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Abstract

In this paper, the performance of a parametric family including Newton’s and Traub’s schemes on multiple roots is

analyzed. The local order of convergence on nonlinear equations with multiple roots is studied as well as the dynamical

behavior in terms of the damping parameter on cubic polynomials with multiple roots. The fixed and critical points, and

the associated parameter plane are some of the characteristic dynamical features of the family which are obtained in this

work. From the analysis of these elements we identify members of the family of methods with good numerical properties

in terms of stability and efficiency both for finding the simple and multiple roots, and also other ones with very unstable

behavior.

Keywords: Nonlinear equations; Iterative methods; Multiple roots; Complex dynamics; Convergence regions; Parameter

space; Fixed point; Critical point

1. Introduction

Solving nonlinear equations is an important problem with many applications in Science and Engineering. In this study,

we consider nonlinear equations f(x) = 0, where f : I ⊆ R → R is a scalar function defined on an open interval I .

For solving these equations, iterative schemes must be used. One of the most known and basic iterative method is the

one-point Newton’s scheme. It converges quadratically for simple roots if the initial guess x0 is chosen close enough to

the required root. In the last decades, many researchers have presented different methods to improve the order and the

stability of Newton’s scheme (see, for example, the overview that appears in [1] and [2] and references therein).

A common way to generate new schemes is the direct composition of known methods with a later treatment to reduce

the number of functional evaluations: for example, by composing Newton’s method with itself, holding the derivative

“frozen” in the second step, third-order Traub’s method [3] is obtained.

In [4], the authors presented a damped Traub’s family of iterative methods, whose iterative expression is

zn+1 = yn − γ
f(yn)

f ′(zn)
, n = 0, 1, . . . , (1)

where yn = zn − f(zn)
f ′(zn)

is a Newton’s step and γ is the damping parameter. Let us note that, if γ = 1 we get the Traub’s

scheme and γ = 0 leads Newton’s method. The order of convergence of family (1) on nonlinear equations with multiple

roots is studied in this work in terms of the γ parameter.

The application of iterative methods for solving nonlinear equations on polynomials gives rise to rational functions

whose complex dynamics leads to valuable information about their dependence on initial estimations. However, Amat et

al. in [5] studied real dynamics of Traub’s scheme on quadratic and cubic polynomials. From the numerical point of view,

the dynamical behavior of the rational function associated with an iterative method gives us important information about

its stability and reliability. In these terms, Amat et al. in [6] described the dynamical behavior of several well-known

families of iterative methods. More recently, in [7, 8, 9, 10, 11, 12], the authors analyze the qualitative behavior of

different known iterative families. Most of these studies show different pathological numerical behavior, such as periodic
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orbits, attracting fixed points different from the solution of the problem, among others. Therefore, from the analysis of

the parameter planes associated to a family of methods we will gain understanding about the behavior of the different

members of the family of methods, helping us in the election of a particular one.

Very recently, in [13, 14, 15, 16] the dynamical behavior of iterative methods for solving nonlinear equations with

multiple roots is analyzed. The use of complex dynamics tools on these kind of problems is very fruitful, as their stability

properties show. Very often, the stability region of multiple roots is wide but the respective one of the simple root is

extremely small or even does not exist.

In this paper, we describe the dynamical behavior of family (1) on cubic polynomials with multiple roots. Specifically,

we analyze the stability of the family on p(z) = (z− a)2(z− b), obtaining interesting information about the dynamics of

(1), distinguishing between the multiple root and the simple one.

The rest of the paper is organized as follows: in Section 2 we study the local convergence of family (1) for simple and

multiple roots. Section 3 is devoted to introduce the basic concepts on complex dynamics, which is used in Section 4,

where the analysis of the fixed and critical points of the rational operator associated to the family on p(z) is showed. The

regions of stability (Section 5) also appear in the associated parameter spaces (Section 6), as well as the stability region

of the attractive 2-periodic orbits. In order to illustrate the previous results, in Section 7 we plot some examples of the

dynamical planes showing both the stable and unstable behavior. We finish the paper with some remarks and conclusion

that extend the earlier results in this fruitful area of research.

2. Analysis of convergence

In the following result we show the local convergence of the Traub’s family of iterative methods (1) when it is applied

to a nonlinear equation with simple or multiple roots of arbitrary multiplicity m ≥ 1.

Theorem 1. Let f : D ⊆ R −→ R be a sufficiently differentiable function in an open interval D. We assume that

f(z) = 0 has a multiple root α of multiplicity m ≥ 1 in D. If z0 is close enough to α, then the members of the family (1)

converge to α satisfying the following error equation:

en+1 = E(1)
m (γ)en + E(2)

m (γ)e2n + E(3)
m (γ)e3n +O



e4n


,

where

E
(1)
m (γ) = 1−m

−(m+1) [mm + γ (m− 1)m] ;

E
(2)
m (γ) =

cm+1

�

γ(m2
−m− 1)A(m) + 1

�

m2(m+ 1)
;

E
(3)
m (γ) =

2(m+ 1)
�

2mcm+2 − (m+ 2)c2m+1

�

+ γA(m)[2m(m− 2)(m+ 1)2cm+2 − (m+ 2)(2m3
− 2m2

− 5m− 2)c2m+1]

2m3(1 +m)2(m+ 2)
,

and A(m) =



(m− 1)m−1

mm



and en = zn − α, cj = f (j)(α)/f (m)(α), j ≥ m+ 1.

