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CONVERGENCE OF A FLUX-SPLITTING FINITE VOLUME SCHEME FOR
CONSERVATION LAWS DRIVEN BY LEVY NOISE.

ANANTA K. MAJEE

ABSTRACT. We explore numerical approximation of multidimensional stochastic balance laws driven by
multiplicative Lévy noise via flux- splitting finite volume method. The convergence of the approximations
is proved towards the unique entropy solution of the underlying problem.

1. INTRODUCTION

Let (Q,P,F,{F:}:>0) be a filtered probability space satisfying the usual hypothesis i.e {F;}¢>0 is a
right-continuous filtration such that Fy contains all the P-null subsets of (2, F). In this paper, we are
interested in the study of numerical scheme and numerical approximation for multi-dimensional nonlinear
stochastic balance laws of type

du(t,z) + div, (3(¢, ) f (u(t, 2))) dt = /En(u(t,x); 2) N(dz,dt), (t,x) €Iy, (1.1)

U(O,I) ZUO(x)v €T GRd;

where [I7 = [0, T) x R? with T' > 0 fixed. Here, f : R — R is a given real valued flux function, @' is a given
vector valued function, ug(z) is a given initial function and N (dz, dt) = N(dz,dt) —m(dz) dt, where N is
a Poisson random measure on (E, £) with intensity measure m(dz), where (E, &, m) is a o-finite measure
space. Furthermore, (u, z) — n(u, z) is a given real valued functions signifying the multiplicative nature
of the noise.

This type of equation arises in many different fields where non-Gaussianity plays an important role.
As for example, it has been used in models of neuronal activity accounting for synaptic transmissions
occurring randomly in time as well as at different locations on a spatially extended neuron, chemicals
reaction-diffusion systems, market fluctuations both for risk management and option pricing purpose,
stochastic turbulence, etc. The study of well-posedness theory for this kind of equation is of great
importance in the light of current applications in continuum physics.

Remark 1.1. We will carry out our analysis under the structural assumption E = O x R* where O is a
subset of the Euclidean space. The measure m on E is defined as v x p* where v is a Radon measure on
O and p* is so-called Lévy measure on R*. Such a noise would be called an impulsive white noise with
jump position intensity v and jump size intensity p*. We refer to [30] for more on Lévy sheet and related
impulsive white noise.

In the case n = 0, the equation (L)) becomes a standard conservation law in R? and there exists a
satisfactory well-posedness theory based on Kruzkov’s pioneering idea to pick up the physically relevant
solution in an unique way, called entropy solution. We refer to [19] 27], 28] B3] and references therein for
more on entropy solution theory for deterministic conservation laws.

The study of stochastic balance laws driven by noise is comparatively new area of pursuit. Only
recently balance laws with stochastic forcing have attracted the attention of many authors [2] [4, [5] [8] [
[T0] (111, 2L 141 15, [16] 18, 22] 23] and resulted a significant momentum in the theoretical development of
such problems. Due to nonlinear nature of the underlying problem, explicit solution formula is hard to
obtain and hence robust numerical schemes for approximating such equation are very important. In the

2000 Mathematics Subject Classification. 45K05, 46550, 491.20, 491.25, 91A23, 93E20.
Key words and phrases. Conservation Laws, Stochastic Forcing, Lévy Noise, Stochastic Entropic Solution, Stochastic
Partial Differential Equations,Young measures, Kruzkov’s entropy, Finite volume scheme.

1


http://arxiv.org/abs/1708.03134v1

2 ANANTA K. MAJEE

last decade, there has been a growing interest in numerical approximation and numerical experiments
for entropy solution to the related Cauchy problem driven by stochastic forcing. The first documented
development in this direction is [21], where the authors established existence of weak solution (possibly
non-unique) of one dimensional balance law driven by Brownian noise via splitting method. In a recent
paper [26], Kroker and Rodhe established the convergence of monotone semi-discrete finite volume scheme
by using stochastic compensated compactness method. Bauzet [3] revisited the paper of Holden and
Risebro [21], and generalized the operator-splitting method for the same Cauchy problem but in a bounded
domain of R%. Using Young measure theory, the author established the convergence of approximate
solutions to an entropy solution. We also refer to see [25], where the time splitting method was analyzed
for more general noise coefficient in the spirit of Malliavin calculus and Young measure theory. In a
recent papers [0 [7], Bauzet et. al. have studied fully discrete scheme via flux-splitting and monotone finite
volume schemes for stochastic conservation laws driven by multiplicative Brownian noise and established
its convergence by using Young measure technique.

The study of numerical schemes for stochastic balance laws driven by Lévy noise is more sparse than
the previous case. A semi-discrete finite difference scheme for conservation laws driven by a homogeneous
multiplicative Lévy noise has been studied by Koley et al.[24]. Using BV estimates, the authors showed
the convergence of approximate solutions, generated by the finite difference scheme, to the unique entropy
solution as the spatial mesh size Az — 0 and established rate of convergence which is of order %

The above discussions clearly highlight the lack of the study of fully discrete scheme and its convergence
for stochastic balance laws driven by Lévy noise. In this paper, drawing primary motivation from [6],
we propose a fully discrete flux-splitting finite volume scheme for (II]), and address the convergence of
the scheme. First we establish few essential a priori estimates for approximate solutions and then using
these estimates, we deduce entropy inequality for approximate solutions. Using Young measure theory,
we conclude that the finite volume approximate solutions tend to a generalized entropy solution of (L.IJ).

The rest of the paper is organized as follows. In Sections [2] and Bl we collect all the assumptions for
the subsequent analysis, then we define the numerical scheme and finally state the main result of this
article. Section M deals with few a priori estimates on the finite volume approximate solutions and using
these a priori estimates, in Section Bl we establish discrete and continuous version of entropy inequalities
on approximate solutions. The Section [0l is devoted to the proof of the main theorem along with short
discussion of Young measure theory and its compactness, is presented in Appendix [7

2. PRELIMINARIES AND TECHNICAL FRAMEWORK

It is well-known that due to nonlinear flux term in (II]), solutions to (II]) are not necessarily smooth
even if initial data is smooth, and hence must be interpreted via weak sense. Before introducing the
concept of weak solutions, we first assume that (Q, P F, {]'—t}tzo) be a filtered probability space satisfying
the usual hypothesis, i.e., {F;}+>0 is a right-continuous filtration such that Fy contains all the P-null
subsets of (Q,F). Moreover, by a predictable o-field on [0,7] x Q, denoted by Pr, we mean that the
o-field is generated by the sets of the form: {0} x A and (s,t] x B for any A € Fp; B € F,, 0 < s,t <T.
The notion of stochastic weak solution is defined as follows:

Definition 2.1 (Weak solution). A square integrable L?(R9)-valued {F; : t > 0}-predictable stochastic
process u(t) = u(t, z) is called a stochastic weak solution of (L)) if for all test functions 1 € C°([0,T) x
RY),

¥(0, 2)ug(z) de + / {0,51/1(1?, z)u(t,z) + 0(t, z) f(u(t, x)) - Vao(t, :I:)} dt dz

R4 II

Jr/HT/EU(U(t,:E);z)w(t,x) N(dz,dt)dz =0, P-as.

However, since there are infinitely many weak solutions, one needs to define an extra admissibility
criteria to select physically relevant solution in a unique way, and one such condition is called entropy
condition. Let us begin with the notion of entropy flux pair.

Definition 2.2 (Entropy flux pair). (8,¢) is called an entropy flux pair if 3 € C?(R) and ¢ : R ~— R is
such that
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An entropy flux pair (8, () is called convex if 5”(s) > 0.
Let A= {ﬂ € C?(R), convex such that support of 3" is compact} In the sequel, we will use specific
entropy flux pairs. For any a € R and 8 € A, define F'ﬁ / B'(s)f'(s)ds . Note that, FA(.) is a

Lipschitz continuous function on R and (3, F?) is an entropy flux-pair. To this end, we define the notion
of stochastic entropy solution of (L.TJ).

Definition 2.3 (Stochastic entropy solution). An L2?(R?)-valued {F; : ¢ > 0}-predictable stochastic
process u(t) = u(t, z) is called a stochastic entropy solution of () if the following hold:
i) Foreach T' >0
sup_ E||[u(:,1)|§] < +oc.
0<t<T
ii) For each 0 < 1 € C2°(]0,00) x R%) and B € A, there holds

/ ¥(z,0)B(uo(x)) dz +/H {8tw(t, 2)B(u(t, z)) + FP(u(t, z))d(t, z) - V(¢ z)} da dt
/H // )B' (ult, x) + My(ult, x); 2))(t, x) dA N (dz, dt) da
+/HT/E/O (1= Nn*(u(t, x); 2)8" (u(t, z) + M(u(t, z); 2))o(t, x) A m(dz) dt dz > 0, P-as.

Due to nonlocal nature of the Ito-Lévy formula and the missing noise-noise interaction, the Defi-
nition 2.3 does not alone give the L!-contraction principle in the sense of average when one tries to
compare two entropy solutions directly, and hence fails to give uniqueness. For the details, we refer to
see [12| [18]. However, in view of [2, 0], we can look for so called generalized entropy solution which are
L*(R? x (0,1))-valued {F; : t > 0}-predictable stochastic process.

Definition 2.4 (Generalized entropy solution). An L?*(R? x (0,1))-valued {F; : ¢t > 0}-predictable

stochastic process u(t) = u(t, z, «) is called a generalized stochastic entropy solution of (I.]) provided
(1) For each T >0

sup E[Jut,,)|I§] < +oc.
0<t<T

(2) For all test functions 0 < 1 € C}2([0,00) x R?), and any 3 € A, the following inequality holds

B(UO( N (x,0) dx +/n / u(t, , )0 (t, x) + FP (u(t,x,a))i(t, z) - Vzw(t,x)}dadtdac

/HT// / u(t, z, 0); 2) B (ult, », ) + An(u(t, z, a); 2) ) (t, 2) do dA N (dz, dt) da

/n/ / / (1= Ay (ult, 2, @); 2)B" (ult, 2, @) + An(u(t, 2, 0); 2))

x Y(t, ) dadm(dz)dtde > 0, P-a.s. (2.1)

The aim of this paper is to establish convergence of approximate solutions, constructed via flux-splitting
finite volume scheme (cf. Section B), to the unique entropy solution of (], and we will do so under the
following assumptions:

A1 f:R~ Ris C? and Lipschitz continuous with f(0) = 0

A2 7:[0,T] x RY— R? is a C! function with div,@(¢,z) = 0 for all (¢,z) € Il7. Furthermore, there

exists V' < +oo such that |9(t,z)| <V for all (¢,z) € Ir.

A.3 There exist positive constants 0 < \* < 1 and C* > 0, and h; € L?(E,m) with 0 < hy(z) < 1

such that for all u,v € R; z € E

n(u; 2) = n(v; 2)| < Afu=wlhi(2); [n(u, 2)] < C"ha(2).
Moreover, 1(0;z) = 0 for all z € E.
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A.4 The initial function ug(z) is a L?(R%)-valued Fy measurable random variable satisfying
E |luol 3] < +oc.
We have the following existence and uniqueness theorems whose proofs are postponed to the Appendix.

Theorem 2.1. Let the assumptions [AIHA 4 hold. Then there exists a generalized entropy solution of
([T in the sense of Definition 24l

Theorem 2.2. Under the assumptions [AJHAA, the generalized entropy solution of (L) is unique.
Moreover, it is the unique stochastic entropy solution.

Remark 2.1. Note that we need the assumption [AI] to get entropy solution for the initial data in
L?(R%) to control the multi-linear integrals terms. The assumption [AZ3]is needed to handle the nonlocal
nature of the entropy inequalities. Boundedness of 7 is needed to validate Proposition

Throughout this paper, we use the letter C' to denote various generic constant which may change line
to line. We denote by ¢y the Lipschitz constant of f and ¢, the finite constant (which exists thanks to

[A3) as ¢, = / hi(z)m(dz). The Euclidean norm on R? is denoted by | - |.
E

3. FLUX-SPLITTING FINITE VOLUME SCHEME

Our main point of interest is numerical approximation for the problem ([I)). Let us first introduce
the space discretization by finite volumes (control volumes). For that we need to recall the definition of
so called admissible meshes for finite volume scheme (cf. [I7]).

Definition 3.1 (Admissible mesh). An admissible mesh 7 of R is a family of disjoint polygonal con-
nected subset of R? satisfying the following:

i) R? is the union of the closure of the elements (called control volume) of 7.
ii) The common interface of any two elements of 7 is included in a hyperplane of R9.
iii) There exists a nonnegative constant « such that

ah? < |K],

1 3.1
OK| < —h%! VK €T, (3.1)
o
where h = sup {diam(K) K e T} < 400, |K| denotes the d-dimensional Lebesgue measure of
K, and |0K]| represents the (d — 1)-dimensional Lebesgue measure of 0K.

