsets to Pythagorean–hodograph curves. Finally, Section 7 summarizes the
methodology proposed herein and suggests possible further developments.
The Kantorovich theorem guaranteeing convergence of the Newton–Raphson
iteration to a unique solution of the system f(u, v) = g(u, v) = 0, within a
given subdomain, is briefly discussed in an Appendix.

2 Reduced difference polynomials

For any specified univariate polynomial p(t), a bivariate difference polynomial

q(u, v) := p(u) − p(v) may be defined, whose value is the difference between
p(t) at t = u and t = v. Since q(u, v) obviously vanishes when u = v, it must
contain the factor u−v. Therefore, f(u, v) := q(u, v)/(u−v) is a polynomial
of lower degree, that does not vanish when u = v, and the locus f(u, v) = 0
identifies pairs of distinct (u, v) values such that p(u) = p(v). We call f(u, v)
the reduced difference polynomial associated with p(t).
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In dealing with polynomials on finite domains, it is desirable to employ the
Bernstein representation, on account of its numerical stability and the many
advantageous properties and useful algorithms it entails [5]. The Bernstein
basis of degree n on the domain t ∈ [ 0, 1 ] is defined by

bn
i (t) :=

(

n

i

)

(1 − t)n−iti , i = 0, . . . , n , (1)

and a degree–n polynomial p(t) is specified by Bernstein coefficients a0, . . . , an

as

p(t) =

n
∑

i=0

ai b
n
i (t) .

The basis (1) satisfies the partition–of–unity property

n
∑

i=0

bn
i (t) ≡ 1 , (2)

which can be used to write q(u, v) := p(u)− p(v) in the tensor–product form

q(u, v) =
n

∑

j=0

aj bn
j (u) −

n
∑

k=0

ak bn
k(v) =

n
∑

j=0

n
∑

k=0

(aj − ak) bn
j (u) bn

k(v) . (3)

Since q(u, v) contains the factor u− v, dividing it out yields a polynomial of
the form

f(u, v) :=
q(u, v)

u − v
=

n−1
∑

j=0

n−1
∑

k=0

cjk bn−1
j (u) bn−1

k (v) . (4)

To determine the coefficients cjk of f(u, v) for 0 ≤ j, k ≤ n − 1, we express
the linear factor u − v in Bernstein form as

u − v = b1
1(u) b1

0(v) − b1
0(u) b1

1(v) .

Then from (3) and (4) we must have

n
∑

j=0

n
∑

k=0

(aj − ak) bn
j (u) bn

k(v) =

[ b1
1(u) b1

0(v) − b1
0(u) b1

1(v) ]

n−1
∑

j=0

n−1
∑

k=0

cjk bn−1
j (u) bn−1

k (v) . (5)
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To facilitate a term–by–term comparison of the left and right hand sides, we
note that

b1
1(u) b1

0(v) bn−1
j (u) bn−1

k (v) =
(j + 1)(n − k)

n2
bn
j+1(u) bn

k(v) ,

b1
0(u) b1

1(v) bn−1
j (u) bn−1

k (v) =
(n − j)(k + 1)

n2
bn
j (u) bn

k+1(v) .

Substituting these relations, the expression on the right in (5) becomes

n−1
∑

j=0

n−1
∑

k=0

(j + 1)(n − k)

n2
cjk bn

j+1(u) bn
k(v) − (n − j)(k + 1)

n2
cjk bn

j (u) bn
k+1(v) ,

and by a change of summation indices, this can be re–formulated as

n
∑

j=1

n−1
∑

k=0

j(n − k)

n2
cj−1,k bn

j (u) bn
k(v) −

n−1
∑

j=0

n
∑

k=1

(n − j)k

n2
cj,k−1 bn

j (u) bn
k(v) .

Now each term of (3) with j or k equal to 0 or n has only one corresponding
term in the above expression, while all terms with 1 ≤ j, k ≤ n− 1 have two
corresponding terms. Equating these corresponding terms, the “boundary”
coefficients of (4) are given by

c0,k =
n

k + 1
(ak+1 − a0) , k = 0, . . . , n − 1 ,

cn−1,k =
n

n − k
(an − ak) , k = 0, . . . , n − 1 ,

cj,0 =
n

j + 1
(aj+1 − a0) , j = 0, . . . , n − 1 ,

cj,n−1 =
n

n − j
(an − aj) , j = 0, . . . , n − 1 ,

and once they have been assigned, the “interior” coefficients may be obtained
for rows j = 1, . . . , n − 2 using

cj,k−1 =
j(n − k)

(n − j)k
cj−1,k −

n2

(n − j)k
(aj − ak) , 2 ≤ k ≤ n − 1 .

Note that the resulting coefficient matrix {cjk}, 0 ≤ j, k ≤ n−1 is symmetric,
reflecting the symmetry property f(u, v) = f(v, u) of the polynomial (4).
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3 Subdivision scheme

The equation f(u, v) = 0 determines an implicit curve in the domain (u, v) ∈
[ 0, 1 ]× [ 0, 1 ]. A quadtree decomposition of this domain, in conjunction with
the variation–diminishing property of the Bernstein form, offers a stable and
efficient means of characterizing the topological configuration of this curve.
The quadtree decomposition is discussed in Section 4 below. The variation–
diminishing property states that a subdomain [ u1, u2 ]× [ v1, v2 ] contains no
part of the curve f(u, v) = 0 if the Bernstein coefficients of (4) appropriate
to that subdomain are all of the same sign.