Proof. Let α be a root of multiplicity m (i.e. f(α) = f ′(α) = f ′′(α) = . . . = f (m−1)(α) = 0 and f (m)(α) = 0). By

using Taylor expansion of f(zn) around α we get

f(zn) = f(α) + f ′(α)en +
f (2)(α)

2!
e2n + . . .+

f (m)(α)

m!
emn + . . .+O



em+3
n



=
f (m)(α)

m!
emn



1 +
cm+1

(m+ 1)
en +

cm+2

(m+ 2)(m+ 1)
e2n +O



e3n




. (2)

Similarly, we obtain

f ′(zn) = f ′(α) + f (2)(α)en +
f (3)(α)

2!
e2n + . . .+

f (m)(α)

(m− 1)!
em−1
n + . . .+O



em+2
n



=
f (m)(α)

(m− 1)!
em−1
n



1 +
cm+1

m
en +

cm+2

(m+ 1)m
e2n +O



e3n




. (3)

2



By direct division of (2) and (3),

f(zn)

f ′(zn)
=

en
m







1 +
cm+1

(m+ 1)
en + cm+2

(m+2)(m+1)e
2
n +O



e3n


1 + cm+1

m en + cm+2

(m+1)me2n +O [e3n]







=
en
m

− cm+1

m2(m+ 1)
e2n +

(2 +m)c2m+1 − 2mcm+2

m3(m+ 1)(m+ 2)
e3n +O



e4n


. (4)

Then, by (4)

yn = zn − f(zn)

f ′(zn)
= α+

m− 1

m
en +

cm+1

m2(m+ 1)
e2n − (2 +m)c2m+1 − 2mcm+2

m3(m+ 1)(m+ 2)
e3n +O



e4n


. (5)

Again, by (5) and Taylor’s expansion around α,

f(yn) = f(α) + f ′(α) [yn − α] + . . .+
f (m)(α)

m!
[(yn − α)m] +O



(yn − α)m+1


=
f (m)(α)

m!



m− 1

m
en +

cm+1

m2(m+ 1)
e2n − (2 +m)c2m+1 − 2mcm+2

m3(m+ 1)(m+ 2)
e3n +O



e4n


m

. (6)

Dividing (6) by (3),

f(yn)

f ′(zn)
=

1

m









m−1
m en + cm+1

m2(m+1)e
2
n − (2+m)c2

m+1−2mcm+2

m3(m+1)(m+2) e3n +O


e4n


m

em−1
n + cm+1

m emn + cm+2

(m+1)mem+1
n +O



em+2
n









= Ẽ(1)
m en + Ẽ(2)

m e2n + Ẽ(3)
m e3n +O



e4m


, (7)

where

Ẽ(1)
m = (m− 1)mm−(m+1);

Ẽ(2)
m = − (m− 1)

m−1
m−(m+2)



m2 −m− 1


cm+1

1 +m
;

Ẽ(3)
m =

(m− 1)m−1m−(m+3)


(m+ 2)


2m3 − 2m2 − 5m− 2


c2m+1 − 2m(m− 2)(m+ 1)2cm+2



2(m+ 1)2(m+ 1)
.

Finally, from (5) and (7)

en+1 = zn+1 − α = yn − α− γ
f(yn)

f ′(zn)

=



m− 1

m
− γẼ(1)

m



en +



cm+1

m2(m+ 1)
− γẼ(2)

m



e2n +



2mcm+2 − (2 +m)c2m+1

m3(m+ 1)(m+ 2)
− γẼ(3)

m



e3n +O


e4n


= E(1)
m (γ)en + E(2)

m (γ)e2n + E(3)
m (γ)e3n +O



e4n


,

and the proof is finished.

From the previous result, it has been proved that the order of convergence depends both on the parameter determining

the method (γ) and the multiplicity of the root (m). Moreover, unlike the case involving simple roots, where the order

of convergence of the Traub’s family is at least two [4], by considering roots with multiplicity m > 1, the minimum

order attainable is now one. However, as can be seen in Figure 1, the values of γ giving rise to quadratic convergence,

are located at γm = mm(m − 1)1−m, that is, quadratic convergence can be always obtained for a value of parameter γ
depending on the multiplicity of the root.

In the particular case of polynomial p(z) = (z − a)2(z − b), the error equation is given by:

en+1 =



4− γ

8



en +



(4 + γ)c3
48



e2n +



6c4 + (γ − 6)c23
144



e3n +O


e4n


. (8)

Let us note that both Traub (γ = 1) and Newton (γ = 0) methods have first order of convergence. Only the case where

γ = 4 gives rise to a higher convergence (quadratic), and hence, deserves a special attention in the subsequent analysis.

