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Abstract

A dominating set S of a graph is a metric-locating-dominating set if each vertex of
the graph is uniquely distinguished by its distances from the elements of S, and the
minimum cardinality of such a set is called the metric-location-domination number. In
this paper, we undertake a study that, in general graphs and specific families, relates
metric-locating-dominating sets to other special sets: resolving sets, dominating sets,
locating-dominating sets and doubly resolving sets. We first characterize the extremal
trees of the bounds that naturally involve metric-location-domination number, metric
dimension and domination number. Then, we prove that there is no polynomial upper
bound on the location-domination number in terms of the metric-location-domination
number, thus extending a result of Henning and Oellermann. Finally, we show different
methods to transform metric-locating-dominating sets into locating-dominating sets and
doubly resolving sets. Our methods produce new bounds on the minimum cardinalities
of all those sets, some of them concerning parameters that have not been related so far.

Keywords: metric-locating-dominating set, resolving set, dominating set,
locating-dominating set, doubly resolving set

1. Introduction

Metric-locating-dominating sets were introduced in 2004 by Henning and Oeller-
mann [24] combining the usefulness of resolving sets, that roughly speaking differentiate
the vertices of a graph, and dominating sets, which cover the whole vertex set. Re-
solving sets were defined in the 1970s by Slater [43], and independently by Harary and
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Melter [21], whereas dominating sets were introduced in the 1960s by Ore [37]. Both
types of sets have received much attention in the literature because of their many and
varied applications in other areas. For example, resolving sets serve as a tool for com-
binatorial optimization [39], game theory [20], and pharmaceutical chemistry [9]; and
dominating sets are helpful to analyze computer networks [38], design codes [12], and
model biological networks [23]. Although metric-locating-dominating sets are hard to
handle, for entailing the complexity of the other two concepts, they have been studied
in several papers, for instance [5, 26, 27], and further generalized in other works such as
[35, 44].

Let G = (V(G), E(G)) be a finite, simple, undirected, and connected graph of order
n = |V(G)| > 2; the distance d(u,v) between two vertices u,v € V(G) is the length of
a shortest u-v path. We say that a subset S C V(G) is a resolving set of G if for every
x,y € V(G) there is a vertex u € S such that d(u, z) # d(u,y) (it is said that S resolves
{z,y}), and the minimum cardinality of such a set is called the metric dimension of
G, written as dim(G). See [1] for a survey on this well studied graph invariant. When
S is also a dominating set of G (i.e., every x € V(G) \ S has a neighbor in S), then
S is called a metric-locating-dominating set (MLD-set for short). The metric-location-
domination number (resp., domination number), written as vy (G) (resp., 7(G)), is the
minimum cardinality of an MLD-set (resp., dominating set) of G. Concerning specifically
~(G), the survey [22] provides fundamental results and major research achievements in
problems related to this parameter.

This paper first focuses on the intrinsic relations among MLD-sets, resolving sets
and dominating sets. Indeed, the corresponding parameters for all those sets satisfy by
definition

max{dim(G),/(G)} < v (@) < dim(G) +7(G). (1)

We consider here this chain restricted to trees; specifically, we characterize the trees for
which equality occurs in (1), thereby continuing the work of Henning and Oellermann [24]
that characterized the trees T with vps(T') = v(T'). Analogous characterizations of trees
in terms of other related invariants can be found in [3, 19).

We also compare MLD-sets with other subsets of vertices defined by Slater [41] that
are directly connected to them: the locating-dominating sets. They are dominating
sets that distinguish vertices by using neighborhoods instead of distances. Locating-
dominating sets are of interest for its applications; for instance, the authors of [18] have
used them to approach a problem proposed by Boutin [4] that involves the metric di-
mension. Furthermore, locating-dominating sets have applications outside graph theory;
among them: location of intruders in facilities [42], and detection of inoperable compo-
nents in multiprocessor networks [5]. More formally, a locating-dominating set (LD-set
for brevity) of G is a dominating set S C V(G) such that N(z) NS # N(y) NS for
every x,y € V(G)\ S. The minimum cardinality of such a set, denoted by v (G), is the
location-domination number of G. There is also an extensive literature on v, (G) study-
ing multiple aspects: complexity [13, 17], specific families [14, 16, 25, 29, 31], bounds
[2, 15, 22, 40], and approximation algorithms [45]. Clearly, an LD-set is an MLD-set,
and so it is also a resolving set; consequently,

dim(G) < ym(G) < yL(G). (2)