In the sequel, we denote the followings:

Ex: the set of interfaces of the control volume K.

N(K): the set of control volumes neighbors of the control volume K.

K|L: the common interface between K and L for any L € N(K).

E: the set of all the interfaces of the mesh.

Nk, o: the unit normal to the interface o, outward to the control volume K, for any o € Ek.

Consider an admissible mesh 7 in the sense of Definition 311 In order to discretize the time variable,
we split the time interval [0,T] as follows: Let N be a positive integer and we set At = % Define
t, = nAt, n =0,1,--- ,N. Then {¢t, : n =0,1,--- N} splits the time interval [0, T] into equal step
with a length equal to At.

It is well known that, the main idea behind flux-splitting finite volume method is to express a flux
function f as the sum of a nondecreasing function f; and a non increasing function f,. Since the flux
function f is Lipschitz continuous such a decomposition is always possible.

We propose the following flux-splitting finite volume scheme to approximate the solution of ([II)): for
any K € T, and n € {0,1,2,--- | N — 1}, we define the discrete unknowns u%, as follows

1
ug = W/KUO(SC) dzx,
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B e )+ 3 oA maco ) () + ) — ()™ () + folug)) }
oc€EK
o=K|L

K| [t
| | / n(ut: 2)N(dz, dt), (3.2)

where, by denoting dv the d — 1 d1mens1onal Lebesgue measure

Lo Lo * dv(z)d
U - o) = o (t, ) - o t,
(T nK.o) At|o|/ /(v( x) Nk, ) v(z)
tnt1
(U-nge)” At|a|/ / o(t, x) an) dv(z) dt.

Since div,9(t,z) = 0 for any (¢, z) € IIr, an elementary estimate yields
Z lo|T - nk s = 0. (3.3)
€€k
We define approximate finite volume solution on Ily as a piecewise constant given by
u’%—ym(t, x) =uy for x € K and t € [tn, tnt1)- (3.4)
Remark 3.1. In view of the properties of stochastic integral with respect to compensated Poisson

random measure, each u is F,a¢ - measurable for K € T and n € {0,1,---, N}. Thus, u%m(t, 1) is an
L?(R%)-valued F- predictable stochastic process as ug satisfies [A4l

Finally, we state the main theorem of this paper.

Main Theorem. Let the assumptions [A.THA 4l be true and 7 be an admissible mesh on R? with size h
in the sense of Definition 3.1l Let At be the time step as discuss above and assume that

A
Tt—>0ash—>0.

Let uﬁr a:(t, ) be the finite volume approximation as prescribed by (4. Then, there exists a L?(R¢ x
(0,1))-valued {F; : t > 0}-predictable process u = u(t, x, ) such that
i) u(t,z, @) is a generalized entropy solution of (LI and u%m(t,x) — u(t,z,«) in the sense of
Young measure.
(i) ug—’At(t,x) — a(t,z) in LY (R% LP(Q2 x (0,T))) for 1 < p < 2, where u(t,z) = fol u(t, z, ) de is
the unique stochastic entropy solution of (LTJ).

Remark 3.2. Under the CFL condition
(1 - &)a2h
Cf‘/
we have uniform moment estimate and weak BV estimate on u}% A for € =0 and € € (0,1) respectively
(see Lemmas [£.1] and [£2]). In the deterministic case, condition ([3.1)) is sufficient to establish the conver-

gence of approximate solutions to the unique entropy solution of the problem. But in the stochastic case,
only this condition is not enough and hence, we assume the stronger condition, namely t s 0ash —O0.

At < , for some £ € (0,1), (3.5)

Remark 3.3. Since every Lipschitz continuous function can be expressed as the sum of nondecreasing
function and a non increasing one, it suffices to prove the main theorem (cf. Theorem B]) for a nonde-
creasing Lipschitz continuous flux function f.

For a nondecreasing Lipschitz continuous function f, the finite volume scheme ([B:2) reduces to an
upwind finite volume scheme

K . K tni1
|At|( - uk) + Z lo|v - ng o f(uy) = | | / n(u?; 2)N(dz, dt),
c€EK Clﬁ)

1
ul = W/KUO(QC) dx,
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where u? represents the upstream value at time ¢,, with respect to o. More precisely, if ¢ is the interface
between two control volumes K and L, then

n_ ul it ¥-ng o, >0,
up f U-ng s <O0.
The upwind finite volume approximate solution u’7‘- ar(t, z) on Iy is defined as
u}7‘— Aty x) =ul for x € K and t € [ty, tni1), (3.7)
where the discrete unknown u’, K € T,n € {0,1,---, N — 1} is computed from (3.0]).

4. A PRIORI ESTIMATES

This section is devoted to a priori estimates for the upwind finite volume approximate solution u’;— At
which will be very useful to prove its convergence. We start with the following lemma which is essentially
a uniform moment estimate.

Lemma 4.1. Let T > 0 and the assumptions [AIHAA hold. Consider an admissible mesh T on R
with size h in the sense of Definition Bl Let At = % be the time step for some N € N*, satisfying the
Courant-Friedrichs-Levy (CFL) condition

a’h
At < —
eV’
Then the upwind finite volume approximate solution u% A Satisfies the following bound
h T
||u7’,At”%OO(O,T;LZ(Qx]R'i)) < e TE||uoll3)]- (4.1)

As a consequence, we see that u’7‘- ¢ Satisfies the following bound

1w, adllZz (@) < T e E[|luol3].

Proof. To prove (&), it is enough to prove: for n € {0,1,---, N — 1}, the following property holds

> IKE[(uk)?] < (1+ Atey) R [[uol[3]. (4.2)
KeT
Observe that
2 1 2
> IKIB[08) = 3 KB (5 JRECED

< E[[Juoll3] = (1 + Atey) E||uo[3]-
Set n € {0,1,---, N — 1} and suppose that (2] holds for n. We will show that (£2) holds for n+ 1. In

view of (B3], one has Z |0 - nk,o f(uk) = 0 and hence the scheme ([B.6) reduces to
o€l

K K trt1
B i i) + 3 1ol maco (Fu2) — f) = 21 / p(u: 2 N (dz, db).

oc€EK
Again, in view of the definition of «[}, the above finite volume scheme is equivalent to

K K n+1

LJ(%“*U%HE lo|(7 - nk.o)” (f(ul) = fuf)) = || / n(ul; z2)N(dz,dt).  (4.3)
c€lk
o=K|L

Multiplying 3) by v} and using the fact that ab = 1[(a + b)* — a® — b*] for any a,b € R, we obtain

B g2 = ] = Bl — ) a6 32 ol maeo) (ko) — £
c€€K

o=K|L

tna1 ~
T IK| / /E n(ul: 2)ue N (dz, de).
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Taking expectation, and using the fact that for any two constants 717,75 > 0 with T} < T5,

XTl/ /gtz dzdt)}

where ( is a predictable integrand with IE{/ / C*(t, 2) m(dz) dt} < 400 and X is an adapted process,
0o JE

we obtain, thanks to It6 isometry

@E[(u}’jl)? — (u) /nﬂ/ (ulfs 2 dz)dt}

el 2 ol ) (f () - 7)) |

o= KM

— AE[ Y (015 o) (Fluf) — Fuf))ui]

oc€lk
o=K|L

where we have used (3) to replace u’x' —u%. Note that, thanks to (B1]), the following inequality holds
|OK]| 1
K| — o2h’
. Vv
Therefore, Z lo||T- nko| < VI|OK| < —+| K], and hence
o?h
0€EK
. _ 14
Z lo|(Vnk,0)” < —7|K] (4.4)
a?h
c€elk
We use Cauchy-Schwartz inequality, the assumption [A3 on 7, and ([@4]) to have

K . _ AtV
Pl g g - upo?] < ot 3 Il i) (S (Fluk) = Fu))” — (f(ug) - f(uz’))u}?}]
o=K|L
K
+ Atcn|2 | E[(u})?]
=A+ At CW?E[(U?{>2] (4.5)
To estimate A, we use [I7, Lemma 4.5] and have: for any a,b € R
1
b(f(8) = £(a)) 2 6(8) = $(a) + 7~ (/O) = (@),
where ¢(a) = /Oa sf'(s)ds. Note that 0 < ¢(a) < cga®. Thus using the CFL condition i?;z < 3" we
get
A<E| D |ol(@ nwo)” ($uf) — dluk)) |- (4.6)
0€EK
o=K|L

Combining ([@H]) and (6]), we obtain the following inequality after summing over all K € T

5 3 IKIE[ ()2 — ()]

KeT

<S5 Y IKIE[R] + Y A S 1010 nic) E[o(uf) - d(uf)]

KeT KeT o€l
o=K|L

A
= 20 S |KIE[(u )] + B,
KeT
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Since div,9(t,z) = 0 for any (¢, z) € Ilr, one can show that B = 0, yielding
n n n+1
Y IKE[w)?] < (14 Atey) D IKIE[(uf)’] < (14 Atey)"  E]uoll3].
KeT KeT

Thus ([@2) holds by mathematical induction. In other words, (£I]) holds as well. As a consequence, we
have

||UT AtHLZ(QxHT) Z Z A15|K|IE } < TGC"TE[HUOH%}-
n=0 KeT

This completes the proof. (|
Lemma 4.2 (Weak BV estimate). Suppose T > 0, and the assumptions [AIHAA be true. Let T be an

admissible mesh with size h in the sense of Definition 31l Let At = % be the time step for some N € N*,
satisfying the CFL condition

a2
Ar< L=8a’h
cyV
Letu} : K€ T, ne{0,1,---,N — 1} be the discrete unknowns as in (BL). Then the followings hold:

a) There exists a positive constant C, only depending on T, uo,&, cf, ¢, such that

N-1
ST At Y ol B[ (Fud) - )] < C (4.8)

KeT n=0 c€€K

b) Let R > 0 be such that h < R. Define Tp = {K € T : K C B(0,R)} and E® be the set
of all interfaces of the mesh Tr. Then there exists a positive constant Cy, only depending on
R,d,T,uo,&, cf,cy such that

, for some & € (0,1). (4.7)

N-1
SO ALY JollT no B[ f(uh) ~ Fuio)]] < Gt (4.9)
n=0

oceER

Proof. Multiplying (£3)) by At ul, taking expectation and summing overn =0,1,--- ,N—1land K € T,
we obtain

> Afmm[(wf —ug)uk] + > 3 Aol i) Y E|(f(uk) - f(uf))uk] =0

KeT n=0 KeT n=0 cEEK
o=K|L

ie, A+B=0.
Let us first consider A. Using the formula ab = % [(a + b)? — a® — b?] and [@3), we rewrite A as
N

A= 3 IKIE[)? - ] - 5 3 e[ [

KeT KeT n=0 n

N-1 (At)2 " 2

-y K] E(( > |ol(#nko) (f(uK)*f(UL)))
KeT n=0 oc€EK
o=K|L

=A;+ A +As.

Thanks to Cauchy-Schwartz inequality, the CFL condition (@1, the inequality (£4]), and the assumption
A3

Ay > = Z Z A9 l S 1ol(@ o) (f (u@f(uz))?],

o€l
o=K|L

As> _% S Y AtK|eE[(uh)?]-
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Therefore, by using Lemma [} we arrive at

- 1 , 1
A > — ST ey B Juol B] — 5Elluol 3] > 1ol(@ o) E[ (£luf) - £u}))’]
KeT n=0 UE;‘E\KL

1-— L
> _( 205) Z At Z lo|(T-nK,0)” E[(ﬂ“?{)*f(u%))ﬂ B 507
! KeT n=0 5:6;5‘}2

for some constant C' > 0, depending only on 7, CpyUp. A similar argumentations (cf. estimation of A)
reveal that

B2y > Z S ol nico) B[ (k) - )]

o€l
o=K|L

Since A + B = 0, there exists positive constant C = C(T, ug, &, ¢, c,) > 0 such that

N-1
S AE Y [0l nwo) E[(fluk) - Fwh)’] <€, (4.10)

KeT n=0 c€€K
o=K|L

or equivalently (&8]) holds.
Let TR ={K € T : K C B(0,R)}. Following [6], there exists C1 = C1(R,d,T,ug,&,cs,cp) > 0 such
that

S Y At (ol nico) E[| i) - fup)]] < Cint (a.11)

KeTr n=0 o€l
o=K|L

holds as well. Let &% denotes the set of all interfaces of Tz. Then (II)) is equivalent to @J). This
completes the proof of the lemma. |

5. ON ENTROPY INEQUALITY FOR APPROXIMATE SOLUTION

In this section, we establish entropy inequality for finite volume approximate solution. Since we are
in stochastic set up, one needs to encounter the It6 calculus, and therefore it is natural to consider a
time-continuous approximate solution constructed from uﬁr At

5.1. Time-continuous approximate solution. Since div,#(t,z) = 0 for any (t, x) € lp, the upwind

finite volume scheme (IBEI) can be rewritten as: for any K € 7, and n € {0,1,--- ,N — 1}
tnt1
uitt = Z lo|(T - nk,o)” (f(ul) — / / N(dz,dt),
UEEK tn
0
Upe = —/ uo(z) dx.
K| Jk

We define a time-continuous discrete approximation, denoted by v} (w, s) on Qx [t,, tnt+1], n € {0,1,--- , N—

1} and K € T from the discrete unknowns v’ as

U}‘((w,s)zu}’(—i—/s Z lo|(T-nk.o)” 1(us) |K| Flug) = flui) /tn/ n(ul; z)N(dz, dt). (5.1)

tn oex
Note that,

We drop w and write v} (-) instead of v} (w, -). Define a time-continuous approximate solution v/ A, (s, z)
on [0,T] x R by
v At ) = vi(t), z € K, t€[0,T). (5.2)
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Next, we estimate the L?-error between ug— A and Uél—7 At We have the following proposition.