In the following sections, we deal with the dynamical analysis of the family of methods given by (1), emphasizing the

stability and reliability features. In order to find the regions of the parameter space (i.e., the members of the family) where

the behavior is suitable in terms of numerical stability, we compute the fixed and the critical points of the corresponding

rational function.
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Figure 1: First coefficient on the error equation as a function of γ for different values of the multiplicity

3. Basic concepts

By using the tools of complex dynamics, we will study the general convergence of family (1) on cubic polynomials

with multiple roots. Taking into account the Scaling Theorem, that is satisfied in this case (see [5]), the roots of a

polynomial can be transformed by an affine map with no qualitative changes on the dynamical behavior of the family.

Thus, by using the cubic polynomial p(z) = (z − a)2(z − b), the operator of the family is given by the rational function

Tp,γ,a,b(z) = z +
(a− z)(z − b)



2(a+ b− 2z)2(z − b)γ − (a+ 2b− 3z)3


(a+ 2b− 3z)
4 , (9)

depending on the parameters γ, a and b.
Blanchard, in [17], by considering the conjugacy map

h(z) =
z − a

z − b
(10)

with the following properties:

(i) h(∞) = 1, (ii) h(a) = 0, (iii) h(b) = ∞,

proved that, for quadratic polynomials, Newton’s operator is conjugate to the rational map z2. Similarly, the operator

Tp,γ,a,b(z) on cubic polynomials is conjugated to the operator Qγ(z):

Qγ(z) =


h ◦ Tp,γ,a,b ◦ h−1


(z) =
z(z + 1)



2(z + 1)γ − (z + 2)3


2z(z + 1)2γ − 2(z + 2)3
. (11)

We observe that the parameters a and b have been obviated in Qγ(z).
Now, we are going to recall some dynamical concepts of complex dynamics (see [18]) that will be used in this work.

Given a rational function R : Ĉ → Ĉ, where Ĉ is the Riemann sphere, the orbit of a point z0 ∈ Ĉ is defined as the set of

successive images of z0 by the rational function:

{z0, R (z0) , R
2 (z0) , ..., R

n (z0) , ...}.

We analyze the phase plane of the map R by classifying the starting points from the asymptotic behavior of their orbits.

A z0 ∈ Ĉ is called a fixed point if R (z0) = z0. A periodic point z0 of period p > 1 is a point such that Rp (z0) = z0 and

Rk (z0) = z0, for k < p. A pre-periodic point is a point z0 that is not periodic but there exists a k > 0 such that Rk (z0)
is periodic. A critical point z0 is a point where the derivative of the rational function vanishes, R′ (z0) = 0. Moreover, a

fixed point z0 is called attractor if |R′(z0)| < 1, superattractor if |R′(z0)| = 0, repulsor if |R′(z0)| > 1 and parabolic if

|R′(z0)| = 1.
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The basin of attraction of an attractor α is defined as the set of preimages of any order:

A (α) = {z0 ∈ Ĉ : Rn (z0)→α, n→∞}.

The Fatou set of the rational function R, F (R) , is the set of points z ∈ Ĉ whose orbits tend to an attractor (fixed

point, periodic orbit or infinity). Its complement in Ĉ is the Julia set, J (R). That means that the basin of attraction of

any fixed point belongs to the Fatou set and the boundaries of these basins of attraction belong to the Julia set.

4. Analysis of the fixed and critical points

Points z = 0, z = ∞ are fixed points of operator Qγ(z), that is, are roots of the equation Qγ(z) = z (indeed, z = ∞
is a fixed point associated to the operator Qγ(z) if and only if limz→0

1
Qγ(

1
z
)
= 0), as well as a set of strange fixed

points. However, due to the non trivial form of the operator (11), in order to calculate the strange fixed points, it becomes

necessary to analyze separately the behavior of its numerator and denominator. The roots of the denominator, i.e., the

poles of the operator Qγ(z), are given by

P
(1)
Qγ

(γ) =
1

3(γ − 1)



6− 2γ +
γ(γ + 15)

ρ(γ)
+ ρ(γ)



,

P
(2)
Qγ

(γ) =
1

24(γ − 1)



16(3− γ) +
4γ(γ + 15)



−1− i
√
3


ρ(γ)
− 4



1− i
√
3


ρ(γ)



,

P
(3)
Qγ

(γ) =
1

24(γ − 1)



16(3− γ) +
4γ(γ + 15)



−1 + i
√
3


ρ(γ)
− 4



1 + i
√
3


ρ(γ)



,

where

ρ(γ) =



3
√
3



γ2 (γ − 1)
2
(γ + 27) + γ(27 + γ(γ + 36))

1/3

.

Figure 2: Parameter space showing |ρ(γ)| and |ζ(γ)| as a function of the real and imaginary parts of γ

From this last expressions, we can directly observe that γ = 1 gives rise to a singularity. Additionally, it can be

showed that ρ(γ) = 0 if and only if γ = 0 (see Figure 2). Therefore, since γ = 0 (Newton’s method) and γ = 1
(Traub’s scheme) are special cases (yielding indeterminate forms and singularities, respectively), also deserve further

analysis. Let us remark that for each value of γ, there are three different complex values of ρ(γ), which we will denote as

{ρ1(γ), ρ2(γ), ρ3(γ)}. If we assume that ρ1(γ) ≡ ρ(γ) is the so called principal cubic root (usually defined as the cubic

root with the largest real part), the other ones can be written as ρm(γ) = ρ(γ)ei
2π
3
(m−1), m = 2, 3. It can be proved that