See [5, 27] for more properties of chain (2) and bounds concerning its three parameters.
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Regarding the relation between vy (G) and ~1,(G), we propose a way to obtain LD-
sets from MLD-sets which helps us to extend the following result due to Henning and
Oellermann.

Theorem 1.1. [24] For any tree T, it holds that vr(T) < 2ym(T). However, there is
no constant ¢ such that v (G) < cyp(G) for all graphs G.

We finally find relationships between MLD-sets and other subsets for which, so far as
we are aware, no direct connection is known: the doubly resolving sets. Céceres et al. [6]
introduced doubly resolving sets as a tool for computing the metric dimension of cartesian
products of graphs and, following the same spirit, Hertz [28] used them for computing
the metric dimension of some hypercubes. Furthermore, different authors have provided
other interesting applications of them; for instance, in source location. Indeed, Chen and
Wang [11] utilized doubly resolving sets for modeling the problem of locating the source
of a diffusion in a complex network, which is necessary for controlling and preventing
epidemic risks. See [8, 10] for a similar approach and [30] for more information on general
source location. Doubly resolving sets, that somehow distinguish vertices in two ways
by means of distances, are formally defined as follows. Two vertices u,v € V(G) doubly
resolve a pair {z,y} C V(Q) if d(u,z) — d(u,y) # d(v,z) —d(v,y). Aset SCV(G) is a
doubly resolving set of G if every pair {z,y} C V(G) is doubly resolved by two vertices
of S (it is said that S doubly resolves {z,y}), and the minimum cardinality of such a set
is denoted by ¥(G). Thus, a doubly resolving set is also a resolving set, and so

dim(G) < ¢(G). (3)

Although it is not straightforward to deduce any relation between ¢ (G) and v (G)
from their definitions, we provide here bounds on t(G) in terms of vy, (G) by generating
doubly resolving sets from MLD-sets. We thus obtain, for specific classes and general
graphs, similar chains to expression (2) that include ¢(G). For more references on (G)
containing algorithmic studies and relations with other graph parameters, we refer the
reader to [7, 33, 34] for results on specific families of graphs and [10, 32, 36] for results
on general graphs.

The paper is organized as follows. In Section 2, we characterize all trees achieving
the extremal values in expression (1). We then show in Sections 3 and 4 how to con-
struct LD-sets and doubly resolving sets from MLD-sets in arbitrary graphs and specific
families, thus producing bounds on the corresponding parameters. Specifically, we prove
in Section 3 that v.(G) < 73,(G) whenever G has no cycles of length 4 or 6 but, for
arbitrary graphs, any upper bound on 7, (G) in terms of v/ (G) has at least exponential
growth; in Section 4, we provide the bounds ¥(G) < vy (G) for graphs G with girth at
least 5, and ¥ (G) < vm(G) + v(G) for any graph G. We conclude the paper with some
remarks and open problems in Section 5.

2. MLD-sets of trees

Henning and Oellermann [24] provided a formula for the metric-location-domination
number of trees and characterized the trees T with vy (T) = v(T), giving both results
in terms of support vertices (see Theorem 2.1 below). Recall that a vertex u of a tree T'
is a support vertex whenever it is adjacent to some leaf (i.e., a vertex of degree 1), and
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it is a strong support vertex if there are two or more leaves adjacent to u. We denote by
S(T) (resp., S'(T)) the set of support (resp., strong support) vertices of T'; ¢/(T) is the
number of leaves adjacent to a strong support vertex.

Theorem 2.1. [24] For any tree T, the following statements hold:

T)+0(T) - |S'(T)].
T) if and only if S'(T) = 0.