The degree–n Bernstein basis on a general interval [ t1, t2 ] is defined by

b̄n
i (t) =

(

n

i

)

(t2 − t)n−i(t − t1)
i

(t2 − t1)n
, i = 0, . . . , n . (6)

The basis (1) on [ 0, 1 ] is related [8] to the basis (6) by an (n + 1) × (n + 1)
matrix M with elements

Mjk =

min(j,k)
∑

i=max(0,j+k−n)

bn−j
k−i (t1) bj

i (t2) , 0 ≤ j, k ≤ n (7)

through the expression

bn
k(t) =

n
∑

j=0

b̄n
j (t)Mjk , k = 0, . . . , n .

Consequently, the coefficients for the Bernstein representations

p(t) =

n
∑

i=0

ai b
n
i (t) =

n
∑

i=0

āi b̄
n
i (t)

on [ 0, 1 ] and [ t1, t2 ] are related by

āi =

n
∑

r=0

Mir ar , i = 0, . . . , n .

When [ t1, t2 ] ⊂ [ 0, 1 ] the elements (7) define a stochastic matrix [10] — i.e.,
they are all non–negative, and sum to unity across each row. Consequently,
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the coefficients āi are all convex combinations of the coefficients ai, and their
computation is inherently very stable.

To obtain the coefficients c̄jk of the bivariate tensor–product polynomial
(4) on a subdomain [ u1, u2 ]×[ v1, v2 ] from the coefficients cjk on [ 0, 1 ]×[ 0, 1 ]
we construct n×n subdivision matrices appropriate to bases of degree n− 1
and intervals [ u1, u2 ] and [ v1, v2 ]. These matrices are defined by the elements

Ujk =

min(j,k)
∑

i=max(0,j+k−n+1)

bn−1−j
k−i (u1) bj

i (u2)

Vjk =

min(j,k)
∑

i=max(0,j+k−n+1)

bn−1−j
k−i (v1) bj

i (v2) ,

for 0 ≤ j, k ≤ n − 1. In terms of them, the Bernstein coefficients of (4) on
the subdomain [ u1, u2 ] × [ v1, v2 ] are obtained as

c̄jk =

n−1
∑

r=0

n−1
∑

s=0

UjrVks crs , 0 ≤ j, k ≤ n − 1 . (8)

4 Self–intersection of polynomial curves

Quadtree decomposition [17, 18] can be employed to generate a hierarchical
characterization of an implicit curve f(u, v) = 0 within the domain (u, v) ∈
[ 0, 1 ]× [ 0, 1 ]. The domain is first subdivided into four quadrants, along the
lines u = 1

2
and v = 1

2
, and the signs of the coefficients (8) appropriate to

each quadrant are checked for (potential) occupancy by the curve f(u, v) = 0.
Those that fail this test are flagged “empty” and are discarded from further
consideration, while those that pass are subdivided into subquadrants, each
of which is again subject to the occupancy test. This hierarchical subdivision
process is repeated to some desired level r of resolution, the outcome being a
set of (potentially) occupied subdomains of side length 2−r that localize the
curve f(u, v) = 0 within the overall domain [ 0, 1 ] × [ 0, 1 ].

This provides an efficient and robust method for isolating self–intersections
a plane polynomial curve r(t) = (x(t), y(t)), t ∈ [ 0, 1 ]. Let

f(u, v) =
x(u) − x(v)

u − v
and g(u, v) =

y(u) − y(v)

u − v
(9)
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be reduced difference polynomials for x(t) and y(t), constructed as described
in Section 2. Then the intersections of the loci f(u, v) = 0 and g(u, v) = 0
within [ 0, 1 ]× [ 0, 1 ] identify the parameter values of the self–intersections of
the curve r(t), such that r(u) = r(v). In the domain decomposition process,
only subdomains over which both the polynomials (9) exhibit sign changes
in their coefficients are retained. Moreover, since these polynomials exhibit
the symmetry property f(u, v) = f(v, u) and g(u, v) = g(v, u), each solution
(u, v) of f(u, v) = g(u, v) = 0 has a counterpart (v, u) that identifies the same
self–intersection point of r(t). Hence, to avoid duplication, we can eliminate
from consideration all subdomains that lie either entirely below or entirely
above the line u = v. The Kantorovich theorem (see the Appendix) allows
solutions that are isolated in sufficiently small subdomains to be efficiently
computed to machine precision by Newton–Raphson iterations.

Example 1 A simple example suffices to illustrate the basic methodology.
Consider the cubic r(t) = (x(t), y(t)) defined by the Bézier control points

p0 = (2.000000, 1.000000) , p1 = (3.200000, 3.078461) ,

p2 = (0.523148, 2.361201) , p3 = (3.294429, 0.761201) .

This curve has a single self–intersection — see Figure 2 below. In this case,
the reduced difference polynomials f(u, v) and g(u, v) obtained from x(t) and
y(t) are biquadratic, specified by the Bernstein coefficients





3.600000 −2.215278 1.294429
−2.215278 −5.699310 0.141644

1.294429 0.141644 8.313844



 ,





6.235383 2.041801 −0.238799
2.041801 −1.673536 −3.475891

−0.238799 −3.475891 −4.800000



 .

Figure 1 illustrates the quadtree localizations1 (to a resolution of 2−7) of the
two curves f(u, v) = 0 and g(u, v) = 0, which are evidently symmetric about
the diagonal line u = v. The simultaneous combination of these two quadtree
decompositions leads to a very rapid isolation of the solutions to the system
f(u, v) = g(u, v) = 0 in the unit square, as seen in Figure 2.