Proposition 5.1. Let the assumptions of Lemma hold and u}%m be the finite volume approximate

solution defined by B8] and B1), and vg—,At be the corresponding time-continuous approximate solution
prescribed by (EI)-(@.2). Then there exit two constants C,Cy € R, independent of h and At such that

105 ar — w5 adll T2ty < Ch+ CiAL.

Proof. In view of Lemmas ] - 2] and the estimate (€4 along with [7), we have

h h
||UT At T UT At”%Q(QxHT)

tnt1
/ / / / (u; 2 dz)dt} dx ds
KETn 0“tn tn

+ Z Z/nﬂ/ At Z lo|(T - nk.o) (f(u;’)—f(u’}())ﬂ dx ds

(At VK
= Z Z K| | | Z lo| (T nK,a)_E[(f(um*f(U’}())Q} +CﬁAt||“}7l’,At”%2(anT)

Z lo| (- nK,a)iE{(f(ug) - f(%?))ﬂ + CnAtHug’,AtHQL?(QxHT)

KeT n=0 c€EK

(1-¢)?*a?
< hTC + g At sl T2 axryy < Ch+CiAL,
f
where C, C; € R’ are two constants, independent of h and At. This finishes the proof. a

5.2. Entropy inequalities for the approximate solution. This subsection is devoted to derive the
entropy inequalities for the finite volume approximate solution which will be used to prove the convergence
of the numerical scheme and hence the existence of entropy solution of the underlying problem (LI). To

do so, we start with the following proposition related to the entropy inequalities for the discrete unknowns
u, KeT, ne{0,1,2,...,N—1}.

Proposition 5.2 (Discrete entropy inequalities). Let the assumptions [AIHA A hold, and T > 0 be fized.
Consider an admissible mesh T on R® with size h in the sense of Definition B0l Let At = % be the time
step for some N € N*, satisfying

At

T —0ash—0.

Then, P-a.s. in Q, for any B € A and for any nonnegative test function ¢ € C°([0,T) x RY), the
following inequality holds:

Ty [ (B = B ita) da

n=0 KeTr
N1 nt1
+ Z K;R/ / FO (i )0(t ) - Vot (ty, x) du dt
+ KEZTR /tt+// / n(ul; 2)B (uf + An(ulk; 2)) ¢ (tn, v)d\ dx N (dz, dt)
ﬂ;K;R/M/// (1= NP (ufe; 2)B” (whe + An(he; 2)) ¥ (tn, 2)dA dzm(dz) dt > R™2,

where R™2t satisfies the following condition: for any P-measurable set B, E{lBRh*At} —0ash—0.
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Proof. Let T > 0 be fixed and 7 be an admissible mesh on R? with size h in the sense of Definition B.11
Let At = % be the time step for some N € N* and ¢, = nAt,n € {0,1,--- ,N}. Let § € A. Applying
It6-Lévy formula to B(v} ), where vl is prescribed by the equation (G.1]), we have

Bl (tns1)) = B (1)) + / ) Y Jol(7- i) LB L) o

o€l |K|

n /t " L] 1n<u}z;z>ﬁ'(v?<<t>+An<u}z;z))dw<dz,dt)

/nﬂ// (1= N (u; 2)B" (Vi (t) + An(ulfe; 2))dAm(dz) dt. (5-3)

Let ¢ € C2°([0,T) x R?) be a nonnegative test function. Then there exists R > h such that suppy C
[0,T) x B(0,R — h). Also define Tp = {K € T : K C B(0,R)}. We multiply the equation (5.3) by

1
| K |4} where ¢} = ¥ (tn, ) dz and then we sum over all K € Tp and n € {0,1,---,N —1}. The
K

K]
resulting expression reads to
N-1
> D B - Bl IK v
n=0 KeTr
N-—1 trnt1
=X 3 [ ERE) X 1ol (705) — Fl) ke
KETR oc€EK
n+1 ~
+ Z/ // Vi (t) + Mp(ul; 2)) | K| dA N (dz, dt)
0 KeTr
tnt1 "
Z / i / (1= N (w3 2)8" (3 () + Mn(ul; 2)) [ K |9ed m(dz) dt
n=0 Ke tn
ie. AMAL = phAt L pfhAL L DAL (5.4)
Following [6], we express B2t as follows.

h,At h,At h,At h,At
Bh At Bh At Bl + B1 _ B2 + 32 ,

where

EE DS / Bui) D 1o1(T s q) ™ (Flu) = J (i) di.

n= OKGTR c€EEK
=Yy / > 1017 nac) " (FP(ug) = FP (ufo)) e dt
n=0 K€Tr c€EK

Observe that

BB = 3 S ALY ol el {00 - 0R) ~ (708) - P ok

n=0 KeTr c€EEK

Thanks to nondecreasingness of the functions f and ', one has
B (whe) (f(up) = fluf)) = (F7(up) — FP(uf)) = / (B (uf) = B'(s)) f'(s)ds <0,

and hence Bf’At - Bg’At <0.

By the assumption [A.2] we have Z 0|7 - .o FP (u )% = 0, and therefore
o€l

BN S ALY Il nio PPk

n=0 KE€Tr c€lK
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Let x, be the center of the edge o and ¥? be the value of (¢, 2,). Then,

SN0 ALY jol(F ko) PP (uh)vy =0

n=0 KeTr o€l

A similar argument (as described in Bauzet et al.[6l Proposition 4]) reveals that

tn+1
Yy [ [ PPuionte) - Oabltn, ) ded + YA+ RS,
t K

n=0 KeTr

where

R = Z S ALY (ol nuco) [FP (k) — F2 ()] (i — v,

n=0 KeTr o€l
N-1

RyA =3 30 At Y {lol@ o)y - / (7 i Vb, @)dv (@) P2 ().
n=0 KeTr c€€K g

Combining all these, we obtain that

BhAt < Z /t +1/ Ff(u ,x) - Vatb(ty, x) dz dt

n=0 KeTr
4 BhAL_ gt phiat | phit

Next we consider the term M™At. It can be decompose as follows:
Mh,At _ Mh,At _ Mlh,At +M1h,At’

where

pA Z 3 /t*/// n(u: 2)B (W + M(ul: 2)) (b, ) dXda N (dz, de).

n=0 Ke€Tr

Similarly, we rewrite D4t as

h,At __ nh,At h,At h,At
DAt = phat — D2t 4 DY

3

where
Dh,At

_ Z > /+/// (1= N2 (s 2)8" (ule + Ap(ull; 2)) (b, ) AN dam(dz) dt.

n=0 KeTr

In view of (&A), (@0), (1), and ([E4) we have
B> [ (B = Bui)) ot ) do

n= OKGTR
tnt1
+Z > / /Fﬂ ) - Varh(ty, x) da dt
n=0 KeTgr ”tr
N-1 i1
+ Z / // / n(uf; z uKJr/\n(uK, ))1/)(tn,z)d/\d:c]§7(dz,dt)
n=0 Ke€Tr
N-1 tnti
+ / // / (1= N> (ul; 2)B" (e + M(ufe; 2)) 0 (tn, 2)dX dem(dz) dt
n=0 KE€Tr tn
> (Bf t_phat) RISt RSt (Mh At A ¢ (D?,At _ Aty = gt
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To complete the proof of the proposition, it is only required to show: for any P-measurable set B,

At
E[lBthAt} — 0 as h — 0. Now we assume that — — 0 as b — 0. In this manner, with out loss of
generality, we may assume that the CFL condition

At < ﬂQQ
CfV
holds for some € € (0,1) and hence the estimates given in Lemmas [l and hold as well. To proceed

further, we will separately show the convergence of E[lB(B?’At - B’“At)}, E[lB(Mlh’At - M}“At)},
E[15(D}* — DM20) | B[1, B, and E[1p RS>,

1. Study of E[lB(B?’At — Bh’At)]: Let B be any P-measurable set. Then, by using (51]) we get

E[1s(BI - BhAY)]|

N-1

EHX X LB R ) X Il o) (7)) v )
n=0 KETR tn c€EEK
= E|: /n+1 ” gK |K| ( Z |U| o - an ( (UZ)—f(U?()))%L/J%ds}
n=0 K tn UEgK
N-1 tors
+ E[n 3 / B (&%) / / n(ul; 2)N(dz, dr) GEZ£K|U| Tnge)” (ful) — flug))vik ds}

= TAt At
Following computations as in [6l, estimation for Tlh ’k], it can be shown that

At 14
T < 18 [l —5 C-

Next, we move on to estimate Th’At. Note that

|ThAt <]E Z Z / 1351/(‘5?()1/’% Z |a|(17-nK,g)_(f(UZ)—f(U?()))QdS}

n=0 KeTgr oc€lK
n+1 2
XE HZOK;/ (/tn/ n(u?; 2)N(dz dr)) ds]
Il S S A 1ol(@ no)”) D lolv - nao) B[ (Fu) — fluk)’]
n=0 KE€Tr oefk o€l
XE HZOK;R/ / / (ul; z) m(dz) drds}

< Bl Y S A6 Y Jol@ nco) B[ (F3) — (k)]

n=0 KeTr o€l

N-1
x e Aty Y | K|AE[(ug)?]

n=0 KeTr
Atc
< Tn—llﬂ”lleIWIILw lur,allZs@urip C-
In the above, the first inequality follows from Cauchy-Schwartz inequality, second inequality follows from
Cauchy-Schwartz inequality and It6-Lévy isometry. In view of (4] and the assumption [A3] on 7, the
third inequality holds true. In the last inequality, we have used the constant C given by Lemma [£2] Here
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At
we note that the assumption — — 0 as h — 0 is crucial. Passing to the limit as h — 0, we conclude
that E|1 (B[ — B"2%)| 0.

2. Study of E[lB(Mf’At — M"A1)]: In view of triangle inequality, one has

’IE[IB hAt _ M At ” <Mh At+Ml2z,At,

where
MIAE 1BHZOKEZTR/;H1/// (ks 2)d B (ul + Mp(uly; 2)) — 5/(U?((t)+)\n(u}‘<;z))}
% (Pt x) — G(t, 7)) dN dz N (dz, dt)} |
MIAL = E[1BNX_: /"H/// n(ut; 2)3 B (wh + Mp(uf; 2)) — ﬁ’(v?((t)Jr)\n(U%;Z))}

x (t, z)d\dzx N (dz, dt)} .

Let us turn our focus on the term M}f’At. Note that suppy C B(0, R—h) x [0,T) for some R > h. Using
Cauchy-Schwartz inequality along with the assumptions [AJHA 4] and It6-Lévy isometry, we get

s( {m / / / / (e + Ml 2)) — B (0} () + Al 2)))

) |B(0, R)|

<2||ﬂ||Lm|BOR<Z > [ = // (uf; 2 w)w(t,x»?m(dz)dt}dzy)

= KeTr

h,At
]M

N

x (ufe; 2) (Y (tn, ) — lﬂ(tam))d)‘N(dz’dt))j dm}

1=

g2At||ﬁ'||%m|B<o,R>|||atw||%mcn(ZAt{ > IKE[wg)?] )

n=0 KeTr
< (At ( Gtw,cn,R)THu? AtH%x(O,T;LQ(Qde))
<hC (57 a, Cf, V ﬂ (9,51/}, Cns )THU}%,At||%°°(O,T;L2(Q><]R'i)) (by M)
Thus, we see that

MEAE 50 as h — 0.