P
(1)
Qγ

(γ)






ρ1(γ)
= P

(2)
Qγ

(γ)






ρ3(γ)
= P

(3)
Qγ

(γ)






ρ2(γ)
,

P
(1)
Qγ

(γ)






ρ2(γ)
= P

(2)
Qγ

(γ)






ρ1(γ)
= P

(3)
Qγ

(γ)






ρ3(γ)
,

P
(1)
Qγ

(γ)






ρ3(γ)
= P

(2)
Qγ

(γ)






ρ2(γ)
= P

(3)
Qγ

(γ)






ρ1(γ)
.
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On the other hand, disregarding these values for the γ parameter, the strange fixed points are given by the following

expressions:

ex1(γ) = 1, for γ = 27/4,

ex2(γ) =
1

3



ζ(γ) +
4γ(γ + 3)

ζ(γ)
− 2(γ + 3)



,

ex3(γ) = −1

6



ζ(γ)


1− i
√
3


+
4γ(γ + 3)(1 + i

√
3)

ζ(γ)
+ 4 (γ + 3)



,

ex4(γ) = −1

6



ζ(γ)


1 + i
√
3


+
4γ(γ + 3)(1− i

√
3)

ζ(γ)
+ 4 (γ + 3)



,

where

ζ(γ) =


3
√
3


γ2(27 + 8γ)− γ (27 + γ(36 + 8γ))
1/3

.

Note that ζ(γ) = 0 if and only if γ = 0 or γ = −3 (see Figure 2). As above, taking into account the cubic roots, for the

strange fixed points it can also be proved that

ex2(γ)|ζ1(γ) = ex3(γ)|ζ3(γ) = ex4(γ)|ζ2(γ) ,
ex2(γ)|ζ2(γ) = ex3(γ)|ζ1(γ) = ex4(γ)|ζ3(γ) ,
ex2(γ)|ζ3(γ) = ex3(γ)|ζ2(γ) = ex4(γ)|ζ1(γ) .

Taking into account the previous results, the main relationship between the strange fixed points are summarized by

means of the following result. Let us remark that, although case γ = 0 corresponds to Newton’s method, the associate

operator is not z2, as we are working on a polynomial with multiple roots.

Lemma 1. Let Qγ(z) be the rational function resulting from applying family (1) on polynomial p(z) = (z − a)2(z − b),
conjugated by means of Möbius map. Then, the number of simple strange fixed points of operator Qγ(z) is four (denoted

by exi(γ), i = 1, 2, 3, 4), except in the following cases:

i) If γ = 0, the operator’s expression is Q0(z) = z(z + 1)/2, and the only simple strange fixed point is ex1(γ) = 1.

ii) If γ = 27/4, there are three simple strange fixed points, ex2(27/4), ex3(27/4) and ex4(27/4), being associated

with the rational function

Q27/4(z) = z(1 + z)



27 (z + 1)− 2 (z + 2)
3

27z (z + 1)
2 − 4 (z + 2)

3



.

iii) If γ = −27/8, then ζ(−27/8) = −9/4 and ex1(−27/8) = ex3(−27/8) = ex4(−27/8) = 1. So, there exists only

two strange fixed points, one of them with multiplicity three. The operator associated to this parameter is given by:

Q−27/8(z) = z(z + 1)



27 (z + 1) + 4 (z + 2)
3

27z (z + 1)2 + 8 (z + 2)3



.

iv) If γ = −4, then ζ(−4) =
3


44 + 12i
√
15, and ex4(−4) = 0. Hence, there are only three simple strange fixed

points, being the associated operator

Q−4(z) = z (z + 1)



8 (z + 1) + (z + 2)
3

8z (z + 1)
2
+ 2 (z + 2)

3



.

In order to determine the critical points, we calculate the first derivative of Qγ(z),

Q′

γ(z) =
(z + 2)3(2z + 1)

2



(z + 2)3 − γ(z3 + z + 2)

((z + 2)3 − γz(z + 1)2)
2



. (12)

The relevance of the knowledge of the critical points relies on a classical result which establishes that each invariant Fatou

component is associated with, at least, one critical point. In the case of quadratic polynomials with simple roots [4], where

the order of convergence is at least two, it is clear that the image by the conjugacy map (10) of the roots of the polynomial

6



are critical points, giving rise to their respective Fatou components. However, in this case, the order of convergence is one

except for γ = 4, that is two. Therefore, in the analysis of the critical points we must study separately the cases γ = 4
and γ = 4.

As we have stated in the previous section dealing with the fixed points, we firstly analyze the poles of the rational

function Q′

γ(z), which are given by:

P
(1)
Q′

γ

(γ) =
1

3(1− γ)



2 (γ − 3) +
γ (γ + 15)

ρ̃(γ)
+ ρ̃(γ)



,

P
(2)
Q′

γ

(γ) =
1

6 (1− γ)



4 (γ − 3) +
γ (γ + 15)



−1− i
√
3


ρ̃(γ)
−


1− i
√
3


ρ̃(γ)



,

P
(3)
Q′

γ

(γ) =
1

6 (1− γ)



4 (γ − 3) +
γ (γ + 15)



−1 + i
√
3


ρ̃(γ)
−


1 + i
√
3


ρ̃(γ)



,

where

ρ̃(γ) =



3
√
3



γ2 (γ − 1)
2
(γ + 27)− γ (27 + γ (γ + 36))

1/3

.

