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November 11, 2018

Abstract

The time dependent complex Schrödinger equation with cubic nonlinearity is
solved by constructing differential quadrature algorithm based on sinc func-
tions. Reduction to a coupled system of real equations enables to approach
the space derivative terms by the proposed method. The resulted ordinary
differential equation system is integrated with respect to the time variable
by using a bunch explicit methods of lower and higher orders. Some initial
boundary value problems containing some analytical and non-analytical ini-
tial data are solved for experimental illustrations. The computational errors
between the analytical and numerical solutions are measured by the discrete
maximum error norm in case the analytical solution exists. The two con-
served quantities are calculated by using the numerical results in all cases.
The matrix stability analysis is implemented to control the time step size.

Keywords: Cubic Schrödinger equation; differential quadrature method; stability;
soliton.

1 Introduction

Consider the cubic nonlinear Schrödinger (NLS) equation of the canonical form [1]

i
∂u(x, t)

∂t
+
∂2u(x, t)

∂x2
+ κ |u(x, t)|2 u(x, t) = 0, −∞ < x <∞, t > 0 (1)
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where u = u(x, t) ∈ C. This equation is a standard dimensionless form of the
Talanov’s model [2] describing stationary light beam of plane form in a medium
with nonlinear refractive index and quasimonochromatic one-dimensional wave in
a dispersive and inertialess nonlinear medium [1,3,4]. The solutions are named as
self-focusing or defocussing according to the sign of the coefficient of the nonlinear
term κ in the propagating of electromagnetic waves [5]. The NLS equation dis-
allows steady soliton solutions traveling with a constant speed [6]. Alternatively,
it has envelop soliton solutions containing both exponential and sech functions
traveling with different speeds [6]. Zakharov and Shabat [1] applied the inverse
scattering method successfully to develop exact solutions of some dynamic prob-
lems to the cubic NLS equation (1). Debnath [6] summarizes the findings of
Zakharov and Shabat [1] as

• An initial envelope pulse breaks into permanent, propagating, shorter scaled
solitons the number of which depends on the initial data and an oscillatory
tail,

• Separates after interaction without changes except possible position or phase
changes,

• The oscillatory tail whose nature is defined in the initial data disperses lin-
early with a decaying amplitude as t→∞,

when the initial data converge zero as |x| → ∞.
An envelop-type soliton also behaves like a particle familiar to the KdV soliton [7].
The amplitude of the envelop of the one soliton solution of the cubic NLS equation
(1) is of permanent form describing a physical wave which is in a good agreement
with Hammack’s unpublished experiment data [8].
Recurrence is also significant for the solutions of the NLS equation in bounded
or periodic domains [6]. The relation between the recurrence, dimensionality,
and the stability in the Lagrange sense of solutions of the cubic NLS equation is
investigated in details by Thyagaraja [9].
The equation can be a model for the vortex line in an imperfect Bose gas with
weak pair repulsions between atoms [10]. In addition to be an approximation for
beams of the modulated form in nonlinear optics, the NLS is a significant equation
for the time dependent dispersive waves [11].
Tsuziki [12] examines deeply the nonlinear solitary and periodic waves for a partic-
ular type of the NLS equation. Some conservations laws describing the quantities
density, current and energy are derived in integral form for that particular type.
The collision of two positive solitaries with different heights traveling to the right
in the horizontal axis is also discussed. In the last part of this study, the wave
generation in terms of the decay of an arbitrary initial disturbance into solitary
waves is investigated, too.
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Some of the exact solutions covering interaction of solitary wave packets and n-
soliton solutions of the cubic NLS equation are derived by transforming it to a
problem of inverse scattering. Some conservation laws describing various quanti-
ties for the NLS equation (1) are also defined in [1]. The direct scattering problem
for the NLS equation (1) is solved for a particular initial data u(x, 0) = sechx with
the condition κ ≥ 2 [13]. A Cauchy problem constructed on the generalized func-
tion type initial data is solved in a certain algebra of some particular generalized
functions [14].
Solitons of self-focusing form of the NLS equation are in different forms with
various characteristic properties. The envelope soliton decays zero as a Ma soliton
decays to the uniform solution [5]. When the real components of the eigenvalues
are equal, bi-soliton type solution whose velocity depends on these eigenvalues
can be derived. On the other hand, a dark soliton decays to a uniform solution
of the defocussing NLS equation [15]. Peregrine’s study [5] also suggests a new
type analytical solution in rational form describing an isolated amplitude peak.
Some exact solutions expressed in terms of some trigonometric and hyperbolic
functions can be constructed by He’s Lindstedt-Poincaré method in the modified
form [16]. The complex tangent function is capable to find some exact traveling
wave solutions in the hyperbolic function form as some ansatzes defined as the
multiplication of tanh and exponential functions leads some explicit exact solutions
[17].
In addition to many analytical or theoretical studies on the NLS equation, various
numerical methods have been derived for the analytical or non-analytical solutions.
Taha proposes some local and global methods for the numerical solution to an
initial boundary value problem whose solution is a model for the motion of an
single initial pulse. He compares his results with the results obtained by some
classical numerical methods covering local scheme, pseudospectral and split step
Fourier methods [18].
Dereli et al. [19] investigate the motion of single positive soliton and the collision of
a couple of positive solitons moving in the opposite directions along the horizontal
axis numerically. In the study, the radial basis meshless collocation method in
four different radial functions, Gaussian, multiquadric, inverse quadric and inverse
multiquadric is implemented. The authors report that the least error, accordingly,
the best results are generated by the Gaussian functions.
Some finite difference methods covering linearized Crank-Nicolson scheme are de-
rived for solutions of the three model problems for the inhomogeneous NLS equa-
tion by Chang et al. [20]. A comparison with Hopscotch-type methods, split step
Fourier and spectral schemes indicates that the newly proposed method is efficient
and robust.
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Quadratic B-spline finite element method [21] is another significant study in the
related literature. Dag obtains the numerical simulations of various initial bound-
ary value problems covering propagation of single soliton, bound state of solitons
and wave birth models for both standing and traveling initial pulses. This paper
is one of the earlier numerical studies dealing with the NLS equation. Gardner et
al. [22] solve different initial-boundary value analytical and non-analytical prob-
lems with various characteristics for the cubic NLS equation by the cubic B-spline
finite elements. The Taylor collocation method based on the quintic B-splines is
derived for the similar problems of the cubic NLS equation [23].
Bound states of the NLS equation are deeply investigated by using L2-Galerkin
with product approximation and Ablowitz & Ladik integrable finite difference
methods in [24]. Twizell et al. [25] reduce some initial-boundary value problems
for the nonlinear cubic NLS equation to a linear initial value problems of order
one by a family of finite difference techniques. They also examined the truncation
error, stability and convergence properties of the proposed methods in details.
Moreover, they suggest a report explaining the effects of the coefficients to the
error between the numerical and the analytical solutions.
Some wave birth models with small dispersion parameters to the focusing NLS
equation is studied in details with a second order semi-implicit adaptive moving
mesh method [26].
Differential quadrature methods based on cosine expansion have been success-
fully implemented to five analytical or non-analytical problems for the NLS equa-
tion [27]. Motion of single soliton, collision of two positive solitons traveling in the
opposite directions along the horizontal axis, bound state of solitons, wave birth
by standing or traveling single solitary wave are simulated successfully. The con-
servation laws are in a good agreement with the theoretical aspects as expected.
In the same year, Korkmaz and Dag [28] announce that they solve the same equa-
tion with a variation of the differential quadrature method. This time, they use
Lagrange interpolation polynomials as basis in the space discretization but do not
change the time integration technique.
Different from the last two studies, we derive differential quadrature method based
on sine cardinal functions combined with a family of time integration techniques in
different classes for the numerical solutions of some initial boundary value problems
to cubic NLS equation. The assumption u(x, t) = f(x, t) + ig(x, t), i =