1In all the examples, we show the individual quadtree localizations of f(u, v) = 0 and
g(u, v) = 0 only as visualization aids: the algorithm does not use them individually.
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For the chosen 2−7 quadtree resolution, the only subdomains over which
f(u, v) and g(u, v) both exhibit sign changes in their coefficients are

[

12

128
,

14

128

]

×
[

104

128
,
105

128

]

and

[

104

128
,
105

128

]

×
[

12

128
,

14

128

]

above and below the line u = v, respectively. Choosing the midpoint (u, v) =
(13/128, 209/256) of the former as a starting approximation, a few Newton–
Raphson iterations yield convergence to machine precision for the parameter
values identifying the self–intersection, namely (u, v) = (0.101425, 0.814535).

Example 2 As a more challenging example, we consider the quintic r(t) =
(x(t), y(t)) specified by the Bézier control points

p0 = (2.9, 0.8) , p1 = (3.3, 3.8) , p2 = (1.0, 1.0) ,

p3 = (4.5, 1.0) , p4 = (2.9, 3.2) , p5 = (1.9, 1.0) .

As seen in Figure 4 below, this curve has three self–intersections. The reduced
difference polynomials f(u, v) and g(u, v) obtained from x(t) and y(t) in this
case are biquartic, with the coefficients













2.000000 −4.750000 2.666667 0.000000 −1.000000
−4.750000 −6.187500 2.500000 −0.687500 −1.750000

2.666667 2.500000 9.416667 3.666667 1.500000
0.000000 −0.687500 3.666667 −4.437500 −6.500000

−1.000000 −1.750000 1.500000 −6.500000 −5.000000













,













15.000000 0.500000 0.333333 3.000000 0.200000
0.500000 −8.625000 −5.333333 −0.925000 −3.500000
0.333333 −5.333333 −0.411111 4.000000 0.000000
3.000000 −0.925000 4.000000 6.875000 0.000000
0.200000 −3.500000 0.000000 0.000000 −11.000000













.

Figure 3 shows the quadtree localizations of f(u, v) = 0 and g(u, v) = 0, with
resolution 2−7. Using both to govern the subdivision, the only subdomains
over which f(u, v) and g(u, v) both exhibit coefficient sign changes are

[

12

128
,

13

128

]

×
[

69

128
,

71

128

]

,

[

15

128
,

16

128

]

×
[

98

128
,
100

128

]

,

[

49

128
,

51

128

]

×
[

106

128
,
107

128

]
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above the line u = v, with symmetric subdomains below this line. Taking the
midpoints of these subdomains as starting approximations, Newton–Raphson
iterations again converge rapidly to machine precision, yielding the pairs of
parameter values (u, v) = (0.093976, 0.551966), (u, v) = (0.123767, 0.774180),
and (u, v) = (0.390536, 0.833024) identifying the three self–intersection points,
which are illustrated in Figure 4.

5 Self–intersections of rational curves

As observed in Section 1, the concept of a reduced difference polynomial may
be generalized to accommodate the products of polynomials. We show here
how this generalization is useful in developing self–intersection algorithms for
rational curves, and for the offsets to PH curves in Section 6.

Rational forms are universally employed in computer–aided design, since
they admit exact representations of conic curves, quadric surfaces, surfaces of
revolution, and other basic geometrical forms, and they also exhibit closure
under projective transformations [3]. For a degree–n rational curve

r(t) =

(

X(t)

W (t)
,

Y (t)

W (t)

)

specified by homogeneous coordinate polynomials W (t), X(t), Y (t) we may
form the bivariate reduced difference polynomials

f(u, v) =
W (v)X(u) − W (u)X(v)

u − v
, g(u, v) =

W (v)Y (u) − W (u)Y (v)

u − v
.

If the Bézer control points of r(t) have homogeneous coordinates (wi, xi, yi)
for i = 0, . . . , n we obtain

W (v)X(u) − W (u)X(v) =

n
∑

j=0

n
∑

k=0

(wkxj − wjxk) bn
j (u)bn

k(v) ,

with an analogous expression for W (v)Y (u) − W (u)Y (v). Thus, writing

f(u, v) =

n−1
∑

j=0

n−1
∑

k=0

cjk bn−1
j (u) bn−1

k (v) ,

9



we must have

n
∑

j=0

n
∑

k=0

(wkxj − wjxk) bn
j (u)bn

k(v) =

[ b1
1(u) b1

0(v) − b1
0(u) b1

1(v) ]

n−1
∑

j=0

n−1
∑

k=0

cjk bn−1
j (u) bn−1

k (v) .

Thus, by arguments analogous to those of Section 2, we obtain the boundary
coefficients

c0,k =
n

k + 1
(w0xk+1 − wk+1x0) , k = 0, . . . , n − 1 ,

cn−1,k =
n

n − k
(wkxn − wnxk) , k = 0, . . . , n − 1 ,

cj,0 =
n

j + 1
(w0xj+1 − wj+1x0) , j = 0, . . . , n − 1 ,

cj,n−1 =
n

n − j
(wjxn − wnxj) , j = 0, . . . , n − 1 ,

and the “interior” coefficients are obtained for rows j = 1, . . . , n − 2 using

cj,k−1 =
j(n − k)

(n − j)k
cj−1,k −

n2

(n − j)k
(wkxj − wjxk) , 2 ≤ k ≤ n − 1 .

The coefficients of the reduced difference polynomial g(u, v) can be obtained
by simply substituting y0, . . . , yn for x0, . . . , xn in the preceding expressions
for the coefficients of f(u, v) .

Example 3 Consider a rational quintic curve specified by the same control
points p0, . . . ,p5 as in Example 2, but with the associated weights

w0 = 0.4 , w1 = 1.2 , w2 = 1.8 , w3 = 2.4 , w4 = 1.2 , w5 = 0.4 .