(i) ym(T) =~
(i) ym(T) =~

—_—

As the authors observed, any MLD-set must contain, for each support vertex u, either
all the leaves adjacent to uw or all but one of the leaves adjacent to u as well as vertex
u. This observation leads us to see that ¢(T) < v (T), where £(T) denotes the total
number of leaves of any tree T'. Hence, since dim(T") < ¢(T) (see [9]), expression (1) now
becomes

max{£(T),7(T)} < 7ar(T) < dim(T) +7(T). (4)

This section follows the same spirit as Henning and Oellermann [24], who character-
ized in statement (ii) of Theorem 2.1 the extremal trees for expression (4) with vy (T) =
~(T). Indeed, we characterize the remaining extremal cases: vy (1) = dim(T") 4+ (7) in
Theorem 2.2, and vy (T") = £(T') in Theorem 2.3. To do this, we first recall the following
terminology extracted from [9]. A vertex u € V(T) of degree at least 3 is called a major
vertex of T, and a leaf © € V(T) is a terminal vertex of u if the major vertex closest
to x is u. The terminal degree of a major vertex u, written as ter(u), is the number of
its terminal vertices, and w is an exterior major vertex of T if it has positive terminal
degree.

Theorem 2.2. Let T be a tree different from a path. Then, the following statements are
equivalent:

(1) Ym(T) = dim(T) +(T).
(i) dim(T) = 0(T) — |S'(T)].
(iii) Every exterior major vertex u with ter(u) > 2 is the support vertex of all its terminal
vertices.
(iv) Any path joining two leaves of T at distance greater than 2 contains at least two
major vertices.

Proof. (i <= ii) This equivalence is guaranteed by statement (i) of Theorem 2.1.
(it <= 1) It is known that any set S C V(T') composed by all but one of the terminal
vertices of each exterior major vertex u is a minimum resolving set of T (see Theorem
5 of [9] and its proof). Thus, let S C V(T) be such a set, and note that, as any strong
support vertex is an exterior major vertex, then S must contain all but one of the leaves
adjacent to u; consequently, dim(7T") > ¢/(T)—|S'(T)|. Hence, if dim(T) = ¢'(T)—|S'(T)|
then S is formed only by all but one of the leaves adjacent to each strong support vertex.
Let u be an exterior major vertex with ter(u) > 2, and let = and y be two terminal
vertices of u. On the contrary, let us assume for instance that @ ¢ N(u), and let v be
the only neighbor of w in the u-x path. Clearly, u is the support vertex of y because
otherwise there is v' € N(u) \ {y} in the u-y path but {v,v'} would not be resolved by
S since no vertex in either the u-z path or the u-y path is in S (by construction of set
S). Furthermore, one of the leaves adjacent to u, say z, is not in S but reasoning as
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before yields that S does not resolve {v, z}; a contradiction since S is a resolving set of
T. Therefore, u is the support vertex of each of its terminal vertices.

Reciprocally, let us suppose that every exterior major vertex u with ter(u) > 2 is
the support vertex of its terminal vertices. In such a case u € S'(T'). Thus, any set
S C V(T) composed by all but one of the leaves adjacent to each strong support vertex
is a resolving set, since it contains all but one of the terminal vertices of each exterior
major vertex. Moreover, since S is a resolving set satisfying |S| = ¢/(T) — |S'(T)| and
dim(T") > ¢'/(T) — |S'(T)|, as we have seen at the beginning of this proof, we conclude
that S is a minimum resolving set and dim(T") = ¢/(S) — |S'(T)].

(iit < iv) Let us suppose that every exterior major vertex v with ter(u) > 2 is adjacent
to each of its terminal vertices. Given two leaves & and y at distance greater than 2,
there is at least one major vertex u in the x-y path since G is not isomorphic to a path.
Furthermore, this vertex u cannot be unique since otherwise x and y are terminal vertices
of u with either d(u,z) > 2 or d(u’,y) > 2, that is, u is not the support vertex of either x
or y, which is impossible. Reciprocally, let us assume statement (iv) to hold true, and let
u be an exterior major vertex with ter(u) > 2. It is easily seen that no terminal vertex x
of u verifies d(u, x) > 2 since otherwise d(x,y) > 3 for any other terminal vertex y of w,
setting u as the only major vertex in the x-y path, which contradicts statement (iv). O

We want to remark that, although paths are not considered in the preceding result,
it is easy to check that Pj is the only path satisfying v (P,) = v(Py) + dim(FP,,) since
v (Pp) = v(Py,) whenever n # 3 (by statement (i) of Theorem 2.1), and dim(P,) =1
for all n > 1 (see for instance [9]).