√
−1

reduces the cubic NLS equation (1) to a coupled system of ODEs

gt = fxx + κ(f 2 + g2)f

ft = −gxx − κ(f 2 + g2)g
(2)

where f = f(x, t) and g = g(x, t) are real functions. The artificial homogeneous
Dirichlet boundary data at both ends are completely compatible to the chosen
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models having physical requirement that u(x, t)→ 0 as |x| → ∞. Since u(x, t) =
f(x, t) + ig(x, t), the boundary conditions for the system (2) are adapted as

f(a, t) = 0, f(b, t) = 0

g(a, t) = 0, g(b, t) = 0
(3)

2 Design of the Method

Consider a sufficiently smooth function u = u(x, t) over a finite interval [a, b]. Even
though the function u is function of two variables, the second variable t (the time
variable through the study) is assumed to be fixed while approximating to the
derivatives with respect to the space variable x. Thus, r.th order the derivative
of the function u with respect to x is approximated by the finite weighted sum of
all functional values in the interval [a, b]. Let [a, b] be partitioned as P : a = x0 <
x1 < . . . < xN = b. One should mention that each grid can be written in terms
of grid size and the subscript of the grid as xm = m∆x. The definition of the
differential quadrature derivative approximation of u(x, t) at a distinct grid point
xm is

∂ru(x, t)

∂xr

∣∣∣∣
x=xm

=
N∑
j=0

w
(r)
m,ju(xj, t), 0 ≤ m ≤ N (4)

where w
(r)
m,j is the weight of u(xj, t) for the r.th order derivative approximation

of the function u(x, t) at the internal grid point xi [29]. The significant point

of the approximation is the determination of the weights w
(r)
m,j. Once, they are

determined, the approximation (4) is directly substituted instead of the related
derivatives in the differential equation. Since there may exist different basis func-
tion sets spanning the same function or vector space, those basis all enable to
determine the weights [29–34]. In this study, the weights are calculated by the set
of sine cardinal functions spanning the problem interval.
A sine cardinal function set {Tm(x)}Nm=0 with elements

Tm(x) =


sin ([

x−m∆x

∆x
]π)

[
x−m∆x

∆x
]π

, x 6= m∆x

1 , x = m∆x

(5)

constitutes a basis for the functions defined in [a, b] where ∆x is the equal grid
size [35–38]. A sine cardinal function value at a grid in [a, b] can be calculated
easily as

Tm(xj) = δmj (6)
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where δmj is the Kronecker operator [38]. The function C(u)(x) approximated by
an infinite convergent series

C(u)(x) =
∞∑

m=−∞

u(m∆x)Tm(x) (7)

is named the cardinal of u on (−∞,∞) and it interpolates u at the points that
are integer multiple of ∆x [39].
The lowest ordered two derivatives of a sine cardinal function Tm(x) are calculated
in an explicit form as:

T ′m(x) =


π

∆x
(x−m∆x) cos

x−m∆x

∆x
π − sin

x−m∆x

∆x
π

π

∆x
(x−m∆x)2

, x 6= m∆x

0 , x = m∆x

(8)

T ′′m(x) =


− π

∆x
sin

x−m∆x

∆x
π

x−m∆x
−

2 cos
x−m∆x

∆x
π

(x−m∆x)2
+

2 sin
x−m∆x

∆x
π

π

∆x
(x−m∆x)3

, x 6= m∆x

− π2

3∆x2
, x = m∆x

(9)

In order to calculate the weights w
(2)
mj of the approximation to second order deriva-

tive terms fxx and gxx, we substitute each sine cardinal function into the differential
quadrature approximation equation (4) for r = 2.
Assume that m = 0. That means all N + 1 weights w2

0j are determined by substi-
tuting each sine cardinal function Tm(x) and its second order derivative into (4).
Although its not necessary to follow an order, all calculations are completed in
an order for convenience and simplicity. Substituting T0(x) and its second order
derivative into the (4) gives

T ′′0 (x0) =
N∑
j=0

w
(2)
0j T0(xj)

= w
(2)
00 T0(x0) + w

(2)
01 T0(x1) + . . .+ w

(2)
0NT0(xN)

= w
(2)
00 δ00 + w

(2)
01 δ01 + . . .+ w

(2)
0Nδ0N

−π2

3∆x2
= w

(2)
00

(10)
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The same methodology can be used to find the weight w
(2)
01 as

T ′′1 (x0) =
N∑
j=0

w
(2)
0j T0(xj)

= w
(2)
00 T1(x0) + w

(2)
02 T1(x1) + . . .+ w

(2)
0NT1(xN)

= w
(2)
00 δ10 + w

(2)
01 δ11 + . . .+ w

(2)
0Nδ1N

−
2 cos

(
x0 −∆x

∆x
π

)
(x0 −∆x)2

= w
(2)
01

−
2 cos

(
0∆x−∆x

∆x
π

)
(0∆x−∆x)2

= w
(2)
01

−2 cos ((0− 1)π)

