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Abstract

An efficient iterative method is developed for the static analysis of large deflections of an infinite beam with variable

cross-section resting on a nonlinear foundation. A pseudo spring constant is added and explicit matrix operators

are introduced to perform differentiation through Green’s function. The nonlinearity of the problem is handled with

quasilinearization. To compute the solution of the quasilinear differential equation with prescribed accuracy, a new

discretization method for solving quasilinear differential equations involving up to the 4th order derivative is used.

The discretization method is based on relating discretizations of up to the fourth order derivative of the solution

with a discretization of the solution by using a suitable Green function. Numerical experiments show that the error

incurred by the discretization can be made small for the two first derivatives and that the method proposed in the paper

converges fast and has good accuracy.

Keywords: Infinite beam, Variable cross-section, Nonlinear foundation, Quasilinearization, Discretization, Green’s

function

1. Introduction

The static and dynamic analysis of deflections in an infinite beam resting on a nonlinear elastic foundation find

applications to the design of roads, highways and railways. Many researchers have proposed methods for static and

dynamic analysis of deflections for the case of a linear elastic foundation [1, 2, 3]. Kuo and Lee [4] has performed the

static analysis of deflections in an elastically restrained non uniform beam resting on a nonlinear elastic foundation

using perturbation methods. In [5], the static analysis of deflections in an infinite beam resting on a nonlinear elastic

foundation has been done using finite element methods. Jang et al. [6] have solved the same problem by using an

iterative method. Sharma and Das Gupta [7] has performed the static analysis of an infinite beam resting on a nonlinear

Winkle-type elastic foundation by using the Green’s function method. The dynamic behavior of a shear deformable

beam on a tensionless nonlinear viscoelastic foundation has been done in [8].

To handle deflections of an infinite beam comparable in height with the width of the beam, the nonlinear von

Karman term [9]

−3

2
EA

(

du

dx

)2
d2u

dx2

is typically included (see, for instance, [10]) in the nonlinear static fourth order Bernouilli-Euler differential equa-

tion, thus yielding the well-known Bernouilli-Euler-von Karman differential equation. Jang et al. [6] has solved the
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nonlinear Bernouilli-Euler differential equation by using a convergent fixed-point iterative method based on Green’s

function. Similar work can be found in [6, 11]. Jang [12] has also proposed a fixed-point iterative method for solv-

ing the differential equation modeling a uniform cross-section infinite beam with large deflections resting on a linear

elastic foundation including the von Karman term. In that work, Jang constructed an integral equation approximat-

ing the fourth-order derivative of the deflection by using Green’s function and computed lower order derivatives by

differentiation of that integral equation.

Here, we consider the problem of computing the deflections of a non-uniform infinite beam with variable cross

section resting on a nonlinear elastic foundation under the presence of localized external load. The linear and non-

linear coefficients modeling the nonlinear elastic foundation are allowed to be functions of the spatial variable. The

nonlinearity of the problem considered is a result of both the modeling of the nonlinear elastic foundation and the

von Karman term necessary to model large deflections. Whereas the nonlinearity of the differential equation is han-

dled by using the quasilinear method (QLM). The QLM method is a generalization of the Newton-Raphson method

for boundary value problems (BVPs). It was introduced by Bellman and Kalaba [13]. Mandelzweig and coworkers

[14–16] proved that QLM applied to nonlinear BVPs has second order of convergence. Higher order QLM methods

for specific BVPs and coupled BVPs have been proposed in [17, 18]. The convergence of QLM methods requires

the initial guess to satisfy the boundary conditions and to lie in the vicinity of the solution [19]. In [6], Jang et al.

converted the differential operator associated with the differential equation of an infinite beam resting on a nonlinear

elastic foundation into an integral operator by introducing a pseudo spring constant, then, discretized the integral

equation and used a fixed-point iterative method to solve the resulting system of algebraic equations. However, the

use of the integral operator led to implicit formulations for the derivatives, making the computations expensive since

solutions of nonlinear systems are required. In this paper, we consider the problem of solving the differential equation

governing the static deflections of an infinite nonlinear Bernoulli-Euler-von Karman beam with variable cross section

resting on a nonlinear elastic foundation under the presence of a localized external load, and develop a new method

for solving that differential equation. Our method combines QLM with the discretization of the resulting quasilinear

differential equation. Our discretization is such that we avoid having to solve systems of nonlinear equations, thus

potentially reducing significantly the computational cost in relation to the methods proposed in [6].