Theorem 2.3. Let T be a tree different from the path P>. Then, the following statements
are equivalent:

(1) yu(T) = €(T).
(i) (T) = |S(T)].

(iii) For every u € V(T), there exists a leaf at distance at most 2 from u.

Proof. (i <= ) By statement (i) of Theorem 2.1, vas(T") = £(T') is equivalent to v(T') =
UT)—=0(T)+|S'(T)] but £(T) — ¢'(T) is the number of non-strong support vertices, i.e.
|S(T)| — |S'(T)|, which gives ¥(T') = |S(T)|.

(it <= i) Let S C V(T) be a minimum dominating set of T. Observe that, when
replacing any leaf of S by its corresponding support vertex, the resulting set is still a
dominating set without leaves and containing each support vertex of 7' (since all leaves
must be dominated by vertices of S). Thus, we may assume S(T) C S. Since S has
minimum cardinality, it follows that v(T') > |S(T)|. Therefore, v(T) = |S(T)] if and
only if S(T) is a minimum dominating set of T, i.e., every u € V(T) is either in S(T')
or has a neighbor in §(T'). Equivalently, v(T') = |S(T)| if and only if every vertex u is
either a support vertex (d(u,z) = 1 for some leaf z € N(u)), or u is a leaf (d(u,u) = 0),
or u is adjacent to a support vertex, say v (d(u, ) = 2 for some leaf x € N(v)). O

3. MLD-sets versus LD-sets

In view of the relationship vas(G) < 7. (G) given in expression (2), it is natural to
look for upper bounds on vz (G) in terms of va/(G) as Henning and Oellermann [24] did
5



in Theorem 1.1. In this section, we extend this result by first providing a wide class of
graphs G whose MLD-sets can be extended to LD-sets; this leads us to the upper bound
L (G) < 42,(G). We also prove that v7,(G) is at least exponential in v (G) for arbitrary
graphs G.

Let G be a graph not having the cycles Cy or Cg as a subgraph, and let S be any
subset of V(G). We assign to every pair u,v € S a set of vertices m(u,v) given by {u’,v'}
whenever there exists a u-v path (u,u’,v’,v) (that is unique because of the Cy- and
Ce-free condition), and () otherwise. Let 7(S) = U, ,eq 7(u; v).

Proposition 3.1. Let G be a graph not containing Cy or Cg as a subgraph. For every
MLD-set S C V(G), the set SUT(S) is an LD-set of G. Consequently, vr.(G) < vi;(G).

Proof. Let S = SUn(S). Since S C S is a dominating set of G, we only need to check
that N(z) NS # N(y)N S for every x,y € V(G)\ S. On the contrary, let us assume
the existence of two vertices z,y € V(G) \ S so that N(z) NS = N(y)NS. Let u and
v be vertices in S such that z € N(u) and y € N(v). If u # v then either z ¢ N(v)
or y & N(u) (otherwise (u,x,v,y) would be a cycle on 4 vertices of G, which leads to a
contradiction), and so N(z)NS # N(y)NS. Hence, u = v. Moreover, since the existence
of a vertex w € N(x)NN (y) different from u produces the cycle (u, x, w,y), which cannot
exist, then we have that N(z) N N(y) = {u}, and so N(z) NS = N(y) NS = {u}.

Let z € V(G) \ S be a neighbor of either  or y (that exists because otherwise
N(z) = N(y) = {u} and so the pair {z,y} is not resolved by S, which is impossible
since S is a resolving set). Assuming without loss of generality z € N(x), we have that
z ¢ N(y) since we have seen that N(z) N N(y) = {u}. On the other hand, there is a
vertex v’ € S dominating z. If v’ # u then m(u,u’) = {x,z} C 7(S); a contradiction
since z & w(S). Therefore, u = v’ and N(z) N S = {u}.