Figure 3: Parameter space showing |ρ̃(γ)| and |ζ̃(γ)| as a function of the real and imaginary parts of γ

We observe that γ = 1 gives rise to a singularity, and it can be showed that ρ̃(γ) = 0 if and only if γ = 0 or γ = −15
(see Figure 3). Again, taking into account the cubic roots, for the poles of the first derivative of Qγ(z) it can be proved

that

P
(1)
Q′

γ

(γ)






ρ̃1(γ)
= P

(2)
Q′

γ

(γ)






ρ̃3(γ)
= P

(3)
Q′

γ

(γ)






ρ̃2(γ)
,

P
(1)
Q′

γ

(γ)






ρ̃2(γ)
= P

(2)
Q′

γ

(γ)






ρ̃1(γ)
= P

(3)
Q′

γ

(γ)






ρ̃3(γ)
,

P
(1)
Q′

γ

(γ)






ρ̃3(γ)
= P

(2)
Q′

γ

(γ)






ρ̃2(γ)
= P

(3)
Q′

γ

(γ)






ρ̃1(γ)
.

By considering this results, we establish the following lemma:

Lemma 2. By analyzing the equation Q′

γ(z) = 0, we obtain:

i) If γ = 0, there are two free critical points: cr1(γ) = −1/2 and cr2(γ) = −2, where the multiplicity of cr2(γ) is

always 3. Let us note that, since cr1(γ) = [cr2(γ)]
−1

, they are not independent. On the other hand, if γ = 0, there

exists only one simple free critical point: cr1(γ) = −1/2.

ii) Only in case γ = 4, z = 0 and z = ∞ (related to the roots of the polynomial by means of Möbius map) are critical

points giving rise to their respective Fatou components. Additionally, there exist more free critical points: cr1(γ),
cr2(γ) and

cr3(4) =
1

3



3 +
√
33


,

cr4(4) =
1

3



3−
√
33


.
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iii) If γ = −27, there are four free critical points: cr2(γ) with multiplicity 3 and

cr3(−27) =
1

14



−1− 6
3
√
25



2

−43 + 7
√
41

1/3

+ 3



5

2



−43 + 7
√
41


1/3


,

cr4(−27) = − 1

14
+

3 3
√
25



1 + i
√
3


7 3
√
4


−43 + 7
√
41
1/3

− 3

28



1− i
√
3




5

2



−43 + 7
√
41


1/3

,

cr5(−27) = − 1

14
+

3 3
√
25



1− i
√
3


7 3
√
4


−43 + 7
√
41
1/3

− 3

28



1 + i
√
3




5

2



−43 + 7
√
41


1/3

.

Let us notice that cr4(−27) = [cr5(−27)]
∗

, where the asterisk denotes complex conjugation.

iv) If γ = 27/4, we can find three free critical points, cr1(γ) = −1/2, cr2(γ) = −2 and cr4(27/4) = −22/23.

v) If γ = 16/7, there exists four free critical points, cr1(γ) = −1/2, cr2(γ) = −2, cr3(16/7) = 6 and cr4(16/7) =
−2/3, being the multiplicity of cr4(16/7), equal to 2.

vi) If γ = 27/11 there are four free critical points, cr1(γ) = −1/2, cr2(γ) = −2,

cr3(27/11) =
1

16



37 + 3
√
273



,

cr4(27/11) =
1

16



37− 3
√
273



.

In this case, the multiplicity of cr1(γ) = −1/2 is 2.

vii) If γ = 1, there exist six free critical points, cr1(γ), cr2(γ), cr3(1) =
1
12



−11− i
√
23


and cr4(1) = [cr3(1)]
∗

.

viii) In any other case the free critical points are cr1(γ) = −1/2, cr2(γ) = −2 and the following:

cr3(γ) =
1

9 (γ − 1)



18− 3 3
√
9γ (γ − 13)

ζ̃(γ)
+ 3

3
√
3ζ̃(γ)



,

cr4(γ) =
1

18 (γ − 1)



36 +
3 3
√
9γ (γ − 13)



1 + i
√
3


ζ̃(γ)
+ 3

3
√
3


−1 + i
√
3


ζ̃(γ)



,

cr5(γ) =
1

18 (γ − 1)



36 +
3 3
√
9γ (γ − 13)



1− i
√
3


ζ̃(γ)
+ 3

3
√
3


−1− i
√
3


ζ̃(γ)



,

where

ζ̃(γ) =

√
3



γ2 (γ − 1)
2
(4γ − 27) (7γ − 16)− 9γ (−4 + γ (γ − 5))

1/3

.

In the last expressions we can observe that, once again γ = 1 gives rise to a singularity, and ζ̃(γ) = 0 if and only

if γ = 0 or γ = 13 (see Figure 3). Moreover, for the free critical points it can be proved that

cr3(γ)|ζ̃1(γ) = cr4(γ)|ζ̃3(γ) = cr5(γ)|ζ̃2(γ) ,
cr3(γ)|ζ̃2(γ) = cr4(γ)|ζ̃1(γ) = cr5(γ)|ζ̃3(γ) ,
cr3(γ)|ζ̃3(γ) = cr4(γ)|ζ̃2(γ) = cr5(γ)|ζ̃1(γ) .