Now, we estimate M52, Here we note that the boundedness of 7 i.e. |n(u, z)] < Chy(z) for any u € R
and z € E is crucial. In view of the Cauchy-Schwartz inequality and Ito-Lévy isometry, we obtain

<S5 LR [ ki) -+ s )}

n=0 Ke€Tr

hAt
]M

x 2 (uls 22 (¢, ) dAm(dz) dt} dz|B(0, R)|

R IIE S > [ / o P s 2y ]

n=0 KeTr
(by the boundedness of n)

w5 [ [

n= OKETR

tn+1

— vk (6)?] dtd:c( /E hi(z)m(dz))



FLUX-SPLITTING FINITE VOLUME SCHEME 15

= C(R,ﬁ//awa)an“g’,At - U?’,AtH%Z(QxHT) —> 0as h — 0,

where in the last line, we have invoked Proposition 5.1l and the CFL condition (£7). Hence

E[1p(MY = M"20] 50 as h—o.

3. Study of E[lB(D?’At — Dh’At)]: Observe that

[E[Ls (D} —D’““)]\

<||ﬂ”’||00||1/;||OO Z Z /nﬂ//B uK;z)’qu(fv?((t)‘dxm(dz)dt}

n=0 KeTr (0,7)
c@ e[ X 5 [ - olsal ([ 12ma)
0 KETr B(0,R) E
=C(B", 1, ¢y ||u7_1At - UTvAtHLl(QxB(O,R)X[O,T)) — 0as h — 0.
In the above, the second inequality follows from the boundedness condition on 7, and the last line holds
because of Proposition [5.1] and the CFL condition (7).

4. Study of E[lB le’m] and E[lB Rg’m]: Following computations as in Bauzet et al. [0, Proposi-
tion 4] we infer that

VCf

[E[15 BI2]| < Clltallocl 18l1oe Vi [E[12 BE]| <118l

g(h HUT AtHLl(QxB(O R)x[0, T))

where £(r) — 0 as r — 0.
We now combine all the above estimates to conclude: for any P-measurable set B,

E[15R"] =0 as h = 0.
This completes the proof of the proposition. O

To prove convergence of the proposed scheme and hence existence of entropy solution for (II]), one also
needs a continuous entropy inequality on the discrete solutions. Regarding this, we have the following
proposition which essentially gives the entropy inequality for the finite volume approximate solution

h
UT At-

Proposition 5.3 (Entropy inequality for approximate solution). Let the assumptions [AIHA 4 hold, and
T > 0 be fized. Let T be an admissible mesh on RY with size h in the sense of Definition 31l Let At = %
be the time step for some N € N* satisfying

At

T — 0 ash —0.

Then, P-a.s. in Q, for any B € A and for any nonnegative test function ¢ € C°([0,T)x R?), the following
inequality holds:

[ Btun@ne.e)ds+ [ {8 a0t + Pl 5)000,2) - Vot o)} dida
Rd I

T 1
+ /]Rd / / / n(u% AL z)ﬂ/(u% Ar+ )\n(ug—, Al z))w(t, x) d\ N (dz, dt) da

/Rd / / / (1-— u7— A 2)8" (u’7‘- Art )\n(u}%y As z))w(t,x)d)\ m(dz) dt dz
Z Rh Ata (58)

where for any P-measurable set B, E{IBRh’At} — 0 as h — 0.
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At
Proof. Let the assumptions of the proposition hold true. Since e — 0 as h — 0, we may assume that
the CFL condition
1 —
(1-oh ,
cyV
holds for some £ € (0,1) and hence the estimates given in Lemmas [£.1] and and Proposition hold

as well. Let ¢ € C2°([0,T) x R%) be a nonnegative test function. Then there exists R > h such that supp
¥ C [0,T) x B(0,R — h). Also define T ={K € T : K C B(0,R)}.

Note that ¥(tx,z) = 0 for any 2 € R?. Using the summation by parts formula,

At <

N N-1
Z Qp (bn - bnfl) = aNbN - aObO - Z bn (anJrl - an)
n=1 n=0
one has
N-1
[ (60 = s(uio) (e, o) do
n=0 KeTr "’ K
Z / B(u%e)(0, x dx—i—/ 6 “T AL)O:p(t — Aty x) dx dt. (5.9)
KeTr

Let R™2* be the quantity as in Proposition (.21 Define

RMWA! Rh*Aw{/Rdﬂ(uO(x) $(0,2)d — 3 /5 }

KeTr

+{ ﬂ(uTyAt)atw(t,z)dtdx—/ / ﬂ(uhTAt)atq/)(tAt,z)dzdt}
IIr d

+{/H FPult 0 )i(t,2) - Vb (t, ) dtdm—z 3 /t+/ FA ()it z) -V w(tn,x)dxdt}

n=0 KeTr

+{ /R /T/ /1n(“}7L’,At§Z)5/(U}7LjAt+)\77(U$L—1At;z))1/1(t,$) d\ N (dz,dt) dz
*Z > /+/// (Wl 2)B (u + An(ulk; ))w(tn,z)d/\d:cN(dz,dt)}

n=0 KETR

{/}Rd/ / / (1- uT At,z)ﬁ”(uhT, A+ )\n(u’%, A 2))Y(t, x) dAm(dz) dt dx

- i > /t:n'H/E/K/Ol(l—A)WQ(U’;?;z)B”(u?(+An(u}2;z))¢(tn,x) dA dzm(dz) dt}

n=0 KETR
— RMAt | ThAt | ThAt | phAt | AqhAt | ghAE

In view of Proposition and the definition of R"4* along with (5.9), we note that (5.8) holds.
In order to prove the proposition, it remains to prove the convergence of the following quantities:

E {133}%&}, E {131’%&5}, E {137’%@, E[lBD’“At}, E[1BM’%N} and E {13,4’%“}, where B is any P-
measurable subset of €).

1. Convergence of E[l g IM At] Note that, due to Lebesgue differentiation theorem, for almost all

z e K, ’uo - uK’ — 0 as diameter of K tends to zero (i.e.,h — 0). Now

~[E[1s 3= [ (Btun(o) ~ Bluto) (o, 0)da]|

’]E Ih At
KeTr
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<|I181E[ 3 / [uofa) — (2. 0) da,
KeTr

and hence IE[IB Ih*At] —s0ash—0.
2. Convergence of E[15 7"4!]: In view of Lemma 2 and the CFL condition ({.Z), we obtain

‘E[lB Th’At]
) E[1B /OAt /R B(ul A )0 (@, t) da dt} n E[1B /: /R Blult p,) (Bstb(t, x) — Db(t — At, ) dae dt}

S' |6I||00 At(' |atw| |00 Hu}%7At||Loo (O,T;Ll(QxB(O,R))) + ||att¢| |OO ||u'};’,At||L1 (QXB(O,R)X[O,T)) )’

and hence E[15 T™4"] — 0 as h — 0.
3. Convergence of E[15 D"4!]: In view of the assumption [A3| one has

5 DAY ’<V||V 8t1/)||OOAtZ 3 // \Fﬂ )H de dt

n=0 KeTr

n+1
VIVl A e 3 T // E[juj]] dz de

n=0 K€Tr

S VI oDl oo S8 oo [0l 1 (0 xt0:ry) — 0 2 7= 0

Thanks to Lemma [£1] and the CFL condition ([@7]), one can pass to the limit in the last line as well.

4. Convergence of E[l B thAt]: By using Cauchy-Schwartz inequality, It6-Lévy isometry, the CFL

condition [@7) and Lemma [£J] we obtain

RO S TP ol A Y R

% ($(t, 2) — P(tn, 2))” dX dzm(dz) dt}} )

‘E[].B MY

-

2

< C(R,w,cn)At< z_: At( > IKIE[(u}?)Q})%)

n=0 KeTr

S C(R, 1, ey, T>At||UhT,AtH%w(o,T;LZ(Qde)) — 0as h—0.

5. Convergence of E[lB Ah’At]: Note that

. / L/ / (1= A (s 208" (e + Al 2))

n= 0 KeTr
x {w(t, ) — Y(tn, z)} d\dzm(dz) dt.

Therefore, by (A7) and Lemma 1] we obtain

N-1 -
SHﬁuHOOAtHaﬂ/JHoo Z Z/ /E/Kn ul; 2) dem(dz) dt

n=0 Ke€Tr

N—-1 tnt1
C(B,v, ¢y At / /EU"dedt—)()ashHO.
DALY Y ) Eld)?]

n=0 KETR

‘E[lB APAY)
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6. Convergence of E[lB Rh’At}: Thanks to Proposition [5.2] we have seen that

E[1p R — 0 as h — 0,

for any P-measurable set B. O

6. PROOF OF THE MAIN THEOREM

In this section, we establish the convergence of the scheme and hence existence of entropy solution
to the underlying problem (IIl). Note that a-priori estimates on u’7‘- a2, t) given by Lemma 1] only
guarantee weak compactness of the family {uhT Az th>0, Which is inadequate in view of the nonlinearities in
the equation. The concept of Young measure theory is appropriate in this case. We now recapitulate the
results we shall use from Young measure theory due to Dafermos [13] and Panov [29] for the deterministic
setting, and Balder [I] for the stochastic version of the theory.

6.1. Young measure and convergence of approximate solutions. Roughly speaking a Young mea-
sure is a parametrized family of probability measures where the parameters are drawn from a measure
space. Let (©,%, 1) be a o-finite measure space and P(R) be the space of probability measures on R.

Definition 6.1 (Young Measure). A Young measure from © into R is a map 7 — P(R) such that for any
¢ € Cy(R), 0 = (1(0),0) == [ ¢(£)7(0)(d€) is measurable from © to R. The set of all Young measures
from © into R is denoted by R(0, X%, ).

In this context, we mention that with an appropriate choice of (©,%, 1), the family {u};— Atfh>0 can
be thought of as a family of Young measures. We are interested in finding a subsequences out of this
family that “converges” to a Young measure in a suitable sense. To this end, we consider the predictable
o-field of Q x (0,T") with respect to {F;}, denoted by Pr, and set

0=0x(0,T)xRY T=PrxL(RY) and pu=P\O M\,

where Ay and A, are respectively the Lebesgue measures on (0,7) and R¢. Moreover, for M € N, set
O = Q2 x (0,T) x By, where By be the ball of radius M around zero in R%. We sum up the necessary
results in the following lemma to carry over the subsequent analysis. For a proof of this lemma, consult
[2,[@].

Proposition 6.1. Let {ug—, ar(t, ) nso be a sequence of L?(RY)-valued predictable processes such that
(@T) holds.Then there exists a subsequence {hy} with h, — 0 and a Young measure 7 € R(O,%, 1) such
that the following hold:

(A) If g(0,€) is a Carathéodory function on © X R such that supp(g) C Opr X R for some M € N and
{g(@,u?{‘m((?))}n (where 0 = (w;t,x)) is uniformly integrable, then

tim [ o615, 00) @0) = [ [ [ 900.6)7(0)(a0)] wian)

hn—0 e e
(B) Denoting a triplet (w,z,t) € © by 0, we define

u(f, @) = inf {c eR:7(0)((—00,c)) > a} for a€(0,1) and 6 € ©.

Then, u(f, ) is non-decreasing, right continuous on (0,1) and Pr x L(R? x (0,1))- measurable.
Moreover, if g(0,¢) is a nonnegative Carathéodory function on © X R, then

/(_)[49(9,5)7(9)(615)} M(dQ)/@/al_og(@,u(@,a))da‘u(dg)_

6.2. Proof of the main theorem. Having all the necessary a priori bounds and entropy inequality on
u’7‘- A We are now ready to prove the main theorem (cf. Main Theorem [B). Here we mentioned that
u(6, «) given by Proposition[6.I] will serve as a possible generalized entropy solution to (L)) for the above
choice of the measure space (0,%, u). In view of (5.8]), we have for any B € Fr

B[tn [ {8 s00wit.) + PPl 2 )ilt,2) - Vo(t)  deda]
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1
/0 77 UT Aty ? (u'};’, At + An(u}%, At Z>)¢(tﬂ 1') d/\N(dZ, dt) dl']

s [
)

{13 » B(uo(z)) (0, x) dx:| > E[lBRh, At:|

!
o

1
0= N 5208 0, s+ A, 5152 (e ) A () i ]

=

e, Ti+Ta+Ts+ E[1B B(uo ()1 (0, ) dz} > E[lBRh*At] (6.1)
Rd

We would like to pass the limit in (€] as h approaches to zero. To do this, here we use the technique of
Young measure theory in stochastic setting. Let (0,3, ) be a o- finite measure space as mentioned pre-

viously. Note that L?(0, %, i) is a closed subspace of the larger space L? (0, T; L*((Q, Fr), L* (Rd))) and

hence the weak convergence in L? (@, 3, u) would imply weak convergence in L? (0, T; L*((Q, Fr), L* (Rd))) )
Now, for any B € Fr, the functions 150p) (¢, z), 150.,9%(t,x) and 1Y (¢, x) are all members of
L? (0, T; L2((Q, Fr), LQ(Rd))). Therefore, in view of Proposition [6.1] and the above discussion, one has

hm T = hm E[IB/ {ﬂ(uT A)OU(t, ) + Fﬁ(u’;— AUt ) - Vaap(t, z)} dt d:c}

_E 1B/ / u(t, ,))oub(t, x) + FP (u(t, z, ))o(t, z) - Vzw(t,x)} dacdt dm] (6.2)
IIr
Next we want to pass to the limit in 73. For this, we fix (), z), and define a Carathéodory function

Gz (r,3,w, ) = 1p(w) (1 — N (&, 2)8” (£ + Mn(&, 2)) Y (r, z).