The rest of the paper is organized as follows. In Section 2, we present the differential equation governing the

static deflections of an infinite nonlinear Bernoulli-Euler-von Karman beam with variable cross section resting on a

nonlinear elastic foundation, stating the boundary conditions that can be assumed under the presence of a localized

external load. In the following, we will call that differential equation the BEVKNV differential equation. Section 3

presents the main controbution of the paper, we review QLM applied to the BEVKNV differential equation. Section 3

presents the main contribution of the paper, i.e., a discretization method for solving quasilinear differential equations

involving up to the 4th order derivative under the boundary conditions of the BEVKNV differential equation. Section 5

tests the accuracy of the discretization of the derivatives in which the discretization method is based by using a function

satisfying the boundary conditions. Section 6 tests experimentally the convergence and accuracy of the method for

solving the BEVKNV differential equation obtained by combining QLM with the discretization method. Finally,

Section 7 presents the conclusions and highlights future work. The Appendix includes a technical result used in

Section 3.

2. Nonlinear Bernoulli-Euler-von Karman beams on a nonlinear elastic foundation with variable cross-section

The theory of linear Bernoulli-Euler beams on a nonlinear foundation is only valid for small deflections and

rotations. For moderate and large deflections and rotations, the theory has to be extended by introducing the von

Karman term and is only valid provided that the strain is small. The resulting differential equation is

d2

dx2

(

E(x)I(x)
d2u

dx2

)

− 3

2
E(x)A(x)

(

du

dx

)2
d2u

dx2
+ f (x, u) = w(x) , x ∈ (−∞,+∞) , (1)

where x is the longitudinal coordinate, u(x) is the deflection, and E(x), I(x), A(x), f (x, u), and w(x) are, respectively,

the Young’s modulus, the mass moment of inertia, the cross-section area, the law for nonlinear elastic foundation, and

the applied load. Under the assumption of a localized external load, i.e. a load which vanishes outside a finite interval,
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we have the boundary conditions

u,
du

dx
,

d2u

dx2
,

d3u

dx3
→ 0 for |x| → ∞ . (2)

Let S 1(x) = E(x)I(x) and S 2(x) = − 3
2
E(x)A(x). Then, equation (1) can be rewritten as

d2

dx2

(

S 1(x)
d2u

dx2

)

+ S 2(x)

(

du

dx

)2
d2u

dx2
+ f (x, u) = w(x) . (3)

In QLM, we obtain a sequence of approximated solutions un(x), n = 0, 1, 2, . . .. Given an approximated solution

un(x), the next approximated solution is written as un+1(x) = un(x)+ δ(x) and a quasilinear differential equation whose

solution is un+1(x) is obtained. Solution of those quasilinear differential equations till convergence gives the solution

of the original differential equation.

Let us derive the quasilinear differential equation on un+1(x). Substituting u(x) by un+1(x) in (3), we obtain

d2

dx2

(

S 1(x)
d2(un + δ)

dx2

)

+ S 2(x)

(

d(un + δ)

dx

)2
d2(un + δ)

dx2
+ f (x, un + δ) = w(x) .

Expanding derivatives and using a first order Taylor approximation for approximating f (x, un + δ), we obtain

d2

dx2

(

S 1(x)
d2un

dx2

)

+
d2

dx2

(

S 1(x)
d2δ

dx2

)

+ S 2(x)















(

dun

dx

)2

+

(

dδ

dx

)2

+ 2
dun

dx

dδ

dx















(

d2un

dx2
+

d2δ

dx2

)

+ f (x, un) + f ′(x, un)δ + O
(

δ2
)

= w(x) .

Neglecting O(δ2) and second and higher order terms in derivatives of δ(x), we get

d2

dx2

(

S 1(x)
d2δ

dx2

)

+ S 2(x)

(

dun

dx

)2
d2δ

dx2
+ 2S 2(x)

dun

dx

d2un

dx2

dδ

dx
+ f ′(x, un)δ

= −














d2

dx2

(

S 1(x)
d2un

dx2

)

+ S 2(x)

(

dun

dx

)2
d2un

dx2
+ f (x, un) − w(x)















. (4)

By using the fact that

d2

dx2

(

S 1(x)
d2un

dx2

)

+ S 2(x)

(

dun

dx

)2
d2un

dx2
+ f (x, un) − w(x) ≈ 0 , (5)

because un(x) is approximately a solution of the original differential equation, we can approximately write (4) as

d2

dx2

(

S 1(x)
d2δ

dx2

)

+ S 2(x)

(

dun

dx

)2
d2δ

dx2
+ 2S 2(x)

dun

dx

d2un

dx2

dδ

dx
+ f ′(x, un)δ = 0 . (6)

By letting the linear differential operator

L ≡ d2

dx2

(

S 1(x)
d2

dx2

)

+ S 2(x)

(

dun

dx

)2
d2

dx2
+ 2S 2(x)

dun

dx

d2un

dx2

d

dx
+ f ′(x, un) ,

we can write (6) as

Lδ = 0 .