(0− 1)2∆x2
= w

(2)
01

2(−1)(0−1+1)

(0− 1)2∆x2
= w

(2)
01

(11)

where the identity cos (kπ) = (−1)k is used to rearrange the left hand side of the

equation. This procedure can generalized for any weight w
(2)
0m related to the point

x0 originated from the point xm by using the basis Tm(x) as

T ′′m(x0) =
N∑
j=0

w
(2)
0j Tm(xj)

= w
(2)
00 Tm(x0) + w

(2)
01 Tm(x1) + . . .+ w

(2)
0mTm(xm) + . . .+ w

(2)
0NTm(xN)

= w
(2)
00 δm0 + w

(2)
01 δm1 + . . .+ w

(2)
0mδmm + . . .+ w

(2)
0NδmN

2(−1)(0−m+1)

(0−m)2∆x2
= w

(2)
0m

(12)

This explicit form can be extended for an arbitrary weight w
(2)
mj, related to the

point xm originated from xj, as

w
(2)
mj =

2(−1)m−j+1

∆x2(m− j)2
(13)

when m 6= j, and

w(2)
mm = − π2

3∆x2
(14)
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when m = j. This explicit formulation of the weights are used some earlier studies
for various problems [40,41].
Even though the determination of only the second derivatives weights is sufficient
due to the structure of the NLS equation, the weights w

(1)
mj should also be calculated

to compute the conservation law C3 having first order derivative in. Thus, we start
by letting r = 1 in the (4). In order to determine the weights w

(1)
0j , assume that

m = 0 initially. Substituting the first element T0(x) of the basis functions set into
the differential quadrature approximation (4) gives

T ′0(x0) =
N∑
j=0

w
(1)
0j T0(xj)

= w
(1)
00 T0(x0) + w

(1)
01 T0(x1) + . . .+ w

(1)
0NT0(xN)

= w
(1)
00 δ00 + w

(1)
01 δ01 + . . .+ w

(1)
0Nδ0N

0 = w
(1)
00

Similarly, substituting the next basis function T1(x) into the differential quadrature
approximation (4) yields

T ′1(x0) =

N∑
j=0

w
(1)
0j T1(xj)

= w
(1)
00 T1(x0) + w

(1)
02 T1(x1) + . . .+ w

(1)
0NT1(xN )

= w
(1)
00 δ10 + w

(1)
01 δ11 + . . .+ w

(1)
0N δ1N

π

∆x
(x0 − 1∆x) cos

x0 − 1∆x

∆x
π − sin

x0 − 1∆x

∆x
π

π

∆x
(x0 − 1∆x)2

= w
(1)
01

π

∆x
(0∆x− 1∆x) cos

0∆x− 1∆x

∆x
π − sin

0∆x− 1∆x

∆x
π

π

∆x
(0∆x− 1∆x)2

= w
(1)
01

(0− 1) cos (0− 1)π − sin (0− 1)π

(0− 1)2(∆x)2
= w

(1)
01

cos (0− 1)π

(0− 1)∆x
= w

(1)
01

(−1)(0−1)

(0− 1)∆x
= w

(1)
01

where cos (0− 1)π is replaced by (−1)0−1. Substituting the basis function Tm(x)
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into (4) leads

T ′2(x0) =

N∑
j=0

w
(1)
0j T2(xj)

= w
(1)
00 T1(x0) + w

(1)
02 T1(x1) + . . .+ w

(1)
0NT1(xN )

= w
(1)
00 δ20 + w

(1)
01 δ21 + +w

(1)
02 δ22 . . .+ w

(1)
0N δ1N

π

∆x
(x0 − 2∆x) cos

x0 − 2∆x

∆x
π − sin

x0 − 2∆x

∆x
π

π

∆x
(x0 − 2∆x)2

= w
(1)
02

π

∆x
(0∆x− 2∆x) cos

0∆x− 2∆x

∆x
π − sin

0∆x− 2∆x

∆x
π

π

∆x
(0∆x− 2∆x)2

= w
(1)
02

(0− 2) cos (0− 2)π − sin (0− 2)π

(0− 2)2(∆x)2
= w

(1)
02

cos (0− 2)π

(0− 2)∆x
= w

(1)
02

(−1)(0−2)

(0− 2)∆x
= w

(1)
02

to give the related weight in an explicit form. Following the same methodology
leads an explicit formulation for an arbitrary weight w

(1)
mj as

w
(1)
mj =

(−1)m−j

∆x(m− j)
,m 6= j

w(1)
mm = 0

for the weights w
(1)
mj that are related to the grid xm.

3 Discretization, Implementation of Boundary

Conditions and Time integration

Approximating the derivative terms in the coupled system of partial differential
equations (2) gives the ordinary system of equations

∂g(x, t)

∂t

∣∣∣∣
x=xm

=
N∑
j=0

w
(2)
m,jf(xj, t) + κ

(
f 2(xm, t) + g2(xm, t)

)
f(xm, t)

∂f(x, t)

∂t

∣∣∣∣
x=xm

= −
N∑
j=0

w
(2)
m,jg(xj, t)− κ

(
f 2(xm, t) + g2(xm, t)

)
g(xm, t)

m = 0, 1, . . . , N

(15)
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related to each grid point xm. Implementation of the homogeneous Dirichlet
boundary conditions (3) converts the system (15) to

∂g(x, t)

∂t

∣∣∣∣
x=xm

=
N−1∑
j=1

w
(2)
m,jf(xj, t) + κ

(
f 2(xm, t) + g2(xm, t)

)
f(xm, t)

∂f(x, t)

∂t

∣∣∣∣
x=xm

= −
N−1∑
j=1

w
(2)
m,jg(xj, t)− κ

(
f 2(xm, t) + g2(xm, t)

)
g(xm, t)

m = 1, 2, . . . , N − 1

(16)

In order to integrate the space discretized system (16), a bunch of methods of var-
ious orders covering Heun’s method(HEUN), the classical Runge-Kutta methods
of order from two to four (RK2,RK3,RK4) and some variations of higher order
Runge-Kutta methods such as the Runge-Kutta-Fehlberg (RKF) and the Cash-
Karp (CK) methods are used. The solutions are computed for different choices of
discretization parameters ∆x and ∆t without any linearization.