Note that {GAyz(r,x,w,u}}f'm(r,x,w))}n is uniformly integrable in L'((©,3, u);R). Thus, in view of
Proposition [B.1] we have, for fixed (), z) € (0,1) x E

lmE| / Lo(1 = NP (. a3 2)8" (W, a0 + (0l a3 2)) (2, @) d da

_E /HT/ 15(1 = N (u(t, z, a); 2) 8" (u(t, z, @) + An(u(t, z, a); 2) ) (t, z) dor dtdm]

Thanks to the assumption [A-3] and Lemma A1l we invoke dominated convergence theorem and have

Jim 75 = Jim E[15 | ) /| / (1= N2y, i 2)8" (g + Anfut, as ) (0. ) dNm(d2) dt
_E 1B /HT// / (1 =0 (u(t, 2z, a); 2) 8" (u(t, z, a) + An(u(t, z, a); 2))

1 (t, ) dodhm(dz) dt d:c] (6.3)

Now passage to the limit in the martingale term requires some additional reasoning. Let I' = Qx [0, T| X E,
G=Prx L(E) and ¢ =P ® A\ ® m(dz), where L(E) represents a Lebesgue o- algebra on E. The space
LQ((F,Q,g);]R) represents the space of square integrable predictable integrands for It6-Lévy integrals

with respect to the compensated Poisson random measure N (dz,dt). Moreover, by Ito6-Lévy isometry
and martingale representation theorem, it follows that [t6-Lévy integral defines isometry between two
Hilbert spaces L?((T',G,<);R) and L?((Q, Fr);R). In other words, if Z denotes the Ito-Lévy integral
operator, i.e., the application

Z:L*((I,G,<);R) — L*((Q, Fr);R)

v»—)// w,z,7)N(dz,dr)

and {X,}» be sequence in L*((T',G,<);R) weakly converging to X; then Z(X,) will converge weakly
to Z(X) in L2((, Fr);R). Note that, for fixed z € B, G(t,z,w,&) = (5(5 (& 2) — ﬂ(&))w(t,x)
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is a Carathéodory function and {G(t,x,w,u?{‘m(t,x,w))}n is uniformly integrable in L'((©,X, u); R).
Therefore, one can apply Proposition and conclude that for m(dz)-almost every z € E and g(t,2) €

L*((T,G,<);R),
T
%{%E / / B(Uﬁr At T 77(“’71* At 2)) - 5(UhT At))"/’(ra x)g(r, 2) dx dr}

=E| / /R/ u(r, @, 0) + n(u(r, 7, a);2)) = Alu(r,z,a)) ) (r, 2)g(r, z) da dz dr .

We apply dominated convergence theorem along with Lemma 1] and the assumption [AZ3] to have

lim E /T/ /Rd 5(1@ A+ U(U}% N ﬁ(u’;— At))w(r,x)h(r,z)dx m(dz) dr}

h—0
fIE / / /Rd/ (r,z, o) +n(u (r,z,a);z)) fﬂ(u(r,z,a)))
x Y(r,z)h(r, z) do d:c} m(dz) dr] .
Hence, if we denote
Xalt:2) = [ (B, (0, 2)) = Bl 20t 2) do

and
X(t,2) /Rd/ u(t, z, ) + n(u(t, z, a); z)) —B(U(t,x,a)))w(t,x) do dx

then, X, converges to X in LQ((F, G,<); R) which implies, in view of the above discussion

//X (t,2)N dzdté//th N(dz,dt) in L*((Q,Fr);R).

In other words, since B € Fr, we obtain

lim 75 = lim IE 1B/ / / Nl ny2)B (W ap + MUl a3 2))0(t ) AN N (dz, dt) dx}
IIr

_IE 1B /HT// / u(t,z, a); 2) B (u(t, z, ) + M(u(t, z, a); 2))

x (t, ) da d\ N(dz, dt) dx] (6.4)

By (62), (63) and (6.4 and the fact that E[lBRh’At} — 0 as h — 0 (cf. Proposition[5.3]), one can pass

to the limit in (6.1 yielding ([ZI). Also, in view of Proposition and the uniform moment estimate
(1) along with Fatou’s lemma, we have

sup E|fu(t, - )[13] < +oo.
0<t<T

This implies that w(t,z,«) is a generalized entropy solution of (IIl). Again, thanks to Theorem 2.2
we conclude that wu(t,z,«) is an independent function of variable o and u(t,x) = fo u(t,z, 7)dr =

u(t,z, ) (for almost all ) is the umque stochastic entropy solution. Moreover, since u7—7 Ay 18 bounded
in L?(Q x II7), we conclude that u} 5, converges to @ in Li, (R% LP(Q x (0,T)), for 1 < p < 2. This
completes the proof.

7. APPENDIX

In this section, we study existence and uniqueness of entropy solution for the underlying problem (L]).
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7.1. Existence of weak solution for viscous problem. Just as the deterministic problem, here also
we study the corresponding regularized problem by adding a small diffusion operator and derive some
a priori bounds. Due to the nonlinearity in equation, one cannot expect classical solution and instead
seeks a weak solution.

For a small parameter ¢ > 0, we consider the following viscous approximation of (L)

du(t, z) + divy (0(t, x) f (u(t, x))) dt = /En(u(t, x); 2)N (dz, dt) + eAu(t, z) dt, (t,z) € Iy (7.1)
u(0,2) = ui(x), r € RY,

where u§ € L?(R%). To establish existence of a weak solution for (1)), we follow [I1} [32] and use an
implicit time discretization scheme. Let At = % for some fixed positive integer N > 1. Set t,, = n At for
n=20,1,2---,N. Define

N = L%(Q; H'(RY)), N, = {the F,a; measurable elements of N},
H = L*(; L*(RY), H, = {the F,a; measurable elements of #}.

The following proposition holds.

2
Proposition 7.1. Assume that At is small with At < VQ—EQ Then, for any given u, € H,, there exists
c
f

a unique un+1 € Nypt1 such that P-a.s. for any v € HY(R?), the following variational formula holds:

/ ((un+1 — up)v + At{EVun+1 Vv —0(tn, ) f(unt1) - Vv}) dx
Rd

:/Rd /:“/En(un;z)uN(dz,ds)dx. (7.2)

Proof. Let us define a map

T :Hn+1 — Hn+1
S—=u=T(S)

via the variational problem in N, 41 : for all v € M,41

E[/}Rd ((u — up)v + At{eVu - Vv — 3(tn, z) f(S) - VU}) dm}

:E[/Rd /t:nﬂ/En(un;z)vN(dz,ds)dx}.

Thanks to Lax-Milgram theorem, 7" is a well-defined function. Moreover, for any S1,S € Hp4+1, We see
that

E[/Rd IT(Sy) — T(S2)[? da + Ate /]R IV(T(S1) - T(S5))|? d:c}

= AﬂE[/Rd F(tn, 2)(f(S1) — f(S2)) - V(T(S1) — T(S2))dw}

and hence, by Young’s inequality and the assumptions [A_]] and

B [ 1) - 18P do+ e [ [V0S) - T(5) da]

At . At V22
< 52B[ [ 1tn,a)Pl5(50) - f(S2)P do] < =5 L[ [ 11~ sada].
5 Rd 2¢ R
2
Thus, if At < e then T is a contractive mapping in H, 41 which completes the proof. (|

227
ch
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7.1.1. A priori estimate. Note that, since div,#(t,z) = 0 for all (¢,z) € Ilr, for any 6 € D(R?),
Ja Ut ) f(0) - VOdz = 0 and hence true for any § € H'(R?) by density argument. We choose a test
function v = w41 in (Z2) and have

nt1 N
/ (Unt1 — Up)Unt1 d:z:—l—EAt/ |Vt 412 dm—/ / / (un;2) N(dz,ds)up41 d
R Jt,
n+1
/ / / (tn; 2)un N(dz,ds) de + — ||un+1 Un||L2(Rd)
Rd

tnt1
/ / (tn; z) N(dz ds)) dz, for some a > 0. (7.3)
Rd

Therefore, thanks to the assumption [A.3] and It6-Lévy isometry

1 o C At
3 [onsa B+ llnr =l = lunl] + & AtlIVunally < Sllunses = wnlld + S (1+ funl )

Since a > 0 is arbitrary, one can choose a > 0 so that

n—1 n—1 n—1
lnll3e + Y lunsr — url 3 +eAt Y [[Vupga |3 < Co + Cat Y [uslf3,
k=0 k=0 k=0

for some constants C7,Cy > 0. Hence an application of discrete Gronwall’s lemma implies

n—1 n—1
llunl e+ D ks — unll§e + ALY [[Vugga |3, < C. (7.4)
k=0 k=0
For fixed At = %, we define
N
chl[tk () @ Z [uk AR E T Lyt (B)
k=1

with u®(t) = ug for ¢ < 0. Similarly, we define

B, —B
BA4(1) Z[’“Tt’“@ftk D)+ Brot | Loy (0,
k=1

zg/t:k+l/En(uk;z)N(dz,ds):/Otn/En(uAt(s—At);Z)N(dZadS)-

A straightforward calculation shows that

where

i = 5 [l 58 mm = g ol
N—-1

[0 = 5 g iy < A S s =
k=0

In view of the above definitions and a priori estimate (7.4)), we have the following lemma.

Lemma 7.2. Assume that At is small. Then u™t, 4™t are bounded sequences in L°(0,T;H); /eu™t is
a bounded sequence in L?(0,T;N) and ||[u®t — ﬂAtH%qo,T;H) < CAt. Moreover, u™t — ut(- — At) — 0
mn L2 (Q X HT).

Next, we want to find some upper bound for BA*(t). Regarding this, we have the following lemma.

Lemma 7.3. B2 is a bounded sequence in L*(Q x II7) and

B2 = [ [ (s - ey ) Nz s

< CAt.
L2(QxR4)
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Proof. First we prove the boundedness of B2*(t). By using the definition of BA(t), the assumption [A3]
and the boundedness of 2 in L>(0,T;H) along with It6-Lévy isometry, we obtain

N
~ 2
1B, (0.13L2(2,L2(RY)) ) < At Z ||Bk||%2(Qde)
k=0

gAth:]E[/ /Otk/En(uAt(sAt);z)N(dz,ds) ’

]Rd
N th
< CAtZE[/d/ At (s — At da ds} < Cl[u| 1o (01312 (2xret)) < C-
=0 0

d:c}

Thus, B2 is a bounded sequence in L2(€Q x II7).

To prove second part of the lemma, we see that for any t € [tn, th),

BAY(t) / / uPt(s — At); z)N(dz, ds)
_ tn41
—t tn / / (un; z dz ds) / / (un; z dz ,ds).
t t’ﬂ

Therefore, in view of (4] and the assumption [A.3] we have

|30 / / WA (s — Af); )N(dz,ds)’
tnt1
§2/Rd At / / (un; z) m(dz) ds+/tn/ (un; z) m(dz) ds]d

<Cllul e [ Ll 4 - 1] < o

This completes the proof. O

2

L2(QxRY)

7.1.2. Convergence of u~(t,z). Thanks to Lemma [Z.2] and Lipschitz property of f and 7, there exist
u, f,, and 7, such that (up to a subsequence)

Uttt =%y in (o,T L?(Q x RY))
ubt =y in L2((0,T) x Q s HY(RY))  (for fixed € > 0) (75)
flt) = fy in L2((0,T) x Q; H'(R) '
n(uAt(- — At);-) =, in L2(Q x Tz x E).
N
Let v24(t) = Zﬁ(tk’.)l[tk—lvtk)(t)' Then, for any § € H'(R?), we can rewrite (72, in terms of
k=1
uBt GAt BAt and vAt as
0 -
<&(am — BAY)(¢), 9> + / {eVuBi(t) — o2 () f(uP(t))} - VO dz = 0. (7.6)
R4

In view of (Z0), one needs to show the boundedness of 2 (a! — BAY) in L2(Q x (0,T); H~*(R)) and
then identify the weak limit. Regarding this, we have the following lemma.