Since un+1(x) = un(x) + δ(x), we have Lun+1 = Lun. Expansion of Lun+1 and Lun gives

d2

dx2

(

S 1(x)
d2un+1

dx2

)

+ S 2(x)

(

dun

dx

)2
d2un+1

dx2
+ 2S 2(x)

dun

dx

d2un

dx2

dun+1

dx
+ f ′(x, un)un+1 =

d2

dx2

(

S 1(x)
d2un

dx2

)

+ S 2(x)

(

dun

dx

)2
d2un

dx2
+ 2S 2(x)

dun

dx

d2un

dx2

dun

dx
+ f ′(x, un)un .

(7)
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But, using (5)

d2un

dx2

(

S 1(x)
d2un

dx2

)

+ S 2(x)

(

dun

dx

)2
d2un

dx2
≈ w(x) − f (x, un) ,

and substituting it into (7), we obtained the differential equation on un+1(x),

d2

dx2

(

S 1(x)
d2un+1

dx2

)

+ S 2(x)

(

dun

dx

)2
d2un+1

dx2
+ 2S 2(x)

dun

dx

d2un

dx2

dun+1

dx
+ f ′(x, un)un+1

= 2S 2(x)

(

dun

dx

)2
d2un

dx2
+ f ′(x, un)un − f (x, un) + w(x) , (8)

which is the sought quasilinear differential equation on un+1(x).

3. A numerical discretization method for solving quasilinear differential equations involving up to the 4th order

derivative under some conditions

The developments of this section apply to any quasilinear differential equation involving up to the fourth order

derivative, i.e. to any differential equation of the form

m4(x)
d4u

dx4
+ m3(x)

d3u

dx3
+ m2(x)

d2u

dx2
+ m1(x)

du

dx
+ m0(x)u(x) = n(x)

with a solution u(x) satisfying the boundary conditions (2). Note that by expanding the first term of (8), we get a

differential equation of the previous type. However, in our method to solve the BEVKNV differential equation we

will not make that expansion in (8). We will use the notation u(l)(x) = dlu/dxl, 1 ≤ l ≤ 4.

In order to solve the differential equation, the idea is to consider an interval [−R,R] for x, where R and N are

sufficiently large, and partition it into N equally sized subintervals defined by the coordinates xn = −R+nh, h = 2R/N,

0 ≤ n ≤ N, and, then, to obtain an algebraic equation from the differential equation by discretizing the function u(x)

according to the grid xn, 0 ≤ n ≤ N for x using a vector u with uT = [u(x0) u(x1) · · · u(xN)]. To obtain

the algebraic equation we will obtain approximate algebraic expressions in terms of u for similar discretizations for

u(l)(x), 1 ≤ l ≤ 4 using vectors u(l) with u(l) T = [u(l)(x0) u(l)(x1) · · · u(l)(xN)], 1 ≤ l ≤ 4. In the remaining of

this section, we will obtain those expressions. When dealing with (8), we will make use of the approximate algebraic

expressions for the first two derivatives of un and un+1 in (8) and the first second order derivative in the right-hand side

of (8). In our developments we will use Fourier transforms. Given a real valued function h(x), the Fourier transform of

h(x) will be denoted as F (h(x)). In a consistent way, given a real valued function H(η), the inverse Fourier transform

of H(η) will be denoted as F −1(H(η)). There is more than one definition for the Fourier transform. Here, we will use

the definition (see, for instance, [6])

H(η) = F (h(x)) =

∫ ∞

−∞
h(x) e−iηx dx ,

with the corresponding definition for the inverse Fourier transform

F −1(H(η)) =
1

2π

∫ ∞

−∞
H(η) eiηx ds .