4 On the Matrix Stability of the Proposed Meth-

ods

In this part, some basic concepts related to the stability of explicit Runge-Kutta
methods are presented. The stability regions for each method used in this study
are graphed in order to indicate the relation between the eigenvalue distribution
and the stability of the method. The spectrum of the coefficient matrix gives the
idea to choose appropriate ∆t to provide the stability condition. The stability
region of a Runge-Kutta method of order p depends on the stability polynomial
|S(λ∆t)| < 1 defined as

S(λ∆t) =

p∑
s=0

(λ∆t)s

s!
(17)

since the common approximation in the Runge-Kutta methods are of the form

yn+1 = S(λ∆t)yn (18)

for the differential equation
dy

dt
= λy (19)

The stability regions of the Runge-Kutta methods of orders from two to five are
plotted in Fig 1(a)-Fig 1(d).
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(a) Order 2 (b) Order 3

(c) Order 4 (d) Order 5

Figure 1: Stability regions for Runge-Kutta methods in the complex plane
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Now consider the linear equation system of order one such that

dy

dt
= By (20)

where B is the coefficient matrix with constant coefficients, y = [y1, y2, . . . yN ]T .
The stability of this system is dependent on the eigenvalue distribution of the
coefficient matrix B.
The space discretized system (16) can be written in the matrix format as

g1(t)
g2(t)

...
gN−1(t)
f1(t)
f2(t)

...
fN−1(t)


t

=

[
0 A
−A 0

]


g1(t)
g2(t)

...
gN−1(t)
f1(t)
f2(t)

...
fN−1(t)


(21)

,

A =


w

(2)
11 + κκ̃1 w

(2)
12 . . . w

(2)
1N−1

w
(2)
21 w

(2)
22 + κκ̃2 . . . w

(2)
2N−1

...
. . .

...

w
(2)
N−11 w

(2)
N−12 . . . w

(2)
N−1N−1 + +κ ˜κN−1

 (22)

where κ̃m = f 2
m + g2

m is assumed locally constant and fm and gm stand for f(xm, t)
and g(xm, t), respectively. We investigate the eigenvalues of the coefficient matrix
(21) by using the initial values of fm and gm for each test problem given in the
following.

5 Numerical Examples

In this section of the study, some analytical and non-analytical initial-boundary
value problems are considered. The error between the numerical and the analytical
solutions is determined by using the discrete maximum error norm at the time t
defined as

L∞(t) = max
m
|Um − um|

where um and Um are the analytical and numerical solutions at x = xm, respec-
tively.
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The lowest two conservation laws for the NLS equation defined as

C1 =

∞∫
−∞

|u|2 dx

C3 =

∞∫
−∞

[
|ux|2 −

1

2
κ |u|4

]
dx

(23)

are expected to remain constant as time proceeds [1]. Even though C2 and C4

are also defined in the same paper, we do not calculate them here due to having
complex components inside the integrals. Reporting the absolute relative change
of the conservation laws at a specific time t defined as

C(Cη(t)) =

∣∣∣∣Cη(t)− Cη(0)

Cη(0)

∣∣∣∣ , η = 1, 3 (24)

where Cη(0), η = 1, 3 denote the determined conservation law values initially can
more useful to observe the preservation of the conservation laws.

5.1 Propagation of a Single Soliton

The soliton solutions of the NLS is completely different from the solitons of KdV
equation since they include both exponential and hyperbolic functions. These
soliton solutions of the form

u(x, t) = α

√
2

κ
exp i

[
cx

2
− (c2 − α2)t

4

]
sechα(x− ct) (25)

comes into existence when the nonlinear and the dispersion terms are balanced
completely. In this solution, c stands for the velocity of the propagating soliton.
In order to enable a comparison with some earlier studies, the parameters are
selected as c = 4, κ = 2 and α = 1. Thus, the resultant envelop solution

|u(x, t)| = sech (x− 4t) (26)

represents a single soliton of constant speed 4 propagating along the x-axis with
height 1. Various discretization parameters are used for the numerical illustrations
in the experiment interval [−20, 24] up to the time t = 1. The simulation of the
propagation of the single soliton is depicted in Fig 2.
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Figure 2: Propagation of single soliton simulation achieved by using parameters
∆t = 0.0001 and ∆x = 0.1

The time integration is carried out by using various techniques of orders from lower
ones to higher ones. The discrete maximum error norms are tabulated in Table 1
for each choice of methods, space and time step sizes.
The initial values of conservation laws C1 and C3 are determined as 2 and 7.33333333
analytically. A comparison of discrete maximum errors and the absolute relative
changes of the conservation laws are documented in Table 1.
When ∆t = 0.1, all time integration techniques from HEUN to CK fail independent
on the space grid sizes ∆x = 0.3125 and ∆x = 0.1 to generate the numerical
solutions due to not satisfying the stability conditions. A discussion on the details
of the stability is given in the following parts of this section. Since both HEUN
and RK2 are of order two, the results generated by both methods are almost at the
same digit-accuracy. When ∆x = 0.3125, the accuracies are determined in three,
five and six decimal digits dependent on the size of time step 0.01, 0.001 and
0.0001, respectively. Unfortunately, the decrease of the grid size to 0.1 unbalances
the stability for ∆t = 0.1, 0.01, 0.001. This balance is caught again with higher
accuracy for ∆t = 0.0001. The accuracy reaches seven decimal digits with this
choice of ∆t.
The RK3 method gives five decimal-digit accuracy with ∆x = 0.3125 and ∆t =
0.01. Reducing ∆t to 0.001 and 0.0001 improves results to six decimal-digit ac-
curacy. The decrease of ∆x to 0.1 gives no results when ∆t = 0.1, 0.01 but the
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choice of ∆t as 0.001 and 0.0001 gives eight and nine decimal-digit accuracies,
respectively.
The RK4, the RKF and the CK methods are accurate at six decimal digits with
the discretization parameters ∆x = 0.3125 and ∆t = 0.01, 0.001, 0.0001. When
the discretization parameters are chosen as ∆x = 0.1 and ∆t = 0.001, 0.0001, nine
decimal-digit accuracy are obtained in the results.
The comparison with the earlier works indicates that the proposed methods solve
this initial boundary value problem with acceptably higher accuracy. The proposed
methods give better results than the results of the B-spline FEM [21], the B-spline
Collocation [22] and the RBF methods [19]. Even though the results of CDQ [27]
appear worse than other the present results in many cases the authors of that study
explain the high error due to the forced boundary effect in [−20, 20]. The change
of the problem interval from [−20, 20] to [−20, 24] decreases the forced boundary
effect on the accuracy of the results when Dirichlet conditions are used [27]. The
results of the PDQ [28] are acceptably accurate but not better than the present
results in many cases.
The conservation laws calculated by using each numerical method are indicators
of highly accurate results. The relative absolute changes decreases depending on
the accuracy and the order of the method. Particularly, the absolute relative
changes decreases below 10−10 when the stable higher order methods are used.
The observations are in a good agreement with the theoretical expectations and
the results reported in [27,28].
The stability analysis of the proposed methods depends on the eigenvalue distribu-
tion of the coefficient matrix given in the previous section. Assuming the real and
the complex components of the solution are locally constant converts the system
to a linear system with constant coefficient matrix B. The spectrum of this coeffi-
cient matrix gives the information to control the size of ∆t for the stability of the
method. When ∆x is chosen as 0.3125, the complex components of the eigenvalues
are larger than 100 in absolute value, Fig 3(a). The choice of the time step size ∆t
should squeeze the value of the multiplication of each eigenvalue λi and ∆t to the
regions given in Fig 1(a)-Fig 1(d) correspond to the order. Similar conclusion can
be written for the choice of ∆x = 0.1 by commenting on Fig 3(b). Since some of
the complex components of the eigenvalues are greater than 900 in absolute value,
the stability forces ∆t to be chosen smaller. This perspective explains why time
integration techniques fail to solve the problem.
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Table 1: Comparison of the results with the results of some earlier works