This curve has three self–intersections (see Figure 6 below), and the reduced
difference polynomials f(u, v) and g(u, v) are biquartic, with the coefficients













0.960000 −3.420000 2.560000 0.000000 −0.160000
−3.420000 −14.565000 7.200000 −0.910000 −0.840000

2.560000 7.200000 41.595556 8.410000 1.080000
0.000000 −0.910000 8.410000 −13.995000 −6.240000

−0.160000 −0.840000 1.080000 −6.240000 −2.400000













,
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7.200000 0.360000 0.320000 1.440000 0.032000
0.360000 −18.780000 −16.560000 −1.348000 −1.680000
0.320000 −16.560000 −0.599111 9.620000 0.000000
1.440000 −1.348000 9.620000 19.800000 0.000000
0.032000 −1.680000 0.000000 0.000000 5.280000













.

Figure 5 shows the quadtree localizations of f(u, v) = 0 and g(u, v) = 0, with
resolution 2−7. Using both to govern the subdivision, the only subdomains
over which f(u, v) and g(u, v) both exhibit coefficient sign changes are

[

0

128
,

1

128

]

×
[

14

128
,

16

128

]

,

[

1

128
,

2

128

]

×
[

28

128
,

29

128

]

,

[

8

128
,

10

128

]

×
[

30

128
,

31

128

]

above the line u = v, with symmetric subdomains below this line. Taking the
midpoints of these subdomains as starting approximations, a few Newton–
Raphson iterations again converge to machine precision, yielding the pairs of
parameter values (u, v) = (0.093976, 0.551966), (u, v) = (0.123767, 0.774180),
and (u, v) = (0.390536, 0.833024) identifying the three self–intersection points,
which are illustrated in Figure 6.

The following example shows that the algorithm can also accommodate
self–intersections of higher order. It is well known that an “ordinary” m–fold
point (i.e., a point that the curve traverses m times, with distinct tangents)
is equivalent to 1

2
m(m−1) double points. In the presence of an m–fold point,

the algorithm will identify 1
2
m(m− 1) pairs of parameter values, all of which

generate the same Cartesian point upon evaluation of the curve.

Example 4 Consider the rational quartic curve defined by the weights and
control points

w0 = 169, p0 = (−108,−18
√

3)/169,

w1 = −143, p1 = (−144,−15
√

3)/143,
w2 = 137, p2 = (−156, 0)/137,

w3 = −143, p3 = (−144, 15
√

3)/143,

w4 = 169, p4 = (−108, 18
√

3)/169.

This curve has a triple point at the origin, corresponding to the three distinct
parameter values t = 1

4
, 1

2
, 3

4
(Figure 8). The reduced difference polynomials
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f(u, v) and g(u, v) in this case are bicubic, with the coefficients









35568.00 −23136.00 11856.00 0.00
−23136.00 10832.00 0.00 −11856.00

11856.00 0.00 −10832.00 23136.00
0.00 −11856.00 23136.00 −35568.00









,









−270.20 8542.47 −11798.73 10537.80
8542.47 −13424.55 14380.64 −11798.73

−11798.73 14380.64 −13424.55 8542.47
10537.80 −11798.73 8542.47 −270.20









.

Figure 7 shows the quadtree localizations of f(u, v) = 0 and g(u, v) = 0, with
resolution 2−7. Using both to govern the subdivision, the only subdomains
over which f(u, v) and g(u, v) both exhibit coefficient sign changes cluster
around the pairs (1

4
, 1

2
), (1

2
, 3

4
), (1

4
, 3

4
) above the line u = v, which identify the

triple point regarded as the coalescence of three double points (see Figure 8).
A few Newton–Raphson iterations yield convergence to machine precision,
and evaluating the curve gives r(1

4
) = r(1

2
) = r(3

4
), indicating that this point

is, in fact, a triple point rather than three distinct double points.

The computation of non–ordinary self–intersections (multiple traversals
of a single point with two or more coincident tangents) is a singular problem,
that is numerically ill–conditioned. A robust treatment of such problems will
require special methods, which we shall not attempt to address at present.

6 Self–intersections of PH curve offsets

The distinctive feature of a planar polynomial Pythagorean–hodograph (PH)
curve r(t) = (x(t), y(t)) is that its derivative r′(t) = (x′(t), y′(t)) satisfies, for
some polynomial σ(t), the condition

x′2(t) + y′2(t) ≡ σ2(t) .

The polynomial σ(t) = |r′(t)| specifies the derivative of the arc length s with
respect to the parameter t, and is called the parametric speed of the PH curve.
Consequently, r(t) has a rational unit normal n(t) = (y′(t),−x′(t))/σ(t) and
the offset curves

rd(t) = r(t) + dn(t) (10)
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at each (signed) distance d from r(t) are rational curves [9].
The locus (10) defines the untrimmed offset to r(t) — each point of rd(t) is

distance d from the corresponding point of r(t), but not necessarily distance
d from every point of r(t). The locus with the latter property is known as
the trimmed offset, and it can be obtained [6] by deleting certain segments
of rd(t) delineated by parameter values corresponding to self–intersections.

The computation of the self–intersections of rd(t) is a difficult problem.
Algebraic methods, based on elimination theory, are rather cumbersome and
incur high degree polynomials [1, 7] whose roots may be difficult to accurately
compute in finite–precision arithmetic. Level set methods [2, 16, 20] bypass
the need for trimming, by treating the offset curve as the numerical solution
of a partial differential equation, but are limited in accuracy by the adopted
grid resolution. Pre–computation of the Voronoi diagram for a given domain
boundary obviates the need for offset trimming [11, 12] since the trimmed
offset segments begin and end on the Voronoi diagram edges. However, exact
computations of Voronoi diagrams are limited to simple (linear or circular)
boundary segments. Other methods, based [13, 19] on distance fields, employ
a priori approximations of the given curve r(t) or its untrimmed offset rd(t).
The approach described below, based upon reduced difference polynomials,
circumvents many limitations of these existing methods by combining the
robust and efficient properties of the Bernstein representation and quadtree
decomposition, using only the exact definition of the given curve r(t).