Lemma 7.4. The sequence {%(ﬁAt - BAt)(t)} is bounded in L*(Q x (0,T); H~'(R?)), and

%(aﬂuéAwé %(u/O./EnuN(dz,ds)) in L?(9 x (0,T); H™(R%))

where u is given by ().
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Proof. To prove the lemma, we use similar argumentation (cf. passage to the limit in 73) as in Section
Bl Note that It6-Lévy integral defines a linear operator from L?((T',G,<);R) to L*((€2, Fr);R) and it
preserves the norm (cf. for example [30]). Therefore, in view of (T3] and Lemma [73] we have

A//nu (dz,ds) in L*(2 x IIp).

Again, note that

(ur — up—1) — (Br — Bi—1)

9 ~At ~At
—\u - B Al [tk717tk).

i

Mz

k=1

From (Z.2)), we see that for any § € H'(R9),

Un+1 — ntl
/]Rd (7At At/ / (tn; )N (dz ds))@dz
= —f—:/ Vupyr - VOdr — / Utn, ) f(uny1) - VOdx
R Rd

= {EHVUWHHL?(W) TV H“"JrlHL?(Rd)}HG”Hl(W)’

'n.+l
/ (un+1 - — / (tn; 2)N (dz ds))@d:c
Rd At
sup

9 H (RD)\ {0} ||9||H1(Rd)

and hence

< e[ Vatnsa || o gy + sVl o gy
This implies that %(ﬂm — BAY)(t) is a bounded sequence in L2(Q x (0,T); H~'(R%)).

To prove the second part of the lemma, we recall that BAt / / nuN(dz,ds) and @2 — u in
0 JE

L?(Q x IIr). In view of the first part of this lemma, one can conclude that, up to a subsequence

gt( — BAYH uf/ /nu (dz, ds in L2(Q x (0,T); HY(RY)).
This completes the proof. (|

In view of (Z5) and Lemma[Z4} one can pass to the limit in (78] and has, for § € H'(R%)

<%(u/0./EnuN(dz,ds)),9>+/Rd {EVu(t)fﬁ(a.)fu}.ngz:()_

We denote by || - ||2 the norm in L?(R¢). An application of It6-Lévy formula [20, similar to Theorem 3.4]
to the functional e~“||u(t)||3 yields

e_CtIE{Hu(t)H%} + 2¢ /Ote_csE[HVu(s)Hﬂ ds — Q/OtE[/Rd e “U(s,x) fu - Vu d:z:} ds
= Efualg] e [ B llut 3]s+ [ [ e nizdsms)] (7)

By choosing a > 0 suitably in (Z.3)) and multiplying by e~ for positive ¢ > 0, we have

E[/ (e_c’”l|un+1|2 - e_Ct"*1|un|2) dm} + 2¢ Ate_Ct"E{/ |Vt 1]? d:z:}
R¢ R4

< Ate_Ct"'E[/E /Rd 0% (un; 2) dz m(dz)} + (e_Ct"' - e_Ct"'*l)E[/Rd |un|2dx] (7.8)
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Therefore, by summing over n from 0 to k in (Z8) we get

k
e E [fun ] + 2 3 Ate™ [V 3

n=0
< cAtIE ||u0|| +Atz *CtnE / / un’ d;L'm dZ :| +Z( —ctp 7Ctn*1)E|:||un||§:|-
n=0
Note that
k
> (e = et )E 3]
n=0
k
= (1= 2B {uoll] + 3 (e — e )E ]
— .
= (1 — ¢AE [ uo||2] _CZ/ _°sdsIE |un||}
tn 1
t
< (1 e lfants] e [ B0
0
and

Atée‘““l@[/E/Rd 72 (tn; 2) d:z:m(dz)} g/otk e—CSE{/E/Rd 2 (WAt 2) d:z:m(dz)} ds.

Thus, we obtain, for ¢ € [tg,tgt+1)

e~ E[lu ()3 ]+2e | e BNV ) as

E|luol3] + *‘”IE / /R 2)da m(dz)] ds

—ce —cAt e cs uAt ) )
/0 E[Ju2] ds (7.9)

Note that, for any € H'(R?) and any s € [0,7], there holds / U(s,x)f(0)VOdxr = 0. Thus, using
R4
[9) we obtain

t
B[N O] +2¢ [ RV - )] ds
0

_9 e_CSE[/ U(S, z)[f(uAt) _ f(u)]V(uAt _ u) d;L'] ds
0 R
]

b [ R [ o) - a2 )] as
/Ote_CSIE[/E||n(u;z)||2m(dz)} ds+2/ e K| //R n(us 2) dwm(dz)| ds

t

¢
- ce_CAt/O e “E[[lu® —ull3] ds + ce_CAt/O e E([||ul3] ds + 25/0 e “E[||Vul|3] ds
¢ ¢
720676At/ eiCSE[/ uAtud:c} ds+2/ eiCSE[/ ﬁ(s,x)f(uAt)Vudz] ds
0 R< 0 R4

¢ ¢
+ 2/ e_CSE[/ (s, z) f(u)Vu dz] ds — 45/ e “E[ [ VuVudz]ds. (7.10)
0 Rd 0 R4

< E[fluoll3
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In view of Young’s inequality, one has
t t
- 25/ eiCSE[HV(um —u)||3] ds + 2/ eiCSE[/ (s, 2)[f(u?) — f(u)]V(u® — u) dz| ds
0 0 Rd
‘ —cs At 2 1 ‘ —cs = At 2
< e / e B[V (6 — u)|3] ds + - / SR [[[7(s, ) [f (™) — F)IIF] d, (7.11)
0 0

and by choosing ¢ > 0 with %V2C; +cy < ce°At one arrive at

L[ w62 - s3] s+ [ B ][ n2) -t g ma)] as

5
t

- ceiCAt/ eiCSE[Hum —ull3] ds < 0. (7.12)
0

We use (ZII)-(ZI2) in (TI0) for the above choice of ¢ > 0 along with () and (1) to have

limsup/ CtIE[HuAt )3 dt+/ / CSE /||77u— u; 2)||3 m(dz)| dsdt
At 0

T
< [ e Blutt) ) a

0

Thus, we obtain 7, = n(u; z) and uA* — w in L2(Q x II7). Moreover, one can show that f, = f(u). Thus
u is a weak solution to the viscous problem (Z.I]). Since it depends on € > 0, we denote it by ..

7.1.3. A priori bounds for viscous solutions. Note that for fixed € > 0, there exists a weak solution
u. € HY(RY) satisfying: P-a.s., and for a.e. t € (0,7)

¢
- / / n(ue(s,-); 2)N(dz,ds)], v> + / {ﬁ(t, x) f(ue(t,z)) + EVUE(t,x)} -Vo(z)dx =0,
0o JE Rd
(7.13)
for any v € H'(R?). We apply Ito6-Lévy formula to 5(u) = ||u|%, and then take expectation. The result

E[]Ju- (1)) +zg/OtE[Hvu8H§} ds < E[[u-(0) +c/OtE[HuE<S>H§} ds

An application of Gronwall’s inequality yields

2 T 5
E{lue(t E|||Vue(s)|;| ds < C.
OiltlgT [Hu ( )HQ} +€/ [H U (S)H2:| s

The following lemma states that = / / (ue; 2)N(dz ds)} € L*(Q x I7) if the initial data
u§ € HY(RY).

Lemma 7.5. Suppose that u§ € Hl(Rd) Then, a weak solution u. of (L) satisfies the following
reqularity properties: [ fo fE n(ue; z)N(dz ds)}, Au. € L*(Q x II7).

Proof. Let u§ € H'(R?). By choosing v = 41 — up, — t"“ Jg 1(un; 2)N(dz, ds) in (Z.2Z), we obtain

n+1 2
Hun+1 / / (un; 2 dz ds) HLZ(Rd)

tnt1 5
+ Ats/ Vuntt V un+1 / / un;z)N(dz,ds)] dx
]Rd
tnt1
= —At/ T, ) f (Ung1) - Vun+1 Up+1 — Up — / / (un; 2 dz ds)) dx
d tn

1 n1
§Hu"+1 — Un — / / Un7 (dzadS)HL2(Rd) + §C(Va f/)(At)Q||vun+1||2L2(]Rd)'i'
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Note that, E {Vun ft”“ Jg Vi(un; Z)N(dz, ds)} = 0. Since N is a compensated Poisson random measure,

an application of differentiation under integral sign, the assumption [A.3] along with Young’s inequality
and It6-Lévy isometry reveals that

tnt1
E{/ Vnit - V un+1 / / (un; 2 dz ds)] dz}
R tn

1
= §]E{||Vun+1”L2(Rd)d - ||vunHL2(Rd)d + [ V[tunsr = un]HQL?(Rd)d}

tna1 5
- IE{ Vtnt+1 — tn) / / Vn(un; 2)N(dz,ds) dm}
R4 tn E

1 *
2 E{”v“nﬁ-lH%Z(Rd)d - ||V“n”%2(n§d)d + QHV[U?@H - UH]H%Z(Rd)d —2A AtHVun||2L2(Rd)d/Eh%(z)m(dz)},

tnt1 9
E{HunJrl - / / (un; 2 dZ ds) HLZ(]Rd):|

1
+ AtEE[HvunHHN(Rd)d — IVttn|7 2 aya + §||V[Un+1 - un]HQL?(Rd)d}
< 2N (A2 [ V3 aya | + OV, SV (A6E [t 11130y ]

, N —1},

N =

and hence

Thus, for any k € {0,1,- -

y AR || L T e T ftt:H Jg n(un; 2)N(dz, ds)
Z {H At H[ﬁ(]}@)}
ok
+ €E|:||Vuk+1”%2(]Rd)d:| + 5 Z E{Hv[unﬂ — un]Hiz(Rd)d}
n=0

k+1
< EE[Hvuguiz(Rd)d} Lo, f/,cn,)\*)AtZE[HVUHH%Q(Rd)d} <c.

Therefore, in view of the definitions of u®t, 42 BAt we see that u??, 42t are bounded in

L>(0,T; L?(; HY(R))), and the sequence {a@ BAt)( )} is bounded in LQ(Q X (O,T);LQ(Rd)).
0 ¢ -
Moreover, second part of Lemma [7.4] reveals that 5 [ug - / / N(ue; 2)N(dz, ds)} € L*(Q x II) and
0o JE

hence by using the equation (Z.I) we arrive at the conclusion that Au. € L2?(2 x IIr). Furthermore,
(TI3) holds with an integral over R? instead of the duality bracket if the initial data u§ € H*(R?). O

In addition, if u§ € L?P(R%), p > 1, then a straightforward argumentation as in the proof of [2]
Proposition A.5] gives u. € L*(0,T; L?P(2 x RY)).

The achieved results can be summarized into the following theorem.

Theorem 7.6. Lete >0 is ﬁmed and u§ € HY(R?). Then there exists a weak solution u. of (TII) such
that — 815 uE / / (ue; 2)N(dz ds)}, Au. € L*(Q x IIp). Moreover the following estimate holds:

sup E[Hue(t)Hﬂ +€/OTE[HVUE(S)H§} ds < C.

0<t<T
Furthermore, if u§ € L*(R?), p > 1, then u. € L>(0,T; L**(Q x R?)).