We start by obtaining an approximate algebraic expression for u(4) in terms of u. Towards that end, consider the

trivial equality

u(4) + αu = u(4) + αu ,

where α is a constant > 0. Taking the Fourier transform of both sides and using the differentation rule on the left

hand-side, we obtain

η4U(η) + αU(η) = F (u(4)(x) + αu(x)) ,

4



where η is the Fourier transform variable and U(η) denotes the Fourier transform of u(x). This gives the expression

for U(η)

U(η) =
F (u(4)(x) + αu(x))

η4 + α
.

Taking the inverse Fourier transform on both sides, we get

u(x) = F −1

(

1

η4 + α

)

∗ (u(4)(x) + αu(x)) ,

where ∗ is convolution product. The inverse Fourier transform of 1/(η4 + α) turns out to be

G(x) =
1

2α3/4
exp

(

−α
1/4

√
2
|x|

)

sin

(

α1/4

√
2
|x| + π

4

)

and, accordingly, we have

u(x) =

∫ R

−R

G(x − t)(u(4)(t) + αu(t)) dt , (9)

where R is such that the previous integral is sufficiently close to the exact value for u(x), which would be obtained

with an integral running from −∞ to∞.

Then, we convert the integral into a summation by using, for instance, the well-known trapezoidal rule with

coordinates xn, 0 ≤ n ≤ N, where N is sufficiently large for the error associated with the use of the trapezoidal rule to

be sufficiently small. Application of the trapezoidal rule to the evaluation of u(xn), 0 ≤ n ≤ N using (9) yields

u(xn) =

N
∑

m=0

G(xn − xm)(u(4)(xm) + αu(xm))bm , 0 ≤ n ≤ N ,

where b0 = h/2, bm = h, 1 ≤ m ≤ N − 1, and bN = h/2. Introducing the vector b = (bm)0≤m≤N , the matrix

G =

























































G(0) G(−h) · · · G

(

−Nh

)

G(h) G(0) · · · G

(

−(N − 1)h

)

...
...

. . . · · ·
G

(

Nh

)

G

(

(N − 1)h

)

· · · G(0)

























































,

and with diag[x] denoting the matrix with main diagonal including the elements of vector x and 0’s elsewhere, we get

the vector expression

u = G diag[b] (u(4) + αu)

and, by isolating u(4),

u(4) = (diag[b]−1G−1 − α I) u , (10)

where I is an identity matrix of appropriate dimension and where the existence of the inverse of G is proved in the

Appendix for any discretized Green function G on a finite interval.

In order to obtain approximate expressions for u(l), 1 ≤ l ≤ 3 in terms of u, we consider approximations for the

three first order derivatives of u by taking derivatives with respect to x in (9):

u(l)(x) =

∫ R

−R

dlG(x − t)

dxl
(u(4)(t) + αu(t)) dt . (11)
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Here, again, R has to be large enough for the error in the integral with respect to the exact value which would be

obtained with an integral running from −∞ to ∞ to be sufficiently small. The following expression can be found for

dlG(x)/dxl, 1 ≤ l ≤ 3:

dlG(x)

dxl
=

(−sign(x))l

2α3−l
e
− α√

2
|x|

sin

(

α
√

2
|x| − (l − 1)

π

4

)

,

where sign(x) = 1 for x ≥ 0 and 0 otherwise. Replacing x by x − t gives the following expression for dlG(x − t)/dxl,

1 ≤ l ≤ 3, to be used in conjunction with (11)

dlG(x − t)

dxl
=

(−sign(x − t))l

2α3−l
e
− α√

2
|x|

sin

(

α
√

2
|x − t| − (l − 1)

π

4

)

.

Then, we discretize (11) as done to obtain (10), with the result

u(l) = G(l)diag[b](u(4) + αu) ,

where

G(l) =































































dlG

dxl
(0)

dlG

dxl
(−h) · · · dlG

dxl

(

−Nh

)

dlG

dxl
(h)

dlG

dxl
(0) · · · dlG

dxl
G

(

−(N − 1)h

)

...
...

. . . · · ·
dlG

dxl

(

Nh

)

dlG

dxl

(

(N − 1)h

)

· · · dlG

dxl
(0)































































.

Introducing matrix A(l) = G(l)diag[b], 1 ≤ l ≤ 3, we obtain

u(l) = A(l)(u(4) + αu) .

Introducing matrix A = G diag[b], we can rewrite (10) as

u(4) = (A−1 − αI) u .

By substituting the second equation into the first, we get, for 1 ≤ l ≤ 3,

u(l) = A(l)(αu + (A−1 − α I)u) = A(l)A−1u .