The untrimmed offset (10) to a degree–n PH curve is a rational curve of
degree 2n − 1. Explicit expressions for its control points and weights were
formulated in [9] for the cases n = 3 and n = 5. Based on these expressions,
the approach described in Section 5 can, in principle, be directly applied to
compute the offset self–intersections. A different approach is employed here,
avoiding the need to explicitly compute the offset control points and weights,
and instead using only the low–degree polynomials x′(t), y′(t), σ(t).

Self–intersections of the offset curve (10) are identified by pairs of distinct
values u, v of the parameter t, such that

r(u) + dn(u) = r(v) + dn(v) (11)

For a regular PH curve r(t) = (x(t), y(t)) of degree n, with parametric speed
satisfying σ(t) 6= 0 for t ∈ [ 0, 1 ], these pairs correspond to solutions of the
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polynomial equations

f(u, v) := σ(u)σ(v)
x(u) − x(v)

u − v
+ d

σ(v)y′(u) − σ(u)y′(v)

u − v
= 0 ,

g(u, v) := σ(u)σ(v)
y(u)− y(v)

u − v
− d

σ(v)x′(u) − σ(u)x′(v)

u − v
= 0 . (12)

We consider only the construction of f(u, v), since the construction of g(u, v)
is closely analogous. In the first term of f(u, v) we may write

x(u) − x(v)

u − v
=

n−1
∑

j=0

n−1
∑

k=0

αjk bn−1
j (u) bn−1

k (v) ,

the coefficients αjk being determined as described in Section 2. Then, using
the product rule [5] for polynomials in Bernstein form, the first term may be
expressed as

σ(u)σ(v)
x(u) − x(v)

u − v
=

2n−2
∑

j=0

2n−2
∑

k=0

βjk b2n−2
j (u) b2n−2

k (v)

with coefficients defined for 0 ≤ j, k ≤ 2n − 2 by

βjk =

min(j,n−1)
∑

l=max(0,j−n+1)

min(k,n−1)
∑

m=max(0,k−n+1)

(

n−1
l

)(

n−1
j−l

)

(

2n−2
j

)

(

n−1
m

)(

n−1
k−m

)

(

2n−2
k

) αlm σj−l σk−m .

To construct the second term of f(u, v), we write

σ(t) =
n−1
∑

i=0

σi b
n−1
i (t) , (x′(t), y′(t)) =

n−1
∑

i=0

n(∆xi, ∆yi) bn−1
i (t) ,

with (∆xi, ∆yi) = (xi+1 − xi, yi+1 − yi) for i = 0, . . . , n − 1, and thus obtain

σ(v)y′(u) − σ(u)y′(v) =
n−1
∑

j=0

n−1
∑

k=0

n(σk∆yj − σj∆yk) bn−1
j (u) bn−1

k (v) . (13)

The method described in Section 2 then yields the coefficients γjk in the form

σ(v)y′(u) − σ(u)y′(v)

u − v
=

n−2
∑

j=0

n−2
∑

k=0

γjk bn−2
j (u) bn−2

k (v)

14



resulting from the division of (13) by u− v. To combine the first and second
terms of f(u, v) we must perform an n–fold degree elevation of the latter with
respect to u and v, so both are expressed in the basis of degree (2n−2, 2n−2).
By the standard degree elevation algorithm [5], we obtain

σ(v)y′(u) − σ(u)y′(v)

u − v
=

2n−2
∑

j=0

2n−2
∑

k=0

δjk b2n−2
j (u) b2n−2

k (v) ,

with coefficients defined for 0 ≤ j, k ≤ 2n − 2 by

δjk =

min(j,n−2)
∑

l=max(0,j−n)

min(k,n−2)
∑

m=max(0,k−n)

(

n−2
l

)(

n
j−l

)

(

2n−2
j

)

(

n−2
m

)(

n
k−m

)

(

2n−2
k

) γlm .

Finally, we can write f(u, v) as

f(u, v) =

2n−2
∑

j=0

2n−2
∑

k=0

(βjk + d δjk) b2n−2
j (u) b2n−2

k (v) ,

and the computation of g(u, v) proceeds along analogous lines.
The solutions to the system f(u, v) = g(u, v) = 0, constructed as above,

comprise not only the self–intersections of the untrimmed offset (10) but also
its cusps, which arise [6] at the parameter values t satisfying

1 + κ(t) d = 0 , (14)

where

κ(t) =
x′(t)y′′(t) − x′′(t)y′(t)

σ3(t)

is the curvature of r(t). This can be seen as follows. Setting u = t, v = t+ δt
we may expand equations (12) to first order in δt, obtaining

f(t, δt) = σ2x′ + d (σy′′ − σ′y′)

+ [ σ(1
2
σx′′ + σ′x′) + 1

2
d (σy′′′ − σ′′y′) ] δt + · · · = 0 ,

g(t, δt) = σ2y′ − d (σx′′ − σ′x′)

+ [ σ(1
2
σy′′ + σ′y′) − 1

2
d(σx′′′ − σ′′x′) ] δt + · · · = 0 ,

where, for brevity, we omit the dependence of x, y, σ and their derivatives on
t. Thus, the equations f(t, δt) = g(t, δt) = 0 are satisfied in the limit δt → 0
(i.e., u = v) when t satisfies

σ2x′ + d(σy′′ − σ′y′) = σ2y′ − d(σx′′ − σ′x′) = 0 .
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Setting σ2 = x′2 + y′2 and σ′ = (x′x′′ + y′y′′)/σ, these conditions become

σ3x′ + d x′(x′y′′ − x′′y′) = σ3y′ − d y′(x′y′′ − x′y′′) = 0 ,

and since (x′, y′) 6= (0, 0) for all t if r(t) is assumed to be regular, these reduce
to the condition (14) for a cusp on the untrimmed offset.