Method ∆x ∆t L∞(1) C(C1(1)) C(C3(1))

HEUN (present) 0.3125 0.1 ∞ ∞ ∞
0.01 2.629× 10−3 1.527× 10−4 9.563× 10−4

0.001 2.494× 10−5 1.215× 10−7 2.360× 10−7

0.0001 1.378× 10−6 5.000× 10−10 1.363× 10−9

0.1 0.1 ∞ ∞ ∞
0.01 ∞ ∞ ∞

0.001 ∞ ∞ ∞
0.0001 2.471× 10−7 < 10−10 2.727× 10−10

RK2 (present) 0.3125 0.1 ∞ ∞ ∞
0.01 2.629× 10−3 1.527× 10−4 9.563× 10−4

0.001 2.494× 10−5 1.215× 10−7 2.360× 10−7

0.0001 4.837× 10−6 5.000× 10−10 1.363× 10−9

0.1 0.1 ∞ ∞ ∞
0.01 ∞ ∞ ∞

0.001 ∞ ∞ ∞
0.0001 2.471× 10−7 < 10−10 2.727× 10−10

RK3 (present) 0.3125 0.1 ∞ ∞ ∞
0.01 7.560× 10−5 4.064× 10−5 7.883× 10−5

0.001 1.378× 10−6 4.050× 10−8 7.854× 10−8

0.0001 1.378× 10−6 5.000× 10−10 4.090× 10−10

0.1 0.1 ∞ ∞ ∞
0.01 ∞ ∞ ∞

0.001 7.510× 10−8 4.100× 10−8 7.854× 10−8

0.0001 2.800× 10−9 5.000× 10−10 8.181× 10−10

RK4 (present) 0.3125 0.1 ∞ ∞ ∞
0.01 2.092× 10−6 4.500× 10−8 1.262× 10−7

0.001 1.378× 10−6 5.000× 10−10 1.227× 10−9

0.0001 1.378× 10−6 5.000× 10−10 1.227× 10−9

0.1 0.1 ∞ ∞ ∞
0.01 ∞ ∞ ∞

0.001 2.814× 10−9 < 10−10 < 10−10

0.0001 2.805× 10−9 < 10−10 < 10−10

RKF (present) 0.3125 0.1 ∞ ∞ ∞
0.01 1.380× 10−6 6.000× 10−9 4.750× 10−8

0.001 1.378× 10−6 < 10−10 < 10−10

0.0001 1.378× 10−6 < 10−10 < 10−10

0.1 0.1 ∞ ∞ ∞
0.01 ∞ ∞ ∞

0.001 2.803× 10−9 < 10−10 < 10−10

0.0001 2.805× 10−9 < 10−10 < 10−10

CK (present) 0.3125 0.1 ∞ ∞ ∞
0.01 1.379× 10−6 1.190× 10−9 1.808× 10−9

0.001 1.378× 10−6 < 10−10 < 10−10

0.0001 1.378× 10−6 < 10−10 < 10−10

0.1 0.1 ∞ ∞ ∞
0.01 ∞ ∞ ∞

0.001 2.804× 10−9 < 10−10 < 10−10

0.0001 2.805× 10−9 < 10−10 < 10−10

CDQ [27] 0.3125 0.025 5.562× 10−5 4.380× 10−6 1.214× 10−5

0.01 2.089× 10−6 4.512× 10−8 1.253× 10−7

0.125 0.0025 1.557× 10−6 4.412× 10−11 1.226× 10−10

0.001 1.550× 10−7 4.541× 10−13 1.266× 10−12

PDQ [28] 0.3125 0.02 2.531× 10−5 1.440× 10−6 3.941× 10−6

0.1 0.0025 1.932× 10−7 5.222× 10−11 2.930× 10−9

B-spline FEM [21] 0.3125 0.02 0.002 6.600× 10−6 3.417× 10−4

0.05 0.005 3.000× 10−4 < 10−8 6.000× 10−7

B-spline Collocation [22] 0.05 0.005 0.008 < 10−6 < 10−6

0.03 0.005 0.002 < 10−6 < 10−6

RBF Method G [19] 0.3125 0.001 2.800× 10−5

RBF Method MQ [19] 0.3125 0.001 2.165× 10−3

RBF Method IMQ [19] 0.3125 0.001 4.860× 10−4

RBF Method IQ [19] 0.3125 0.001 5.652× 10−316



(a) ∆x = 0.3125 (b) ∆x = 0.3125

Figure 3: The eigenvalue distributions for propagation of a single soliton

5.2 Collision of Two Positive Solitary Waves Moving in
the Opposite Directions

The collision of two positive solitary waves moving in the opposite directions along
the x-axis is modeled by the initial data

u(x, 0) =
2∑
j=1

uj(x, 0)

where

uj(x, 0) = βj

√
2

κ
exp

(
i
1

2
cj(x− x̂j)