7.2. Proof of Theorem [2.71 In this subsection, we prove existence of generalized entropy solution in
the sense of Definition 24l For this, fix a nonnegative test function 1 € C>([0,00) x R%), B € Fr and
convex entropy flux pair (8,¢). For any € > 0, we consider the viscous problem () with initial data
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u§ € D(RY). We apply Ito-Lévy formula to the functional F(t,u.) fRd ¥ (t, ) dx and conclude

0<E [13 y B(u(x))y (0, x) d:z:} —¢E {13 B (ue(t, z))Vue(t, z) - Vi (t, x) dz dt}

IIr

+E[15 /H (B(ue(t, )rs(t, ) + V(e 2) - 50, 2)C (we (1, 2)) ) dr
+E lB /n / /1 n(ue(t, z); 2) B (ue(t, ©) + 0 n(ue(t, ©); 2))(t, ) do N(dz, dt) dz}

—HE 13/H / / (1 — 0)n?(us(t, 2); 2) B (ue(t, ©) + O n(uc(t, ); 2))Y(t, ) db m(dz) dtdm} (7.14)

We use Young measure technique (cf. Subsection [6.2]) to pass to the limit in (ZI4) as € — 0. Moreover,
there exists a L2(R? x (0, 1))-valued predictable limit process u € L™ (0, T; L*(Q x R9 x (0, 1))) such that

1B/H / u(t, z, )0 (t, ) + Vip(t, z) - (t,x)FB(u(t,x,a))) dadx dt}
+E lB/H / / / u(t, z,a); 2) B (u(t, z, o) + 0 n(u(t, z, a); 2))(t, ©) da df N(dz, dt) dz}
—HE 1B/H // / (1 —0)n°(u(t,z, a); 2)B8" (u(t,z, ) + On(u(t, z,a); 2))(t, z) da dd m(dz) dtdm}

+E[1B B(uo(2))y (0, z) dx} > 0. (7.15)
Rd

Since (ZI5) holds for every B € Fr, we conclude that P-a.s., inequality (21I) holds true as well. In other
words, u(t, x, ) is a generalized entropy solution to the problem ([ITJ).

7.3. Proof of Theorem [2.2] To prove uniqueness of generalized entropy solutions, we follow the same
argumentations as in [9)]. Let p and p be the standard nonnegative mollifiers on R and R¢ respectively
such that supp (p) C [—1,0] and supp (¢) = Bi1(0), where B;(0) denotes the bounded ball of radius

1 around 0 in RY. We define ps,(r) = %p(%) and 05(z) = s70(%), where § and & are two positive

constants. Given a nonnegative test function ¢ € C12([0,00) x R?) and two positive constants § and &y,
we define

¢6,50(t5 z,s, y) = Py (t - 5)95(:6 - y)’l/}(sa y)
Let 8: R — R be a C'*° function satisfying
B0)=0, B(-r)=p8(r), B(-r)=-pF(r), B"=0,
and

—1 when r < —1,
B'(r) =< €[-1,1] when |r| <1,
+1 when r > 1.

For any ¢ > 0, define 3y : R — R by By(r) = ¥3(5). Then

M.
[r| = M9 < By(r) < |r| - and [B5(r)] < =7 1<,

where My = supj,|<; [[r] = B(r)| and My = sup| <1 |8"(r)]. For B = By we define

Fr(a.b) = [ (o - 0)f o) dio).

Let v(t,x,a) be a generalized entropy solution of (LI)). Moreover, let ¢ be the standard symmetric
nonnegative mollifier on R with support in [~1,1] and g(r) = }<(%) for I > 0. Given k € R, the function
By (- — k) is a smooth convex function and (By(- — k), F5?(-,k)) is a convex entropy pair. Consider the
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entropy inequality for v(t,z, ), based on the entropy pair (Bg(- — k), F5?(-,k)), and then multiply by
gi(us(s,y) — k), integrate with respect to s,y, k and take the expectation. The result is

0 <]E /HT /Rd/ﬁﬁ vo(x) — k)ds.6, (0, 2, 8, ¥)si (ue(s,y) — k)dk:d:z:dyds}

+ IE / / / Bo(v(t, x, ) — k)Opds 5, (t, T, 8, y)s1(ue(s,y) — k) dk dadx dt dy ds]
nz Jo Jr

B[ [ (olottno) a0, 0,0002) < 5) = oot ) =)

X $5.50 dr do N (dz, dt)q(ue (s, y) — k) dk dy ds}

E{/HT/E/R/; (B0 (0(t.2,0) + m(o(t, z,0); 2) — k) — By (v(t, 2,0) — b)

—n(v(t,z, a);2)8y(v(t, z,a) — kz)) 05,6051 (us(s,y) — k) dadk dzm(dz) dt dy ds}

1
+ E{/ / /}'ﬁ” (v(t,z, @), k)U(t, z) - Vadss, (t,x, s, y)s(ue(s,y) — k) dk dadx dt dy ds}
nz Jo
:le +Ig+[3+[4+[5 (716)

Since u.(s,y) is a viscous solution to the problem (Z.II), one has
1
<[ [ [ [ [ Botu0.) = s (t.0.0.90a(0(t..0) ~ Kk dads dyd]
iy Jre Jo JR

1
B[ [ [ [ Botwets.s) = 00550t 5. 000t 0) = ) ko dy dsdat]

E[/H/E// (8o (ucC.) + 1oy (s, 9):2) — 1) — Bolua(s,) — 1))

X ¢5.50(t, T, 8, 9)1 (v(t, z, @) — k) dy da dk N (dz, ds) da dt}
B[ [ L] (Botustoum + o stz 2) = ) = e B ) = 1
— Bo(uc(s,y) — k)) ®5.5,(t, T3 8, y)s(v(t, x, ) — k) dadk dym(dz) ds dx dt}

E /H2 / /]R]-"Bl9 (ue(s,y), k)0(s,y) - Vyos(x — y)(s,y)ps, (t — s)s(v(t, x, o) — k) dk devdx dt dy ds}
E[/H% /0 /R]:Bﬁ (ue(s,y), k)0(s,y) - Vyb(s,y)os(x — y)ps, (t — s)s(v(t, x, o) — k) dk decdx dt dy ds}

1
— EE[/ / / By(ues(s,y) — k)Vyue(s,y) - Vydss, (t, x, s, y)q(v(t, z, o) — k) dk da dy ds dx dt}
nzJo JR
=S+ Lo+ Js+Js+ J5+ Jg + J7. (7.17)

We now add (ZI6) and (TI7), and compute limits with respect to the various parameters involved. In [9],
convergence of the terms I;(i = 1,2,3,4) and J;(j = 1,2,3,4,7) has been studied in details. Therefore,
we only study the terms involving flux function namely the terms I5, J; and Jg in details.

We first consider the term I5 4+ J5 and prove the following lemma.

Lemma 7.7. There holds

lim sup ’15 +J5’ =0.
510, 910, £0110 6010
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Proof. Note that
}15 - /n /Rd/ /]—‘ﬂi9 s, x, ), k)U(s,z) - Veos(x — y)(s,y)s(uc(s,y) — k) dkdadmdyds”

Bo(u(t, x, o — FBo 8,2, ) v(t,x T — S
E/H%/O /R\f (v(t, 2, ), k) = F7 (v( k)[|3(t, 2)||Vaos(x — y)|0(s,y)

X pso (t — 8)si(ue(s,y) — k) dk da dx dy dt ds}

+[E] /H// [ w00, 135, 2): vzga<zy>w<s,y>(1/:Opao@s)dt)

x 1 (ue(s,y) — k) dk da dz dy ds]

E[/HT/O /R|fﬂ0(v(5,x,a)7k)||17(s,z)fﬁ(t,z)HVzQ(;(z,y>|¢(57y>
% psy (t — 8)s1(us(s, y) — k) dk do da dy ds dt} ‘

E[/:% /n / A%‘fﬂﬂ@(twﬂ%k%ﬂ% (s,2,0), k)| [5(t, 2)[| V05 (@ — )[4 (5, )

X ps, (t — s)si(ue(s,y) — k) dk da dx dy dt ds] + O(do)
+CE / / / / /‘]:519 s,x, ), k)0(s,z) - Vyos(x —y |1/) s, y)si(ue(s,y) — k)dkdozdzdyds}
s=0 JRd JRRd
(we have used the fact that / ps, (t — s)dt < 1, equality holds if s > §p).
0

T 1
<c[[ . / ) L] 1905t = ot . ) = o(s,z,0) |5, (¢ = 9 dr i dy e ds] + O

(we have used the Lipschitz continuity of 777 (-, k) in above)

E[/S_éo /HT/O [v(t, x, a) —U(s,x,a)|2p50(t—s)dadmdtds})% + O(do)
E[/r_o/HT/o lo(t + 0o 7z, @) — v(t,z,a) > p(—7) dadtdzdr})i + O(dp).

In the above, we have used the notation O(dp) to denote quantities that depend on §p and are bounded
1

above by Cdy. Note that, }irino / / |o(t + Sor,x, ) — v(t,z,a)]* dadrdt — 0 almost surely for all
00 Jrp Jo

r € [0,1]. Therefore, by the bounded convergence theorem,

1 1
hm]E|:/ / / |U(t+507",:c,a) 7v(t7x7a)|2p(77ﬂ) dadzdtdr} = 0
r=0 JIIr JO

5010

Since Vyos5(x —y) = —Vz05(x — y), we see that

}I;,—HE /HT /Rd/ /.7:519 s,z ), ue(s,y) — k)U(s, x) - Vygg(:n—y)w(s,y)q(kz)dkdadmdyds}}
< A(bo) + O(do),

for some A(dp), with the property that A(dp) — 0 as o — 0. In a similar manner, one has

‘J5 - /H /]Rd // ]-‘50 (ue(s,y),v(s,z, @) — k)T(s,y) - Vyos(x —y) (s, y)s (k) dadkdmdyds”
< B(dy) —l—Z’) 80),
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where B(dp) is a quantity satisfying B(dp) — 0 as §p — 0. Note that, since div,¥(t,z) = 0 for all
(t,z) € Iy, and Vyo5(x — y) = —Vgpes(x — y), integration by parts formula yields

/H /Rd// ]-‘Bﬁ (ue(s,y),v(s,y,a) — k)[U(s,z) — 0(s,y)] - Vyos(z —y)
X Y(s,y)si(k) dk dadx dyds| = 0.

e[ [ ][ () nton -0 - 2l tna) - 1)

X (s, ) - Voos(x — y)u(s,y)s (k) dovdk d ds dy|

s[[ [ ][ (e etstsina) -1 - 2t olona) - )

x (T(s,2) — 8(s,)) - Vaos(x — y)i(s, y)a(k) do dk dz ds dy}

Hence, we have

|Is + J5| <

+ A(d9) + B(dg) + O(dp).

Define F(a,b) = sign(a — b)(f(a) — f(b)). Then, F is symmetric (i.e., F(a,b) = F(b,a)) and Lipschitz
continuous in both of its variables. Moreover,

| FPo (a,b) — F(a,b)| < Vey. (7.18)

Therefore, one has
) l
|15 + Js| < Cleg,v.9)8 + Cley, V)5 + Cley, V)5 + A(do) + B(do) + O(60)

and hence

lim sup ’15 + J5’ =0.
510, 910,010 600

Lemma 7.8. It holds that

6 500 /HT /R/ /7‘“ us(s,y), k)v(s, )-Vyw(s,y)ga(x—y)cl(v(s,x,a)—k)dkdadmdyds}

— E
- 0

[ ] / F (ue(s,), 05, 3, 0))5(5, ) - Vs, ) 05(x — y) dov da dy ds|
IIr JR4 JO

— E /H /Rd /01 /01 FhBo (u(s,y,7),v(s,x,)0(s,y) - Vyib(s,y)os(x — y) dy da dx dy ds}

|
2E|
10 E[/n /R /01 /01 Fu(s,9.7), v(s,2.0))0(s,) - Vb (s, y)es(x — y) dy dodr dy ds|
6—>O |:/HT /01 /01 Flu(s,y,7),v(s,y,)) - Vyib(s, y) dvdadyds]

Proof. The proof is divided into five steps.
Step 1: We will justify the dg — 0 limit. Define

By = ‘st — E[/H /Rd/R/ol fﬁo(ue(s,y),k)ﬂ'(s,y) -Vyb(s,y)os(x — y)a(v(s, x, ) — k)do dkdydxds”

= ’E{/HZ)T /R/ol (}—ﬂ” (ue(s,y),v(t,z,a) — k) — fﬁﬁ(us(s,y),v(s,z,a) — k))ﬁ(s,y) -Vyb(s,y)

X ps, (t — 8)os(x — y)si(k) da dk dy ds dx dt}
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_ ]E{/HT /Rd /}R/Olj:ﬂﬂ(ue(s,y),v(s,m,a) — k)d(s,y) - Vyu(s,y) os(z — )
x (1 - /OT poo (t — 3) dt)Cl(k)da dk dy dx ds} ‘

1
< CE[/ / [V (s,y)| ps, (t — s)os(x — y)|v(s, x,a) — v(t, z, )| da dydsd:cdt}
2 Jo

+CE[/()60 /Rd /Rd/R/ol |72 (ua(s, ), K) IV (s,9)| 0s(x — y)a(v(s, 2, o) — k)da dk dy dz ds
SCE[/;/W/OT/; |v(s,z,a)fv(t,z,oz)|p50(t7s)dadtd:cds} +O(60)

T T 1
< C(E[/ / / / lv(s, z, @) — v(t, @, a)|>ps, (t — s)dax dxdtdsD + O(6y) — 0 as 6y — 0,
s Jo JraJo

and therefore the first step follows.
Step 2: We will justify the I — 0 limit. Let