Finally, using A(l) = G(l)diag[b] and A = G diag[b], we obtain, for 1 ≤ l ≤ 3,

u(l) = G(l)diag[b]
(

Gdiag[b]
)−1

u

= G(l)diag[b]diag[b]−1G−1u = G(l) G−1u ,

which is the sought approximate expression for u(l), 1 ≤ l ≤ 3 in terms of u.

We can summarize the results obtained in this section regarding the approximate alebraic expressions for u(l),

1 ≤ l ≤ 4 in terms of u as

u(l) = Dlu ,

where

Dl = G(l)G−1, 1 ≤ l ≤ 3

and (10)

D4 = diag[b]−1G−1 − αI .

6



4. Method for solving the BEVKNV differential equation

The method for solving the BEVKNV differential Eq. (1) combines QLM with the discretization of the quasilinear

differential equation on un+1(x) (8). Using the discretization method obtained in Section 2 for solving quasilinear

differential equation applied to (8), we obtain

D2diag [S1] D2un+1 + diag [S2 ⊙ D1un ⊙ D2un] D2un+1 + 2diag [S2 ⊙ (D1un) ⊙ (D2un)] D1un+1

+ diag
[

f′(x, un)
]

un+1 = 2S2 ⊙ D1un ⊙ D1un ⊙ D2un + f′(x, un) ⊙ un − f(x, un) + w ,
(12)

where ⊙ represents element-wise multiplication between two vectors of same length, where

un = (un(xm))0≤m≤N ,

un+1 = (un+1(xm))0≤m≤N ,

D1 = G(1)G−1 ,

D2 = G(2)G−1 ,

S1 = (S 1(xm))0≤m≤N ,

S2 = (S 2(xm))0≤m≤N ,

w = (w(xm))0≤m≤N ,

f(x, un) = ( f (xm, un(xm)))0≤m≤N ,

f′(x, un) =
(

f ′(xm, un(xm))
)

0≤m≤N ,

where xn = −R + n h, h = 2R/N , 0 ≤ n ≤ N, and where R and N are sufficiently large for the discretization error to

be sufficiently small. The implementation of our proposed iterative method is given in Algorithm 1.

5. Accuracy of discretization of the derivatives

To test the accuracy of the discretizations of derivatives defined in Section 3, we selected the function u(x) = e−x2

,

which can be a solution of (1).

All the results given in this section were obtained taking R = 5. Fig. 1 gives the plots of that function and its first

four derivatives. We took N = 499 and computed the difference between the computed four first order derivatives at

the grid xn, 0 ≤ n ≤ N and the exact values of those derivatives. The results are given in Fig. 2. We can note that the

accuracy in the derivatives is good except for the third order derivative. This is an essential limitation of the method

we could overcome in future work. Table 1 gives, for 1 ≤ l ≤ 4, ||Dlu − u(l)||∞, which is the maximum absolute error

in the lth order derivative at the grid points, for N = 499 and varying α. We will comment on the impact of α in

the accuracy of the first and second order derivatives. The reason is that when applying the discretization method to

the solution of the BEVKNV differential equation only the discretization of those derivatives will be used. We can

see that the best results are obtained for α ≤ 1 and that under that restriction the accuracy depends very little on the

particular value of α. In order to analyze the impact of the number of grid points N on the accuracy in the first and

second order derivatives with a good value for α, Table 2 gives, for 1 ≤ l ≤ 4, ||Dlu − u(l)||∞ as a function of N for

α = 0.1. The results show that as the number of grid points is increased the accuracy improves but there is a point

beyond which there is no significant change on the accuracy. A reasonable selection for N for u(x) = e−x2

would be

N = 499.

6. Numerical experimentation of the method for solving the BEVKNV differential equation

In this section, we will analyze the convergence and accuracy of the method proposed in this paper for the solution

of the BEVKNV differential equation in nine cases. We designed nine different cases. The purpose of the first four

cases is to check the validity and accuracy of our proposed iterative method. The remaining five cases give us vertical

deflection of beam when rectangular load is applied under the influence of different combinations of parameters. In

the first 4 cases, u(x), E(x)I(x), E(x)A(x), and f (x, u) will be known and the applied load will be chosen so that the

7



Algorithm 1 Quasilinear iterative method.