Clearly, cusps of the untrimmed offset correspond to points lying on the
symmetry axis u = v of f(u, v) = 0 and g(u, v) = 0. They can be interpreted
as limiting instances of the self–intersection condition (11), as u → v. In
general, cusps lie within parameter intervals [ u, v ] delineated by proper self–
intersections, with v > u, and it is not necessary to explicitly consider them
in the offset trimming process. Algebraic methods based upon elimination
theory [7] may, in principle, be employed to formulate univariate polynomials
whose real roots identify only proper self–intersections of untrimmed offsets,
but this approach incurs high–degree polynomials and is not well–suited to
implementation in finite-precision arithmetic.

Example 5 Consider the offset at distance d = −0.3 to the quintic PH curve
constructed as the “good” solution [4] to the Hermite interpolation specified
by the initial and final control point pairs

p0 = (1.3, 1.0), p1 = (1.9, 3.2) and p4 = (3.9, 0.6), p5 = (2.5, 3.2).

This curve is illustrated, together with its offset, in Figure 10 below. In this
case, the reduced difference polynomials (12) are of degree (8, 8) in (u, v).

Figure 9 shows the quadtree localizations of f(u, v) = 0 and g(u, v) = 0,
with resolution 2−8. Using both to govern the subdivision, the subdomains
over which f(u, v) and g(u, v) both exhibit coefficient sign changes are found
to be: (1) the symmetric pair

[

98

256
,

99

256

]

×
[

227

256
,
228

256

]

and

[

227

256
,
228

256

]

×
[

98

256
,

99

256

]

,

not adjacent to the line u = v, that identify the proper self–intersection; (2)
the symmetric pair

[

198

256
,
199

256

]

×
[

199

256
,
200

256

]

and

[

199

256
,
200

256

]

×
[

198

256
,
199

256

]
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that are adjacent to the line u = v, identifying one of the two cusps; and the
eight subdomains of the form

[

141

256
,
142

256

]

×
[

148

256
,
149

256

]

, · · · ,

[

148

256
,
149

256

]

×
[

141

256
,
142

256

]

that straddle the line u = v symmetrically, identifying the other cusp. Taking
the midpoint of the isolating subdomain for the self–intersection as a starting
approximation, a few Newton–Raphson iterations yield rapid convergence to
machine precision, identifying (u, v) = (0.384450, 0.888147) as the parameter
values satisfying (11). The self–intersection point is illustrated in Figure 12.

The behavior observed in Figure 5, with several isolating subdomains for
the untrimmed offset cusps straddling the line u = v, is quite typical. Since
f(u, v) = 0 and g(u, v) = 0 are symmetric about u = v, their tangents at
points on this line must be orthogonal to it, and therefore the intersections
of f(u, v) = 0 and g(u, v) = 0 on the line u = v must be singular — i.e., with
coincident tangents — rather than transversal. Consequently, it is preferable
to identify the untrimmed offset cusps as the roots of the univariate equation
(14), rather than as intersections of f(u, v) = 0 and g(u, v) = 0 with u = v.

Example 6 As a further example, consider the offset at distance d = −0.45
to the quintic PH curve constructed as the “good” solution corresponding to
the initial and final control point pairs

p0 = (1.1, 3.2), p1 = (2.0, 2.4) and p4 = (4.8,−0.8), p5 = (1.6, 3.7).

This curve and its untrimmed offset are illustrated in Figure 12 below, and
the reduced difference polynomials (12) are again of degree (8, 8).

Figure 11 shows the quadtree localizations of f(u, v) = 0 and g(u, v) = 0
for resolution 2−7. Using both to guide the domain decomposition identifies
the subdomains over which f(u, v) and g(u, v) both exhibit sign changes in
their coefficients, as illustrated in Figure 12. These include two sets of sub-
domains straddling the line u = v, corresponding to cusps of the untrimmed
offset, and the two subdomains

[

32

128
,

33

128

]

×
[

116

128
,
117

128

]

and

[

59

128
,

60

128

]

×
[

101

128
,
102

128

]

,

above u = v (together with their symmetric counterparts below u = v), that
identify proper self–intersections. Taking the subdomain midpoints as initial
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values, a few Newton–Raphson iterations yield (u, v) = (0.251707, 0.909006)
and (u, v) = (0.460449, 0.789455) as the parameter pairs satisfying (11). The
self–intersections of the untrimmed offset are illustrated in Figure 12.

7 Closure

The Bernstein form of the bivariate reduced difference polynomials f(u, v) =
(x(u) − x(v))/(u − v) and g(u, v) = (y(u) − y(v))/(u − v) associated with
a polynomial curve r(t) = (x(t), y(t)), t ∈ [ 0, 1 ] can be employed to govern
an efficient quadtree decomposition of the domain (u, v) ∈ [ 0, 1 ]2, yielding a
robust method for isolating the self–intersections of r(t) and computing the
parameter value pairs u, v such that r(u) = r(v). By generalizing the concept
of a reduced difference polynomial to accommodate products of univariate
polynomials, the methodology can be extended to compute self–intersections
of rational curves, and of the offsets to Pythagorean–hodograph curves. The
present study aims only to introduce the basic approach, and illustrate some
key applications — as briefly discussed below, there are several improvements
and extensions that may be worthy of further consideration.