Ba ::E[/H /]Rd /01 /R]:ﬁ” (ue(s,9), k)U(s,y) - Vyib(s,y)os(x — y)si(v(s, z, a) — k) dk da dz dy ds]

N[

_ E[/H /Rd /01 FP0 (ue(s, ), v(s, x,))T(s,y) - Vytb(s,y) 05(x — y) da dzx dy ds}

1
5[ [ [ [ [ (Foactsk) = Pl vl ) i) - ¥ 00s.0)
iy JRE Jo JR
x os(x — y)s(v(s, z, ) — k) dk dadx dy ds]
By using the boundedness of ¥ and Lipschitz property of F57, we arrive at
|Bs| < C’l/ IVyo(s,y)|dyds -0 asl—0.
Il

Step 3: We now justify the passage to the limit ¢ — 0. Let

Ga(s,y,w, ) =/

1
/ FP9 (€, 0(s, 2, 0))3(s,y) - Vyb(s,y) 05(e — ) da da.
R4 JO

Then G, (s,y,w,&) is a Carathéodory function for every z € R? and {G. (s, y,w, u., (s,v))}, is bounded
in L2((0, %, 1); R) and uniformly integrable. Thus, by Proposition [61] we conclude that

1
tim /R d /H ) /0 FP e (s,), (s, 2, 0))8(5,9) - Vyb(s,y) 05(x — y) e dr s dy]|

1 1
5[ [ [ [ [ 7)) .0 V(6,0 osla ) drdadadsdy).
Rd JII7 JO 0
Step 4: Justification of the limit ¥ — 0. Let
1 1
Bai=B[ [ [ [ [ (Fulsp),vls..0) = Fluls, 7). v(s,2,0)) ) Ts,0) - 9y(s.0)
Re JII7 JO 0

x os(x —y) dvdadmdsdy} .
In view of (TI8) and the assumption [A.2] we see that
|Bs| < C(V, cf)ﬁ/ [V, (s,y)|dyds -0 as ¥ — 0.
IIr

Step 5: Justification of the limit § — 0.

By :’E[/HT /]Rd /01 /01 Fu(s,y,7),v(s,x,)0(s,y) - Vyib(s,y) os(x — y) dydadx dyds}
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1 1
B[ [ ] At ) vl .00) .00 - y(s.0) dy dadyds]|
II+ JO 0

<cB [ [ [ ] it pmoto.a) - Fluts). ooz

X [Vy0(s,y)] 0s(x — y) dy dadz dy ds]

Since F is Lipschitz continuous in both of its variables, by Cauchy-Schwartz’s inequality, we have

1

1 1
|B4| §C(E[/H /Rd/o |v(s,y,7)—U(s,y+5z,7)|29(z)d7dydzds})2 —0 asd—0.

This completes the proof.
Following [9], we arrive at

Lemma 7.9. The following hold:

lim (I + J1) / |vo () — wo(x)|e(0, x) dz} limsup |J7| =0.
(6,9,¢€,1,80)—0 (e,1,80)—(0)

lim — (a+J2) = / / / lu(s,y,7) (S,y,a)lasw(s,y)dvdadde}-
IIr

(6,9, e,1,00)—0

(z,?ﬁlo (Is+ Ju) = /HT /Rd/ / / (ue(s,y) — v(s,z, @) + An(us(s,y); 2)) In(ue(s, y); 2)|?
+ 619 (U(Sa T, Q) — ug(s,y) + )\U(U(Sa T, Q); Z)) |77('U(S"T’ a); Z)|2}
X (1= XNu(s,y)os(x —y) dadrAm(dz) dy dy ds} .

Let us consider the stochastic integrals. Note that J3 = 0. In view of It6-Lévy formula, we see that

5[ [ [ aonalsnk)( [ atuelon) ~ W div(Funton)i(o.) de) dsdyd]
7E //n J[ﬂg,¢5750](s;y,k)(/ S gl(ug(o,y)—k)sAug(o,y))do) dsdydk}

+E /HT//TS%/RL{// @9 (r,z,a) +n(o(r,z, a);2) — k) — By(v (T,iﬁ,a)—k))

< (e y) + (s (r,9):2) = k) = (ue(ryy) = k)

X ps, (r — 8)¥(s,y) os(x — y) dam(dz) dz dr dk dy ds}

s [ [ ssrosslsnnf [ [ [a-nnteor

X ' (us(,9) = b+ A(ue(0,9); 2)) dAm(dz) do | dyds dk|
=: AY5(8,60) + AL7(6,60) + B + AL5(6,60),
where

T8, 85,80\ (5:9. 1) /H// (B0 (v(r,2,0) + n(o(r, 7, 0); 2) ~ k) — B (vlr,7,0) k)

X ¢5.5, (1, %, 8, y) dov N(dz, dr) dx.

33

Thanks to the assumption [A2] by following the arguments as in the proof of [9, Lemma 5.6], we infer

that A%°(6,00), A5%(6,00), A5°(6,80) — Oas dy — 0, and

<z,?31+oB (9,00) = /HT/W// B (v(r,z, @) +n(v(r, 2, 0); 2) = ue(r,y) — n(ue; 2))
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— Bo(v(r,z, a) + n(v(r,z, a); 2) — us(r,y)) + B (v(r, z, @) — u:(r,y))

— By (v(r, x, ) —ue(r,y) — nus(r,y); z)) }w(r, y) os(x — y) dam(dz) dz dy dr} ,
which yields

lim lim ((13 + J3) + (Is + J4))

1—0 6p—0

_IE /HT/R // / B(1 a+9b)d9dam(dz))w(t,y)g(;(x—y)dxdydt},

where a = v(t, x,a) — uc(t,y) and b = n(v(t, z, a); 2) — n(ue(t,y); 2). In view of [A3] one has (cf. proof
of [9, Lemma5.11]) b*B) (a + 6b) < 2(1 — \*)"29h3(z), and thus

limsup limsup [hm lim ((13 +J3)+ (s + J4))} =0.
50,90 e—0 LI=060—0

Finally, we add (CI0) and (TI7), and pass to the limits 6o — 0,1 — 0, ¢ — 0, 9 — 0 and § — 0 to arrive

at the following Kato inequality

E{/Rd |vo () — wo(x)|¥ (0, x) d:c JrE / /1 /1 [v(t, z, o) — u(t, z, )0 (t, ) da dry dx dt}
/H / / o(t,z, a),u(t,,7))0(t,z) - Voo (t, o) dodry da dt} >0, (7.19)

where 0 < ¢ € H'([0,00) x RY) with compact support. One can choose special test function ¢ and
up = vp in (TI9) to conclude that u(t,z,7v) = v(t,z,a) for a.e. (t,x) € I and a.e. (a,7) € (0,1)? (cf.
proof of [0, Theorem 2.2]). This finishes the proof.

7.4. On Poisson random measure. For the convenience of the reader, we recapitulate the basics of
Poisson random measure. Let {7,},>1 be a sequence of independent exponential random variables with

parameter ¢ and T}, = > | 7;. Then the process

N; = Z Li>7,

n>1
counts the number of random times 7}, which arise between 0 and ¢. The jump times 77,75, - form a
random configuration of points on [0, 00). This counting procedure defines a measure on [0, c0) as follows:
for any measurable set A C (0,00), set N(w, A) = #{i > 1 : T;(w) € A}. Clearly, N(w,-) is a positive
integer-valued measure and for fixed A, N(-, A) is a Poisson random variable with parameter ¢|A|, where
|A| denotes the Lebesgue measure of A. Also, if A and B are two disjoint sets then N (-, A) and N(-, B)
are two independent random variables. This can be extended to a general setting. Let Z, = Z, U{+o0}.

Definition 7.1. Let (0,8, p) be a o-finite measure space. A family of Z,-valued random variables
{N(B) : B € B} is called a Poisson random measure on © with intensity measure p, if

i) For each B, N(B) has a Poisson distribution with mean p(B).

ii) If By, Bs,- -+, By, are disjoint, then N(B), N(B2), ...., N(B,,) are independent.

iii) For every w € Q, N(.,w) is a measure on ©.

Construction of a Poisson random measure: Let (0, B, p) be a o-finite measure space. We want to
construct a Poisson random measure {N(B) : B € B} on © with intensity measure p on some probability
space (2, F,P). Assume that p(©) < co. If p = 0, then we choose N(B) = 0. Assume that p(©) > 0.
Then on some probability space (Q, F,P), one can construct a sequence {Z, : n = 1,2,3......} of i.i.d
random variables on © each having distribution (p(©))~1p and a Poisson random variable Y with mean
p(0O) such that Y and {Z,} are independent. Define

N(B) = 0, ifY =0
Yixs(Z), Y >1

Then, {N(B) : B € B} is called a Poisson random measure on O with intensity measure p, see [31]
Proposition 19.4]. Next we consider the case p(0) = oco. By o-finiteness, there exist disjoint sets
©1,0a,.... € Bsuch that U2 ;05 = © and p(Oy) < oo, for each k. Define pi(B) = p(BNOy). Then, one
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can construct independent Poisson random measures {Ny(B) : B € B}, k = 1,2,3,---, with intensity
measure pg, defined on a probability space (2, F,P). Then

N(B) := iNk(B), BeB
k=1

is a Poisson random measure on © with intensity measure p (cf. [31, Proposition 19.4]).

The construction of a Poisson random measure shows that it is a counting measure associated to a
random sequence of points X, (w) in © such that

N(w,B) =Y 15(Xn(w)).

n>1

Let us give an example of a Poisson random measure on [0,00) x R%. Let L = {L;};>0 be a Lévy process
taking values in R? on a given filtered probability space (Q,P, F,{F;}+>0). For t > 0 and 4 € B(RY) ,
where R¢ = R?\ {0}, we define

N([0,4], A) = #{o <s<t:Ly—L, € A} = 14(AL(s)

s<t
where AL(s) = Ly — Ls—. It counts the jumps AL(s) of the process L of size in A up to time t. Let
v(A)=E [N([O, 1], A)}, the expected number of jumps of L; per unit time, whose size belongs to A. The
Lévy measure v(dz) may be infinite but satisfies [L.(]z[* A1)r(dz) < +oo. It is a Radon measure with a
0

possible singularity at z = 0 i.e., v(dz) restricted to each R?\ B(0,7),r > 0 is a finite measure. One can
show the following properties:

i). N([0,t],A) is a random variable on (Q, P, F,{F;}+>0).
ii). t — N([0,t], A) is a Poisson process with intensity tv(A).
iii). N([0,%],0) = 0 and for any disjoint sets Ay, Az,---, Ay, the random variables N ([0, ], A1),
N([0,], Ag),--- ,N([0,t], Ay, are independent.

The compensated Poisson random measure is defined by
N([0,2], A) = N([0,t], A) — tv(A).

Next we define stochastic integral with respect to compensated Poisson random measure N (dz,dt) =
N(dz,dt) — v(dz)dt, where N(dz,dt) is a Poisson random measure and v(dz) is a Lévy measure. To
do so, let us first define it so called for simple predictable functions. A simple predictable function
f(s,2): Qx[0,T] x RE — R is of the form

f(S,Z) = Zzgijl(ﬂ,n+1](t)1x“j (Z),
i=1 j=1

where 0 = 79 < 71 < -+ < Tpq1 = T are stopping times, &1, -+ ,&m € Fry, for i = 1,---  n with &;
are bounded for all 4, j, and Ay, --- A, € B(RE) are disjoint sets with v(A;), - v(Am,) < co. For simple
predictable function f(s, z) of the above form, we define

t n o m
L(f) = / f(s,2)N(dz,ds) =Y > & N((ri Aty 7iga A, A7),
0 JR§ i=1 j=1

Lemma 7.10. Let f : Qx[0, T|xRd — R be a simple predictable function. Then I;(f) is a L*- martingale
and satisfies the isometry property

]E“It(f)ﬂ E[/Ot /R |f(s,z)\2y(dz)ds] (7.20)

In view of the isometry property, one can extend the integral to the closure of the space of simple
predictable functions in L?(Q x [0, T] x RE) with respect to o-algebra Fr @ B([0,T]) ® B(Rg) and product
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measure P® dt ® v(dz). Note that above mentioned closure contains all Pr ® B(Rg)-measurable functions
f:Qx[0,T] x R¢ — R such that

E[/OT /Rg |f(s,z)}2y(dz)ds} < +oc. (7.21)

Thus, for any predictable functions satisfying (T.2I]), one can define the integral via limiting argument.
One can also show that t — fot Jua f(5,2)N(dz,ds) is a martingale. Moreover (Z20) holds.
0
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