1: procedure Quasilinear Iterative Method(R, N, ∆, Iter)

2: h← 2R/N

3: for n from 0 to N do

4: xn ← −R + nh

5: wn ← w(xn)

6: (S 1)n ← S 1(xn)

7: (S 2)n ← S 2(xn)

8: end for

9: D1 ← G(1)G−1

10: D2 ← G(2)G−1

11: A1 ← D2diag[S1]D2

12: u0 ← zeros(n, 1) ⊲ Take zero vector as an initial guess.

13: for q from 1 to Iter do ⊲ “Iter” is total number of iterations.

14: for n from 0 to N do

15: (v5)n ← f (xn, (uq−1)n) ⊲ (uq−1)n ← uq−1(xn).

16: (v6)n ← f ′(xn, (uq−1)n) ⊲ (v5)n ← v5(n), (v6)n ← v6(xn).

17: end for

18: v1 ← D1uq−1

19: v2 ← D2uq−1

20: v3 ← S2 ⊙ v1 ⊙ v2

21: v4 ← S2 ⊙ v1 ⊙ v2

22: v7 ← 2v3 ⊙ v2 + v6 ⊙ uq−1 − v5 + w

23: A2 ← A1 + diag[v3]D2 + 2diag[v4]D1 + diag[v6]

24: uq ← A−1
2

v7

25: if ‖uq − uq−1‖∞ ≤ ∆ then

26: break

27: end if

28: end for

29: return uq

30: end procedure

Table 1: Maximum absolute error in the derivatives for N = 499 and varying α.

α 1,000 100 10 1 10−1 10−2 10−3

||D1u − u(1) ||∞ 8 × 10−7 10−7 4 × 10−8 3 × 10−8 3 × 10−8 3 × 10−8 3 × 10−8

||D2u − u(2) ||∞ 3 × 10−2 4 × 10−3 7 × 10−4 4 × 10−4 4 × 10−4 4 × 10−4 4 × 10−4

||D3u − u(3) ||∞ 10 1 0.2 0.1 0.1 0.1 0.1

||D4u − u(4) ||∞ 2 × 10−4 7 × 10−6 8 × 10−6 9 × 10−6 9 × 10−6 9 × 10−6 10−5

Table 2: Maximum absolute error in the derivatives for α = 0.1 and varying N.

N + 1 100 200 300 400 500 600 800

||D1u − u(1)||∞ 2 × 10−5 10−6 2 × 10−7 7 × 10−8 3 × 10−8 10−8 3 × 10−8

||D2u − u(2)||∞ 0.01 0.003 0.001 6 × 10−4 4 × 10−4 3 × 10−4 2 × 10−4

||D3u − u(3)||∞ 0.6 0.3 0.2 0.21 0.1 0.1 0.08

||D4u − u(4)||∞ 2 × 10−4 10−5 4 × 10−6 6 × 10−6 9 × 10−6 10−5 2 × 10−5
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Table 3: First four cases considered for the numerical experimentation of the method.

case u(x) λ0 λ1 λ2 λ3 λ4 γ1 γ2

1 e−x2

12 18/5 1 6/25 1 2 + sin(x) 5 + cos(x)

2 e−x2

1 0.05 0.1 0 3 6 1

3 cos(x)e−x2

1 0.05 0.1 0 3 6 1

4 sin(x)e−x2

1 0.05 0.1 0 3 6 1

Table 4: Last five cases considered for the numerical experimentation of the method.

case w(x) λ0 λ1 λ2 λ3 λ4 γ1 γ2

5 3 × 1x≤3 1 0.05 0.1 0 3 6 1

6 6 × 1x≤3 1 0.05 0.1 0 3 6 1

7 9 × 1x≤3 1 0.05 0.1 0 3 6 1

8 6 × 1x≤3 1 0.05 0.1 0 3 — —

9 6 × 1x≤3 1 — — 0 3 6 1

selected u(x) is a solution of the BEVKNV differential equation. In the remaining cases, E(x)I(x), E(x)A(x), f (x, u),

and w(x) will be known and u(x) will be unknown. The function E(x)I(x) will have in all cases the form

E(x)I(x) =
1

12

(

λ0 + λ1e−λ2 x2

+ λ3e−2x2
)λ4

.

The function E(x)A(x) will have in all cases the form

E(x)A(x) = 1 + λ1e−λ2 x2

.

Finally, the function f (x, u) will have in all cases the form

f (x, u) = γ1u(x) + γ2u(x)3 .