)
sech βj (x− x̂j), j = 1, 2

where x̂j stands for the peak positions of the solitary waves initially. The experi-
ment is completed with the appropriate parameters κ = 2, βj = 1, j = 1, 2, c1 = 4
and c2 = −4 used in the previous studies [21, 22, 27, 28]. The peaks of the well
separated two positive solitary waves are sited to x = −10 and x = 10 initially
by choosing x̂1 = −10 and x̂2 = 10, respectively. The numerical solutions are
computed with the discretization parameters ∆x = 0.25 and ∆t = 0.005 in the
artificial domain [−20, 20], Fig 4. All routines are run up to time t = 5 to observe
the separation clearly after the collision. This choice of simulation ending time
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restricts both waves to hit the ends of artificial interval, too. The homogeneous
Dirichlet boundary conditions are used to provide the compatibility with theory.
Both solitary waves of unit height initially move towards each other due to the
difference in the sign of c1 and c2. The collision starts as time proceeds and can
be observable clearly around the time t = 2. When the time is t = 2.5, the height
of the joint waves exceeds 1.9 because the structure of the solution is sum of two
positive waves. Both waves keep moving along their own ways and separate from
each other as time proceeds. After full separation, both waves turn their initial
shapes and heights. Each one takes the initial position of the other one owing to
their constant velocities 4 when the time reaches t = 5.

Figure 4: Collision of two positive solitary waves propagating in the opposite
directions

The HEUN and the RK2 both fail to simulate the solutions with those discretiza-
tion parameters. The analytical values of the conservation laws are C1 = 4 and
C3 = 14.66666667 initially. The absolute relative changes of the conservation laws
are the indicators of the accuracy of the method for this problem due to non exis-
tence of the analytical solution. The reported results of absolute relative changes
indicate that C1 and C3 both change in five decimal digits when the method is
RK3, Table 2. The RK4 preserves the conservation laws C1 and C3 in nine and
eight decimal digits, respectively. The first conservation law is changed relatively
in absolute value in ten decimal digits for the methods RKF and CK. The perfor-
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mance of RKF is one decimal digit better than eight decimal digits preservation
of CK.

Table 2: Absolute relative changes of the conservation laws at t = 5

Method ∆x ∆t C(C1(1)) C(C3(1))

RK3 (present) 0.25 0.005 2.494× 10−5 4.793× 10−5

RK4 (present) 0.25 0.005 6.250× 10−9 3.068× 10−8

RKF (present) 0.25 0.005 5.000× 10−10 8.863× 10−9

CK (present) 0.25 0.005 5.000× 10−10 1.090× 10−8

PDQ [28] 0.25 0.01 2.215× 10−7 4.358× 10−7

The eigenvalue distribution related to this problem indicates that the choice of
∆t = 0.005 is not sufficient to carry all λj∆t given in Fig 5 to the stability region
Fig 1(a) for the second order methods, HEUN and RK2. The maximum and
minimum complex components of all eigenvalues are ±156.462 and ±156.462 ×
0.005 = ±0.782 is at the outside of the stability region 1(a). However, that choice
of ∆t is sufficient for the stability of the RK3, the RK4, the RKF and the CK
methods.

Figure 5: Eigenvalues for the collision of two positive solitaries problem
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5.3 Birth of Standing Initial Pulse

The birth of a standing pulse occurs when the integral of initial data is greater than
π in the infinite interval. Otherwise the initial pulse fades out as time proceeds.
The Maxwellian initial condition [22]

u(x, 0) = Ae−x
2

(27)

is chosen to demonstrate the experiment in the interval [−45, 45]. The algorithms
are run up to the ending time t = 6 with κ = 2, fixed grid size ∆x = 0.5 and
various ∆t values. The choice A = 1 gives a positive pulse of unit height positioned
at x = 0 initially but this value of A does not keep the balance in the equation
and the initial pulse fades out as time proceeds, Fig 6(a). On the other hand, the
choice of A as 1.78 gives an initial pulse of height 1.78. At the earlier times of the
motion, the height increases rapidly and gets larger than 2 as giving birth from the
both sides of its basis, Fig 6(b). As these two small pulses goes far away from the
initial pulse, the height of their mother decreases to below 2. The mother keeps
its position, shape and height as the births propagates.

(a) A = 1 (b) A = 1.78

Figure 6: Fade out and birth of a standing initial pulse

The conservation laws are computed from the initial data as C1 = A2
√
π/2 ∼=

3.97100 and C3 = (
√
π/4)A2(2

√
2 − κA2) ∼= −4.92653. The absolute relative

changes of the conservation laws are tabulated in Table 3. The discretization pa-
rameter choice ∆x = 0.5 and ∆t = 0.05 causes instability for the second and third
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order methods. Even though all other choices of the discretization parameters
generate acceptably well solutions, the absolute relative change of the third con-
servation law does not improve for smaller time step sizes. On the contrary, the
first conservation law is sensitive to smaller time step sizes when ∆x is fixed as 0.5
and improves in digits. The accuracies do not improve too much even the order of
the method increases. The comparison with some earlier differential quadrature
methods indicates that the present results are satisfactorily well.

Table 3: Absolute relative changes of the conservation laws at t = 6 for the birth
of standing pulse

Method ∆x ∆t C(C1(6)) C(C3(6))