Let 2z’ € V(G) \ S be such that either 2z’ € N(z)\ N(z) or 2z’ € N(z) \ N(x) (which
exists since otherwise N[z] = N|[z] = {z,z,u} and so the pair {z, z} is not resolved by
S). Also, let v” € S dominating z’, which must be different from u since otherwise
we could obtain the cycle (u,2’,x,2) when 2/ € N(x)\ N(z), or the cycle (u,z,z,2")
when 2/ € N(z)\ N(z). If 2/ € N(z) \ N(2) then n(u,u”) = {z,2'} C 7(S), which
contradicts * ¢ S = SUn(S). Hence, 2’ € N(z)\ N(z) and so 7(u,u”) = {2,2'} C 7(9).
Consequently, 2 € S but z € N(x) and z € N(y), which implies that N(z)NS # N(y)NS
thus producing a contradiction.

We have thus proved that S is an LD-set of G. To complete the proof, observe that, for
any pair u,v € S, the set 7(u, v) may intersect either S or 7(u’, v") for another pair u’,v" €
S. Consequently, |7(S)| < 2('3)) and so [S] < S|+ |7(S)| < |S|?. Therefore, choosing S
with minimum cardinality yields v.(G) < [S| < [S|? = ~3,(G), as required. O

Henning and Oellermann [24] showed that there is no linear upper bound on 7 (G) in
terms of vas(G) by building up a suitable family of graphs G with v (G) > cym(G) for
any constant c¢. However, the graphs of that family satisfy v.(G) < v3,(G). A natural
question that arises at this point is to determine if the parameter -y, (G) is polynomial in
vm (G). Nevertheless, this is far from being true as we next prove; concretely, we provide
a family of graphs G such that v, (G) is at least exponential in v/ (G).

Theorem 3.2. There is no polynomial function f such that v, (G) < f(ym(G)) for all
graphs G.
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Proof. To prove this result, we construct a family of graphs G, such that v (Gs) >
27m(G:)=2 _ 1 a5 follows. For a positive integer s, let A = {a; : i = 0,...,2°"1 — 1},
B={b:i=0,..,2°"1 —1} and C = {¢; : i = 0,...,s}. The graph G has vertex
set V(Gs) = {p} UA U BUC and edge set given by the pairs pa; and a;b; for every
i €{0,...,2571 — 1}, and b;c; whenever the binary representation of i has a 1 in its j-th
position (Figure 1 illustrates the case for s = 2).

Figure 1: The graph Gs.

It is easy to check that the set {C} U {p} U {bo} is an MLD-set of G, which implies
that

On the other hand, each LD-set S of G4 must contain either vertex a; or vertex b;
for all but at most one i € {0,...,2°7t — 1}. Indeed, if there exist i and j such that
aj, bi, aj, bj ¢ S then

{p} if pes
N(a;))NS = N(a;) NS =
0 otherwise

But this is impossible since S is an LD-set of G. Thus,

YL(Gs) > 257 — 1. (6)
Therefore, combining inequalities (5) and (6) yields vz (Gs) > 27(G)=2 — 1 which
gives the result. [l

4. Doubly resolving sets from MLD-sets

In this section, we show how useful MLD-sets can be for constructing doubly resolving
sets of graphs. Indeed, given an MLD-set of a graph G with girth at least 5 we construct
a doubly resolving set of the same size (recall that the girth, g(G), of G is the length of a
shortest cycle of G); when G is any graph, our method also implies the use of dominating
sets. In both cases we obtain bounds that involve ¢(G) and v (G) (Proposition 4.4 and
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Theorem 4.6), giving rise to chains similar to expression (2) but including the invariant
Y(G) (Corollaries 4.5 and 4.7). We start with the following two lemmas that are the key
to relate MLD-sets to doubly resolving sets.