Table 3 gives the functions u(x) and the values of the parameters λi, 0 ≤ i ≤ 4, γ1 and γ2 corresponding to the first

four cases.

Table 4 gives the functions w(x) and the values of the parameters λi, 0 ≤ i ≤ 4, γ1 and γ2 corresponding to the last

five cases. The values of γ1 and γ2 for case 8 are left unspecified because we will vary the values of those parameters

in that case. Similarly, the values of λ1 and λ2 for case 9 are left unspecified because we will also vary the values of

those parameters in that case. In the table, 1c denotes the indicator function returning value 1 if condition c is true and

value 0 otherwise.

Because of the discretization of the quasilinear differential equation, there is an optimal accuracy which cannot

be improved with further iterations of QLM. In all cases, we took a value for N large enough for that accuracy of the

method to settle in the range of its maximum value. That optimal accuracy is not only determined by round-off errors

but also by the limited accuracy obtained in the derivatives by discretization. The value we took for N is N = 499

in all cases. Regarding the parameter α, according to the numerical experiments reported in the previous section, we

took α = 0.1 in all cases.

Fig. 3 gives the numerical solution for case 1. We run our method with R = 5 and a tolerance ∆ = 7 × 10−5. The

method converged to that tolerance in 6 iterations. Fig. 4 plots the absolute errors (difference between the computed

value and the exact value) for the discretized computed solution. We can note that absolute errors are always below

the specified tolerance. Fig. 5 gives the numerical solution for case 2. We run our method with R = 5 and a tolerance

∆ = 3.5 × 10−5. The method converged to that tolerance in 4 iterations. Fig. 5 plots the absolute errors for the

discretized computed solution (Fig. 6). We can note that, as for case 1, the absolute errors are always below the

10



specified tolerance. Fig. 7 gives the numerical solution for case 3. We run our method with R = 5 and a tolerance

∆ = 8×10−5. The method converged to that tolerance in 4 iterations. Fig. 5 plots the absolute errors for the discretized

computed solution (Fig. 8). The absolute errors are again below the specified tolerance. Fig. 9 gives the numerical

solution for case 4. We run our method with R = 5 and a tolerance ∆ = 1.2 × 10−5. The method converged to that

tolerance in 3 iterations. Fig. 9 plots the absolute errors for the discretized computed solution. The absolute errors are

below the specified tolerance (Fig. 10).
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1

1.2

Figure 3: Exact solution for case 1.

For case 5, we run our method with α = 0.1, R = 5, N = 499, and tolerances chosen so that the number of

iterations of the method were 1, 2, 3, 4, 5, and 6. Fig. 11 plots the computed solution after 6 iterations. Fig. 12 gives

log10(‖un+1 − un‖∞) for n = 0, 1, 2, 3, 4, 5. We can note that as n increases ‖un+1 − un‖∞ is reduced significantly till

reaching a value 1.56 × 10−10 for n = 5, which is very small compared to the maximum absolute value of u(x), which

is ≈ 0.5.

For case 6, we also run our method with α = 0.1, R = 5, N = 499, and tolerances chosen so that the number of

iterations of the method were 1, 2, 3, 4, 5, and 6. Fig. 13 plots the computed solution after 6 iterations. Fig. 14 gives

log10(‖un+1 − un‖∞) for n = 0, 1, 2, 3, 4, 5. We can note that, also in this case, as n increases ‖un+1 − un‖∞ is reduced

significantly. In this case, the final value for ‖un+1 − un‖∞ is 2.62× 10−10, which is, again, very small compared to the

maximum absolute value of u(x), which is ≈ 0.9.

Case 7 is identical to cases 5 and 6 except for the height of the load function w(x), and we also run our method

with α = 0.1, R = 5, N = 499, and tolerances chosen so that the number of iterations of the method ranged from 1 to

10. Fig. 15 plots the computed solution after 10 iterations. Fig. 16 gives log10(‖un+1 − un‖∞) for n ranging from 0 to

9. We can note that, also in this case, as n increases ‖un+1 − un‖∞ is reduced significantly. In this case, the final value

for ‖un+1 − un‖∞ is 4.85× 10−10, which is, again, very small compared to the maximum absolute value of u(x), which

is ≈ 1.2.

In case 8, γ1 and γ2 take four different combinations of values. These correspond to γ1 = 1 and γ2/γ1 = 0, 1/8, 1/4,

and 1/2. We run our method for each combination with α = 0.1, R = 10, N = 499, and tolerances chosen so that

the number of iterations of the method ranges from 1 to 10. Fig. 17 plots the computed solutions after 10 iterations.