Because of the inherent symmetry f(u, v) = f(v, u) of reduced difference
polynomials, and the fact that the ordering of the values in a pair (u, v) that
identifies a self–intersection is immaterial, one need consider only solutions
with either u < v or u > v. Consequently, one may consider the formulation
of reduced difference polynomials in the Bernstein basis specified in terms of
barycentric coordinates over either of these triangular domains, rather than
the tensor–product basis over [ 0, 1 ] × [ 0, 1 ]. This formulation is somewhat
more involved to implement, and will require a generalization of the quadtree
decomposition scheme to the context of triangular domains, but may furnish
some worthwhile benefits in terms of overall efficiency.

In computing self–intersections of the offsets to PH curves, it was noted
that the solutions of the system f(u, v) = g(u, v) = 0 defined by the reduced
difference polynomials also include the cusps of the untrimmed offset, which
correspond to points on the symmetry line u = v. Since these cusps are not
germane to the offset trimming process, their appearance as formal limiting
solutions to the self–intersection problem is rather inconvenient. The division
by u−v in forming f(u, v) and g(u, v) does not eliminate them, and although
they can be (numerically) computed as roots of the univariate equation (14),
without further detailed investigations there is no obvious way to modify the
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system f(u, v) = g(u, v) = 0 so as to eliminate them as solutions.
For optimum efficiency, it is desirable to terminate further subdivision

of subdomains on which the conditions of the Kantorovich theorem (see the
Appendix) for guaranteed convergence of the Newton–Raphson iterations to
a unique solution hold. In this context, the primary challenge is to obtain
tight bounds on the Lipschitz constant for the Jacobian matrix of the system
of bivariate polynomial equations f(u, v) = g(u, v) = 0, as restricted to the
subdomains [ u1, u2 ] × [ v1, v2 ] generated by the quadtree decomposition.

Finally, one may consider extensions of the methodology described herein
to problems of higher dimensions — e.g., the self–intersections of polynomial
parametric surfaces. This corresponds to tracing the one–dimensional set of
solutions to a system x(s, t) = x(u, v), y(s, t) = y(u, v), z(s, t) = z(u, v) of
three equations in the four parametric unknowns (s, t, u, v), and entails some
formidable challenges. Specifically, a 4–dimensional analog of the quadtree
decomposition scheme will be required, and the feasibility of a reduced system
that eliminates the trivial solutions (s, t) = (u, v) is not obvious.

Appendix: Kantorovich theorem

The Kantorovich theorem provides sufficient and necessary conditions for the
convergence of Newton–Raphson iterations to a unique solution (u∗, v∗) of a
system of non–linear equations

f(u, v) = g(u, v) = 0 (15)

from a given starting approximation (u0, v0) within a prescribed domain D.
The following statement of the theorem is adapted from Ortega [15].

Let the independent variables and function values be specified by column
vectors w = [ u v ]T and h(u, v) = [ f(u, v) g(u, v) ]T , and let

J(u, v) =

[

fu(u, v) fv(u, v)
gu(u, v) gv(u, v)

]

(16)

be the Jacobian matrix for the system (15), with inverse

J−1(u, v) =
1

∆(u, v)

[

gv(u, v) −fv(u, v)
−gu(u, v) fu(u, v)

]

,
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where ∆(u, v) = fu(u, v)gv(u, v)−fv(u, v)gu(u, v) is the determinant of J(u, v).
Commencing with the starting approximation w0 = [ u0 v0 ]T the Newton–
Raphson iteration has the form

wr+1 = wr − J−1(wr)h(wr) , r = 0, 1, 2, . . . (17)

Let ‖v‖ denote the norm of a vector v, and ‖M‖ the corresponding norm of
a matrix M, namely

‖M‖ = max
v 6=0

‖Mv‖
‖v‖ .

The theorem may be formulated in terms of these norms as follows.

Theorem 1 For a starting approximation w0 in a domain D, suppose that

1. ‖J−1(w0) ‖ ≤ β,

2. ‖J−1(w0)h(w0) ‖ ≤ η,

3. ‖J(x) − J(y) ‖ ≤ K ‖x − y ‖ for all x,y ∈ D,

for constants β, η, K and define

h = Kβ η , ρ =
1 −

√
1 − 2h

h
η .

Then, if the conditions

h < 1
2

and S = { w | ‖w −w0 ‖ ≤ ρ } ⊂ D

hold, the iterations (17) remain inside the ball S with center w0 and radius

ρ, and converge quadratically to a unique solution w∗ ∈ S ∩D of h(w) = 0.

The general p–norm of a vector v = (v1, . . . , vn) is defined by

‖v‖p =

[

n
∑

i=1

|vi|p
]1/p

,

and the simplest instances are the cases p = 1 and p = ∞, namely

‖v‖1 =

n
∑

i=1

|vi| and ‖v‖∞ = max
1≤i≤n

|vi| .
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For any other p, these norms impose the bounds

‖v‖1

(n + 1)1−1/p
≤ ‖v‖p ≤ ‖v‖1 , ‖v‖∞ ≤ ‖v‖p ≤ (n + 1)1/p‖v‖∞ .

The matrix norms corresponding to p = 1 and p = ∞ are likewise simple —
if M has elements Mjk for 1 ≤ j, k ≤ n, they are given by

‖M‖1 = max
0≤k≤n

n
∑

j=1

|Mjk| and ‖M‖∞ = max
0≤j≤n

n
∑

k=1

|Mjk| ,

i.e., they are the greatest of the column sums and row sums of absolute values
of the matrix elements, respectively. In the present context, the domain D
is (u, v) ∈ [ 0, 1 ] × [ 0, 1 ], and for brevity we focus on the p = ∞ norm.