HEUN (present) 0.5 0.05 ∞ ∞
HEUN (present) 0.5 0.005 6.697× 10−5 7.708× 10−4

HEUN (present) 0.5 0.0005 6.623× 10−8 7.362× 10−5

RK2 (present) 0.5 0.05 ∞ ∞
RK2 (present) 0.5 0.005 6.697× 10−5 7.708× 10−4

RK2 (present) 0.5 0.0005 6.623× 10−8 7.362× 10−5

RK3 (present) 0.5 0.05 ∞ ∞
RK3 (present) 0.5 0.005 2.207× 10−5 7.163× 10−4

RK3 (present) 0.5 0.0005 2.241× 10−8 7.361× 10−4

RK4 (present) 0.5 0.05 1.267× 10−4 4.179× 10−3

RK4 (present) 0.5 0.005 2.770× 10−9 7.361× 10−4

RK4 (present) 0.5 0.0005 7.554× 10−10 7.361× 10−4

RKF (present) 0.5 0.05 1.571× 10−4 4.153× 10−3

RKF (present) 0.5 0.005 1.259× 10−9 7.361× 10−4

RKF (present) 0.5 0.0005 7.554× 10−10 7.361× 10−4

CK (present) 0.5 0.05 5.548× 10−5 8.082× 10−4

CK (present) 0.5 0.005 1.259× 10−9 7.361× 10−4

CK (present) 0.5 0.0005 7.554× 10−10 7.361× 10−4

CDQ [27] 0.25 0.01 8.836× 10−8 3.892× 10−6

PDQ [28] 0.25 0.01 6.334× 10−7 7.110× 10−5

The eigenvalues for A = 1 and A = 1.78 are graphed in Fig 7(a) and Fig 7(b),
respectively. Since the maximum and minimum complex components of all eigen-
values are ±39.155, the choice of ∆t = 0.05 or greater values is not sufficient for
the stability, Fig 1(a) and Fig 1(b). The multiplication of the maximum( and the
minimum) complex component is equal to ±1.957. These values are sufficient to
satisfy the stability condition for only the higher order methods RK4, RKF and
CK.
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(a) A = 1 (b) A = 1.78

Figure 7: Eigenvalue distribution for the birth of standing initial pulse

5.4 Birth of Propagating Pulse

The birth of propagating pulse problem is a model with the initial data

u(x, 0) = Ae−x
2+2ix (28)

where the constant A denotes the height of the initial pulse. This initial pulse
propagates along the x-axis as time proceeds. The choice A = 1 causes the initial
pulse of unit height to fade out depending on the proceeding time, Fig 8(a). The
designed routines are run up to the time t = 6 with a fixed ∆x = 0.25 and κ = 2
over the problem interval [−30, 60] to simulate the solutions illustrating the birth
of propagating pulse for A = 1.78, Fig 8(b). This choice of A produces an initial
pulse of height 1.78. The height increases over 2 and two bulges begin to appear
at both sides of the pulse at the earlier times of the solution. These two bulges
moves far away from the pulse. Subsequently, the height comes below 2 and stays
fixed around 1.9. The two bulges moving far away from the pulse lose their heights
but widen as time goes.
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(a) A = 1 (b) A = 1.78

Figure 8: The behaviors of the propagating pulse depending on A

The conservation laws are calculated initially as C1 = 3.971000512 and C3 =
10.95838443. The second order methods HEUN and RK2 fail to give the solu-
tions when ∆t = 0.01 owing to the instability, Table 4. The reduction of ∆t
to 0.001 resolve this issue by giving six decimal-digit preservation in the C1 and
four decimal-digit preservation in the C3 at the simulation ending time t = 6 for
both methods. The RK3 generates three decimal-digit preservation in both of the
conservation laws with the discretization parameters ∆x = 0.25 and ∆t = 0.01.
When the time step size is reduced to 0.001, the preservation of the absolute rela-
tive changes of both C1 and C3 improve to six and four decimal digits, respectively.
∆t = 0.01 gives five, six and seven decimal-digit preservation in the values of C1 for
the methods RK4, RK5 and CK, again respectively. This choice of ∆t preserves
the C3 in four decimal digits for all the higher order methods RK4, RKF and CK.
Even though decreasing the time step size to 0.001 improve the preservation in C1

more than ten decimal digits, no decimal digit improvement in the preservation is
observed in the value of the C3.
The eigenvalue distributions of coefficient matrices are graphed in Fig 9(a) - 9(b).
The maximum complex component in absolute value of all eigenvalues is 157.267
requires smaller ∆t values in the lower order methods HEUN and RK2. λj×∆t is
not sufficient to satisfy the stability condition given in Fig 1(a) when ∆t = 0.01.
The choices of time step size for the other methods used in this study supply with
the stability condition.
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Table 4: Absolute relative changes of the conservation laws at t = 6 for the birth
of propagating pulse

Method ∆x ∆t C(C1(6)) C(C3(6))

HEUN (present) 0.25 0.01 ∞ ∞
HEUN (present) 0.25 0.001 4.474× 10−6 1.835× 10−4

RK2 (present) 0.25 0.01 ∞ ∞
RK2 (present) 0.25 0.001 4.474× 10−6 1.835× 10−4

RK3 (present) 0.25 0.01 1.314× 10−3 4.865× 10−3

RK3 (present) 0.25 0.001 1.491× 10−6 2.113× 10−4

RK4 (present) 0.25 0.01 1.462× 10−5 3.862× 10−4

RK4 (present) 0.25 0.001 < 10−10 2.041× 10−4

RKF (present) 0.25 0.01 1.779× 10−6 1.816× 10−4

RKF (present) 0.25 0.001 < 10−10 2.041× 10−4

CK (present) 0.25 0.01 2.727× 10−7 1.995× 10−4

CK (present) 0.25 0.001 < 10−10 2.041× 10−4

CDQ [27] 0.25 0.01 1.461× 10−5 1.824× 10−4

PDQ [28] 0.25 0.01 1.575× 10−5 5.265× 10−4

(a) A = 1 (b) A = 1.78

Figure 9: The behaviors of the propagating pulse depending on A
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5.5 Bound State of n solitons

The bound state of n solitons for the nonlinear cubic NLS equation (1) is simulated
with the initial data

u(x, 0) = sechx (29)

where κ ≥ 2n2, n ∈ Z+ in the NLS equation (1) [1,13]. When this condition on κ
is satisfied, the u(x, t) gives n-soliton bound state type solution and the periodicity
property in a mobile frame of the solution is fulfilled. The case 2n2 < κ < 2(n+1)2