Lemma 4.1. Let G be a graph and let S be an MLD-set of G. Then, every pair x,y €
V(G)\ S is doubly resolved by S.

Proof. Given any two vertices z,y € V(G) \ S, we shall prove that there exist u,v € S
such that d(u,x) — d(u,y) # d(v,z) — d(v,y). Indeed, let v’,v" € S such that € N(u’)
and y € N(v'), which exist since S is a dominating set of G. We distinguish two cases:

1. v =v. We have d(v/,z) —d(v/,y) =1 —1 = 0 and, since S is a resolving set,
there is a vertex w € S\ {'} such that d(w,z) # d(w,y), which implies that
d(w,z) — d(w,y) # 0. Therefore, we set {u,v} = {u/, w}.

2. v/ #v'. We can assume that ¢ N(v') and y ¢ N(v') (otherwise we proceed as in
the previous case) and so d(u',y),d(v',x2) > 1. Hence, d(v',z) — d(uv/,y) < 0 and
d(v',z) —d(v',y) > 0, so we can take {u,v} = {u/,v'}.

O

Lemma 4.2. Let S be an MLD-set of a graph G, and let w € S and x € V(G) \ S such
that {u,z} is not doubly resolved by S. Then, N(x) NS = {u}. Furthermore, x is the
only vertex of V(G) \ S such that {u,z} is not doubly resolved by S.

Proof. First, we prove that N(x) NS = {u}. Observe that, for every v € S,
d(u,u) — d(u,z) = d(v,u) — d(v, x) (7)

since pair {u,z} is not doubly resolved by S (in particular by v and v). As S is a
dominating set, there is some vertex v* € S with € N(v*), and so setting v = v* in (7)
yields —d(u,x) = d(v*,u) — 1. Necessarily, d(v*,u) = 0 and d(u,z) = 1, which implies
that v* = w and (7) becomes

dv,z) =d(v,u) +1 (8)

for each v € S. Hence, d(v,z) > 1 whenever v € S\ {u}, and so N(z) N S = {u}.

Now, we show that there is no other vertex ' € V(G) \ S different from z so that
{u, 2’} is not doubly resolved by S. Let us assume on the contrary the existence of such
a vertex 2’. Reasoning as above, we easily get d(v,2’) = d(v,u) + 1 for any v € S, which
combined with (8) gives d(v,x) = d(v,z’); a contradiction since S is a resolving set of

G. O

Observation 4.3. For any subset of vertices S of a graph G, it is obvious that any pair
{u,v} C S is doubly resolved by u and v.

Regarding Lemmas 4.1 and 4.2 and Observation 4.3, it is natural to ask whether
MLD-sets S doubly resolve pairs {u,z} with v € S and = € V(G) \ S, thus implying
that MLD-sets would be doubly resolving sets (and so ¢(G) < v(G)). Unfortunately,
this is not true in general as graph H; depicted in Figure 2 shows, because the set
{a1,...,a+} is an MLD-set of H; but it does not doubly resolve any pair {a;,c;}. Also,
Y(Hy) = 2t = 2ym(G) (since all doubly resolving sets satisfy |{a;, b;,¢;} NS| > 2 for
each ¢) and so the bound ¢¥(G) < v(G) does not hold for all graphs G. Furthermore,
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even adding the extra condition g(G) > 5, MLD-sets are not necessarily doubly resolving
sets (see the graph H; of Figure 3). However, for this class of graphs, we next describe
how to modify the elements of any MLD-set to obtain a doubly resolving set of the same
cardinality, thereby producing the bound % (G) < v (G).

C1 Co Ct—1 Ct

Figure 2: The graph Hy, with ¢ > 2, for which {a1,...,a¢} and {b1,...,bs,c1,...,ct} are, respectively,
a minimum MLD-set and a minimum doubly resolving set.

a1 a2 a1 Gy
L] L] L] L] L]
L] L] L) L] L[]
b by bi1 b
Figure 3: The graph H}, with ¢ > 1, where {a1,...,a:} is a minimum MLD-set but it does not doubly

resolve any pair {a;,b;}.