Some of these properties determine the complexity of the operator. From the previous results, let us remark that:

• Since cr1(γ) = [cr2(γ)]
−1

, at most, there are four independent free critical points. However, there exists regions

of the parameter space where appear more relations between the other free critical points. In particular, it can be

proved that cr4(γ) = [cr5(γ)]
∗

on the complement of the real interval γ ∈ [16/7, 13]. In Figure 4, the real values of

the γ parameter are highlighted if the strange fixed points (ex3(γ) and ex4(γ)) and the free critical points (cr4(γ)
and cr5(γ)) are related by means of the complex conjugacy.

• The free critical point cr2(γ) = −2 is a pre-image of z = 1, i.e., Qγ(−2) = 1 for all γ ∈ C.

• Whenever γ = 4, the order of convergence of the method is quadratic, and then the roots z = 0 and z = ∞ are

critical points giving rise to their respective Fatou components. In that case, there are three independent free critical

points.

• If γ = 0, there exists only one strange fixed point, ex1(γ) = 1 and one free critical point cr1(γ) = −1/2.
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ex3(γ)=[ex4(γ)]
*⟵

Re[ζ (γ)]

Im[ζ (γ)]

Re[ζ
˜
(γ)]

Im[ζ
˜
(γ)]

-20 -15 -10 -5 0 5 10 15 20
-10

-5

0

5

10

γ

Figure 4: Real and imaginary parts of the functions ζ(γ) and ζ̃(γ)

5. Stability of the fixed points

As we will see below, not only the number but also the stability of the fixed points depend on the parameter of the

family. The relevance of this study yields in the fact that the existence of attracting strange fixed points can make the

iterative scheme converge to a “false” solution.

When the order of convergence of the family is at least two, it is clear that the origin and ∞ are always superattractive

fixed points. However, the stability of the other fixed point changes depending on the values of the parameter γ, and gives

us interesting numerical information. In the following results we establish the stability of the fixed points.

As family (1) has second order of convergence for simple roots, the fixed point z = ∞ is superattracting for all values

of γ. However, the stability of z = 0 is determined in the following result, where a region of the complex plane is defined

being simultaneously basin of attraction of both roots of the polynomial.

Theorem 2. The analysis of the stability of the fixed point z = 0 shows that:

i) If |4− γ| < 8, then z = 0 is an attractor and it is a superattractor if γ = 4.

ii) If |4− γ| = 8, then z = 0 is a parabolic point.

iii) If |4− γ| > 8, then z = 0 is a repulsor.

Proof. It is easy to prove that Q′

γ(0) =
1
16 [8− 2γ] and. So,









8− 2γ

16









≤ 1 is equivalent to 0 ≤ |4− γ| ≤ 8.

Analyzing the equation Q′

γ(0) = 0, it is straightforward to observe that the unique value of γ verifying Q′

γ(0) = 0 is

γ = 4. Therefore, the fixed points z = 0 and z = ∞ are superattractors if and only if the order of convergence of the

family is two. Moreover, if γ satisfies 0 < |4− γ| < 8, the fixed points are attractors. If |4− γ| = 8, then


Q′

γ(0)


 = 0
and the fixed points are parabolic points. And finally, if |4− γ| > 8 then the fixed points are repulsors.

Let us remark that the disk |4− γ| < 8, where the fixed points z = 0 and ∞ are attractors, coincides with the region

with good numerical behavior when the family of methods is applied to quadratic polynomials with simple roots (see [4]).

Similar results can be proved for the rest of strange fixed points.

Theorem 3. The character of the strange fixed point ex1(γ) = 1, γ = 27/4, is:

i) If




27
4 − γ



 > 81
8 , then ex1(γ) = 1 is an attractor, but it cannot be a superattractor.

ii) If




27
4 − γ



 = 81
8 , then ex1(γ) = 1 is a parabolic point.

iii If




27
4 − γ



 < 81
8 , then ex1(γ) = 1 is a repulsor.
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Figure 5: Stability regions of exi(γ), i = 1, 2, 3, 4

The proof of this theorem is analogous to that of Theorem 2, by using the stability function of ex1(γ) = 1,

Q′

γ(1) =
81

2 (27− 4γ)
.

Figure 6: Stability regions of strange fixed points

The analytical expressions that determine the character of the rest of strange fixed points depending on γ are very

10



complicated. Instead, we analyze the stability by means of graphical representations. In Figure 5, we represent the

stability region associated to each strange fixed points previously calculated, i.e., we plot


Q′

γ(exi(γ))


, i = 1, 2, 3, 4,

as a function of the real and imaginary components of the γ parameter. It can be checked that ex3(γ) is superattracting

if γ = −1.82812 − 0.181546i and there exist two values of γ where ex4(γ) is superattracting, γ = −6.75 and γ =
−1.82812 + 0.181546i. In Figure 6 we show all stability regions, including those corresponding to those of the set

of 2-periodic points, obtained numerically as γ-dependent roots of a 20th-degree polynomial. Nevertheless, it can be

numerically checked that these periodic orbits can be superattracting if γ = 13.081 or γ = 13.5406± 1.8965i.