causes the asymptotic solution to include both bound state and an oscillation
with O(t−1/2) as κ < 2 gives only the oscillation [13]. Unfortunately, the larger
values of n is not sufficiently suitable for the numerical solutions. In the present
study, the behaviors are investigated for n = 2, 3, 4 in the interval [−20, 20]. The
designed algorithms are run by using the discretization parameters ∆x = 0.125
and ∆t = 0.001 up to the ending time t = 0.6.
In the first experiment, n is chosen as 2. The initial data stands for a pulse of unit
height positioned at x = 0, Fig 10(a). When the time reaches t = 0.2 the height
of the pulse passes over 1.2, Fig 10(b). Two bulges begin to appear at both sides
of this pulse when the time is t = 0.3, Fig 10(c), as the peak gets higher than
1.6. These two bulges are separated from the pulse at the time t = 0.4, Fig 10(d).
As the time proceeds, the bulges merges to the pulse again at t = 0.5, Fig 10(e).
However, the height of the pulse descends down 1.6. At the end of the simulation,
the height is measured just over 1.2 and the bulges disappear, Fig 10(f).
The choice of n = 3 is studied in the same interval up to the ending time t = 0.6
using the same discretization parameters. The initial pulse of height 1 gives birth
two new bulges at both sides as the simulation time reaches t = 0.175 and its
height passes over 2, Fig 11(a). These two bulges join back to the pulse but
then the pulse begins to split in two halves vertically starting in the peak as time
proceeds to t = 0.250, Fig 11(b). Following the split of the pulse, two bulges begin
to appear at the sides of these two halves of the pulse at t = 0.300, Fig 11(c), and
become evident at t = 0.325, Fig 11(d). As time proceeds to 0.400 and 0.500, the
two halves of the pulse and the bulges join together back and become a unique
pulse of height over 1.8, Fig 11(e) - Fig 11(f). The similar behaviors keep at the
remaining time of the simulation.
When n = 4, the initial pulse of unit height splits in two high pulses of heights
over 1.6 with one bulge at the other sides of each at t = 0.175, Fig 12(a). As time
proceeds the number of bulges increases at both sides of twin longer pulses at time
t = 0.225, Fig 12(b). At t = 0.375, two well shaped pulses and a longer pulse
of height over 1.6 between them are observed clearly, Fig 12(c). There are three
smaller bulges at both sides of these three pulses at this time. The twin pulses
and the longer pulse positioned between them separate clearly from each other at
t = 0.475, Fig 12(d). The other smaller pulses propagate along the horizontal axis
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and get far away from these three longer pulses. The twins and the longer pulse
joins together again at t = 0.550, Fig 12(e). The heights of the twins approaches
1 as the longer one gets shorter at this time. When the time is 0.600, the twin
pulses gets smaller in height as the longer one gets higher, Fig 12(f).
In conclusion, when the number n increases, the formation of new solitons are more
rapidly and the number of those solitons increases. The solitons do not exceed the
imaginary bounds while they are forming and disappearing during the simulations.
This status corresponds to the theoretical aspects and the earlier findings reported
in the numerical studies.
The absolute relative changes of the conservation laws for the experiments ob-
tained for various values of n are illustrated in Table 5. The initial values of the
conservation laws are determined as C1 = 2 and C3 = (2/3)(1− κ). Both conser-
vation laws remain almost constant for all cases and the absolute relative changes
are the indicators of satisfactory as tabulated in the table.
The eigenvalue distributions of all cases κ = 2, 3, 4 are depicted in Fig 13(a)-
13(c). The maximum and minimum complex components of all eigenvalues are
determined as ±628.749 for all choices of κ. ∆t = 0.001 is sufficient to provide the
stability for all methods used to solve the bound state of solitons problem.
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(a) t = 0 (b) t = 0.2

(c) t = 0.3 (d) t = 0.4

(e) t = 0.5 (f) t = 0.6

Figure 10: Bound state of solitons for n = 2
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(a) t = 0.175 (b) t = 0.250

(c) t = 0.300 (d) t = 0.325

(e) t = 0.400 (f) t = 0.500

Figure 11: Bound state of solitons for n = 3
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(a) t = 0.175 (b) t = 0.225

(c) t = 0.375 (d) t = 0.475

(e) t = 0.550 (f) t = 0.600

Figure 12: Bound state of solitons for n = 4
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Table 5: Absolute relative changes of the conservation laws at t = 0.6 for the birth
of propagating pulse

Method ∆x ∆t n C1(0) C3(0) C(C1(0.6)) C(C3(6))

HEUN 0.125 0.001 2 2 −4.66666666 1.964× 10−6 1.312× 10−6

RK2 1.964× 10−6 1.311× 10−6

RK3 6.540× 10−7 4.586× 10−6

RK4 < 10−10 6.428× 10−10

RKF 5.000× 10−10 8.571× 10−10

CK 5.000× 10−10 8.571× 10−10

HEUN 3 2 −11.33333333 1.767× 10−4 1.365× 10−3

RK2 1.767× 10−4 1.365× 10−3

RK3 5.629× 10−5 6.353× 10−4

RK4 3.400× 10−8 7.292× 10−6

RKF 7.500× 10−9 7.238× 10−6

CK 7.000× 10−9 7.314× 10−6

HEUN 4 2 −20.66666666 5.095× 10−3 6.238× 10−2

RK2 5.095× 10−3 6.238× 10−2

RK3 7.151× 10−4 8.245× 10−3

RK4 1.587× 10−6 6.432× 10−4

RKF 5.142× 10−8 6.481× 10−4

CK 7.675× 10−7 6.370× 10−4

CDQ [27] 0.125 0.0025 3 3.282× 10−6 5.201× 10−4

CDQ [27] 0.125 0.0025 4 1.922× 10−4 1.558× 10−3

PDQ [28] 0.1 0.01 4 1.174× 10−7 5.127× 10−5
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(a) κ = 2 (b) κ = 3

(c) κ = 4

Figure 13: The eigenvalue distribution for bound state of solitons

6 Conclusion

Some dynamic problems constructed on the nonlinear cubic NLS equation are
solved by differential quadrature method based on sine cardinal functions. The
dimension reduced form of the equation is integrated using various methods of dif-
ferent orders. The absolute relative changes are computed in each case to validate
the accuracy of the method even analytical solutions do not exist.
The discretization parameter ∆t is successfully selected to satisfy the stability
condition. The instability of some lower order methods, particularly, explained by
coinciding the theoretical aspects and matrix stability analysis via eigenvalues for
all experiments.
The comparison with earlier studies covering some differential quadrature tech-
niques indicate that the proposed algorithms also generate acceptable results. In
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many cases, the results seem more accurate even when less grids are used.
When compared with the collocation or finite element methods, the programming
is easier owing to the main logic that approximates directly to the derivative.
Particularly, it also enables using higher order time integration techniques more
easily. On the other hand, memory allocation and number of algebraic calculations
can be discussed when compared the other method families.
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