Let S be an MLD-set of a graph G with g(G) > 5. Observe that every u € S has at
most one neighbor of degree 1 in V(G) \ S (otherwise S would not be a resolving set).
Let u be such a neighbor if it exists, and u otherwise. Note that, by construction, u # v
for any two different vertices u,v € S. The following result proves that replacing each
u € S with u yields a doubly resolving set of G whenever g(G) > 5.

Proposition 4.4. Let G be a graph with girth g(G) > 5 and G % P». For any MLD-set
S CV(G), the set S ={u:u e S} is a doubly resolving set of G. Consequently,

Y(G) < vm(G)
and this bound is tight.

Proof. We begin by noticing that, given a vertex u € S, we have that
d(u,z) —d(u,y) = d(u,z) — d(u,y) (9)

for any two vertices z,y # u (because if 4 # u then N(u) = {u}, and so d(u, z)—d(u,y) =
(d(u, ) +1) — (d(u,y) +1)). To prove that S is a doubly resolving set, we first show that
S doubly resolves at least the same pairs as S. Indeed, let {z,y} C V(G) be a pair that is
doubly resolved by 9, i.e., there exist u, v € S such that d(u, z)—d(u, y) # d(v,z)—d(v, y).

We shall see that  and v (which must be different) doubly resolve {z,y}. Clearly, if
9



x,y & {u,v} then w,v doubly resolve {z,y} by (9); and if {z,y} = {u,v} then u,v
also doubly resolve {z,y} by Observation 4.3. So, it only remains to prove that @, v
doubly resolve {z,y} whenever |{u, v} N{z,y}| = 1. Thus, let us assume without loss of
generality that x = u and y # v. We distinguish two cases.

Case 1. uw = u: We have d(u,x) — d(u,y) = d(u,z) — d(u,y) and, by (9), d(v,z) —
d(v,y) = d(v,z) —d(v,y). But d(u,x) — d(u,y) # d(v,x) — d(v,y) by assumption, which
implies that @ and ¥ doubly resolves {x,y}.

Case 2. u # u: By the triangle inequality, d(v,y) < d(v,u) + d(u,y) < (d(v,u) —
1) + (d(w,y) — 1), or equivalently —d(u,y) < d(v,z) — d(v,y) — 2 since u = z. Thus,
d(u,z) — d(u,y) < d(v,z) —d@,y) —2 < d(v,z) — d(v,y), and then {z,y} is doubly
resolved by u and v.

Now, we show that S also doubly resolves the pairs {z, y} not being doubly resolved by
S. By Lemmas 4.1 and 4.2 and Observation 4.3, we can assume that x € S, y € V(G)\ S
and N(y) NS = {z}, being y the only vertex in V(G) \ S so that {x,y} is not doubly
resolved by S. Furthermore, we can prove that N(y) = {z} (this is shown below), which
implies that * = y € S. Thus, pair {z,y} is doubly resolved by y € S and any vertex
v e S\ {y} since d(y,z) —d(y,y) = 1 # —1 = d(v,z) — d(v,y) (note that such a vertex v
exists since |S| > v (G) > 2 as G 2 Py; see for instance [5]). Therefore, we have proved
that S is a doubly resolving set of G of cardinality |S|, which gives ¥(G) < v (G) by
choosing S of minimum cardinality. Moreover, this bound is tight because the graph H
of Figure 3 satisfies ©)(H{) = ya(H{) =t (it is easy to see that {by,...,b;} is the unique
minimum doubly resolving set of Hj; see [6] for details).

To finish the proof, it only remains to check that any pair {x,y} that is not doubly
resolved by S satisfies N(y) = {«}. On the contrary, let us suppose the existence of a
vertex z € N(y)\ {z}, which is not in S since N(y)NS = {z}. As S is an MLD-set, there
is a vertex w € S N N(z), which must be different from z since g(G) > 5. For the same
reason, we have that d(w,z) > 2, and also that d(w,y) = 2. Thus, d(w,z) — d(w,y) > 0
but d(z,z) — d(x,y) = —1, so w,z € S doubly resolve {z,y}; a contradiction. O

This last result, together with expression (3), allows us to place ¥(G) into the chain
of expression (2) as the following corollary shows.