6. The parameter space

From the previous analysis, it is clear that the dynamical behavior of the rational operator Qγ(z) associated with each

value of the γ parameter can be very different. Several parameter spaces associated with each free critical point of the

Traub’s-type family of iterative methods are obtained by associating each point of the parameter plane with a complex

value of γ, i.e., with an element of the family (1). Every value of γ belonging to the same connected component of the

parameter space gives rise to subsets of schemes of family (1) with similar dynamical behavior. So, it is interesting to find

regions of the parameter plane as much stable as possible, because these values of γ will give us the best member of the

family in terms of numerical stability. As cr1(γ) = [cr2(γ)]
−1

we have at most four independent free critical points (see

-10 -5 0 5 10 15 20

-15

-10

-5

0

5

10

15

�]Re[

Im
[�

]
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-15
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15

�]Re[
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]

Figure 7: Parameter spaces P1 (left) and P2 (right) associated to cr1(γ) and cr2(γ), resp.
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Figure 8: Parameter spaces P3 (left) and P4 (right) associated to cr3(γ) and cr4(γ), resp.
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Lemma 2), so we can obtain different parameter planes, with complementary information. When we consider the free

critical point cr1(γ) = −1/2 as a starting point of the iterative scheme of the family associated to each complex value of

γ, we paint this point of the complex plane in red if the method converges to any of the roots (zero and infinity) and they

are white in other cases. The color used is brighter when the number of iterations is lower. Then, the parameter plane P1

is obtained (see Figure 7). Each parameter plane has been generated by using the routines described in [19], for values of

γ in [−10, 20]× [−15, 15], with a mesh of 2000 × 2000 points. The maximum number of iterations involved has been

500, and 10−3 the tolerance used as a stopping criterium.

A similar procedure can be carried out with the free critical points cri(γ), i = 2, 3, 4, 5, obtaining in each case the

corresponding parameter plane Pi (see Figures 7 and 8). Let us remark that all parameter planes have common regions:

the disk D1 that defines the values of γ where ex1(γ) = 1 is attractive (defined in Theorem 3) and the red disk D2 where

z = 0 is attracting, defined in Theorem 2. In the case of P2 it can be proved that Qγ(−2) = 1, and 1 is a repulsive

strange fixed point inside the disk centered at 27/4 and with radius 81/8. Then, the rounding error in the calculations will

determine its orbit. Moreover, we can observe on the parameter space P4 (and in P5, that has been omitted because of

its similitude with P4) a little white disk D3 on the rim of the left side: it is the region where strange fixed points ex3(γ)
and ex4(γ) are attractive (see Figure 5). Also in parameter planes Pi, i = 1, 3, 4 a white cardioid at the right side of D2,

which is the main stability region of the set of 2-periodic orbits.

7. Dynamical planes

Finally, by means of the dynamical planes, we will show the qualitative behavior of some different elements of the

family (1). We will select the values of the γ parameter by using the main conclusions obtained above by analyzing the

parameter planes and the stability regions. As in the case of parameter planes, the dynamical planes have been generated
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6

Im
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]
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Figure 9: Dynamical planes with stable behavior

by using the routines appearing in [19]. The dynamical plane associated to a value of the γ parameter, that is, obtained by

iterating an specific method of the family, is generated by using each point of the complex plane as initial estimation (we

have used a mesh of 1000× 1000 points). We paint in orange the points whose orbits converge to zero (with a tolerance

of 10−3), in blue the points converging to infinity, in green those points whose orbits converge to one of the strange fixed
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points, and in black if it reaches the maximum number of 100 iterations without converging to any of the fixed points. In

the figures, the fixed points appear marked as a white circles, the critical points with squares and the attractors with a star.

In the parameter spaces we can observe that there are some regions where the corresponding iterative methods have good
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Figure 10: Dynamical planes associated to γ = −2 with the trajectories (in yellow) converging to ex3(−2) and ex4(−2)

numerical behavior in terms of stability. They correspond to values of γ painted in red within the disk |27− 4γ| < 81/2.

In Figure 9 we show different values of the parameter with stable behavior; in particular, we use γ = 0 (Newton’s method),

γ = 1 (Traub’s scheme), γ = 4 (where the family present a convergence of second order), and γ = 5.9 − 4.75i. Notice

that in the last two cases, the basins of attraction are unconnected.

On the other hand, unstable behavior is found when we choose values of γ in the white region of the parameter planes.

In Figure 10, the dynamical plane of iterative method corresponding to γ = −2 is presented, showing the existence of

four different basins of attraction: two of them of the attractors 0 and ∞, and the other two to the attractors ex3(−2) and

ex4(−2). In Figure 11, we represent the dynamical plane corresponding to γ = 15, showing the existence of an attracting

2-periodic orbit, showed by means of yellow lines and circles.
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Figure 11: Unstable dynamical plane associated to γ = 15 with the trajectory (in yellow) converging to a two-periodic orbit
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8. Comparative results

The comparison among different schemes can be made numerically, by using certain initial estimations, or graphically

by means of their basins of attraction. In this section, we show the set of converging initial points for some elements of the

family with stable (γm = mm(m− 1)1−m, γ = 8 and γ = 1) and unstable (γ = −2, γ = −3 and γ = 15) behavior and

Newton’s scheme (Nw), the accelerated Newton method (with a damping parameter that is the multiplicity of the root,

aNw), and Schöeder scheme (Sch) [20], whose iterative expression is

xk+1 = xk − f(xk)f
′(xk)

[f ′(xk)]2 − f(xk)f ′′(xk)
, k = 0, 1, 2, . . .