Fig. 18 gives log10(‖un+1 − un‖∞) for n ranging from 0 to 9. We can note that as n increases ‖un+1 − un‖∞ is reduced

significantly till reaching a value of the order of 10−10 for n = 9, which is very small compared to the maximum

absolute value of u(x), which is between 2 and 9.

In case 9, λ1 and λ2 take three different combinations of values. These correspond to λ1 = 0.05 and λ2/λ1 = 1, 3

and 10. We run our method for each combination with α = 0.1, R = 10, N = 499, and tolerances chosen so that the

11
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Figure 6: Absolute errors for case 2.
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Figure 7: Exact solution for case 3.
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Figure 10: Absolute errors for case 4.
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Figure 11: Solution for case 5 after 6 iterations.
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Figure 14: log10(‖un+1 − un‖∞) for case 6.
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Figure 15: Solution for case 7 after 10 iterations
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Figure 16: log10(‖un+1 − un‖∞) for case 7.
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Figure 18: log10(‖un+1 − un‖∞) for case 8.

number of iterations of the method ranges from 1 to 14. Fig. 19 plots the computed solutions after 14 iterations. We

can note that the solutions are very close to each other. Fig. 20 gives log10(‖un+1 − un‖∞) for n ranging from 0 to 13.

Again, the plots are very close to each other. We can note that as n increases ‖un+1 − un‖∞ is reduced significantly till

reaching a value of the order of 10−11 for n = 13, which is very small compared to the maximum absolute value of

u(x), which is ≈ 1.1.

7. Conclusions

We have developed a method for solving numerically the differential equation governing the static deflections

of an infinite nonlinear Bernouilli-Euler-von Karman beam with variable cross section resting on a nonlinear elastic

foundation. The method combines quasilinearization with a new method for solving quasilinear differential equa-

tions involving up to the 4th order derivative based on discretizing the quasilinear differential equation by relating

discretizations of up to the fourth order derivative of the solution with a discretization of the solution. Numerical

experiments show that the error incurred by the discretization can be made small for the first, second and fourth

derivatives and that the discretization method proposed in the paper converges fast and has good accuracy. Conver-

gence of the method would only be guaranteed in the absence of discretization errors. For the nine cases taken as a

benchmark for the method, convergence of the method till reaching optimal accuracy is achieved after no more than 14

iterations of quasilinearization. Regarding the achieved accuracy, it ranges from roughly four digits in relation to the

largest absolute value of the solution to roughly eleven digits in relation to the largest absolute value of the solution.

We believe that the optimal accuracy in the cases in which it is not very large can be improved by developing a new

discretization method relating discretizations of up to the fourth order derivative with a discretization of the solution

with better accuracy for the third derivative and we are currently pursuing that research direction.
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Appendix

Theorem. Let G(x, y) be the Green function of a linear differential operator L. Let G be the matrix obtained by

discretizing the Green function over an interval [c, d] with a grid of points xi, 0 ≤ i ≤ n with x0 = c and xn = d. Then,

the inverse of G exists.

Proof. By using the definition of the Green function we can write

LG(x, y) = δ(x − y) ,

where δ(z) is the Dirac delta function. Let f (x) be any continuous function. Using the previous equation we can write,

for any x ∈ [c, d],

f (x) =

∫ d

c

δ(x − y) f (y) dy =

∫ d

c

LG(x, y) f (y) dy . (13)

Let L be an approximate matrix representation of the linear differential operator L in terms of values of the function

to which the linear operator is applied at the grid points xi, 0 ≤ i ≤ n. The corresponding vectorial representation of

(13) is
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f (y) dy . (14)

Let G be the square matrix discretizing the Green function G at the grid points, i.e. Gi, j = G(xi, x j), 0 ≤ i, j ≤ n.

Using a quadrature rule in (14) based on averaging values of the function at the grid points xi, 0 ≤ i ≤ n with weights

bi > 0, 0 ≤ i ≤ n, where weight bi is associated with the value of the function at xi, we get
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Then, denoting with f the vector
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we have

f = LGdiag[b]f .

As f is arbitrary, we must have

I = LGdiag[b] ,

which implies that the inverse of Gdiag[b] exists and, since the inverse of diag[b] exists because b j > 0, 0 ≤ j ≤ n,

that the inverse of G exists.
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