Corollary 4.5. Let G be a graph with girth g(G) > 5. Then,
dim(G) < ¥(G) < ym(G) < 7L(G).

Now, we provide a bound on ¢(G) for arbitrary graphs G. To do this, we proceed
similarly as in the proof of Proposition 4.4 but using also dominating sets.

Theorem 4.6. For every graph G, it holds that
¥(G) <y (G) +7(G)
and this bound is tight.

Proof. Let S; and Ss be respectively a minimum MLD-set and a minimum dominating

set of G. Also, let {z,y} C V(G) be a pair that is not doubly resolved by S = S; U Ss.

Since set S is in particular an MLD-set, by Lemmas 4.1 and 4.2 and Observation 4.3, we

can assume x € S, y to be the only vertex of V(G)\ S so that {z, y} is not doubly resolved
10



by S, and N(y) NS = {x}. Furthermore, x € S; N S because z € S; \ Sz (analogous
for x € Sy \ S1) implies that there is u € Sy dominating y since Sy is a dominating set,
which contradicts N(y) NS = {z}.

Let S’ be the set of vertices y € V(G) \ S so that {z,y} is not doubly resolved by
S for some x € S; N Sy (note that |S’| < |S; N Sz| by the uniqueness of each vertex
y € V(G)\ S). Clearly, SU S’ is a doubly resolving set of G and has cardinality
IS] 4+ |57 < [S1 U S| + [S1NSe| = [S1] + |S2] = ym(G) + v(G), which yields the
expected bound. To prove tightness, we consider the graph H; of Figure 2 which verifies
Y(H;) = 2t and vy (Hy) = y(H) = ¢ for each t > 2. O

Combining Theorem 4.6 and the fact that v(G) < v (G) for any graph G, we achieve
the following chain that is similar to expression (2) and includes ¥(G).

Corollary 4.7. For every graph G, it holds that
dim(G) < ¥(G) < 2ym(G) < 29L(G).

We remark that tightness in the bound %(G) < 2y, (G) is guaranteed by the graph
H; of Figure 2.

Finally, we propose the following conjecture that is supported by Proposition 4.4 since
v (G) < dim(G) + ~(G).

Conjecture 4.8. For every graph G, it holds that
¥(G) < dim(G) +4(G).

5. Concluding remarks and open questions

In this paper, we have first characterized the trees T" in the cases vy (1) = dim(T") +
~(T) and yp (T) = (T, thus completing the study initiated by Henning and Oellermann
in [24]. We have then introduced new techniques that use MLD-sets to construct LD-sets
and doubly resolving sets, which have important applications in many areas as we have
pointed out in the Introduction. With these techniques in hand, we have first extended
more results of [24] by providing the polynomial bound v1(G) < 73,(G) for graphs G
without C4 or Cg, and also by proving that, for arbitrary graphs G, any upper bound
on v (G) in terms of 37 (G) is at least exponential. Subsequently, we have provided two
bounds that surprisingly relate vy (G) and (@), which have not been related so far:
Y(G) < ym(G) whenever g(G) > 5, and ¥(G) < ym(G) + v(G) for any graph G.

It would be interesting to characterize the trees T' with dim(7T") = (7). Also, we
could find new polynomial upper bounds on 1 (G) in terms of v3,(G) for other specific
families of graphs. For arbitrary graphs, Theorem 3.2 could be improved by providing
either a new construction (better than the graph G;) or an upper bound on . (G) in
terms of yp/(G). Concerning 1 (G), besides settling Conjecture 4.8, it would be interesting
to find similar bounds to those of Corollaries 4.5 and 4.7. Concretely, other classes of
graphs G with ¥(G) < va(G) could be found in order to extend Corollary 4.5. Also,
as Corollary 4.7 is concerned with resolvability, location and domination, similar chains
could be performed but using other related invariants such as the partition dimension, the
total location-domination number, and the domatic number; among others. Furthermore,
a different approach could produce new bounds involving parameters derived from other
graph notions such as independence, symmetry, and connectivity.
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