We apply these procedures on some nonlinear functions coming from applied problems of real life and plot their associate

dynamical planes, that have been obtained by using the routines appearing in [19] with a mesh of 800 × 800 points, a

tolerance of 10−3 and 200 as maximum number of iterations. In them, we paint in blue color the points whose orbits

diverge, in orange, green,... the convergent points to the roots and in black those initial guesses that do not converge with

200 iterations.

Example 1. In the study of the multi-factor effect, the trajectory of an electron in the air gap between two parallel plates

is given by

x(t) =x0 +



v0 + e
E0

mω
sin(ωt0 + α)



(t− t0) + e
E0

mω2



cos(ωt+ α) + sin(ω + α)


, (13)

where e and m are the charge and the mass of the electron at rest, x0 and v0 are the position and velocity of the electron

at time t0 and E0 sin(ωt+ α) is the RF electric field between the plates [21]. We choose the particular parameters in the

expression (13) in order to deal with a simpler expression, which is defined as follows:

f1(x) = x+ cos(x) − π

2
. (14)

The above function has one multiple zero at x = π
2 of multiplicity three.

From the basins of attraction presented in Figure 12, it can be observed that cases γm, γ = 8 and γ = 1, classified

as among the most stable members of the family, have wider and more brilliant basins of attraction of the multiple roots

than those of the unstable members (γ = −2, γ = −3 and γ = 15; however, have also better behavior, in terms of speed

of convergence (the brighter is the basin, the lower is the number of iterations used to converge) than classical methods,

being similar to them in terms of wideness of the basin of attraction.

Example 2. Van der Waals equation of state:



P +
a1n

2

V 2



(V − na2) = nRT, (15)

explains the behavior of a real gas by introducing in the ideal gas equations two parameters, a1 and a2, specific for

each gas. The determination of the volume V of the gas in terms of the remaining parameters requires the solution of a

nonlinear equation in V,

PV 3 − (na2P + nRT )V 2 + a1n
2V − a1a2n

2 = 0. (16)

Given the constants a1 and a2 of a particular gas, one can find values for n, P and T , such that this equation has three

simple roots. By using the particular values, we obtain the following nonlinear function

f2(x) = x3 − 5.22x2 + 9.0825x− 5.2675. (17)

which has three zeros and out of them one is the multiple zero x = 1.75 of multiplicity 2, and the other is the simple zero

x = 1.72. However, our desired zero is x = 1.75.

In Figure 13, we can see that the basin of attraction of the simple root (in green in the figures) is very wide in cases of

Newton’s , accelerated Newton’s method and cases γm and γ = 1. However, the dynamical planes of Schöder’s scheme

or the stable element of the family corresponding to γ = 8 show almost global convergence. Unstable elements of the

class show very bad behavior, as can be observed in the wideness of the black areas of no convergence to the roots.
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Figure 12: Dynamical planes of the different methods on test function f1(x)

Example 3. Let us consider the following nonlinear equation chosen from [22]

f3(x) =


cos
πx

2



−


1− x2 + x+ 1
3

. (18)

The above function has one multiple zero at x ≈ −0.7285840464448267167123331 of multiplicity three.

The results appearing in Figure 14 accelerated Newton’s method has a similar behavior as the most stable members

of the proposed class, that behave much better than Schöder’s scheme and those elements corresponding to the set of

unstable elements of the class, whose basins of convergence to the multiple root are very small or do not exist.

9. Conclusions

In this manuscript, we have focused our attention on the stability analysis of a parametric family of iterative methods

(containing the well-known Newton’ and Traub’s schemes) where the method is applied to functions with multiple roots.

It has been demonstrated that the order of convergence depends both on the multiplicity of the roots and the parameter

which determine the method. Moreover, the dynamical analysis of the designed family on cubic polynomials with multiple

roots gives us important information about its stability, depending on the parameter. It has been proved that it is possible
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Figure 13: Dynamical planes of the different methods on test function f2(x)

to find a complex region of values of γ, that is a subset of methods of the class, that are able to converge to both roots,

multiple (with linear convergence in general and quadratic for γ = 4) and simple (with quadratic convergence). From

the parameter space, it has been proved that there are many regions with no convergence to the roots of the polynomials,

and the existence of periodic orbits of period two has been showed. These members of the family show undesirable

numerical behavior. Nevertheless, there are wide regions in parameter space, mainly in the disk of the complex plane

centered in 27/4 and with radius 81/8, whose corresponding iterative methods are stable and efficient. These regions

include Newton’s and Traub’s methods, but also many other new stable schemes. These statements have been confirmed

by some test made on the nonlinear equations arising from some real-life problems, in which they have shown to be, in

some cases, even better than classical methods in terms of stability.
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Figure 14: Dynamical planes of the different methods on test function f3(x)
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