For any starting approximation w0 = [ u0 v0 ]T the quantities ‖J−1(w0) ‖
and ‖J−1(w0)h(w0) ‖ can be directly computed, giving sharp values for the
bounds β and η in the conditions 1 and 2 of the Kantorovich theorem. The
non–linear dependence of the Jacobian (16) on u, v makes the determination
of a sharp bound on the Lipschitz constant K in condition 3 more difficult,
but an estimate can be obtained as follows. To first order, the change δJ in
the Jacobian corresponding to a change δw = [ δu δv ]T in w = [ u v ]T is

δJ =

[

fuu fuv

guu guv

]

δu +

[

fuv fvv

guv gvv

]

δv .

Hence, noting that 0 ≤ δu, δv ≤ 1 and invoking the triangle inequality, we
find that ‖ δJ ‖∞ is bounded (to first order in δu and δv) by the value

max(|fuu|δu + |fuv|(δu + δv) + |fvv|δv, |guu|δu + |guv|(δu + δv) + |gvv|δv) .

Moreover, since ‖δw‖∞ = max(δu, δv) we may write

‖ δJ ‖∞ ≤ max(|fuu| + 2 |fuv| + |fvv|, |guu| + 2 |guv| + |gvv|) ‖δw‖∞ .

Thus, setting x = w and y = w + δw, and assuming that first–order terms
are dominant, we obtain the estimate

K = max(|fuu| + 2 |fuv| + |fvv|, |guu| + 2 |guv| + |gvv|)

for the Lipschitz constant in condition 3 of the Kantorovich theorem. Bounds
on the absolute values of fuu, fuv, fvv and guu, guv, gvv for (u, v) ∈ [ 0, 1 ]×[ 0, 1 ]
can be obtained from the absolute values of their Bernstein coefficients.
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Figure 1: Quadtree localizations over the domain (u, v) ∈ [ 0, 1 ]×[ 0, 1 ] of the
loci f(u, v) = 0 and g(u, v) = 0 defined by the reduced difference polynomials
corresponding to x(t) and y(t), for the cubic test curve in Example 1.
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Figure 2: Left: rapid isolation of the self–intersection through simultaneous
combination of the quadtree decompositions for f(u, v) = 0 and g(u, v) = 0.
Right: the cubic curve in Example 1, showing the computed self–intersection.
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Figure 3: Quadtree localizations over the domain (u, v) ∈ [ 0, 1 ]×[ 0, 1 ] of the
loci f(u, v) = 0 and g(u, v) = 0 defined by the reduced difference polynomials
corresponding to x(t) and y(t), for the quintic test curve in Example 2.
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Figure 4: Left: rapid isolation of the self–intersections through simultaneous
combination of the quadtree decompositions for f(u, v) = 0 and g(u, v) = 0.
Right: the quintic curve in Example 2, showing the three self–intersections.
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Figure 5: Quadtree localizations over the domain (u, v) ∈ [ 0, 1 ]×[ 0, 1 ] of the
loci f(u, v) = 0 and g(u, v) = 0 defined by the reduced difference polynomials
corresponding to x(t) and y(t), for the rational test curve in Example 3.
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Figure 6: Left: rapid isolation of the self–intersections through simultaneous
combination of the quadtree decompositions for f(u, v) = 0 and g(u, v) = 0.
Right: the rational curve in Example 3, showing the three self–intersections.
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Figure 7: Quadtree localizations over the domain (u, v) ∈ [ 0, 1 ]×[ 0, 1 ] of the
loci f(u, v) = 0 and g(u, v) = 0 defined by the reduced difference polynomials
for the rational quartic test curve with a triple point in Example 4.
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Figure 8: Left: isolating the parameter pairs (1
4
, 1

2
), (1

2
, 3

4
), (1

4
, 3

4
) that identify

the triple point by combining the quadtree decompositions of f(u, v) = 0 and
g(u, v) = 0. Right: the rational quartic curve, illustrating the triple point.
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Figure 9: Quadtree localizations over the domain (u, v) ∈ [ 0, 1 ]×[ 0, 1 ] of the
loci f(u, v) = 0 and g(u, v) = 0 defined by the reduced difference polynomials
corresponding to x(t) and y(t), for the untrimmed offset at distance d = −0.3
to the quintic Pythagorean–hodograph test curve in Example 5.
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Figure 10: Left: rapid isolation of the self–intersection through the combined
quadtree decomposition of f(u, v) = 0 and g(u, v) = 0. Isolating subdomains
that straddle the line u = v identify cusps, while those removed from this line
identify proper self–intersections. Right: the quintic PH curve in Example 5,
illustrating the two cusps and self–intersection of the untrimmed offset.
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Figure 11: Quadtree localizations over the domain (u, v) ∈ [ 0, 1 ] × [ 0, 1 ] of
the loci f(u, v) = 0 and g(u, v) = 0 defined by the reduced difference poly-
nomials corresponding to x(t) and y(t) for the untrimmed offset at distance
d = −0.45 to the quintic Pythagorean–hodograph test curve in Example 6.
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Figure 12: Left: rapid isolation of the self–intersections through the combined
quadtree decomposition of f(u, v) = 0 and g(u, v) = 0. Isolating subdomains
that straddle the line u = v identify cusps, while those removed from this line
identify proper self–intersections. Right: the quintic PH curve in Example 6,
illustrating the two cusps and self–intersections of the untrimmed offset.
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